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Abstract

One problem common to all virtualization techniques is the efficient injection of emula-
tion code into the guest operating systems (guest OSs). Emulation is needed to limit the
effects of virtualization sensitive instructions to the appropriate virtual machine. For in-
stance, privilege mode changes, processor halting or resetting, and device accesses must
be redirected to the executing virtual machine rather than affect the underlying physical
machine, as the latter is probably shared among multiple virtual machines. The emula-
tion code will—in many cases—overwrite the contents of general purpose registers that
would remain unmodified by the emulated sensitive instruction. These additional side-
effects must carefully be hidden from the guest OS to guarantee its correct execution.

The pre-virtualization approach uses a load-time rewriter to replace sensitive instruc-
tions with a sequence of code that saves all caller-saved registers, calls appropriate em-
ulation code, and restores the saved registers afterwards. In many cases, this approach
unnecessarily saves many registers whose content is afterwards discarded, thus increas-
ing the virtualization overhead.

In this thesis we propose to use additional context-information for each sensitive in-
struction to facilitate generating more efficient replacement code: Live registers enable us
to identify and discard irrelevant registers instead of preserving them across the emula-
tion. Furthermore, literally known register content can help in statically selecting more
specific emulation code, especially for device I/O. We also propose to use static rewriting
techniques, such as register reallocation and rescheduling, to reduce the number of live
caller-saved registers at the sensitive instructions.

All presented techniques will be integrated into an advanced rewriting system, which
automatically extracts the required information from the pre-virtualized guest OS binary,
performs the supporting static rewriting, and implements efficient load-time rewriting
routines.

Our implementation for IA-32 shows that the use of context-information reduces the
number of preserved registers during the emulation of sensitive instructions by more than
40 % for current Linux kernels.
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Chapter 1

Introduction

Virtualization technology enables the concurrent execution of multiple operating systems
(OSs) on a single physical machine. To safely isolate the operating systems from each
other, virtualization environments confine their guest OSs in virtual machines and control
their execution with virtual machine monitors (VMMs). Virtual machines can be hosted
on general purpose operating systems or on specialized hypervisors, which provide ser-
vices such as physical memory management and scheduling for their clients. The basic
structure of a hypervisor-based system is outlined in Figure 1.1.

Most of the instructions of the virtual machines are passed through to the physical
machine for direct execution. Some instructions, however, access the hardware in a way
that might affect other concurrently running virtual machines or even break the control of
the VMM over the guest OS. The effects of these sensitive instructions must therefore be
redirected to software-emulated or virtualized hardware [27], which is usually provided
by the VMM or the hypervisor. The approaches to discovering sensitive instructions and
redirecting their effects vary between virtualization techniques.

One approach is to use pre-virtualization: In a preparation phase the sensitive in-
structions in the guest OS binary are first padded to provide scratch space for emulation
code and then annotated to ease the process of finding them during later rewriting. While
loading the guest OS into a virtual machine, a rewriter replaces all sensitive instructions
with appropriate emulation code or a call to an emulation routine in the VMM or the
hypervisor.

Care must be taken not to expose side-effects of the emulation to the guest OS. This is
important, because the emulation code is executed on the same processor and in the same
context as the guest OS, which implies shared registers between guest OS and emulation
code. If the content of a register is still required after the sensitive instruction (respectively
its emulation) has been executed, the rewriter must guarantee that the emulation does not
overwrite this particular register. If the rewriter cannot guarantee this, it must save and
restore the content of the register as part of the emulation.

1
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Figure 1.1: Structure of a virtualization environment. The operating systems and their appli-
cations are executed and confined in virtual machines. The virtual machines can access critical
system hardware only via the hypervisor, which also provides physical memory management and
basic scheduling for its client virtual machines. (system structure adopted from [1])

1.1 The Problem: Missing Context-Information
For convenience, the emulation routines provided by the VMM are usually compiled from
a high-level programming language, such as C or C++. Thus we have only limited influ-
ence on the registers that are used and modified, but can rely on the calling-conventions
of the compiler. These include a logical split of the register set into caller-saved and
callee-saved registers: The callee-saved registers are guaranteed to retain their value dur-
ing execution of the called subroutine; if the callee wants to access them anyway, it has
to restore their original value before returning to the caller. For caller-saved registers, no
such guarantee is made: the callee is free to modify them at will.

During replacement of the sensitive instructions, previous rewriters do not possess any
information about which of the caller-saved registers are actually modified by the called
emulation routine. Additionally, they do not “know”, which of these registers actually
need to retain their contents because they are read later on by the guest OS. Currently,
the rewriter conservatively approximates the missing information according to worst-case
assumptions:

• all registers are modified by the called emulation routine

• all registers contain values that are accessed again afterwards

As a consequence, the rewriter replaces each sensitive instruction with a code sequence
that first stores all caller-saved registers (in memory), then calls the desired emulation
routine, and finally restores the previously saved registers. We depict this approach in
Figure 1.2.

Our analysis (Section 5.3) shows that, in about 75 % of all cases, not all callee-saved
registers need to be saved, because only a subset of them is actually used later on. For each
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previous
instruction(s)

sensitive
instruction

save caller-saved registers

call emulation code

restore caller-saved registers

following
instruction(s)

Figure 1.2: Virtualized sensitive instruction. The rewriter substitutes sensitive instructions with
virtualization code; the latter often includes a call to an appropriate emulation routine. Calling
conventions allow the called function to modify caller-saved registers. The virtualization code
must hide these modifications from the guest OS unless the registers are not read afterwards.
Solid edges represent the original control-flow, dashed edges represent the control-flow after the
sensitive instruction has been replaced with the virtualization code (right box).

unused register the current approach wastes two instructions1 and two memory accesses.
Estimating a mean number of 50 executed instructions per emulation, each unnecessarily
preserved register adds 4 % to the overall virtualization overhead, which we want to avoid.

1.2 Approach
To improve the rewritten code, we deliver information about the contexts of each individ-
ual sensitive instruction to the rewriter. Based on this information, an enhanced rewriter
then generates custom-tailored code that only saves the relevant registers. Additional
context-information can be used to statically select more specific emulation code instead
of having a dynamic dispatcher select it at runtime, and thus reduce the number of costly
control-flow operations.

We develop a system that automatically computes all required information solely
based on the pre-virtualized guest OS binary. Together with an enhanced rewriter, this
system facilitates efficient rewriting at load time. We verify the effectiveness of our pro-
posals with an implementation for the common IA-32 systems. Measurements on a Pen-
tium 4 reveal that the overall system performance is hardly affected by our optimizations,

1Two instructions are needed to either push and pop the register on and off a stack or to store it
to a dedicated memory location and load it from there afterwards. For architectures without push and
pop instructions, even more code might be needed to update the stack pointer if no dedicated memory can
be used—for example in multi-processor systems.
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although more than 40 % of the previously preserved caller-saved registers are discarded.
Most of the benchmarks we conducted on a pre-virtualized Linux show insignificant im-
provements of round about 0.5 % due to our optimizations.

1.3 Structure of This Thesis
The remainder of this thesis is structured as follows:

Chapter 2 relates this work to previous research in the fields of virtualization tech-
niques and binary rewriting. We point out differences between previous work and our
system and show how this work is influenced by formerly published results. In Chap-
ter 3 we present our ideas on improving the load-time rewriting process with context-
information. All developed techniques will finally be integrated into an enhanced rewrit-
ing system, which automatically extracts the required context-information from the guest
OS and makes use of it in a context-aware rewriter. Chapter 4 provides details on our im-
plementation of both the enhanced rewriter and the analysis of IA-32 guest OS binaries,
which obtains the context-information to support the rewriter. In Chapter 5 we prove the
effectiveness of the proposed techniques with microbenchmarks and their applicability in
a pre-virtualized Linux kernel with figures we obtained during rewriting. In this chapter
we also present benchmark results that compare the original and our optimized approach
to rewriting. Chapter 6 summarizes and concludes this thesis and hints at possible future
work based on our results.



Chapter 2

Background And Related Work

In this chapter we provide background information on three current approaches to virtu-
alize IA-32 systems. We will then present related work from the research field of binary
rewriting.

2.1 Virtualization

The basic idea of virtualization is to enable the concurrent execution of multiple operating
systems on a single physical hardware platform while providing strong isolation of these
guest operating systems. This is similar in spirit to multi-tasking operating systems, which
allow for the concurrent execution of multiple user-level applications on a single instance
of an operating system. Virtualization is, however, conceptually located one layer below
such systems. Where multi-tasking operating systems can define and expose a software
API that can be tailored to address the problems of multi-programming, virtualization is
bound by the underlying hardware architecture, which is externally defined and rather
fixed.

Further problems arise from the nature of the guest operating systems: For one, these
expect to execute in the most privileged processor mode. Secondly, they are designed
to exert direct control over the hardware but not to share it with concurrently executing
operating systems. In a virtual machine, the guests are deprivileged and restricted to
accessing the provided virtual hardware in order to reliably control them and to guarantee
strong isolation of the concurrently running guests. As a consequence, instructions that
rely on the above assumptions must be intercepted and emulated; however, the major
part of the instructions of the guests will be executed natively on the underlying physical
machine.

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Terminology

In this thesis we will use the following terms with respect to virtualization: The virtualiza-
tion environment provides a set of virtual machines (VMs), which are software controlled
abstractions of the underlying physical machine. We call the software that implements
the virtual machines a virtual machine monitor (VMM). A hypervisor1 multiplexes the
hardware among the virtual machines—that is, the hypervisor provides management of
resources such as memory or processor time for the virtual machines. The general struc-
ture of such a virtualization environment is shown in Figure 1.1, page 2.

In order to successfully contain the guest operating system in its virtual machine, we
must prevent (virtualization) sensitive instructions from affecting the shared hardware. In-
stead of executing these instructions natively, we must therefore replace them with VMM-
specific emulation code that applies the effects to the proper virtual machine. Sensitive
instructions comprise instructions that change the processor’s mode of execution—for ex-
ample change the current privilege level, enter system management mode, halt or reset the
processor—or access the now possibly shared devices via port I/O. In addition to sensi-
tive instructions, we also need to intercept sensitive memory operations [14], which read
or modify hardware-accessed data structures, such as page-tables or interrupt descriptor
tables, or trigger memory mapped I/O.

During execution of a guest OS in a virtual machine, the effects of all the sensitive
instructions and sensitive memory operations must be redirected to the executing virtual
machine rather than be applied to the physical machine. For this purpose, the VMM
provides emulation code, which is executed instead of the original sensitive instruction.
Because the emulation code is usually executed on the same processor that also runs the
guest OS, all side-effects of the emulation on the machine state, especially its registers,
must be hidden from the guest OS. We shall refer to any code that is substituted for
a sensitive instruction as virtualization code; typically, virtualization code prepares the
execution of emulation code and cleans up afterwards in order to hide the emulation from
the guest OS.

The remainder of this section gives an overview of different approaches to virtualiza-
tion together with a summary of their particular strengths and weaknesses.

2.1.2 Simulation and Interpretation

Whole-system simulators, such as QEMU [2], bochs [12], or Virtual PC [17], emulate not
only virtualization sensitive instructions but the complete instruction set. This enables
the execution of guest operating systems that are designed and implemented for hardware
architectures different from the one that executes the simulator. Such a flexibility is paid

1 For the purpose of this thesis, it does not matter whether the virtual machines are hosted on a complete
operating system or on a hypervisor. We therefore restrict our discussion to the second approach.
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for with an enormous emulation overhead at runtime; we consider the latter to be too high
for efficient virtualization.

A similar albeit much more efficient and less general approach to abstracting from the
physical hardware has gained popularity with Sun’s Java [15] and Microsoft’s more recent
.NET technology [5]. Both systems provide a runtime environment for the execution
of just-in-time compiled byte-code. The runtime is commonly referred to as a virtual
machine, which is conceptually an interpreter for the respective byte-code.

Neither technique is suitable for virtualization of IA-32 systems, because these virtual
machines do not reflect the IA-32 hardware interface but implement a new “architecture”.
We know of no efforts to port a current operating system from IA-32 to either Java or
.NET. However, the byte-code approach could be adopted to convey detailed information
about the contexts of sensitive instructions to the load-time rewriter in our system.

2.1.3 Pure Virtualization
Virtual machines as provided by VMware [25] execute on top of a common desktop op-
erating system such as GNU/Linux or Windows. Non-sensitive instructions are passed
through to and executed unmodified by the underlying hardware, whereas sensitive in-
structions are detected and emulated using binary translation [21]: In this process the
guest OS is automatically ported to a new architecture, which mostly resembles the orig-
inal IA-32, but lacks the sensitive instructions. All sensitive instructions in the guest
OS are implicitly translated to emulation code for the provided virtual machine. As the
emulation code is automatically injected into the guest OS, nearly all operating systems
can run unmodified in the provided virtual machines. Only the virtual machine monitor
(VMM) must occasionally be improved to correctly handle new instructions and hardware
features.

