
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Simplifying Server Configuration Management

Björn Tackmann

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Joshua LeVasseur

11. Mai 2005

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been
used.

Karlsruhe, den 11. Mai 2005

Björn Tackmann

Abstract

Network services have gained great importance during the last years. Follow-
ing the current trend, the number of computers and applications that collabo-
rate to provide these services will grow steadily in the future. The dependencies
between the collaborating systems along with heterogeneous management inter-
faces will continue to increase the complexity of the administration task. This
thesis presents a new approach to server configuration management. The inte-
gration of the applications into diverse local environments is simplified, and the
availability of services is improved by freeing the applications from error-prone
tasks.

Contents

1 Introduction 1

2 Related Work 3
2.1 Management of Configuration Data 3
2.2 Dynamic Reconfiguration . 3

3 Proposed Solution 5
3.1 The Traditional Approach . 6
3.2 The Configuration Linking Approach 7

3.2.1 Separating the Parser from the Application 8
3.2.2 Configuration Data Bases 9
3.2.3 Generating the Object Files 10

3.3 Dynamic Reconfiguration . 10
3.3.1 A Classification of Configuration Parameters 10
3.3.2 Local Parameters . 11
3.3.3 Global Parameters . 11

4 Evaluation 15
4.1 The thttpd Web Server . 15
4.2 The Extended Version of thttpd 16

4.2.1 Object Files Containing Configuration Data 16
4.2.2 The Configuration Utility 17
4.2.3 Statically Binding Configuration Data 19
4.2.4 Dynamic Reconfiguration 19

5 Conclusion and Future Work 23
5.1 Conclusion . 23
5.2 Future Work . 24

7

8 CONTENTS

List of Figures

3.1 An internet service provider’s data center 5
3.2 Web server retrieving configuration data at startup 6
3.3 Configuration data lifecycle . 8
3.4 Deploying an object file . 8
3.5 Using a central configuration data base 9
3.6 Replacing local parameters . 12

4.1 Splitting thttpd into two applications 17
4.2 The structure of thc . 18
4.3 Objects used in cspace . 18
4.4 The structure of thd . 19
4.5 Changing the user id . 21

9

10 LIST OF FIGURES

Chapter 1

Introduction

Virtually every software product can be customized by means of a runtime con-
figuration. The attributes of the configuration define interconnections between
the programs and control their behavior. For example, a common workgroup
server provides web- and file services, which require authentication. Via the
configuration, the customer declares the files to serve and the authentication
service to use.

Server Configuration Management

At present, software vendors integrate the configuration subsystem tightly into
the software product. The application stores the configuration data using a
particular format, which restricts the customer to employing a specific kind of
management interface. On the target machine, the program to be configured
parses the configuration data at startup. Thus, errors in the configuration data
are not detected until runtime so the applications cannot provide services. In a
composite system, the dependencies of the configuration parameters have to be
considered to configure the collaborating applications properly. In the case of
the workgroup server previously mentioned, the configuration of the file service
depends on the configuration of the authentication service.

We propose to separate the configuration subsystem from the application.
In our approach, several collaborating systems share one configuration data
base. When the configuration data changes, administration utilities parse the
data centrally. They generate application-specific objects from the unique data
model and deploy these objects to the target machines. The utilities handle
dependencies concerning the attributes of different applications automatically.
Thus, the configuration data are managed and checked independently of the
machines that execute the programs. The proposed approach suggests provid-
ing the parser in a separate program, which generates a runtime-compatible
object file containing the configuration data. Since the program runs supervis-
edly, errors in the data can be detected before trying to execute the production
system on the configuration. By means of adjusting the parser utility, the con-
figuration task can be adapted to individual needs. Therefore, the integration
of applications into the existing software system is simplified.

Some applications have to achieve a high degree of availability. A restart for

1

2 CHAPTER 1. INTRODUCTION

configuration updates is unacceptable due to the disruption of the service. Thus,
reconfiguring need be done at run time. Nevertheless, the consistency of the
application must be preserved. This thesis proposes a solution to replacement
of configuration data, which is transparent for the client applications. The
described techniques were implemented extending the thttpd web server [12].

Outline

This thesis is structured as follows. The related work is reviewed in Chapter 2.
In Chapter 3, deployment of configuration data and dynamic reconfiguration of
server applications are discussed. The reference implementation is described in
Chapter 4. Finally, Chapter 5 summarizes the results of this thesis and gives a
survey of the future work.

Chapter 2

Related Work

2.1 Management of Configuration Data

The Kolab groupware environment [8] consists of several independently devel-
oped open source applications, including a mail server, a directory server, and
a web server. Each of these programs uses proprietary configuration files. A
unified web-based interface is used for specifying the configuration data and
for generating the files that are parsed at the startup of the server applica-
tions. The management interface does not detect errors in the data. Thus,
the programs are supplied with erroneous configuration files and cannot provide
services properly.

Managing configuration data of workstations and servers centrally is the
objective of [2]. Analogous to Kolab, the approach proposes to build the config-
uration files of the configured applications from a unique data model. During the
boot process of the operating system, each machine retrieves the configuration
data and creates the application-specific files. Since the data is stored cen-
trally, the administrator manages the applications independently of the target
machines, and utilities can check dependencies of the configuration attributes.
Nevertheless, the configured applications parse the data, so parsing errors can
decrease the availability of the services. Furthermore, the approach constrains
the changes to be absorbed at boot time.