On the downside, this approach implies considerable overhead: For one, the larger
part of the emulation is performed not within the guest’s protection domain, but in a ker-
nel module in the host OS. This necessitates frequent and costly privilege level changes
for the emulation of sensitive instructions. Secondly, memory sensitive operations must
not only be emulated, but also be detected at runtime. For this purpose, the translator
inserts guard instructions before every memory access in order to discover references to
sensitive data structures such as page-tables or interrupt descriptor tables. As an alter-
native, the hardware memory management mechanisms segmentation and paging can be
utilized to intercept such accesses via segmentation violation or page fault exceptions.
Both approaches introduce significant overhead.

2.1.4 Para-Virtualization
The para-virtualization technique [26], which is implemented for example in the Xen
hypervisor [1] or L4Linux [7], abandons the need to detect and insert emulation code for
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sensitive instructions at runtime. Instead, this approach provides a high-level, function-
call based interface to its emulation routines, which enables virtualization with a very
low overhead for two reasons: First, the virtual machine monitor (VMM) is collocated
with the guest OS—that is, VMM and the guest OS reside in the same address space.
Therefore, execution of emulation code often does not require privilege level or even
address space changes but only a simple function call. The high-level interface allows
to reduce the number of privilege level changes even further by batching several calls to
the hypervisor and having all of them handled upon the next unavoidable entry into the
hypervisor. Second, the virtualization code is generated by the optimizing compiler that
is used to build the guest OS; thus its integration into the guest is automatically optimized
as well (as opposed to pre-virtualization, for which this thesis strives to provide optimized
virtualization code).

To make use of the new interface, a potential guest operating system must first be
ported to this new “architecture” before it can be loaded into the virtual machine. Dur-
ing porting, all sensitive instructions must be removed from the source code of the guest
operating system and be replaced with calls to their respective emulation routines in the
VMM. Besides source code access, porting an operating system requires intimate knowl-
edge of the ported OS and leads to high engineering cost both for the initial porting and
the later maintenance of the guest OS.

Despite its good performance, we believe that the long-term engineering effort, which
is caused by porting and maintaining specialized guest OS versions, is too high to make
para-virtualization practical on the long run. Our approach will enable the use of optimiz-
ing compiler techniques for the generation of virtualization code and thus help to close
the performance gap between para- and pre-virtualization—the latter of which we will
introduce now.

2.1.5 Pre-Virtualization
Pre-virtualization was developed both to overcome the high engineering cost of para-
virtualization while keeping up its efficiency and to enable the binary to execute on a
variety of hypervisors—or even on raw hardware.

In [14], LeVasseur and colleagues state that, although still minor changes to the guest
OS are necessary, the engineering effort is an order of magnitude lower than for plain
para-virtualization. The authors report that they can automatically prepare the guest OS
for virtualization by using assembler macros to detect, annotate, and pad sensitive in-
structions for later rewriting. This preparation is integrated into the build process of the
guest OS and therefore requires source code access. The resulting binary still obeys the
hardware interface; consequently it can be executed on bare hardware and on pure virtu-
alization systems. Additionally, pre-virtualization–aware hypervisors can efficiently in-
stantiate a virtualized version that is targeted for themselves using load-time rewriting:
While the guest OS is loaded into the virtual machine, the rewriter uses the provided an-
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notations to easily find and replace the sensitive instructions with inlined emulation code
or calls to emulation routines in the collocated VMM. The rewriting process solely relies
on information from the binary and does no longer require access to the source code of
the guest OS. Consequently, OS vendors need to maintain only a single pre-virtualized
binary distribution of their operating systems, which can than efficiently be executed on
the targeted hardware as well as in a variety of virtualization environments. The source
code of the OS need not be published.

Compared with pure virtualization, the injection of virtualization or emulation code
is considerably simplified, because the preparation step provides enough scratch space to
hold the injected code. Consequently, no instructions need to be relocated as no code is
added to and inserted into the guest OS, so that global rewriting or translation to adjust
the references is not required.

In the current design, the mapping from sensitive instruction to virtualization code is
fairly static: All occurrences of a sensitive instruction are replaced with identical copies
of virtualization code—except for adjustments to the operands to match the original sen-
sitive instruction. This results in inefficient code being emitted for sensitive instructions
that are virtualized by calling emulation routines in the VMM, because the rewriter must
make sure to preserve all caller-saved registers: Each register might need to be preserved
at some call-site, although at most call-sites only a subset of the caller-saved registers
actually needs to be preserved.

An approach similar to pre-virtualization was presented by Eiraku and colleagues
in [6] to run BSD systems as Linux applications. They propose to use an assembler
preprocessor to automatically replace the sensitive instructions with their respective vir-
tualization code. As the binary is statically rewritten, this approach tightly couples guest
operating system and the targeted “hypervisor”, quite similar to para-virtualization. No
details about the assembler preprocessor are published, so we assume that it is a mere
macro expander. As a consequence, this approach could as well benefit from the results
of this thesis by using are more powerful, context-aware preprocessor.

Analysis
The presented virtualization techniques all exhibit the classic cost vs. efficiency trade-
off: While simulation and pure virtualization are cheap in terms of guest OS preparation
cost, they imply a considerable runtime overhead. Para-virtualization reduces the runtime
overhead of virtualization at the cost of a tremendous engineering effort for preparing the
guest OS. The pre-virtualization approach sacrifices some of the performance of para-
virtualization its simple rewriter, but greatly reduces engineering cost again. We believe
that we can close the performance gap between pre- and para-virtualization with an im-
proved rewriter without reintroducing any additional engineering effort. For this purpose,
we will provide context-information for the sensitive instructions to the rewriter and gen-
erate more efficient virtualization code, which respects the specific context of the currently
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rewritten instruction.

2.2 Binary Rewriting
The use of context-information, such as live registers, for efficient code generation is
common practice in modern compilers [18]. Furthermore, computing this information
via data-flow analysis on binaries has also been proposed before and is implemented in a
variety of tools. However, we are not aware of any system that implements the analysis
and the rewriter in separate tools, as we will do. Most available approaches also rely on
additional meta-data, such as debugging symbols or relocation records, to help them in
locating code and data in the binaries. Our system will use such information if available,
but also work just fine without it.

Binary instrumentation, implemented in tools like ATOM [22] or FIT [4], is simi-
lar in spirit to the pre-virtualization load-time rewriting: Both approaches inject foreign
code into a readily compiled program without disturbing its execution besides timing
behaviour. ATOM and FIT already use live register information to efficiently hide the
side-effects of the injected code from the instrumented program. The current load-time
rewriter lacks this information and consequently emits inefficient code.

More general binary rewriting tools, such as the Executable Editing Library EEL [11],
grant even more access to the code of completely linked binaries. For this purpose, these
tools extract a control-flow graph (CFG) representation of the binary and allow to insert or
remove instructions on this graph. The modified program can afterwards be emitted as a
runnable executable. EEL even provides static program analysis, including live registers,
and would therefore be a good starting point for the task of this thesis. Unfortunately,
EEL is only available for SPARC-like RISC architectures. As virtualization is primarily
interesting for the common CISC IA-32, which introduces many problems like variable
instruction lengths that are not addressed by EEL, neither the library itself nor the imple-
mented algorithms can easily be adopted for our purposes.

However, similar tools exist for IA-32: DIABLO [24] is a link-time rewriter, which is
available for IA-32 and several other architectures. Being a link-time rewriter, DIABLO
does not operate on the completely linked binary but takes the relocatable object files
as input. This precludes its use on pre-virtualized guest OS binaries without source-
code access. Furthermore, the applicability of this system to operating system kernels is
unknown, as it was developed to rewrite user-level applications.

Analysis
Several tools for efficient rewriting of IA-32 binaries exist, but all of these are intended
to statically rewrite the binaries. To facilitate the insertion of foreign code, the tools
must precisely identify code and data, so that they can correctly adjust references to the
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following, relocated code. As code and data are inherently indistinguishable in IA-32
binaries, all present tools require additional information about the structure of the binary
and therefore operate on relocatable object files. These provide the required information
in terms of relocation records.

In this thesis, however, we want to rewrite pre-virtualized guest OS binaries with-
out relying on additional information. This is possible, because we do not rewrite the
code globally, but apply only local modifications to replace sensitive instructions. Con-
sequently, we do not need to globally update address references, which relieves us from
the burden of having to precisely identify code and data. We only need to find all code
fragments, so that the contexts of the sensitive instructions can correctly be determined.
For the actual computation of the context-information, we can use a number of standard
data-flow analysis [19], which are also implemented in the previously presented tools.
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Chapter 3

Proposed Solution

In this chapter we will present an enhanced rewriting system for pre-virtualized operat-
ing systems on IA-32. First we propose techniques that overcome the inefficiencies of
previous rewriters by considering additional information about the contexts of sensitive
instructions during their rewriting. Afterwards, we present approaches to amortize some
of the virtualization overhead across successive rewritten instructions. The proposed op-
timizations reduce the number of instructions that are substituted for the sensitive instruc-
tions. Our final contribution shall therefore enable us to efficiently skip the unused space.

As the presented optimizations require detailed information about the contexts of the
rewritten instructions, we shall conclude this chapter with a presentation of our analysis
tool. This tool extracts the required information from the guest OS binary to support the
enhanced rewriter, which implements the above techniques. The rewriter and the analysis
tool together make up our enhanced rewriting system.

3.1 Terminology

Throughout the remainder of this work we will use the following terms to refer to well-
defined objects: To keep the virtual machines isolated from each other, we must redirect
the effects of sensitive instructions in a guest operating system (guest OS) to its assigned
virtual machine. The emulation code, which implements this functionality, comes in two
guises: For most instructions, the virtual machine monitor (VMM) provides appropriate
emulation code in terms of compiler-generated subroutines (external emulation). For sim-
ple but frequently executed instructions, the rewriter inlines the emulation code into the
guest OS (inlined emulation).

Especially for external emulation, we often require additional code to (a) compute
arguments for the emulation, (b) hide side-effects of the emulation from the guest OS,
(c) implement the call of the emulation routine, and (d) clean up the argument stack
afterwards. We use the term virtualization code to refer to these code fragments. Again,

13
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virtualization code can either be completely inlined or (partially) be deferred to helper
routines. We call the latter stubs, as they abstract from the details of the actual call similar
to stubs in remote procedure calls [3].

To simplify the injection of inlined emulation or virtualization code into the guest
OS, we prepare the latter during assembly: A set of assembler macros pads each sensitive
instruction with an instruction-dependent number of semantically neutral nops to provide
scratch space. The rewriter can use this space in addition to the space previously occupied
by the original sensitive instruction to store the generated code. We subsume the sensitive
instruction and its dedicated scratch space in a patch. More global optimizations not
only consider the current patch, but also the surrounding basic block, which is a straight-
line sequence of instructions without jumps or jump targets in between. Only the last
instruction in a basic block may be a branching instruction.

3.2 Optimizations for Individual Patches
Previous rewriters with static virtualization code must save and restore all registers that
might be modified by the emulation code at every rewritten instruction, because their con-
tents might still be needed after some of these instructions. Our observation is, however,
that in most cases only a subset of the registers is in fact relevant for the subsequent ex-
ecution of the guest OS. We therefore propose to dynamically generate the virtualization
code according to the context of the currently rewritten instruction. During rewriting, the
irrelevant registers can then safely be discarded, if the rewriter can distinguish relevant
from irrelevant registers.

3.2.1 Discarding Irrelevant Registers
We shall now present a formal approach to computing the minimal set of registers, whose
contents must be preserved across the emulation of a sensitive instruction i. To avoid
confusion, we will subsequently use instruction to refer to a particular instance of an
instruction—that is, a single occurrence of its encoding in the examined binary—and not
to all instructions with the same opcode or type.

Relevant Registers

We call a register relevant at the instruction i if its content from before the execution of i

is possibly read afterwards. Intuitively, the set of all relevant registers is the minimal set
of registers that must retain their original value after the execution of the virtualization
code for i.

To formalize this definition, let Assigns(i) denote the set of registers that are poten-
tially modified during the non-virtualized execution of i. Let us further refer to the set of
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live registers1 immediately after the execution of i as LiveAfter(i). We then define

Relevant(i) := LiveAfter(i) \ Assigns(i). (3.1)

The set Relevant(i) is in fact the earlier mentioned set of relevant registers at i:

“⊆”: Let r ∈ Relevant(i) be a register. From Equation 3.1 follows that r ∈ LiveAfter(i)
and r 6∈ Assigns(i). From the definition of live registers we can conclude that r is
accessed after i has been executed; furthermore, the content of r is not changed by
the execution of i, as r 6∈ Assigns(i). Consequently, r’s content from before the
execution of i is accessed afterwards—r is a relevant register at i.