2.2 Dynamic Reconfiguration

The separation of the implementation and the configuration of services increases
the flexibility of applications. Kramer’s Configuration-programming approach
suggests implementing a distributed application at a programming and a con-
figuration level [9]. Endler extends this approach by equipping the components
with a reconfiguration interface to support consistency-preserving reconfigura-
tions [7]. The enhanced components provide state predicates and consistency
operations, which are accessed by reconfiguration scripts to synchronize the re-
configuration with the internal state of the component. In Lira, the concepts of
network management are applied to the reconfiguration of distributed applica-
tions [6]. The definition of a management protocol is based on the corresponding
techniques. Managers, which embody the logic for monitoring and reconfigu-

3

4 CHAPTER 2. RELATED WORK

ration activities, use this protocol for accessing attributes of components by
means of reconfiguration agents. These agents can build composite components
by acting as managers and distributing the requests to other reconfiguration
agents. A host agent runs on each machine and is responsible for installing and
activating the components locally. Warren and Sommerville present a model
for consistency-preserving reconfiguration of component-based applications [13].
The individual components can be reconfigured as well as added, deleted, and
replaced. Synchronization is achieved by using a central runtime kernel for
the communication among the components. All of these approaches focus on
dynamic reconfiguration of component-based applications. The affected com-
ponents, however, have to be suspended when they are reconfigured. In this
thesis, the components proceed throughout the reconfiguration.

Upgrading the software of long-lived distributed systems is difficult, since
halting the system is unacceptable [1]. If the nodes of the distributed system
retrieve the new software version independently, two different nodes that need
to communicate will possibly run different versions. Therefore, the approach
suggests using Simulation Objects to map the incoming requests to the interface
of the running software version. The K42 operating system kernel supports
updates of both code and data structures at run time [3]. In the kernel, all
object invocations are made through an object translation table, hence adding
a level of indirection. A mediator object is interposed by adjusting the entries
of the object to be replaced. To assure quiescence, which is important for
a consistent update, the mediator traces the generations of the threads that
access the object. Both of these approaches use an identification of the caller’s
version to preserve consistency. The epoch described in Section 3.3 serves the
same purpose.

Chapter 3

Proposed Solution

Server applications are often assembled to build composite systems, such as de-
scribed in [8]. Therefore, the customer must be able to adapt these programs
to a variety of situations by specifying a runtime configuration. The integration
of the applications into the local environment is desired to be of minimal effort.
We will use the setting shown in Figure 3.1 to illustrate the problems and tech-
niques throughout this chapter. Consider an internet service provider running

Application servers

File service
Web service

ac
ce

ss

Central server

Authentication service

Users
Anywhere in the world

access

Administrator
Local workstation

manages

m
anages

Figure 3.1: An internet service provider’s data center

a private data center. Many application servers execute an instance of a file-
and a web service each. The servers run in a load-balanced environment and
use similar configurations. They access a central authentication service located
at a different server. The administrator uses his workstation to manage all of
the servers. Lots of users located anywhere in the world access the web- and
file services with high demands for availability.

5

6 CHAPTER 3. PROPOSED SOLUTION

3.1 The Traditional Approach

In current software products, one executable file contains both the configuration
subsystem and the functional implementation, since the parser of the configu-
ration data is statically linked to the program. At startup, the application
converts the data into an internal representation, which is used at run time.
For example, the thttpd web server obtains the attribute values from a plain
text file, which contains a key-value pair for each parameter [12]. thttpd must
be restarted to adopt changes of the configuration data, since the parser runs
only at startup.

The tight integration of the configuration subsystem into the application
has several disadvantages. Parsing the configuration data at startup implies
that errors, which prohibit the program to provide services properly, are not
detected until runtime. Therefore, the program remains in an undetermined
state from which an autonomous recovery is impossible. The administrator must
supply the machines that received erroneous configurations with revised data
and restart the programs. An application downtime is inevitable. In addition
to these issues, the code of the configuration subsystem must be installed on
the machines that read the data. Both the parser and the infrastructure that is
necessary to obtain the data are required by the target machine. Depending on

File
service

Name
service

Web server
File service

client
Name service

client

10.1.1.7!auth.local?

request file

...
auth at =

auth.local
...

Figure 3.2: Web server retrieving configuration data at startup

the particular implementation, the configuration subsystem uses a file system,
a database client, or a similar service for retrieving the configuration data. The
additionally installed software increases the management effort. In Figure 3.2,
the web server requests the configuration file from the file server. Parameters
included in the configuration data require a look-up in an external data base,
since the authentication server is referred to by its host name auth.local in the
configuration file. On the one hand, this denotation of the host is convenient for
the user. On the other hand, the current network address, which is 10.1.1.7
in the example, must be requested from the name service. Thus, a name service
client has to be installed on the machine that parses the configuration data.
The look-ups are also a potential source of runtime errors. For instance, if a
required service is not available, the configured application will not be able to
run.

When designing a software system, one must often combine components sup-
plied by several vendors. At present, each of these components includes a specific
configuration subsystem, which cannot be replaced. The configuration data are
distributed among several data bases, which possibly use different formats. The

3.2. THE CONFIGURATION LINKING APPROACH 7

administration task becomes more complicated, since several management in-
terfaces are used. Furthermore, a customer may require additional languages
of the management interface or platforms the interface runs on, which are not
implemented by the application vendor. Since the user cannot adjust the config-
uration subsystem, the integration of the application into the local environment
is difficult. For example, if several users may adjust only particular attributes,
the simple plain text file used by thttpd will not be sufficient to enforce these
directives. Moreover, the components that the composite software system con-
sists of are assembled by defining bindings, which are specified in the particular
configuration data. In the basic example depicted in Figure 3.1, the file server
accesses the authentication service. When the network address of the authenti-
cation server is changed, the configuration data of the file servers have to reflect
this change. If the applications use independent configuration subsystems, the
administrator will have to adjust the configuration data manually.

Several current approaches propose to store the configuration data of mul-
tiple collaborating application in one central data base [2, 8]. A utility builds
application-specific configuration files from these data. The applications read
these files at startup. These approaches simplify the administration task, since
they provide a unique management interface for the applications. Nevertheless,
the programs parse the configuration files, so the configured machines must
supply the infrastructure required to retrieve and parse the files.

3.2 The Configuration Linking Approach

System configuration can be charactarized as a collection of components, such
as the server applications in Figure 3.1, interconnections between these compo-
nents, which are indicated by the network addresses, and values of particular
attributes. For the web server, such attributes include the directory that the
served documents reside in and a maximal age of pages for client-side caching.
All configuration parameters have to be initialized before an application can
provide services. The values can be specified by including them in the exe-
cutable file, requiring the application to be rebuilt whenever the configuration
changes. Alternatively, they are obtained at startup, deferring the configuration
task from the developer to the user. Both ways result in the same runtime rep-
resentation of the parameters. In the first case, the developer includes constant
values in the source code of the application. The compiler transforms these val-
ues into a representation that is specific to the target platform. In the second
case, the user creates a runtime configuration that contains the values. The
application performs the transformations at run time.

Runtime configuration is used to adapt software individually. Figure 3.3
depicts the model of the configuration data lifecycle used in this thesis. By
means of a configuration editor, the user generates a specification spec of the
desired configuration, which is stored persistently in a configuration data base.
The format of the specification does not depend on the particular application,
since the defined requirements can be fulfilled by several implementations. The
configuration parser retrieves the specification from the data base and generates
a runtime representation RR of the configuration. This form is specific to the
particular implementation and the runtime environment. For instance, a list
contained in the specification can be transformed into a binary tree, a hash map,

8 CHAPTER 3. PROPOSED SOLUTION

User Editor Data base

Parser AS Program

spec

spec

RR RR

Figure 3.3: Configuration data lifecycle

or a similar data structure, according to the configured application. The byte
order that is used depends on the target platform. At run time, the generated
representation is accessible in the address space AS of the configured program.

3.2.1 Separating the Parser from the Application

Applications developed with respect to the traditional approach contain the
complete configuration subsystem, as depicted in Figure 3.4(a). At startup, the
parser converts the configuration data into a runtime-compatible representation,
which is used by the running program. The conversion has finished before the
generated data are accessed. More precisely, the parser creates a data object,
and passes a reference to this object to the application. The data object could

Runtime re-
presentation

Program

Parser

Data model

Specification

(a) Parser linked to application

Object
file

Program

Parser

Data model

Specification

(b) Separated executable files

Figure 3.4: Deploying an object file

be generated by an external program to achieve the same result. We separate
the parser from the application and execute it as a configuration utility. This
program retrieves the specification from the configuration data base and stores
the generated runtime representation to an object file, as in Figure 3.4(b). The
starting application loads and links the object file. Therefore, this approach is
called configuration linking. The application and the configuration utility can

3.2. THE CONFIGURATION LINKING APPROACH 9

run on different machines. The generated object file is deployed to the target
machine, which executes the configured application. Since the transferred file is
relocatable, the application can change the original address of the data used by
the parser. Relocation is mandatory for dynamic reconfiguration as described
in Section 3.3.

Seperating the parser from the functional implementation of the applica-
tion and providing an independent configuration utility solves several problems
stated in Section 3.1. The administrator can execute the configuration utility us-
ing his workstation, supervising the creation of the object file. Thus, errors that
occur when the configuration data are parsed can be removed before deployment
to live servers. Moreover, the application does not require the infrastructure for
obtaining the data from the configuration data base, since the configuration util-
ity fulfills this task. Values for parameters that require an additional look-up in
an external data base are determined by the configuration utility as well. Thus,
less software must be managed on the target machine. Furthermore, linking the
generated object file to the application is a straightforward task. The object is
loaded into memory and, if necessary, relocated. Afterward, symbols contained
in the file are resolved. In contrast with the loader, parser code tends to be
complex and long. Even in case of thttpd, which uses a simple configuration
file, the parser code is about twice the size of the loader code of the extended
version. The parser must be adapted to support changes of future versions of
the application. In contrast, the loader is identical for multiple versions and
applications.

3.2.2 Configuration Data Bases

Using configuration linking, one central data base can store the configuration
data of multiple collaborating applications. An example is shown in Figure 3.5.
When the configuration changes, the specification spec is parsed centrally, for
instance on the administrator’s workstation. The configuration utility generates
the application-specific object files and deploys them to the target machines.
Changing the applications to retrieve the configuration data from the central
data base is not required, since the configuration utility containing the parser
is a separate program. Storage of configuration data for several collaborating

Central
configuration

data base

Administrator’s
management

workstation
Auth. server

Web server

File server

spec

Object files

Figure 3.5: Using a central configuration data base

applications in one central data base has a lot of advantages. The configura-
tion utility can derive the values of the attributes used to bind the components
automatically. Other dependencies occur as well. In the example depicted in
Figure 3.1, the web- and file servers running on the same machine must not use
the same network port. If these attributes are stored in a central data base,

10 CHAPTER 3. PROPOSED SOLUTION

they can be checked independently of the target machine and application. The
customer can design the configuration data base with regard to the local work-
flow. For example, the data base can provide fine-grained access control. Thus,
the users may change only those attributes they require to perform their tasks.
Additionally, a single management interface for all applications simplifies the
administration task. The development of such an interface will be easier for
the customer, if the data are stored using a unique format. Additional features
such as local language support can be implemented. Finally, by providing an
adjusted parser, the customer can integrate new programs seamlessly into ex-
isting environments and replace components without changing the management
interface.