“⊇”: To make r a relevant register, its value prior to the execution of i must be accessed
after i’s execution. In other words: r is live after i has been executed and r is
not modified during the execution of i. This implies r ∈ LiveAfter(i) and r 6∈
Assigns(i), thus r ∈ LiveAfter(i) \ Assigns(i) and finally r ∈ Relevant(i). 2

Saved Registers

Not all relevant registers need to be preserved across the emulation (let us refer to the
code that is used to emulate i as Emulate(i)): We can safely ignore registers that are
known to remain untouched by the emulation code. As we provide this code, we can
also provide the set of registers that are potentially modified during its execution; let
Assigns(Emulate(i)) denote this set.2 As a consequence, we need to save and restore all
registers r with

r ∈ Relevant(i) ∩ Assigns(Emulate(i)).

All other registers can safely be discarded.
If the emulation code is provided as a compiler-generated subroutine in the VMM—

which is the common case—, the task of preserving register contents is partially deferred
to the emulation code due to compiler-enforced calling conventions: For subroutine calls
the register set of the processor is logically split into caller-saved and callee-saved reg-
isters. Caller-saved registers may be left modified by the called subroutine; the caller
has to save and restore them if their contents is still needed. The usually larger part of
the register set is callee-saved; the called subroutine must guarantee that the contents of
callee-saved registers appears to be unchanged by its execution.

1 A register is commonly considered to be live if its current value is potentially read by one of the
following instructions.

2 For the sake of readability, we implicitly extend our functions from the domain of single instructions
to the domain of sets of instructions in the natural way: For arbitrary code c—represented as a set of
instructions—we define Assigns(c) :=

⋃

i∈c

Assigns(i).
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Consequently, the minimal set Saved(i) of registers that need to be saved and restored
by the generated virtualization code is given as

Saved(i) := Relevant(i) ∩ Assigns(Emulate(i)) ∩ Callersaved .

3.2.2 Reducing the Overhead of Callee-Saved Registers

In the previous section we have defined the set Saved(i) to help in generating efficient
code for caller-saved registers. However, the callee-saved registers are still saved unnec-
essarily if they are not relevant at the call-site: The subroutine must work correctly in all
contexts, so that the compiler approximates the combined Relevant set of all call-sites
with the set of all registers. With s denoting the set of instructions that make up the
subroutine, this results in the generation of code to save and restore

{all registers} ∩ Assigns(s) ∩ Calleesaved = Assigns(s) ∩ Calleesaved ,

although for each call, only the subset that is relevant at the current call-site c effectively
needs to be preserved:

Relevant(c) ∩ Assigns(s) ∩ Calleesaved

We will now present three approaches to counter the negative effects of unnecessarily
preserved callee-saved registers on overall virtualization performance.

Storing Caller-Saved Registers in Callee-Saved Registers

Our first approach is to preserve relevant caller-saved registers not in memory but in irrel-
evant callee-saved registers. This effectively makes some irrelevant callee-saved registers
relevant, because their values are used after returning from the emulation routine to re-
store the originally relevant caller-saved registers. Furthermore, less registers are saved in
memory, which reduces the number of memory accesses in favour of register-to-register
copies. Additionally, the presented approach reduces the stack footprint of the emula-
tion, which might improve cache effectiveness and therefore indirectly increase overall
performance. We depict this technique in Figure 3.1.

The main advantage of this approach is its general applicability: Whenever callee-
saved registers are considered irrelevant while at least one relevant caller-saved regis-
ter exists, we can save two memory accesses—storing and restoring the caller-saved
register—by preserving the relevant caller-saved in the irrelevant callee-saved register.

On the downside, this approach does not reduce the number of instructions that are
necessary for saving the register state. Its direct effect on the virtualization runtime is
therefore rather negligible.
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(a) original virtualization code (b) improved virtualization code
pushl %eax movl %eax,%esi
pushl %ecx movl %ecx,%edi
pushl %edx pushl %edx
call emulation call emulation
popl %edx popl %edx
popl %ecx movl %edi,%ecx
popl %eax movl %esi,%eax

Figure 3.1: Caller-saved registers preserved in callee-saved registers. Relevant caller-saved regis-
ters can be protected from modification by the callee by moving them into irrelevant callee-saved
registers before the call and restoring them from there afterwards. In this example we assume
%EAX, %ECX and %EDX to be relevant caller-saved registers, whereas %ESI and %EDI are as-
sumed to be irrelevant callee-saved registers.

Locally Adjusting the Calling Conventions

Our second approach to reducing adverse effects of callee-saved registers is to completely
banish them from emulation code and make all registers caller-saved instead. As dis-
cussed earlier in this section, we can handle caller-saved registers efficiently, so that this
approach effectively reduces the overhead that was previously incurred by unnecessarily
preserving irrelevant callee-saved registers.

We propose to modify the calling conventions that apply to our emulation routines,
so that for these functions, all registers are considered caller-saved and none callee-saved.
We are free in the choice of calling conventions for our emulation routines, because they
are never directly called from within compiler-generated code that relies on the original
conventions. Emulation routines are exclusively called from a rewritten guest OS, so we
only need to adapt the injected virtualization code to pure caller-saved calling conven-
tions. No modifications to the guest OS are necessary.

We must, however, not ignore the implications on the size of the virtualization code:
Previously, the code that is needed to save and restore the originally callee-saved registers
was present only once in the prologue and the epilogue of the emulation function. In the
worst case, we now have to replicate this code at each call-site, thus increasing the total
code size. An increased code size generally reduces the effectiveness of the (trace-)caches
and consequently degrades the overall system performance.

The pre-virtualization approach limits this effect by providing only a small scratch
space for the rewriter, thus tightly bounding the size of the virtualization code. But this
raises a new problem: What shall we do if the provided scratch space is not sufficient to
save all relevant registers? Enlarging the scratch space is not possible if we have no access
to the source code of the guest OS. Moreover, a larger scratch space would negatively
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affect the performance of the guest even if it is executed natively due to increased cache
pollution.

The only obvious solution to this problem is to call the emulation routines indirectly
via stubs and to delegate the task of preserving the relevant registers there. With N reg-
isters to consider, we either need to statically provide 2N stubs per emulation routine to
efficiently handle all combinations of relevant and irrelevant registers, or we need to gen-
erate the required stubs dynamically during rewriting. In the worst case, even the dynamic
approach requires the complete set of stubs.

In addition to the implied cost of indirectly calling the emulation routine, this
approach—when applied for many emulation routines—dramatically enlarges the code
size of the VMM and therefore considerably increases the risk for TLB misses during
emulation. For IA-32, we need to handle N = 7 general purpose registers (%ESP must
always be restored by the callee), which results in 128 stubs per emulation routine. As-
suming a realistic mean stub size of 16 bytes and 4 kByte pages, only 2 sets of stubs
fit into one page, so that we require round about 13 pages only for the stubs of the 25
emulation routines present in the current VMM. Furthermore, most of the 128 stubs will
reside in a different cache line than the emulation routine, whereas in the single stub case,
stub and emulation can easily be partially collocated in one line. Consequently, the new
approach often requires one additional cache line for each called emulation routine as
compared with the original approach, which also increases the risk for memory stalls due
to cache misses.

Concluding, we state that modified calling conventions can in fact be used to our ben-
efit, but only if the according emulation routines have few call-sites and only if these
provide enough rewriting space, so that we do not need the stubs. We apply these con-
ventions only to instructions that explicitly require preserving all registers as part of their
emulation; for IA-32, these instructions are cpuid and iret. Here the pure caller-saved
conventions imply no additional cost, as all registers are preserved by the caller anyway,
but prevent the callee from preserving these registers again.

Reallocating Registers

Our third approach to making callee-saved registers relevant at sensitive instructions uses
register reallocation.

Instead of copying relevant caller-saved registers to irrelevant callee-saved registers at
runtime as proposed in the first approach, we now try to reallocate a relevant caller-saved
register r to a callee-saved register s throughout the whole lifetime of r (see Figure 3.2). If
such an s is available, we can replace all references to r with s, beginning at the previous
assignment to r up to and including the last use of the assigned value.

The result of this technique is that the reallocated caller-saved register r is no longer
relevant at the sensitive instruction, so that the virtualization code needs to save less reg-
isters. On the other hand, the now relevant callee-saved register s implies no additional
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original code reallocated registers
movl (%ecx),%edx movl (%ecx),%edi
pushl %edx
call emulation call emulation
popl %edx
movl (%eax,%edx),%edx movl (%eax,%edi),%edx

Figure 3.2: Effects of register reallocation. By reallocating live values from caller-saved to callee-
saved registers, we can reduce the number of preserved registers. In this example we assume that
%EDX is caller-saved and not used in the emulation. Furthermore, we assume that %EDI is an
irrelevant callee-saved register.

cost, because the callee preserves its content anyway.
Register reallocation is superior to the first approach with respect to efficiency, be-

cause it reduces not only the number of memory accesses, but also the number of executed
instructions: Reallocation completely removes both the save and the restore instructions
for now irrelevant caller-saved registers.

This advantage is paid for with a reduced applicability: Caller-saved registers often
cannot be reallocated, because they are used as implicit or fixed operands: On IA-32,
mul %eax implicitly assigns to %EDX, whereas the in and out instructions for port I/O
require their operands in parts of %EAX and %EDX. In both cases, the registers cannot
be replaced with different ones. Another problem arises from registers, whose lifetimes
extend into multiple basic blocks with disjoint sets of available callee-saved registers. For
these cases, register reallocation is hard if not impossible without introducing additional
register-to-register copy instructions. The latter would reduce or even negate the intended
reduction of runtime and must therefore be avoided. The first technique, however, can
easily be applied even in these cases.

3.2.3 Statically Evaluating Dispatch Tables
Some sensitive instructions, especially those related to device I/O, require different em-
ulation code depending on the current value of one of their operands. For example, the
emulation of IA-32’s out instruction first retrieves the addressed port from %EDX to de-
termine the accessed device. Then it selects and calls the appropriate emulation routine
of the according virtual device. We term the first called emulation routine a dispatcher,
as it only dispatches emulation requests to more specific handlers.

Occasionally, the value of the deciding operand is a previously assigned literal or can
otherwise be determined statically. In these cases, we can replace the call of the dispatcher
with a direct call of the more specific emulation routine. This allows us to remove one
unnecessary control-flow indirection (a call/return pair) at runtime, which is depicted
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mov $0x3c8, %edx
out %al, %dx

IODispatcher
calls

emulation routine
for "out %al, $0x3c8"calls

calls

Figure 3.3: Static dispatch. Some sensitive instructions require different emulation code based
on operand values. If their values are statically known, we can rewrite the sensitive instruction to
directly call the specific emulation routine and bypass the otherwise needed dispatcher.

in Figure 3.3.
A similar approach is also applicable to memory mapped I/O, although the device

addresses are not fixed, but rather assigned dynamically at system boot-up with page-
size granularity (plug’n’play). The device registers are always located at constant offsets
in the assigned memory region, and these offsets can be inferred from static program
analysis. Together with the accessed device, which is available from the annotation for
the sensitive memory operation, we have all the information that is required to statically
select the appropriate emulation routine.

3.3 Optimizations for Successive Patches
The previously discussed techniques are limited to locally affect code generation for a
single sensitive instruction, only register reallocation also modifies the surrounding code.
These approaches deny possible synergistic effects that can result from generating code
for more than one sensitive instruction. In the following sections we shall provide ap-
proaches that improve code quality at a more global scope.

3.3.1 Deferring Register Restoration
If two sensitive instructions are separated only by instructions that do not access relevant
caller-saved registers, it is likely that the relevant registers at the first instruction are also
relevant at the second one3. In this case we need not restore the saved registers after the
first sensitive instruction, but can defer their restoration until after the second one. Fur-
thermore, we need not save the registers again before the second sensitive instruction,

3The only exception occurs when the second sensitive instruction itself accesses the previously relevant
registers. In all other cases, we know that the contents of the relevant registers prior to the first sensitive
instruction are used after its execution; otherwise the registers would not be considered relevant. As nei-
ther the code in between the two sensitive instructions nor the second sensitive instruction accesses these
registers, we conclude that they are still relevant at (and unchanged after) the second sensitive instruction.
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original virtualization deferred register restoration
pushl %eax pushl %eax
pushl %edx pushl %edx
call emulation1 call emulation1
popl %edx popl %edx
popl %eax
... ...
pushl %eax
pushl %edx pushl %edx
call emulation2 call emulation2
popl %edx popl %edx
popl %eax popl %eax

Figure 3.4: Deferred register restoration. By considering the virtualization code of two consec-
utive sensitive instructions, we can remove unnecessary restore/save pairs in between. For this
example, %EDX is assumed to be accessed between the two patches, whereas %EAX is not used
until after the second patch.

because they are still saved. Thus we amortize the preservation overhead across two suc-
cessive emulations; by applying the same technique iteratively, we can occasionally defer
the restoration even further. The effects of a single application are shown in Figure 3.4;
%EAX is effectively preserved across two sensitive instructions at the cost of preserving
it across only one.

We must take special care if the stack pointer is used by one of or in between the
two sensitive instructions: As we usually preserve registers by pushing them onto the
stack, the stack pointer has a different value than expected by the guest OS code. If
the stack pointer is used as part of an address expression, we are in some cases able to
adjust a specified offset to skip the additional values on the stack. In cases where such an
adjustment is not possible, we cannot use this technique.