3.2.3 Generating the Object Files

For an application using configuration linking, the software vendor delivers
the functional implementation and defines an interface for the deployment of
runtime-compatible configuration objects. The customer designs the configu-
ration data base and creates a parser, which generates objects complying with
the interface of the application. For convenience, the vendor can provide a li-
brary that builds the object files from the data obtained by the parser. This
library contains methods to set the parameters derived from the configuration
data and performs the checks that are done at the startup of the application
in the traditional approach. The vendor can specify the object file format, but
the generation of binary object files is a cumbersome task and their interface
is more specific to a particular version of the application than the interface
of the library. Thus, using a library simplifies the development of the parser.
Of course, a default implementation of the configuration utility, emulating the
current handling of the configuration data, can be provided by the vendor. A
configuration utility that uses the default data base generates the object file
before the application is started.

3.3 Dynamic Reconfiguration

Availability of services is one major criterion for service providers. The service
level agreements usually define a minimum rate of service uptime. The sus-
pension of a subsystem for reconfiguration decreases the uptime, since client
requests cannot be processed meanwhile. Therefore, server applications are de-
sired to adapt to new configurations at run time.

3.3.1 A Classification of Configuration Parameters

A server application has to be reconfigured transparently for the clients. When
a server receives a client request, state information representing the new con-
nection is generated. After processing is finished, these data are deleted. The
lifetime of the state information defines a session. A session can span multiple
requests such as in web applications that preserve the state information across
several network connections [5]. The server must use the same configuration
throughout a session to achieve transparency for the clients. Each individual
configuration specifies a consistent state of the application. The configurations

3.3. DYNAMIC RECONFIGURATION 11

change at epochs with transitions between these consistent states. Each session
is assigned to a particular epoch, which determines the related configuration.
The client request initiating the start of a session and the reconfiguration defin-
ing an epoch are independent. Thus, a session does not depend on the particular
epoch it is started in.

A configuration parameter can either be local to a session in a sense that its
value may differ between several sessions, or global with the same value for all
sessions. For a web server, the maximum age of pages for client-side caching
is a local parameter, since separate sessions may use different values without
interfering. In contrast, the maximum number of sessions handled concurrently
by the server is unique in the application and therefore global.

3.3.2 Local Parameters

Server applications can handle multiple client requests concurrently. The threads
processing the requests read the configuration data. The reconfiguration of the
application at run time, which marks a new epoch, results in changes to the same
data. These accesses must be synchronized to preserve the consistency of the
application. Since read accesses to the configuration data are expected to occur
much more frequently than changes, the minimization of the synchronization ef-
fort for the readers is desired. Moreover, changes to local parameters must not
affect sessions assigned to former epochs. The read-copy update approach [11]
can be adapted to solve these issues.

The server application obtains an initial configuration object at startup.
When a client request is received, the server generates state information repre-
senting the created session. Additionally, a pointer to the current configuration
data is stored. The server accesses the configuration data by means of this refer-
ence when handling the session. Figure 3.6(a) depicts a server using the initial
configuration to handle a client request. In Figure 3.6(b), the administrator
deploys a new configuration object. The server application loads this object,
marking a new configuration epoch. The configuration of the former epoch,
which becomes deprecated, is still required by the first client. Thus, multiple
versions of configuration data are valid. The reconfiguration does not affect
clients started during former epochs, since the server refers to the deprecated
configuration data when handling their requests. As shown in Figure 3.6(c), the
server uses the new configuration object when handling sessions initiated after
the reconfiguration. The deprecated configuration objects will be abandoned,
but the server must assure that all sessions referring to this object are closed
first. Therefore, the references used by the active sessions are checked. In Fig-
ure 3.6(d), the old configuration object is deleted after the first client closed its
session. Using this technique, the synchronization effort for the readers may be
neglected. The server stores a reference to the current configuration object in
the state information when receiving a client request. Throughout the session,
the thread reading the configuration data need not perform additional write ac-
cesses for synchronization. Moreover, the technique does not use waiting loops.

3.3.3 Global Parameters

The server cannot deal with global parameters as described in Section 3.3.2.
These parameters represent dependencies of the sessions and have to be handled

12 CHAPTER 3. PROPOSED SOLUTION

Administator

Client #1
Server

old config

(a) Initial configuration

Administator

Client #1
Server

new config

(b) Submitting a new configuration

Administator

Client #1

Client #2

Server

(c) Two valid configurations

Administator

Client #2

Server

(d) Freeing the deprecated configuration

Figure 3.6: Replacing local parameters

consistently for all sessions. In general, the clients either use the server for
collaboration, such as a file service, or any interference between them must be
avoided. A finer classification distinguishes between

1. parameters that are transparent for a client,

2. parameters that influence the communication among clients,

3. and parameters that are global because of the implementation.

The first class of parameters does not influence what is done from the perspec-
tive of a client, only how it is done. An example for this class is the maximum
number of CGI1 programs running concurrently on a web server. If the current
number reached the upper bound, an additional request may be deferred. Al-
ternatively, the server will send an exception that tells the client to repeat the
request later, if this reply is valid according to the protocol. The client cannot
determine whether the parameter has been changed or additional clients have
connected to the server. Different policies can be used for replacing values of
global parameters. The read-copy update technique is suitable where stale data
can be either tolerated or suppressed [11]. A thread updates the data when a
passing a quiescent state. Thus, different threads absorb the change indepen-
dently. If this lazy handling of the configuration update is appropriate, the
implementation can be done similar to the one described in Section 3.3.2. The
creation and the deletion of a session are artificial quiescent states. Additional

1Common Gateway Interface

3.3. DYNAMIC RECONFIGURATION 13

ones result in an earlier adoption of new configuration data. In the example,
when the upper bound is decreased, the running programs are not affected, but
the server defers the execution of additional ones until the current number is
lower than the upper bound. If lazy handling is not appropriate, the threads
that potentially access the configuration data will have to be at a consistency
point [7] when the data are changed. Thus, there is no progress throughout the
reconfiguration.