Despite the complex preconditions, this technique is often applicable especially in
conjunction with device I/O: A first sensitive instruction issues a command, such as read
disk block, whereas a second sensitive instruction provides additional data, reads the re-
sult or checks the status of the device. Another common scenario involves devices that
only expose an address register and a data register. For such devices, each access first
selects the desired internal device register by writing its index to the address register. The
desired data is afterwards read from or written to the data register using a second sensi-
tive instruction. In both cases, no or only few instructions are present in between the two
device accesses.



22 CHAPTER 3. PROPOSED SOLUTION

original code rescheduled code
movl $0x3c4,%edx pushf
movl $0x80,%al movl $0x3c4,%edx
pushf movl $0x80,%al
... ...
out %al,%dx out %al,%dx

Figure 3.5: Rescheduling. By reordering the instructions, we can reduce the number of live
registers at sensitive instructions. In the original code, both %EAX and %EDX are live across the
execution of the sensitive instruction pushf, whereas in the rescheduled code, both are irrelevant.

3.3.2 Rescheduling the Instruction Stream

During scheduling of the instructions, the compiler that is used to build the guest OS
is not aware of sensitive instructions; especially, it does not perceive that the respective
emulation code requires additional registers. Consequently, the compiler does not try to
reduce the number of caller-saved registers that are live across such a sensitive instruction.

As we do know about sensitive instructions and the possible need for further available
registers, we can reallocate registers in order to free up caller-saved registers as discussed
in Section 3.2.2, and we can reorder the instructions, so that less caller-saved registers
are live across sensitive instructions. We give an example for the latter approach in Fig-
ure 3.5: In the original code, %EDX and %AL are live during execution of the sensitive
pushf instruction. The rescheduled code frees up both registers for use by the appropriate
emulation code.

A second goal of rescheduling is to cluster sensitive instructions, so that the previ-
ously discussed deferred register restoration technique (Section 3.3.1) can be applied to
reduce the virtualization overhead. For this purpose we need to either move two sensitive
instructions as close to each other as possible or, equivalently, move non-sensitive instruc-
tions that are embraced by two sensitive instructions before the first or after the second
sensitive instruction.

3.3.3 Compacting Basic Blocks

Most of the previously discussed optimizations, both for single and successive patches,
reduce the number of instructions that make up the virtualization code. As the rewriter
cannot change the size of the scratch space that is provided for the current sensitive in-
struction, the space that was previously occupied by unnecessary instructions must now be
filled with innocuous instructions. Executing the latter costs additional cycles at runtime
and thus reduces the effects of the presented optimizations.

We therefore propose to compact the basic blocks that contain sensitive instructions,
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. . . . . .

VC1 VC1

padding1 guest1
guest1 VC2

VC2 guest2
padding2 −→ VC3

guest2 guest3
VC3 padding1

padding3 padding2

guest3 padding3

. . . . . .

Figure 3.6: Basic block compaction. By moving unused scratch space to the end of the containing
basic block we can more efficiently skip over it. VCi denotes the virtualization code, paddingi

represents the unused space in the same patch and guesti symbolizes the interleaving code from
the guest OS. The basic block ends after guest3.

after the virtualization code has been generated. In this process we propagate all unused
space to the end of the basic block, where we can then implement efficient ways to skip
it either by emitting a jump over the unused space, or by filling it with multi-byte nops
as proposed in [8]. By collecting all unused scratch space, we only need to skip one large
block instead of multiple small ones, which significantly increases the effectiveness of the
multi-byte nop approach.

The end of the basic block is an ideal place for the unused scratch space: By keeping
the space in its original block we avoid to move labels, which would require a global
adjustment of all references. In the presence of indirect jumps, such an adjustment is not
even possible. Furthermore, many basic blocks end in branching instructions. For uncon-
ditional branches, the presented approach completely removes the overhead of skipping
over the unused space, as it has been moved to after the branch and out of the critical
path. Similarly, taken conditional branches skip the unused code for free. Additional
instructions to skip the unused space are therefore only required on the fall-through path
of conditional branches and for basic blocks that do not end with a branching instruction.
Figure 3.6 provides a visualization of basic block compaction.

3.4 Context-Aware Rewriting System

In the previous two sections, we proposed techniques that help to generate efficient vir-
tualization code for sensitive instructions. Most of the discussed techniques require in-
formation such as live registers about the contexts of the sensitive instructions. In this
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section we shall present the design of a system that incorporates both an analysis compo-
nent, which computes the necessary context-information, and a context-aware rewriter to
implement the presented techniques.

3.4.1 Goals of Our Design
Our system is intended to enhance the pre-virtualization approach, so we do not want
to trade in the primary goals and achievements of the latter for the improvements that
are offered by our system. We therefore state the following goals for the context-aware
rewriting system:

Reduced Runtime Overhead

The basic goal of our system is to effectively reduce the runtime overhead that is caused
by replacing sensitive instructions in a guest operating system with inefficient calls to
emulation routines.

Fully Automated Improvement

As stated in [14], pre-virtualization reduces the engineering effort of para-virtualization
by “orders of magnitude” while maintaining nearly the same performance. Our system
shall close the performance gap between pre- and para-virtualization without reintroduc-
ing significant engineering effort.

Hypervisor-Independent Enhancements

Pre-virtualized guest OS binaries adhere to the targeted platform API; they can be ex-
ecuted on bare hardware as well as in pure virtualization environments and even on all
hypervisors with support for pre-virtualization. Our system shall not hinder this flexibil-
ity, but offer its improvements to all pre-virtualization–aware hypervisors and avoid to
degrade the performance of the natively executed guest OS.

Efficient Rewriter

The rewriter must replace sensitive instructions with appropriate, efficient virtualization
code. As this task has to be carried out whenever a guest OS is loaded into a virtual
machine, we want to keep the rewriter fast.

General Applicability

We want to be independent of access to the source code of the guest OS to the largest pos-
sible extent. We can then efficiently virtualize even commercial guest operating systems
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pre-virtualized guest OS
(binary)

context provider

register usage tracker

enhanced rewriter

disassembler

CFG reconstruction

live register
analysis

constant
propagation

static rewriter

storage module

virtualized guest OS
(memory image)

context
information

virtualization
code

supports

Figure 3.7: Structure of the proposed system. In an analysis phase (top-right box), we augment
the pre-virtualized guest OS binary with context-information on all sensitive instructions. At load-
time, the optimizing rewriter replaces the sensitive instructions in the memory image of the guest
OS with dynamically generated, efficient virtualization code based on the results of the analysis.

that are delivered as pre-virtualized binaries but without source code.

3.4.2 System Structure

In order to keep the rewriter fast and simple, we propose to split the rewriting system
into two components (Figure 3.7): An analysis component extracts the desired context-
information from the guest OS binary and appends the analysis results. This is useful,
because the information is solely dependent on the binary and does not change over time.
Computing it once suffices and saves time during rewriting, as the information will in-
stantly be accessible.

A rewriter component implements the previously discussed techniques to replace sen-
sitive instructions with efficient virtualization code while a guest OS is loaded into a
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virtual machine. The rewriter dynamically generates the virtualization code based on the
type of the rewritten instruction and on the context-information that is provided by the
analysis component.

3.4.3 Sources of Context-Information
We have evaluated several sources for the required context-information, but found most
of them to be insufficient or impractical.

Compiler-Internal Data While building the guest OS binary, the compiler already
computes some of the information we need for our enhanced rewriting techniques: Both
live registers and propagated constants, which we require to determine the relevant reg-
isters and to support the static dispatcher respectively, are also used during code gener-
ation. Unfortunately, the information is only available for compiler-generated code. As
the machine-specific sensitive instructions have no counterpart in modern high-level lan-
guages such as C or C++, they are inserted using inline assembly or even plain assembler
source files. In both cases, the compiler does not analyze the code and therefore does not
directly deliver the desired information.

Assembly Code Our second option is to analyze the generated and hand-written as-
sembly code, where all instructions are clearly identified as such and are easily parseable.
Furthermore, symbolic labels and references explicitly convey the control-flow relations
between instructions; we can even identify jump tables in the code. Still we opted against
analyzing the assembly code for two reasons: First, access to the assembly code is equiv-
alent to access to the guest OS source code, which we want to avoid in order to also
support closed-source guest OSs. Second, the individual assembly source files only allow
file-local analysis. In order to acquire precise information about live registers at return
instructions, we need to perform whole-program analysis, which considers register usage
information from all call-sites. As an alternative to whole-program analysis, we could
augment the compiler to emit information about the registers that are used to return val-
ues to the callers for each function, but that would still require access to the source code.

Object Files The assembled object files no longer provide easily parseable instructions
or explicit, symbolic control-flow relations within the files. As they require source code
access similar to the assembly code but only provide less information, we also opted
against using the object files as our source of context-information.

Binary The pre-virtualized guest OS binary is the only source of information, that is
always available. To our benefit it contains all of the guest OS code, except for loadable
kernel modules, so that we can use whole-program analysis to obtain precise information.
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On the downside, the binary contains the instructions in their machine encoding; we first
need to disassemble them to extract useful information. Furthermore, the labels that mark
control-flow targets are no longer accessible but must be inferred from other sources, such
as disassembled instructions or debugging symbols. Lastly, instructions and data cannot
be distinguished in the binary, which complicates the analysis.

Decision Despite the indicated problems, we opted to obtain the desired context-
information solely from analysis of the guest OS binary, as this is the only source of
information that is always available and does not require access to the source code of the
guest OS.

3.4.4 Analysis Component

The analysis component provides context-information on all sensitive instructions to pre-
vent the rewriter from having to recompute this information over and over whenever the
guest OS is loaded. We have identified several types of information that can be used dur-
ing rewriting and can be precomputed in the analysis component: The rewriter requires
information on live registers to identify and discard irrelevant registers and uses literally
known register contents (alias propagated constants) in static dispatching. Furthermore,
we inform the rewriter about the registers, whose restoration can be deferred until after
the next patch because they are not used in between. In order to support an efficient imple-
mentation of basic block compaction, we deliver the addresses and sizes of basic blocks
to the rewriter. We also provide the locations of addresses, that are evaluated at runtime
relative to the current instruction pointer: As block compaction includes code motion, we
need to adjust these addresses whenever the associated instruction has been moved.

We use standard data-flow analysis to compute live registers and statically known
register contents (via constant propagation). The remaining information can easily be
obtained once the necessary data structures are present: Data-flow analysis require a
control-flow graph (CFG) representation of the analyzed code, along with additional data-
flow annotations. We construct such a CFG from the results of a disassembler. During
disassembly we extract the control- and data-flow relations for the instructions and store
this information in abstract instructions. We then combine the latter according to their
control-flow relations to make up the CFG, on which we perform all further analysis.

We also move the more complex rewriting techniques, namely register reallocation
and rescheduling, into the analysis component. The results of this static rewriter are
appended to the binary together with updated context-information for the rewritten blocks.
To use the virtualization-friendly code, the load-time rewriter must patch both the guest
OS and the context-information; alternatively it may completely ignore the information
from the static rewriter. This approach is compatible with all hypervisors and does not
influence native execution of the binary, so that we do not lose generality by implementing
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static rewriting early. We only reduce the complexity of the rewriter and speed up the
rewriting process.

3.4.5 Rewriter Component
We split the load-time rewriter into three modules: The first one, the context provider,
encapsulates the acquisition and retrieval of context-information. Although we propose
to precompute this information and store it in the binary, this module can as well be im-
plemented to compute the information on demand. The register usage tracker provides an
abstract interface to the code generation routines that are affected by our optimizations.
Most importantly, this module provides abstract register save/restore operations that use
the context-information to implement the desired operation efficiently: irrelevant registers
are silently discarded, whereas relevant registers are preserved in callee-saved registers if
possible or on the stack. The third module provides the basic code generation and rewrit-
ing mechanisms. This module also integrates the rewriter component into the surrounding
virtualization environment.



Chapter 4

Implementation

To demonstrate our approach, we implemented a context-aware rewriter and an analysis
tool for IA-32 systems. The implementation of the rewriter is based on the Afterburner
project [13], which is developed at the University of Karlsruhe. We reused the provided
infrastructure and rewriting mechanisms to implement our enhancements. For the analysis
tool, no such foundation was available, so that we implemented it from scratch.

In the following sections, we will first present how we implemented the proposed
optimizations in the load-time rewriter. Afterwards, we will sketch the implementation of
our analysis tool.

4.1 Rewriter Component

The Afterburner project provides a complete pre-virtualization framework: It includes
assembler macros to automatically annotate and pad the sensitive instructions while the
guest OS is built, the required emulation routines, and a rudimentary load-time rewriter.
We reused the complete system, including the rewriting mechanisms, and integrated our
optimizations.

We implemented the relevant techniques for efficient handling of caller-saved reg-
isters in abstract save registers and restore registers routines. Together with
data-structures for the necessary bookkeeping, these routines make up a separate mod-
ule, the register usage tracker. We integrated static dispatching into the code generation
for both port I/O and memory mapped I/O. Furthermore, we also implemented deferred
register restoration and compaction of basic blocks. As the latter optimizations require
information about the structure of the generated code, we apply both of them in an addi-
tional pass over the patches after all code has been generated.

We begin the detailed discussion of the rewriter with a description of our approach to
generating virtualization code and present the implementation of the optimizations after-
wards.

29
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4.1.1 General Approach

When a guest OS is loaded into the virtual machine, we use the pre-virtualization annota-
tions to iterate over all sensitive instructions and replace them with appropriate emulation
or virtualization code. The annotations provide neither the type nor the operands of the
instructions, so we first disassemble the instructions to obtain this information. For inline
emulated instructions such as cli, we then emit the hand-crafted emulation code (usually
a single instruction) and continue with the next sensitive instruction.

For externally emulated instructions, more work needs to be done: If the current in-
struction references an operand in memory, we must first compute its effective address,
so that we can pass it on to the emulation routine. We store this address temporarily in
%EAX, but only after we have preserved its original value on the stack. We encapsu-
lated the code generation for calls to emulation routines in a dedicated function, which
generates the required code to preserve caller-saved registers, to pass arguments to the
emulation routine, and to call it.

This function takes a descriptor for the requested emulation routine and an array of
(type, value) pairs for each argument that is to be passed to the emulation routine.
type can be either register or immediate, and value represents the according reg-
ister number or literal value of the operand. Based on this information, we generate vir-
tualization code as shown in Figure 4.1: First, we save the caller-saved registers %EAX,
%ECX and %EDX, unless the descriptor for the emulation routine indicates that they are
expected as implicit arguments. In the latter case, the registers are not saved, but pushed
onto the stack as additional arguments to the emulation routine. We distinguish between
save and push operations, because the former may be discarded for irrelevant registers or
implemented as a register-to-register copy, see Section 4.1.2. A push operation always
pushes its argument onto the stack.

Having handled the caller-saved registers, we then push the explicit arguments in re-
verse order onto the stack according to the usual C calling conventions and call the emu-
lation routine. The remaining code cleans up the stack and restores all previously saved
or pushed registers.

We will now show, how we implemented our optimizations for efficiently handling
caller-saved registers in the save and restore operations.

4.1.2 Efficient Handling of Caller-Saved Registers

While generating virtualization code, we need to emit code to save and restore regis-
ters. The original rewriter directly generated appropriate push and pop instructions. We
instead delegate the code generation to more abstract save and restore routines. These
use the available context-information to transparently discard irrelevant registers by sim-
ply not emitting any code, to preserve relevant ones in unused callee-saved registers
as proposed in Sections 3.2f, or to push them onto the stack. For convenience, the
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default virtualization code
save caller-saved registers
push accessed registers
push argN

. . .

push arg1

call emulation
addl $4*N,%esp
pop accessed registers
restore caller-saved registers

Figure 4.1: Generated virtualization code. The default virtualization code implements the stan-
dard C calling conventions between rewritten guest OS and emulation code.

%ECX stack ←− top of locations
%EDX stack
%EAX %ESI

1 ←− top of records
2

Figure 4.2: Internals of the register usage tracker. On one stack (left), the tracker records the
storage location of all previously saved registers. The number of records that were created during
each operation is stored on a second stack (right), so that the restore routine can undo exactly the
effects of the preceding save operation.

save registers routine accepts a bitmask to indicate the registers that should be pre-
served.

To be able to correctly restore the previously saved registers, we need to record, which
register has been saved in which location—on the stack or in a callee-saved register. Addi-
tionally, we must keep track of which callee-saved registers have already been used to pre-
serve caller-saved registers. For these reasons, we implemented the abstract save/restore
routines in a dedicated module, the register usage tracker. Besides the two functions, this
module also provides a stack, onto which we push a (register, location) pair whenever
a register is actually saved; discarded registers are not recorded. Instead, we store the
number of pairs that have been created by each call to the save routine on a second stack.
In the restore routine, we first take this value off the stack and then restore the according
number of registers from their respective locations.

In Figure 4.2 we depict a situation, where a first call of the save routine caused two
registers to be saved: At first, we emitted code to preserve %EAX in %ESI, followed by
code to push %EDX onto the stack. The 2 on the right stack indicates that we actually
saved two registers. A second call of the save routine additionally pushed %ECX onto the
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(a) virtualization code (b) complete stub (c) stub discarding %ECX

push argN stub: stub 5:
... pushl %eax pushl %eax
push arg1 pushl %ecx pushl %edx
call stub pushl %edx lea 8(%esp),%eax
addl $4*N,%esp lea 12(%esp),%eax call emulation

call emulation popl %edx
popl %edx popl %eax
popl %ecx ret
popl %eax
ret

Figure 4.3: Indirectly calling emulation routines. (a) The virtualization code only pushes the
operands of the sensitive instruction onto the stack and calls a stub. (b) The stub preserves the
caller-saved registers and passes a pointer to the “real” arguments to the emulation routine. (c) To
discard irrelevant registers, a set of stubs must be provided, each of them saving a different subset
of the caller-saved registers. The example discards %ECX.

stack, creating another pair on the left stack and pushing the 1 onto the right stack. If this
second call again indicated that %EAX should be saved, we would detect that it is already
preserved and not save it again.

The next call to the restore routine will first pop the 1 off the right stack and then
emit pop %ecx to restore the first register according to the top pair on the left stack. The
second call of this routine will then take the 2 off the right stack and emit pop %edx
followed by movl %esi,%eax to restore the remaining registers.

Unless we use indirect calling conventions (see Figure 4.3), these two routines com-
pletely implement the techniques we proposed to efficiently handle caller-saved registers.

Variant for Indirect Calling Conventions

We also implemented a variant of the original calling conventions, which inlines only
the necessary code into the guest OS and delegates the preservation of the caller-saved
registers to stubs. We show the generated virtualization code and an appropriate stub in
Figure 4.3(a) and (b). As the stubs are not generated dynamically but are provided stat-
ically as assembly functions, the above approach to discarding irrelevant registers fails:
No registers are preserved during code generation.

To still benefit from the available context-information, we supply 8 stubs per emula-
tion routine, each of which preserves a different subset of the 3 caller-saved registers1.

1 We do not support using callee-saved registers as storage locations with indirect calls; this would
require numerous additional stubs to also cover all subsets of available callee-saved registers.
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The code generation function selects and emits code to call one of these, depending on
which registers need to be saved. For this purpose, we represent %EAX with 1, %ECX
with 2, and %EDX with 4 and use the sum over the relevant registers to obtain a key. With
this key we then index an array in the descriptor of the emulation routine to obtain the
entry point of the stub. Each of the provided stubs preserves exactly the registers that are
indicated by its respective index. Figure 4.3(c) shows stub number 5 = 1 + 4, which
preserves registers %EAX and %EDX, but discards %ECX.

Although our default calling conventions are more efficient due to reduced indirec-
tions in control-flow (one call/return pair less) and in argument access, we still have to
use the indirect approach under certain circumstances: If the provided scratch space does
not suffice for the efficient conventions, we must fall back to the compact ones.

We use automatically generated glue code to reconcile the two different stack
layouts—the stubs push the caller-saved registers after the arguments have been pushed,
whereas our default code preserves them before the arguments are pushed. This allows us
to call the same emulation routines using either convention.

4.1.3 Static Dispatch

Static dispatch circumvents calls to dispatcher routines by statically evaluating their dis-
patch tables based on literally known register contents.

Implementing static dispatch for port I/O was straight forward, as all required rou-
tines were already present. The relevant in and out instructions are both available in two
types: the first one encodes the accessed port as an 8 bit immediate operand, the second
one expects the port number in %DX. The first type was already handled with a static dis-
patcher, which emits code to circumvent the dynamic dispatcher for the only virtualized
device with port I/O, which is the programmable interrupt controller (XT-PIC). We only
added lookup of the statically known content of %DX for the second form, and passed the
determined value on to the very same static dispatcher. If we have no information about
the content of %DX, or if the static dispatcher does not handle the specified port, we fall
back to the original implementation and emit code to call the dynamic dispatcher.

For memory mapped I/O, we augmented the rewriting routines to take a device-
specific static dispatcher as an additional argument. For each sensitive memory operation,
we invoke this function with the type of the operation, its operands, and the displacement
of the memory operand, from which the static dispatcher can infer the accessed device reg-
ister. If the combination of operands is not handled by the static dispatcher, we proceed
as in the original implementation. At present, no static dispatcher for memory mapped
I/O devices is available, so that the validity of this approach still has to be evaluated.
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typedef struct
{
uint32_t vaddr; /**< vaddr of the patch */
uint32_t prev; /**< vaddr of the previous patch */
uint32_t size:6; /**< length of the patch */
uint32_t nops:6; /**< number of NOPs at the end */
uint32_t eax_push:5; /**< offset to pushl %eax */
uint32_t ecx_push:5; /**< offset to pushl %ecx */
uint32_t edx_push:5; /**< offset to pushl %edx */
uint32_t eax_pop:5; /**< offset to popl %eax */
uint32_t ecx_pop:5; /**< offset to popl %ecx */
uint32_t edx_pop:5; /**< offset to popl %edx */
uint32_t pcrel:5; /**< offset to call target */
uint32_t common:3; /**< bitmask of possibly deferred

registers from previous patch */
uint32_t unused:14;

} __attribute__((packed)) df_deferred_t;

Figure 4.4: Structure used to support deferred register restoration.

4.1.4 Deferred Register Restoration

By deferring the restoration of a preserved register until after the next patch, we can
remove unnecessary restore/save pairs for the register in between.

We implemented this optimization in two steps: During rewriting, we use a dedicated
structure for each patch (Figure 4.4) to record the locations of push and pop instructions
that preserve registers, but do not pass arguments to the emulation routine. From this
structure, the fields vaddr, prev and common are precomputed by the analysis tool to
convey the immediately preceding patch and the set of deferrable registers: Registers that
are used between two sensitive instructions cannot be deferred to after the second one.

After all patches have been processed, we iterate over these structures and try to defer
each common register as follows: From the previous patch, we determine the register
that is restored last (largest offset of all xxx pop fields). If this register matches the one
that is first saved in the current patch, we disable both the push and the pop instruction
by replacing them with nops and update the patch description. Our calling conventions
guarantee that the passing of arguments to the emulation routine, which also uses the
stack, and the presented optimization do not interfere with each other: The push and
pop instructions for preserved registers embrace the stack operations for the arguments,
and the arguments do not make assumptions about the number or location of preserved
registers on the stack.

After having disabled the superfluous instructions, we compact the patches by moving
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the instructions that follow the disabled ones to fill the gaps. This way, we collect all
unused space at the end of the patch and simplify the upcoming basic block compaction.
Moving instructions is uncritical in most cases, only the call of the emulation routine
encodes its target relative to its own address. During code generation, we therefore also
record the location of this address in the pcrel field of the per patch structure and adjust
the target address whenever we move it around.

Let us now introduce a shorthand notation for the patches, in which we represent op-
erations on registers with single letters: push instructions in uppercase and the matching
pop instructions in lowercase. We shall further use a colon “:” to separate individual
patches. In this notation the above approach successfully transforms Aa : Aa into A : a.
However, the approach fails to optimize ABba : Bb to BAa : b, because the last restored
register a does initially not match the first saved register B of the following patch. Our
refined implementation also applies in these cases. We first change the order in which
the registers are saved in both patches to establish the required match, so that ABba : Bb

becomes BAab : Bb, which is then improved to the desired BAa : b. If two registers are
both saved and restored in one patch, their order on the stack is irrelevant except for this
optimization.

Our approach is greedy in so far as it always applies all local optimizations that are
possible per patch. We therefore might end up in a local optimum, which need not coin-
cide with the global optimum2. Finding such a global optimum and exporting appropriate
guides to the rewriter is certainly possible in the analysis tool, but is beyond the scope of
our implementation. Similarly, our implementation is limited to deferring registers that
are preserved on the stack. We deem this to be sufficient to demonstrate our approach;
expanding it to also defer the restoration of registers that are preserved in callee-saved
registers has been left for future work.

4.1.5 Compaction of Basic Blocks

With basic block compaction, we collect all unused scratch space at the end of the basic
blocks to more efficiently skip over it.

This optimization includes moving code, similar to the previous one. We therefore
reuse the per-patch structure to locate all patches and determine the size of the unused
scratch space (field nops). We use additional information from the analysis tool about
the boundaries of basic blocks, so that we can move the complete code that follows the
current patch in the same basic block to fill the unused scratch space. Furthermore, we
use relocation information from our analysis tool to find and update relative addresses in
the moved code.

2 Consider Aa : ABCcba : BCcb, which is transformed to A : BCcba : BCcb. The inner patch cannot
be reordered. A better solution for this example would be Aa : BCAa : cb (by first combining the 2nd and
3rd patches), or possibly even A : BC : bca.
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We fill the combined unused space with multi-byte nops as proposed in [8] and add
a jump instruction at the beginning to skip the code if appropriate. We tested several
approaches to deal with unused space and implemented the most efficient variant de-
pending on the number of unused bytes; according benchmark results shall be given in
Section 5.2.2.