Several server applications, such as file servers enable clients to communi-
cate. To achieve transparent reconfiguration, the server must assure that clients
are able to communicate, even if they have been started in different configura-
tion epochs. The data sent by a client are, at least temporarily, stored in the
server. The representation of the data, for both transmission and deposition,
may depend on the current configuration. In this case, the application is aware
of the data format and converts the received data into a temporary form, which
is stored. Data requested by a client will be converted into an output format
and sent. The parameters specifying the input and output formats are local to
the sessions and handled in the way described in Section 3.3.2. If the server-
internal representation is changed, the existing data will have to be converted.
Approaches to consistent transformation are described in [3, 6, 13].

Implementation details or the runtime environment of the application can
enforce the uniqueness of a configuration parameter. Thus, only one configu-
ration may be valid at a time. For example, the user id of a thttpd process
running on UNIX is specified in the configuration file. Two sessions that are
served concurrently may have different user ids without affecting consistency.
But they are served by the same process, and the user id of a UNIX process is
unique. Thus, the implementation of thttpd enforces that the user id is unique
for all sessions. Therefore, when such a parameter is changed, a new component
has to be created and to exist in parallel with to the old one. Nevertheless, re-
quests must be handled by the appropriate component. The program abandons
the old component as soon as all of its sessions are closed. Servers used for the
communication among clients have to ensure that sessions started in different
epochs are still able to collaborate. Therefore, persistent data have to be stored
accessible to all components running concurrently.

14 CHAPTER 3. PROPOSED SOLUTION

Chapter 4

Evaluation

For evaluation, we extended the thttpd web server, version 2.25b [12], with an
implementation of the techniques described in chapter 3. thttpd is a small and
comparatively simple server, which supports the HTTP/1.1 protocol and runs
on POSIX-compliant systems. Our extensions were developed and tested using
GNU/Linux.

4.1 The thttpd Web Server

The thttpd web server has several features. URL-traffic-based throttling con-
trols the transfer rates of files specified by using pattern matching on filenames.
Moreover, status information about all requests can be written to a special
logfile, and file transfers can be blocked depending on the referrer attribute.
Finally, UNIX signals are used to initiate the re-opening of the connection log-
file, to generate status log messages, and to terminate after all sessions that are
active at the moment are closed.

thttpd is completely written in C. The build process, which uses GNU au-
toconf and make, creates one executable file containing the server application.
Default values of the configuration attributes are specified in an include file.
Most of the attributes can be overwritten by passing values as command line
parameters. A configuration file, which is a simple text file that contains a
key-value pair for each parameter, can be specified by means of a command line
parameter. For the URL-traffic-based throttling, thttpd can obtain patterns for
file name matching as well as minimum and maximum byte transfer rates from
an additional file.

At startup, the application obtains the configuration data. The global vari-
ables containing these data remain unchanged at run time. After the config-
uration stage, the server initializes the environment. The connection logfile is
opened, the root directory of the process is changed, and the network ports
are requested. Finally, the process changes its user id. The program enters
the main loop and checks the file descriptors repeatedly for incoming data and
connections. thttpd maintains a connection table that contains the state infor-
mation of all sessions. When a new connection is created, the server inserts a
record into the connection table. At run time, except for running CGI programs
and delivering directory listings, one thread serves all connections. The protocol

15

16 CHAPTER 4. EVALUATION

handling code for client requests is implemented in a library and hence separated
from the server specific features. The methods provided by the library present
models for servers and connections. An appropriate handle is passed at every
function call. The requested files are read by using memory mappings. The
library mmc, which is specific to thttpd, handles these mappings. Because of the
single-threaded design of thttpd, accesses to data that have not been mapped yet
block the whole application. Thus, the server performs polling before sending
data to a client. The library fdwatch contains the corresponding code. After
opening a file, the program registers the file descriptor at the library. On each
pass, the main loop calls a method that performs polling on the registered files.
The build process determines the particular system call, which depends on the
operating system. Information about available data can be retrieved by using
library calls. The UNIX alarm signal is used as a watchdog to detect applica-
tion failures. A proprietary timer library supports scheduling of periodical tasks
such as updating the throttling table and resetting the watchdog flag.

The server obtains the patterns used to match filenames and the minimum
and maximum transfer rates for throttling at startup. These values are stored
in the throttling table, along with current statistics, such as the average transfer
rate. A client request, which initiates a new session, is analyzed. The server
compares the requested filename with the patterns in the throttling table. For
each matching pattern, a reference to the corresponding row of the throttling
table is stored in the state information of the session in the connection table.
Before sending data to a client, thttpd checks these entries and adjusts the
transfer rate to the value specified in the throttling table.

4.2 The Extended Version of thttpd

Using the techniques described in chapter 3, we enhanced thttpd to use runtime-
compatible object files for the deployment of configuration data. Adaption to
configuration changes at run time without interrupting services is supported
as well. Figure 4.1 depicts the tasks of the particular applications. A seperate
utility called thc, the thttpd configuration utility, contains the parser code, along
with code for checks on the attributes and look-ups for several parameters. thc
obtains the configuration data and generates a relocatable object file containing
the data. thd, the thttpd with dynamic reconfiguration, reads this object file at
startup. During the server loop, thd listens on a named pipe for objects that
replace old configurations.