4.2 Glue Code Generators
As we simultaneously support different calling conventions between the rewritten guest
OS and the emulation, we need glue code to adapt the emulation code: Our default con-
ventions always pass the accessed registers as the last arguments, whereas the emulation
code might specify them earlier; the glue code must reorder the arguments. For the orig-
inal, indirect conventions, the stubs only pass a pointer to the argument frame to the em-
ulation routine; here, the glue code resolves this indirection and provides the emulation
code with its real arguments.

To simplify the transition to different calling conventions for the emulation routines,
and to enforce consistent conventions for all of them, we implemented a glue code gener-
ator based on the GNU tools flex and Bison. To specify the glue code, we use annotated
header files in a restricted C/C++ dialect. Our generator transforms this header file into
a set of assembly functions (the stubs) and C routines, which we dub trampolines. Ad-
ditionally, the generator emits a descriptor for each emulation routine, which conveys
enough information to the rewriter so that it can generate proper code to call them via the
generated glue code.

Related to our glue code is the introduction of pure caller-saved calling conventions
into the compiler, which we proposed in Section 3.2.2. We shall therefore conclude this
section with a presentation of our modifications of the GCC, which selectively enable the
pure caller-saved conventions.

4.2.1 Specification Language for Glue Code
To prevent mismatches between the specified emulation routines and their implementa-
tion, we designed the specification language for glue code as a transparent extension to
C/C++. During compilation of the emulation code, the compiler verifies that the signa-
tures of the specified emulation routines and their implementations are compatible. From
the verified specification header file we generate the stubs and trampolines. We added two
keywords to support glue code generation:

emulation is used to indicate that the preceding function prototype describes an
emulation routine. This avoids the generation of unnecessary stubs and trampolines,
which would only increase the size of the VMM.
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location is an attribute to arguments and indicates the location, in which the ar-
gument is to be found. On IA-32, we currently support registers (eax, ecx, edx,
ebx, esp, ebp, esi and edi), the stack and the return address in the guest OS,
GUEST RA. The latter is needed for the emulation of updates to %CR0 (paging en-
able). If no location is specified, stack is assumed per default.

We can therefore use

int emulate( int &arg0 __location__( eax ),
int arg1,
int guest_ra __location__( GUEST_RA ) )
__emulation__;

to declare an emulation routine that receives its first parameter from %EAX, the second
one from the stack and the third one from the stack location that holds the return address
in the guest OS. We furthermore distinguish IN and INOUT arguments: The reference
operator “&” in conjunction with a register location indicates that the respective register
is to be read and modified during emulation. In the previous example, the value of %EAX
as exposed to the guest OS can be modified by simply assigning to arg0.

To enable correct processing of the specification file by a regular compiler, we disable
our annotations via pre-processor macros.

4.2.2 Generated Glue Code
We created a glue code specification for all emulation routines in the Afterburner. From
this specification, we automatically generate 9 stubs and a set of trampolines (one per
calling convention) for each emulation routine. Additionally, we create a descriptor to
convey all the information required for calling these routines to the rewriter. We provide
sample code in Appendix A and show the structure of the descriptor in Figure 4.5.

Stubs

Stubs are used by some of the supported calling conventions in order to remove the regis-
ter preservation code from the rewritten guest OS, thus reducing the necessary size of the
scratch space.

For the original approach, we emit the according stub for preserving all caller-saved
registers as burn NAME OLD. For our improved variant, we emit up to 8 stubs, one for
each combination of the 3 caller-saved registers being saved or discarded, and name them
stub NAME SRMn. The n represents the mask of registers that are preserved by the stub.

In the latter case, we reduce the code size by merging identical stubs. These result
from emulation routines that take some of their arguments from caller-saved register lo-
cations: Instead of both preserving the register and passing it on the stack as an argument,
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we only pass it as an argument and restore it from this location. Consequently, the stubs
that discard or preserve the argument registers are identical—and are merged into only
one copy of the code.

Trampolines

The trampolines are small C functions that are named after the emulation routine, with
ext X appended to make the name unique. X indicates the implemented calling conven-

tion:

• stub denotes the original approach; the trampolines take a pointer to locate the
arguments on the stack

• TRAMPOLINE T resembles the original approach but allows to discard irrelevant
registers in the stubs; the trampolines again take a pointer to find the arguments

• STACK indicates the trampoline of our default conventions, which follow the stan-
dard C calling conventions

• REGPARM accepts the first ≤ 3 arguments in registers rather than on the stack

The trampolines are simple wrappers for the emulation routines; their only purpose is to
retrieve the arguments for the proper emulation code and thus abstract from the current
calling conventions. For efficiency, the trampolines inline the emulation code and thus
avoid additional function call overhead.

Descriptor

Besides the entry points of the stubs and directly called trampolines, the descriptor also
conveys the number of arguments that are passed via the stack, the registers that are im-
plicitly used as arguments to the function, and additional flags that indicate, whether a
possible return value is returned on the stack or in %EAX, as usual.

4.2.3 Locally Modified Calling-Conventions

We implemented locally modified calling-conventions (see Section 3.2.2) as an additional
function attribute callersaves in GCC 3.3.6. We check for the presence of this attribute
when the compiler generates prologue and epilogue code for a function and suppress both
saving and restoring of callee-saved registers if the attribute is attached to the function.
Our modifications comprise only round about 20 lines of code for the complete function-
ality of the callersaves attribute.
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typedef struct {
uint32_t n_argsonstack; /* # of arguments */
uint32_t accessed_regs; /* bitmask of implicit args */
uint32_t inout_regs; /* bitmask of INOUT args */
uint32_t pure_in_regs; /* bitmask of IN args */
void *trampoline; /* addresses of the routines */
void *regparm; /* that might get called by */
void *stackparm; /* generated virtualization */
void *original; /* code */
void *entry_point[8]; /* cont’d */
/* flags that influence code generation: */
struct {
uint32_t retval_on_stack:1;
uint32_t retval_in_reg:1;
uint32_t trampoline_needs_argument:1;
uint32_t accesses_guest_ra:1;

} opts;
} burn_stub_desc_t;

Figure 4.5: Descriptor for generated glue code.

4.3 Analysis Component

We also implemented an analysis tool, which extracts context-information on sensitive
instructions from the guest OS binary and exports the results to the rewriter. In the fol-
lowing sections, we shall first recapitulate the structure of the analysis component and
then provide details on the comprised modules in the order of their execution during an
analysis.

4.3.1 Overview

In order to extract context-information on sensitive instructions from the guest OS binary,
we first obtain information on each individual instruction using a disassembler. Disassem-
bling IA-32 code is only reliable for sequential blocks of code between a label and the first
unconditional jump or return. The following bytes might not contain valid instructions
but confuse the disassembler (see Figure 4.7). We implemented a code discovery module,
which locates the beginnings or entry points of all such code blocks. We then disassem-
ble each located code block, store the data-flow relations in terms of read and written
operands in an abstract instruction, and connect the latter according to the control-flow
relations of the disassembled instructions to form a control-flow graph (CFG).

Once the CFG for the whole binary is available, we initiate an intra-procedural data-



40 CHAPTER 4. IMPLEMENTATION

code discovery disassembler

binary parser

data meta data program text

CFG reconstruction

data-flow analysis

static rewriter

Figure 4.6: Structure of our analysis component. Solid lines represent control-flow (calls), dashed
lines represent prevailing data-flow.

flow analysis on each connected subgraph, which correspond roughly to the original sub-
routines: Compiler optimizations like tail-call elimination can connect the subgraphs of
several subroutines, but usually each subroutine is represented as a single connected sub-
graph of the CFG. To improve the precision of the live register analysis, we support it with
results from an inter-procedural analysis, thus refining the approximations at control-flow
sinks. Further analysis extract deferrable registers from the CFG. Basic block boundaries
and the locations of relative addresses, both of which are required to move unused scratch
space to the end of each basic block, are directly accessible from the CFG and require no
analysis, but only another pass over the graph.

A complete implementation of the proposed static rewriting techniques within the
analysis tool is beyond the scope of this work. We therefore limited our implementation
to an analysis of possible applications of these techniques.

Figure 4.6 summarizes the control- and information-flow within our system. The
binary parser only implements access to ELF files and abstracts from the details of parsing
the headers, so that we will skip its implementation details. We shall discuss the remaining
modules in the following sections.
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(a) intended code:

0x0d: eb 01 jmp 0x10
0x0f: 00 [padding]
0x10: 5b pop %ebx
0x11: 58 pop %eax
0x12: c3 ret

(b) result of linear disassembly:

0x0d: eb 01 jmp 0x10
0x0f: 00 5b 58 add %bl,0x58(%ebx)
0x12: c3 ret

(c) result of disassembly in conjunction with code discovery:

Instruction stream 1 (ends in unconditional jump, yields new entry point at
0x10):

0x0d: eb 01 jmp 0x10

Instruction stream 2:

0x10: 5b pop %ebx
0x11: 58 pop %eax
0x12: c3 ret

Figure 4.7: Incorrectly disassembled instructions. In conjunction with variable length instruc-
tion encodings, interspersed data like padding can confuse the disassembler and finally lead to
incorrectly reconstructed control- and data-flow graphs.

4.3.2 Code Discovery

Code discovery is necessary, because linear disassembly3 of IA-32 binaries is unreliable:
It fails in the presence of interspersed data in conjunction with IA-32’s variable length
instruction encodings as depicted in Figure 4.7.

Furthermore, the call-tree, which is rooted in the main entry point of the binary, does
not cover all reachable functions: Most device driver routines are only called via function
pointers, but the targets of such indirect calls cannot be determined statically. Therefore
the call-graph is incomplete and we need code discovery to find these routines.

3We refer to the common disassembly method, which assumes non-overlapping instructions and starts
the next instruction immediately after the last byte of the previously disassembled one, as linear disassem-
bling. We use linear disassembling for identified instruction streams after code discovery.
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We implemented code discovery in two phases: The first phase extracts an initial set of
entry points (including the main entry point, which is indicated in an ELF header field) by
parsing the symbol-tables and extracting the addresses of subroutines. As symbol-tables
need not be present and are generally incomplete, we look for additional entry points in
the data sections. For this purpose, we iterate byte-wise over the loadable sections and
look for words within the virtual address range of the text section. Each such word is
a potential entry point to the binary: It might be part of a jump table (resulting from a
C-like switch statement), or it might be an initialized function pointer; it might even be
no address at all—we cannot know.

To handle these potential entry points correctly, we weigh the consequences of accept-
ing or discarding them: Additional, spurious control-flows in the CFG do not affect the
correctness of a data-flow analysis, they can merely reduce its precision (see Section 4.3.5
for more details on data-flow analysis). Missing control-flows, however, lead to incorrect
results, as the effects on the missing flows are not accounted for during analysis. Our
primary goal is therefore to reconstruct a complete CFG, so we assume all of the above
potential entry points to be in fact real entry points to the binary and accept them as such.
The presented first phase of code discovery locates the destinations of all memory-indirect
jumps and calls as well as all function pointers that are used in the program.

In the second phase of code discovery, we recursively add further entry points from
disassembled instructions. We collect the targets of (direct) jumps and calls and use them
later on to start disassembling the indicated block of code. Furthermore, we handle im-
mediate operands in a similar way to words from data sections, because they might subse-
quently be used as the destination of register-indirect branches. To conclude, the second
phase determines all code fragments that are reachable from previously identified code
blocks. Together with the first phase, we end up with a nearly complete coverage of the
guest OS.

Truly unreachable code, such as unused functions, is potentially not found using the
presented approach. This is only a problem in the presence of loadable modules that in-
troduce calls to previously unused functions, or with self-modifying or otherwise “queer”
code: If the target addresses of indirect jumps are computed at runtime based on rela-
tive offsets, our approach fails to find this entry point. Self-modifying code is a general
problem for the pre-virtualization approach: The modified code cannot be rewritten with
virtualization code, because we only rewrite at load-time, where the new code is not yet
present. Both previous cases have turned out to be no problem in practice and are there-
fore ignored by our implementation. Loadable modules can even be handled correctly,
because they reference the functions in the guest OS kernel symbolically and have these
references resolved at load-time. Consequently, the called functions have a matching
symbol-table entry, thus they are included in the set of entry points in the first phase of
code discovery.
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4.3.3 Disassembly
For our disassembler, we used the IA-32 instruction set specification from the GNU binu-
tils [23] and augmented it to also convey detailed data-flow information for the instruc-
tions: We need to know which operands are read and which are potentially modified.
Furthermore, we need to determine the implicit arguments of all instructions. We added
this information to the specification of each instruction and evaluate it during decoding of
the instructions.

The disassembler transforms all instruction streams, whose beginnings are provided
by the code discovery module, into an abstract and machine independent representation.
The latter comprises all information that is relevant for the subsequent analysis in an easily
accessible form:

• all potential control-flow predecessors and successors, represented by their respec-
tive addresses

• input operands, including those only conditionally or partly accessed

• output operands, including those only conditionally or partly modified

We store input and output operands in separate bitvectors, which is a representation well
suited for an efficient implementation of the upcoming data-flow analysis. We differenti-
ate three types of operands: registers, memory locations, and immediates. Each address-
able4 processor register is represented as a single bit in the input/output bitvectors. For the
general purpose registers, which are accessible as 8 bit, 16 bit, or 32 bit entities, we use
three bits to discern the disjoint parts of the registers: for %EAX, we provide separate bits
for %AL, %AH and the upper 16 bits, %EAX without %AX. An access to %AX therefore
affects two bits in our bitvectors, although only one operand is used.

The second type of operands, main memory, is merged into only one single abstract
memory location and represented with one bit. This prevents errors due to aliasing (i.e.,
the same memory location is accessed by two lexically different address expressions) and
simplifies correct handling of multi-processor systems: By assuming the single memory
location to be volatile, we make the analysis multi-processor safe, because the analysis
does no longer rely on the memory contents remaining unchanged between store and
subsequent load operations. For the same reason, memory mapped device I/O can be
handled correctly only if device memory is regarded as volatile: If the guest OS first writes
and then reads from a memory location that maps to a device register, a more precise
analysis might conclude that the previously assigned value is retrieved again—although
the value that is read might in fact be different, depending on what the device returns.
Future work should differentiate certain memory regions—for example a processor- and
thread-local stack, globally shared memory or device memory—in order to more precisely

4For IA-32, for instance the instruction pointer (IP, or program counter, PC) cannot be addressed directly.
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track values that are temporarily stored in non-volatile memory. This could increase the
number of literally known registers at sensitive instructions and therefore support static
dispatching (see Section 3.2.3).

The third type of operands, immediates, need not be indicated in the bitvectors, be-
cause they can only be used as input operands and do not represent an addressable storage
location. Still we store them in the abstract instructions for use in constant propagation,
which is the data-flow analysis that yields literally known register content.

4.3.4 CFG Reconstruction

During CFG reconstruction, we add explicit control-flow edges to the abstract instructions
from the disassembler. Most instructions transfer control to the next instruction in the
linearly disassembled stream (fall through), whereas unconditional jumps mark the end
of such a stream and transfer control to a different location. Conditional branches even
result in two possible control-flow successors: the next instruction in the stream if the
condition is false or the explicit destination if the condition is true.

We need to pay special attention to register- or memory-indirect jumps, because we
cannot in all cases add the proper target instruction to the set of control-flow successors:

Memory-indirect jumps specify a memory location that contains the absolute address
of the destination of the jump. If the address of the memory location is statically
known and if this address is contained in a read-only region, which is indicated
by meta-data from the binary, we can determine the destination from the given
memory location. Otherwise, we mark the jump instruction as “end of control-
flow”, which signifies that we do not know where the execution continues, and
enforce safe approximations during analysis.

Register-indirect jumps can be handled similarly to memory-indirect jumps: If the reg-
ister contents is statically known, we use it as the target address of the jump instruc-
tion. Otherwise, we mark the instruction as “end of control-flow” as before.

Direct jumps provide the relative or absolute address of their destination, which is there-
fore easily identifiable.

Besides conditional and unconditional jumps, we also need to discuss call and
return instructions: We consider call instructions to transfer control to the next in-
struction in the stream rather than to the indicated subroutine, but additionally create a
call-graph that reflects the caller/callee relations. return instructions unconditionally
mark the end of a control-flow and are linked to their call-sites within the call-graph for
convenient inter-procedural data-flow analysis.
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4.3.5 Data-Flow Analysis

We use data-flow analysis to compute live registers and statically known register contents
(also known as propagated constants). Let us therefore briefly introduce you to the gen-
eral approach of data-flow analysis, before we present our implementation of constant
propagation and live register analysis in more detail. We conclude this section with a
description of our approach to computing deferrable registers.

General Approach

Data-flow analysis annotate each instruction of the analyzed code fragment with sets of
properties, which will be (or may be) valid at this instruction during the execution of the
program. To do so, the analysis begins with a set of properties that is assumed to be valid
at the beginning of the code and propagates it along the control-flow through the whole
fragment. At each instruction, the current set of properties is updated according to the
effects of the instruction, before it is passed on to the next instruction.

At control-flow mergers, we have to combine the information from the joining flows.
Two combining operations are common: May analysis accept the union set of the infor-
mation from all flows; live register analysis is one example for this kind. Must analysis
only propagate the subset of the information that is common to all joining flows; constant
propagation uses this approach.

Additionally, the analysis can be performed either forwards as described above or
backwards. Forward analysis deliver information about the history of the execution of the
program to each instruction—for example, previously assigned literals—whereas back-
ward analysis enable each instruction to peek into the future: A live register analysis
supplies information about the set of registers that might be read later on.

Due to loops in the control-flow, the effects of an instruction can affect this very same
instruction. For this reason, we need to update the property sets until we reach a fixpoint.
We refer to [19] for a complete theoretical background and more details on data-flow
analysis.

We implemented the generic data-flow algorithm, independent of direction and merg-
ing behaviour, as an abstract C++ class and derived subclasses for constant propagation
and live register analysis.

Constant Propagation

Constant propagation tracks the literal value of registers during program execution. For
this purpose we pass (register,value) pairs along the control-flow and update them when-
ever a register is assigned a new value: If the new value is literally known, because it is an
immediate or the result of an arithmetic operation with known input operands, we update
the pair with the new value. Otherwise, we remove the pair from the set of propagated
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(a) constant propagation:
{unknown data}
popa 1. restore all registers from memory
{} 2. no values are known (volatile memory)
movl $0x3c4,%edx 3. literal assignment
{(%EDX,0x3c4)}
movb $4,%al 4. literal assignment
{(%AL,4),(%EDX,0x3c4)}
jnz label1
{(%AL,4),(%EDX,0x3c4)} (∗)
shl $1,%al 5. literal assignment, because %AL is known
{(%AL,8),(%EDX,0x3c4)} (∗∗)
label1: {(%EDX,0x3c4)} 6. intersection of (∗) and (∗∗)
out %al,%dx 7. emulate using %DX=0x3c4

(b) live register analysis; starts at the bottom:
{%EAX,%EBX,%ECX,%ESP,Z}
jnz label2 7. reads zero flag (Z)
{%EAX,%EBX,%ECX,%ESP} 6. union set of (∗) and (∗∗)
{%EAX,%ESP} (∗∗)
movl $42,%ecx 5b. discards %ECX
{%EAX,%ECX,%ESP} copied from jump target
jmp common
label2: {%EAX,%EBX,%ECX,%ESP} (∗)
addl %ebx,%eax 5a. reads %EAX and %EBX, %EAX stays live
{%EAX,%ECX,%ESP}
common: {%EAX,%ECX,%ESP}
pushl %eax 4. reads %EAX

{%ECX,%ESP}
pushl %ecx 3. reads %ECX

{%ESP} 2. all other registers are overwritten in 1.
popa 1. writes all registers, reads %ESP
{unknown data}

Figure 4.8: Sample data-flow analysis. (a) constant propagation: known register contents is prop-
agated forwards through the CFG; (b) live register analysis: live registers are propagated back-
wards through the CFG. Horizontal lines separate basic blocks and indicate control-flow mergers
(at labels) or diversions.
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pairs, indicating that we have no knowledge about the current content of the register. On
control-flow mergers, we remove all pairs unless all joining flows deliver the same pair. In
other words, we only keep the common subset of the information from all joining flows,
which guarantees that we only propagate safe information. If in doubt, we prefer ignoring
partial knowledge over making wrong assumptions. We provide a commented sample
analysis in Figure 4.8(a).

Our implementation only handles assignments of literals to registers, register-to-
register copies and clearing registers, for example via xor %eax,%eax. All other as-
signments to registers result in their respective (register,value) pairs being invalidated,
even if the assigned value could be inferred statically. This is sufficient for the intended
use in static dispatching of I/O routines: The index of the accessed port is usually as-
signed as a literal to a register (most likely %EDX) and subsequently used in a sensitive
instruction without intervening modifications.

Live Registers

A register is considered to be live at an instruction, if its value is potentially read after-
wards before it is overwritten. We compute the set of live registers for each instruction by
propagating the (bit-)set of live registers backwards through the CFG.

At control-flow sinks (i.e., return instructions and jumps with unknown or uncertain
destinations), we first assume no register to be live. At each instruction, we then update
the set of currently live registers: First, we remove all registers that are assigned a new
value by the instruction to indicate that their previous value has not yet been read and is
therefore considered not to be live. Afterwards, we add all registers that are read by the
instruction to the set of live registers prior to the instruction. We use the input and output
bitvectors of the abstract instructions to update the identically encoded live register sets.

At control-flow mergers5, we propagate the union of the live register sets of all joining
flows: A register is considered live if it might be read later on; a register might be read if
it is read in at least one of the possible succeeding control-flows. Figure 4.8(b) provides a
commented example of an analysis of live registers.

In the first step, during which we assume no register to be live at control-flow sinks,
we compute the effects of the individual subroutines and propagate live register sets to
the call-sites. In a second step, we refine and rectify our analysis by using more precise
initial values for each control-flow sink. For return instructions, we obtain all possible
call-sites from the call graph and use the union of their live register sets as the initial
value for the return instruction. For other control-flow sinks, which are mostly jumps
with unknown destinations, we now assume all registers to be live—a conservative, but
correct approximation. We then iterate this second step (effectively an inter-procedural

5 Note that the analysis runs backwards through the CFG. Consequently, these “mergers” are in fact
control-flow diversions as introduced by conditional jumps.
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analysis) until we reach a fixpoint for the live register sets. A proof of the existence of this
fixpoint along with more details on the theory of data-flow analysis can be found in [19].

Deferrable Registers

As we only allow to defer registers within a basic block, we can keep the according
analysis pretty simple. Beginning at each sensitive instruction, we iterate forwards over
the surrounding basic block and record all undeferrable registers: At first, these are only
the output registers of the sensitive instruction itself, then we add both input and output
registers of all encountered instructions, up to and including the next sensitive instruction.
For this second sensitive instruction, we emit the complement of the computed set, as this
yields the registers that can be deferred from the previous sensitive instruction.

The complete structure that we emit for each sensitive instruction has already been
presented in Figure 4.4 on page 34. In the analysis, we fill in the fields vaddr, prev and
common. The other fields are initially set to 0 and are updated during code generation by
the rewriter.

4.3.6 Static Rewriter
As motivated in Section 3.4.2, we implement register reallocation and rescheduling in the
analysis phase, because here all necessary information for such operations is readily avail-
able. We limit our implementation of static rewriting to the analysis of the possible effects
of the proposed techniques. In the following two sections, we shall therefore present how
we determine potential applications of both register reallocation and rescheduling.

Register Reallocation

With register restoration, we substitute an irrelevant callee-saved register for a relevant
caller-saved register, so that we need not preserve the latter during emulation.

We identify reallocatable registers and possible replacement registers for each sensi-
tive instruction by scanning backwards and forwards through the containing basic block;
both scans start at the currently examined sensitive instruction. We use two bitmasks to
keep track of the register state: The first mask indicates which caller-saved registers are
(still) live, whereas the second mask tracks the available callee-saved registers. Subse-
quently, we will refer to these masks as live-mask and avail-mask respectively.

In a backwards scan, we first find the beginnings of the lifetimes of the relevant caller-
saved registers, which is indicated by an instruction that writes to such a register, but
does not read it6. Alternatively, the scan ends if the live-mask is clear, indicating that no

6 Strictly speaking, the lifetime starts at the assignment, regardless of whether the register is also read
by the same instruction or not. For the two-address instructions of IA-32, however, we cannot reallocate
only the output register but implicitly also reallocate the input operand, so that we also need to reallocate
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more registers need to or can be reallocated. We also stop at the beginning of the basic
block: If a register is still live here, we cannot reallocate it locally but have to also analyze
preceding blocks. For this first analysis, we restrict ourselves to block-local reallocation.

During this backwards scan, we clear all bits in the avail-mask, whose according reg-
isters are read or written by the encountered instructions. This ensures that we only al-
locate registers that are available throughout the whole lifetime of a caller-saved register.
Furthermore, we clear the bits for all registers that are implicit or fixed operands to the in-
struction in both bitmasks, because such registers cannot be reallocated. If an instruction
marks the beginning of the lifetime of a caller-saved register r, we store the current avail-
mask for later use: r can be reallocated to any of the registers indicated by this bitmask.
We then remove r from the live-mask and continue to find the beginnings of the lifetimes
of the remaining caller-saved registers.

Once the backwards scan is completed, we perform a similar scan forwards to find
the end of the lifetimes of the caller-saved registers: The first instruction after which a
register is no longer live signifies this end; we attached register liveness information to
the instructions in a previously executed live registers analysis. At the end of the lifetime
of a register r, we logically AND the avail-mask from the backwards scan and the current
avail-mask to obtain another bitmask. The latter represents all callee-saved registers that
can in fact be substituted for r throughout its lifetime. Our current implementation emits
the possible register reallocations into a logfile for manual inspection.