4.2.1 Object Files Containing Configuration Data

An object file contains the data that are passed from the configuration utility
to the server application. The reference implementation uses the simple a.out
OMAGIC [10] format, which supports relocation and symbols. Since UNIX
has used the a.out format for many years [4], there are many programs that
handle a.out files and simplify debugging. The object file contains the runtime
representation of the attribute values obtained from the configuration data base.
For some attributes, look-ups have been performed, and the results are included.
In particular, thc derives the network addresses from the host name and infers
the user and group ids from the user name. Additionally, a throttling table, if

4.2. THE EXTENDED VERSION OF THTTPD 17

Main loop

Initialization and look-ups

Parser

thttpd

(a) Structure of thttpd

Main loop

Initialization

Look-ups

Parser

thc

thd

(b) The extended version

Figure 4.1: Splitting thttpd into two applications

Symbol Name Contents of Section
config Local parameters
globalc Global parameters
th b Throttling table
throttles Reference to th b
numthrottles Number of values in th b

Table 4.1: Contents of the configuration object generated by thc

specified, will be inserted into the object file. Table 4.1 lists the five symbols
contained in the file and the sections they refer to.

4.2.2 The Configuration Utility

The relocatable object files containing the configuration data are created by
thc. The command line arguments and the configuration files are identical
with those of thttpd. Figure 4.2 depicts the design of thc. The parser reads
the configuration file and passes the attribute values to libthc. This library
generates the runtime representation RR of the configuration data. The cspace
module finally creates the a.out file. In the following, the modules will be
explained in detail.

The cspace module provides functions to create relocatable a.out object
files. cspace is not specific to thc and can be used to generate arbitrary a.out
files that contain only data. Figure 4.3 shows the structure of the objects man-
aged by the module. In the beginning, a configuration object must be initialized
to create the necessary data structures. Symbols, which correspond to symbols
in the object file, can be added to and deleted from the configuration object.

18 CHAPTER 4. EVALUATION

Config
file

Object
file

Parser libthc cspace
spec attribute

values
RR object

data

thc

Figure 4.2: The structure of thc

Allocation of memory is done using function calls that are similar to those of
C. Each of the allocated chunks is assigned to one symbol and consists of a
contiguous part of memory. Multiple chunks can be assigned to the same sym-
bol. The configuration data reside in this memory. Nevertheless, pointers must
be stored relocatably in the object file. Since the library cannot determine the
types of the variables, the application must mark the memory locations that
contain pointers by calling a particular method. After the data are completely
stored to memory, cspace is advised to write the object to a file. For each
pointer, a relocation record is stored in the object file. This record depends on
two symbols: The one containing the pointer and the one containing the target
of the pointer. cspace determines these symbols automatically when relocating
the object. The text and text relocation sections of the generated object file are
empty.

configuration
symbol

chunk

chunk

mark

symbol
chunk

mark

Figure 4.3: Objects used in cspace

The mapping of the configuration data of thttpd to the generic concepts of
cspace is the task of the libthc module. This library does not depend on
a specific configuration data base and implements the concepts described in
Section 3.2.3. Thus, the implementation of a custom parser can be based on
libthc. For each configuration parameter of thttpd, the library provides a spe-
cific method for setting the desired value. libthc does not perform look-ups
such as the conversion from the user name to the user id, since this mapping
depends on the particular configuration data base. Therefore, libthc requires
the configuration utility to provide the resolved value for parameters that ne-
cessitate look-ups. Using the default thttpd configuration file, the user name
and the host name have to be transformed.

The thc application parses the configuration data and obtains the attribute
values. In contrast to thttpd, thd does not store the values to global variables

4.2. THE EXTENDED VERSION OF THTTPD 19

but writes them to the configuration object by means of the libthc module. We
adapted the parser code of thttpd. Thus, for the look-ups that are performed
additionally, thc uses the same data bases as plain thttpd. In particular, the
user name and the host name are transformed by means of the regular UNIX
functions. Thus, the current implementation of thc must run on a host that
uses the same data for these mappings as the target machine. Exchanging the
configuration data base requires to provide a custom implementation of the
parser. Thus, the code of thc has to be adapted, but there is no need to change
libthc and cspace.

4.2.3 Statically Binding Configuration Data

For debugging purposes, there is a slightly modified version of thttpd called ths,
which complies with the interface of the objects generated by thc. The object
file is statically linked to the program during the build process. Therefore, the
replacement of the configuration requires to relink the application. The parser
code is removed from ths, resulting in a smaller executable file.

4.2.4 Dynamic Reconfiguration

thd is a version of thttpd that implements dynamic reconfiguration and accepts
the object files generated by thc. The administrator deploys the configura-
tion data by writing the object file to a named pipe placed in the local file
system. Because of security limitations of the UNIX runtime environment, thd
must consist of two separate processes. One part, the thd server, handles the
requests sent by the clients. The other part, the thd configurator, manages
submission of configuration data. An unnamed pipe connects both processes.
The structure of thd is depicted in Figure 4.4. The configurator, which does
not handle client requests, has root privileges. Otherwise, the coarse-grained
UNIX rights management prohibits reconfigurations that change the user id of
the server process. At the startup of the thd application, the configurator ob-
tains an initial configuration object and opens the named pipe. Afterward, a
thd server is created using the initial configuration object. When thd receives
new configuration data, the configurator checks whether the running thd server
can adopt the changes. In this case, the configuration object will be passed
through the unnamed pipe. The object must be relocatable, because the thd
server eventually loads the data to a different address.

c
l
o
a
d

c
l
o
a
d

c
l
o
a
d

user
thd

configurator
thd

server
named
pipe

unnamed
pipe

Figure 4.4: The structure of thd

The thd server changes local parameters by the technique described in Sec-
tion 3.3.2. Therefore, the connection table, which was mentioned in Section 4.1,
contains an additional column containing a reference to the local configuration
data. When a connection is initiated and registered in the connection table,
the address of the current local configuration data is stored additionally. The

20 CHAPTER 4. EVALUATION

server determines the configuration to be referred to by using the connection
table when handling a request. When receiving a new configuration object, the
server stores the address of the local configuration data, which is obtained by
resolving the symbol config, globally to mark the new configuration as the
current one. Sessions started afterward will refer to these data. In the main
loop, thd checks whether multiple versions of the configuration data exist. If
there are old data and there are no active sessions that refer to these data, the
deprecated configuration object will be released. Several parts of thttpd have
been changed to support dynamic reconfiguration. For instance, the original
implementation requires the served documents to reside in subdirectories of the
current working directory. Since the parameter determining the location of the
documents is local in thd, libthttpd has been adjusted to infer the document
directory from the local configuration of the session.

As previously mentioned, the maximum number of CGI programs running
concurrently is a global parameter. thd applies the lazy handling described
in Section 3.3.3 when this parameter is changed. In particular, this attribute
is only referred to before starting a CGI program. The server checks whether
the number of running programs is lower than the upper bound. Thus, if the
maximum number is decreased, running programs will not be affected. Execu-
tion of additional programs is blocked until the current number is adequate. In
contrast, an eager replacement technique is applied to updates of the throttling
table. The connection table, which contains references to the throttling table,
has to be adjusted to preserve consistency, since the indices of the throttling
table may have changed. Because of the single-threaded design of thttpd, no
additional synchronization is needed.

Several additional configuration parameters are global because of the UNIX
environment. For example, the user id is unique for a process. Because of the
single-threaded implementation, the id is unique for all sessions in the case of
thttpd. The values of these parameters are updated as follows. Figure 4.5(a)
depicts the initialization phase of thd. The configurator obtains the initial con-
figuration object, opens the TCP port, and starts a server instance, which uses
the initial configuration data. The server, which is created by the fork system
call, inherits the file descriptor of the TCP port. In Figure 4.5(b), a client initi-
ates a request, which is handled by the thd server. When a configuration that
changes the user id is submitted, the configurator signals the current server to
close the file descriptors of the network ports and to exit gracefully. Addition-
ally, a new instance of the server is created, which is shown in Figure 4.5(c).
When the new instance is started, the current configuration, which was loaded
and relocated by the configurator, is present in the address space. Thus, the
new instance uses the new user id. The old instance exits after all sessions have
been closed, such as in Figure 4.5(d).

Nevertheless, the server must not lose any requests during reconfiguration.
Therefore, the thd configurator allocates the network ports. The servers are
created by using the fork system call and inherit the file descriptors. Since the
ports are never closed throughout the runtime of the configurator, no requests
are lost. At all times, at most one server accepts new connections. This handling
is appropriate, since, for thttpd and thd, each session consists of exactly one
network connection. After the configurator has obtained a new configuration
object, relocation is applied. Before the data are passed to the current server
instance, the attributes can be adjusted. For example, if the server uses a

4.2. THE EXTENDED VERSION OF THTTPD 21

Server

T
C

P
P
or

t thd config.

Server#1

(a) Initialization

Server

T
C

P
P
or

t thd config.

Server#1Client#1

(b) Processing a request

Server

T
C

P
P
or

t thd config.

Server#1

Server#2

Client#1

(c) Setting up a new server

Server

T
C

P
P
or

t thd config.

Server#2Client#2

(d) New clients connect to server#2

Figure 4.5: Changing the user id

different root directory, the path of the connection logfile is adapted. If the
changed object is transmitted by means of the unnamed pipe, the object must
be converted to a valid a.out file again.

The cload module contains an object file loader for the a.out file format.
A loaded file is completely stored in the memory and can be relocated to an
arbitrary address. The addresses of pointers are either absolute or relative
to the symbol that the related data are assigned to. The appropriate mode
can be selected by passing a parameter to the relocation method. This option
is necessary for passing a valid a.out file from the configurator to the server.
Furthermore, cload provides methods that resolve the name of a symbol into
the address of the data referred to. Thus, the configuration data contained in
the object file can be composed of sections, which are addressed independently.

UNIX signals initiate several activities of thttpd [12]. In the case of thd, using
the process id of the configurator is convenient for the user. The configurator
must relay certain signals to the thd server. For instance, the application can be
instructed to re-open the connection logfile. Since this logfile is maintained by
the thd server, the configurator forwards the signal. As previously mentioned,
the configurator adapts the path of the logfile to the root directory of the thd
server. Nevertheless, if this path is not visible to the server, re-opening the logfile

22 CHAPTER 4. EVALUATION

will be impossible. Thus, the configurator will spawn a new server instance,
which opens the logfile before changing the root directory. The configurator
signals the old server to exit after all sessions have been closed.

Chapter 5

Conclusion and Future
Work

This thesis investigated several ideas toward simplification of server configura-
tion management. This last chapter summarizes the contents dealt with in the
previous sections. Moreover, a survey of the future work is given.

5.1 Conclusion

Management of server configuration data is a complicated task. In practice, a
small group of administrators manages many machines, and each of the machines
runs multiple programs. Server applications collaborate with other services and
therefore depend on the corresponding configuration data. After all, service
uptime must be maximized. By using a central data base, values of dependent
parameters can be derived and attributes can be checked for consistency auto-
matically. If the configuration subsystems are separated from the applications,
the parsers will be able to run supervisedly on an administrator’s machine.
Therefore, errors in the configuration data can be eliminated without decreas-
ing the availability of the servers. The application uptime can be increased by
reconfiguration at run time, which particularly depends on error-free configu-
ration data. An approach to dynamic reconfiguration without suspending the
application is presented in this thesis.

Extending the thttpd web server, we implemented the techniques described
in this thesis. The enhancement of the application to deploy and accept runtime-
compatible object files has required only slight changes of the server code. We
expect other server software to be adaptable as well. Adjusting the configura-
tion utility to another kind of data base can be done by exchanging the parser
code. The application can remain unchanged. Dynamic reconfiguration has
been implemented as well, and, for thttpd, all attributes specified in the stan-
dard configuration file can be replaced at run time without interrupting services.
Nevertheless, there is no persistent state management in thttpd, so reconfigu-
ration can be performed easier. Parameters that must be unique, such as the
user id, and the coarse-grained rights management of UNIX require one process
to have root privileges.

23

24 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Work

This thesis describes the dynamic update of configuration data for one applica-
tion. Composite systems must be reconfigured consistently for all components.
Therefore, the servers must synchronize their configuration epochs. A client re-
quest may trigger subsequent requests to other servers. All of these requests can
be assigned to the same session and thus belong to the same configuration epoch.
Each of the servers contains multiple valid configurations, but only one config-
uration is regarded current. The insertion and the deletion of configurations, as
well as the substitution of the current configuration, could be regarded as trans-
actions. A technique based on the two-phase-commit protocol could be used for
distributed transactions. By handling the insertion of new configuration data
and the substitution of the current configuration as distributed transactions, the
servers would only regard a configuration current after all servers have adopted
the new version. Moreover, the servers would not release a configuration until
all sessions that were started in the corresponding epoch have finished. Thus,
the consistency could be preserved globally throughout a session.

The approach proposed in [7] specifies that the components receive reconfigu-
ration scripts and interpret them locally. Reconfiguration must be synchronized
with the internal state of components, which is exported by means of state
predicates. A reconfiguration script depends on the values of certain predicates,
which indicate a consistent state of the component. Throughout the execution of
the reconfiguration script, the component cannot proceed. The scripts are more
general than the configuration objects regarded in this thesis. The read-copy
update technique described in Section 3.3 could be applied to reconfiguration
scripts as well. The effects on the composite system have to be analyzed.

In Lira [6], a host agent runs on each machine. The manager installs and
removes components on the host by means of this agent. The approach proposed
in this thesis could be extended by the concept of the host agent. When a new
configuration is deployed, the host agents would check for components that are
not installed yet. The corresponding applications would be retrieved from a
code repository and configured.

The current approach cannot easily be mapped to an arbitrary kind of com-
ponent. Uniqueness of parameters interferes with the approach of regarding
multiple configurations as valid. For instance, parameters affecting devices at-
tached to the machine must be handled differently. Furthermore, this thesis
focuses on exchanging configuration data. However, replacement of code at run
time to adopt patches without restarting a program helps to prevent downtime.
The approach from [3] could therefore be applied to server applications.

Bibliography

[1] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Scheduling and Simu-
lation: How to Upgrade Distributed Systems. In Proceedings of the Ninth
Workshop on Hot Topics in Operating Systems. USENIX Association, 2003.

[2] Paul Anderson. Towards a High-Level Machine Configuration System. In
Proceedings of the Eighth Systems Administration Conference, pages 19–26.
USENIX Association, 1994.

[3] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva, Or-
ran Krieger, Robert W. Wisniewsky, and Jeremy Kerr. Providing Dynamic
Update in an Operating System. In Proceedings of USENIX’05. USENIX
Association, 2005.

[4] Bell Telephone Laboratories. UNIX Programmer’s Manual, seventh edition,
1979.

[5] Ed Burns and Justyna Horwat. Introduction to JavaServer Faces, 2004.

[6] Marco Castaldi, Antonio Carzaniga, Paola Inverardi, and Alexander L.
Wolf. A Lightweight Infrastructure for Reconfiguring Applications. In
Lecture Notes in Computer Science, volume 2649/2003, pages 231–244.
Springer Verlag, 2003.

[7] Markus Endler. Support for Consistency-preserving Dynamic Reconfigu-
rations in Distributed Systems. In Proceedings of the Third Workshop on
Future Trends of Distributed Computing Systems, pages 185–191. IEEE,
1992.

[8] Tassilo Erlewein, Achim Frank, and Martin Konold. Kolab Server: Tech-
nical Description, 2003.

[9] Jeff Kramer. Configuration Programming—A Framework for the Develop-
ment of Distributable Systems. In Proceedings of the International Con-
ference on Computer Systems and Software Engineering, pages 374–384.
IEEE, 1990.

[10] John R. Levine. Linkers and Loaders. Morgan-Kauffmann, 1999.

[11] Paul E. McKenney and John D. Slingwine. Read-Copy Update—Using Ex-
ecution History to Solve Concurrency Problems. In Parallel and Distributed
Computing and Systems, pages 509–518. IASTED, 1998.

[12] Jef Poskanzer. thttpd Man Page, 2000.

25

26 BIBLIOGRAPHY

[13] Ian Warren and Ian Sommerville. A Model for Dynamic Configuration
which Preserves Application Integrity. In Proceedings of the Fifth European
Software Engineering Conference, pages 81–88. IEEE, 1996.