Rescheduling

General Approach With rescheduling, we want to support two of the proposed opti-
mizations: First, we want to reorder the instructions around a sensitive instruction, so that
less caller-saved registers are live across the sensitive instruction. This removes the need
to preserve the caller-saved register as described in Section 3.2.1. Our second goal is to
cluster sensitive instructions so that we can amortize the preservation overhead across two
or more such instructions by not restoring and saving common relevant registers between
these instructions (see Section 3.3.1).

In both cases, rescheduling must not modify the semantics of the guest OS. We must
ensure that all instructions read the same values from their respective operands in the
rescheduled guest as in the original code. We therefore compute a data-flow graph (DFG),
whose nodes are instructions and whose edges each represent one of the following data
dependencies:

true dependency An instruction i that reads a storage location, whose value was previ-
ously assigned at the instruction j, is truly dependent on j; we add the edge (i, j)
to the DFG.

the register before such an instruction.
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anti dependency If an instruction i overwrites a storage location that was previously read
by an instruction j, we say that i is anti dependent on j and add the edge (i, j) to
the DFG.

output dependency Two instructions i and j are said to be output dependent, if both
assign to the same storage location. If i is executed after j in the original guest OS,
we add the edge (i, j) to the DFG.

We call dependencies register-carried to indicate that the shared storage location is a
register.

The (transitive) dependencies imply a partial order ≺ (we define (i, j) ⇒: i ≺ j; i

must execute after j) on the instructions, which we must honor during rescheduling. To
avoid loops in the dependency chains, we limit the rescheduling approach to basic blocks
and redirect dependencies from preceding or succeeding blocks to pseudo instructions at
the beginning and the end of each basic block.

For each instruction i, the partial order partitions the set of instructions into three
groups: Instructions b with i ≺ b must be executed before i, whereas instructions a

with a ≺ i must be executed after i. For instructions j with j ⊀ i and i ⊀ j, we
are free to schedule them either before or after i. We call the last group of instructions
(i-)concurrent. Only concurrent instructions are interesting for rescheduling, because
the ordering of the other instructions does not affect register livenesses at i. Figure 4.9
illustrates both dependencies between instructions and concurrent instructions.

We can now compute a lower bound for the set of live registers at i: For each register-
carried true dependency between instructions a and b with a ≺ i and i ≺ b, the respective
register is unavoidably live during the execution of i: Its value must be assigned prior to i

and is inevitably accessed after i. To reach the first stated goal, the scheduling algorithm
should therefore disregard the unavoidably live registers and find a schedule for the i-
concurrent instructions, which minimizes the number of the remaining caller-saved live
registers.

Regarding the second goal, the clustering of sensitive instructions, we only need to
schedule the i-concurrent sensitive instructions together with i. Note that two instructions
that are both i-concurrent need not be concurrent with each other (see Figure 4.9), so that
often not all i-concurrent sensitive instructions can be scheduled together. This is solely
caused by the dependencies between instructions and no limitation of our approach.

Realization We create the DFG from the annotated CFG by starting a forward and a
backward scan through the basic block at each instruction i, so that we can obtain all
dependencies. For this purpose we propagate the input and output bitvectors of the in-
struction i through the block, compare them with the bitvectors of the current instruction,
and add appropriate edges to the DFG: All of these are directed against the control-flow
and represent the above must execute after relation ≺. We also add the reverse edges to
simplify the following analysis.
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before

addl %ebx,%eax

%eax,%ebx

movl %edi,%esi

%edi

after

lea (%eax,%eax),%ecx

%eax

movl $6,%ebx

%ebx

movl $4,%eax

%eax %eax

addl %esi,%esi

%esi

%ecx %ebx %eax %esi

Figure 4.9: Example data-flow graph. Both shaded instructions are concurrent with all non-
shaded instructions, but due to the true dependency on %ESI between them, they are not concurrent
with each other. True dependencies are indicated with solid edges, anti dependencies with dashed
and output dependencies with dotted edges; the edge labels denote the registers that carry the de-
pendency. Additional dependencies to the “before” and “after” nodes and transitive dependencies
have been omitted for clarity.
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Based on this DFG, we then compute for each sensitive instruction i the before-set of
instructions that must be executed before i. This set is easily obtained as the transitive
hull along the edges in the DFG. Similarly we compute the after-set as the transitive hull
along the reverse edges. We then compute the i-concurrent set by subtracting the before-
and after-sets from the set of all instructions in the basic block. Finally, we determine the
unavoidably live registers by iterating over the after-set and checking the dependencies
of each instruction: If a true dependency points to a node in the before-set, the carrying
register is definitely live during the execution of i.

For each sensitive instruction, we then emit the unavoidably live registers, the live
registers in the original schedule, and the locations and number of concurrent sensitive in-
structions into a logfile, thus documenting possible effects of the rescheduling technique.



Chapter 5

Evaluation

To prove the effectiveness of our enhancements, we conducted measurements on three
scales: At first, we measured the runtime of virtualization code as generated in different
contexts and according to different calling conventions, thus obtaining upper bounds for
the possible improvements. We then verified the applicability of the proposed optimiza-
tions based on numbers we obtained during rewriting of a pre-virtualized Linux kernel.
Finally, we performed a series of minibenchmarks to determine the effects of our en-
hancements on a larger scale. In the following sections we shall first describe the setup
that we used for the measurements and then present the results.

5.1 Test Environment

All measurements presented in this chapter were performed on a 1.5 GHz Intel Pentium 4,
stepping 10. The machine was equipped with 1 GB of main memory, a 256 kByte 8-way
set associative second level cache, and an 8 kByte 4-way set associative first level data-
cache, both with 64 bytes per cache line. For instructions an additional 8-way set associa-
tive trace-cache for 12k µ-ops was present. During network benchmarks, we connected
the described machine with an identical one via switched gigabit ethernet.

We setup the virtual machines on L4 Virtualization Technology [10] as depicted in
Figure 5.1. We use the L4Ka::Pistachio microkernel as the hypervisor in our setup. L4
provides an abstract interface to the underlying machine in terms of threads, address
spaces, mapping mechanisms for virtual memory management and inter-process com-
munication facilities (IPC). Based on these abstractions, Marzipan implements a virtual
machine monitor and provides basic virtualization infrastructure including console I/O,
thread and memory management, pagefault handling and—most important—virtual ma-
chines. Furthermore, Marzipan distributes resources among its client virtual machines
and loads guest OSs into the latter. To run the pre-virtualized Linux kernel, we instruct
Marzipan to load the Afterburner as its guest OS; the Afterburner then loads and rewrites

53



54 CHAPTER 5. EVALUATION

pre-virtualized Linux 2.6.9 &
Afterburner

L4 Marzipan

L4 microkernel

IA-32 hardware

Figure 5.1: Virtualization environment. The pre-virtualized guest OS and the Afterburner execute
together in a virtual machine, which is controlled by the Marzipan resource monitor. The virtual
machines are hosted on the L4 microkernel, which is used as the hypervisor in this configuration.

the supplied kernel image and initiates its execution.
As we are not interested in measuring the quality of the emulation code, we configured

the Afterburner to allow pass-through access to the devices for the Linux kernel. We
limited the virtual machines to 128 MB of main memory. All testruns were conducted
using the same statically linked kernel image; we did not use any loadable modules. To
preclude further influences, we also used the same 20 MB ramdisk image throughout our
tests, which was based on the ttylinux distribution [20]. For network benchmarks both
machines used the same kernel and ramdisk images and were furthermore rewritten using
the same options to the load-time rewriter.

5.2 Microbenchmarks
By using microbenchmarks we examined the absolute effects of our optimizations under
well-defined conditions. For this purpose we manually implemented virtualization code as
it would have been generated by the rewriter, but made it call an empty emulation routine.
We compared the calling conventions of the original rewriter, which indirectly call the
emulation routine via stubs, with our default conventions. Additionally, we evaluated
the effects of discarded registers and compared different approaches to skip the unused
scratch space using single- or multi-byte nops.

5.2.1 General Virtualization Code
We measured the runtime of the plain virtualization code in its different implementations
by hand-coding it in assembly functions. These functions contained nothing but the code
that is usually generated by the rewriter and a trailing ret. In order to determine the best-
case improvements, we did not pad the code fragments to fixed “scratch space” lengths
as would be done in the guest OS. The called emulation routine contained just two nops
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and a ret and was located on the same page that also contained the virtualization code.
All functions were aligned to 32 byte boundaries to prevent the functions from crossing
cache line boundaries.

We measured the runtime with the processor internal timestamp counter and emit-
ted a serializing cpuid instruction before obtaining a timestamp. This ensures that the
measured runtimes comprise the complete virtualization code, but also turns them into
worst-case times despite the best-case conditions we provided: The functional units of
the processor will be under-utilized due to serializing; in the real guest OS, the processor
would start to process the following instructions earlier.

In Figure 5.2, we compare the original calling conventions (using stubs), a more ef-
ficient variant of them, and our default conventions, that inline the stub code. The figure
conveys the number of cycles necessary for the execution of the complete virtualization
code including the call to and immediate return from the empty emulation routine. Where
applicable, we measured the runtime depending on the number of registers that are pre-
served across the call. For completeness, we also provide the numbers for 0 to 3 passed
arguments, although none of them is actually accessed in the called function. As argu-
ments we first pass %EAX, then the literal 4, and as the third parameter %EDX via the
stack.

The measurements support our claim: Our new calling conventions are superior to
the original ones, as they require 8–10 cycles less than the original code—-a reduction of
40–50 %. Furthermore, discarding irrelevant registers even reduces the cost of calling an
emulation routine by as much as 60 %.

One call/return pair costs about 8 cycles (the baseline cost of our default conventions);
both indirect approaches require two such pairs and expose a consistent baseline cost of
just over 16 cycles. Accordingly, we conclude that the improvements of our new conven-
tions are dominated by the removed control-flow indirection.

An interesting effect is the stagnation of the runtime of the virtualization code for
few saved registers: In these cases, the virtualization code comprises only a handful of
instructions: two per preserved register, one per argument plus an additional instruction
to clean up the stack, one call and one ret instructions. As we enclose this fragment
in serializing instructions to measure its complete runtime, the stagnation supports our
conclusion that the execution time is dominated by the high-latency call/return instruc-
tions. The processor-internal out-of-order engine can schedule the additional instructions
for argument passing to execute in parallel to these instructions, thus effectively hiding
their presence.

We attribute the slight reduction of runtimes for increased numbers of passed argu-
ments, which is apparent in most of the presented cases, to imprecise measurements.
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Figure 5.2: Comparison of different calling conventions. The y-axis indicates the clock cycles per
call of an empty emulation routine. The x-axis lists the different calling conventions and contexts.
Within each group, the individual bars represent 0–3 arguments that are passed to the emulation
routine.
orig: original calling conventions (indirect via stubs), ind/n: our more efficient variant of the
original conventions, def/n: the default conventions used by our rewriter (no stubs), n: number of
registers that are preserved by the virtualization code

5.2.2 Unused Scratch Space

Our second microbenchmark evaluates different strategies to deal with unused scratch
space. We compared four approaches: At first, we filled the unused space with single-byte
nops as did the original implementation. Our second approach uses multi-byte nops,
such as movl %esi,%esi for 2 bytes or lea 0(%edi),%edi to cover 3 or 6 bytes,
depending on the size of the displacement. In both cases we then measured the effects
of a leading jmp instruction, which replaces the first two bytes and jumps right over the
unused space.

To preclude other influences besides the executed code, we used a page-aligned
4 kByte array to represent the scratch space. For each test, we filled this array from
its beginning with proper nops and a trailing return and called this self-made function
via a function pointer. The overhead of the function call is included in the runtimes we
present in Figure 5.3. In accordance with [8], multi-byte nops enable faster execution of
a given number of bytes than single-byte nops. 12 bytes can be efficiently skipped us-
ing two 6-byte nops, whereas 10 and 11 bytes must be combined from three instructions
covering 6+3+1 or 6+3+2 bytes.
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Figure 5.3: Comparison of different approaches to handle unused scratch space. The x-axis gives
the number of bytes to skip, the y-axis gives the required time in clock cycles.

We conclude that few large areas can be skipped more efficiently than many small
ones by covering the whole area with as few multi-byte nops as possible and jumping
over regions of more than 15 bytes.

5.3 Applicability

To evaluate the applicability of our optimizations, we collected statistics about the gener-
ated code during rewriting. According to these statistics, the examined Linux 2.6.9 kernel
contains 1,500–4,800 sensitive instructions—depending on the number of included device
drivers. The kernel that we used in our benchmarks comprised 4733 sensitive instructions,
including 994 ud2 instructions to debug the kernel and 793 instructions with inlined emu-
lation code. A total of 64 sensitive instructions—instances of iret, int, long jumps and
cpuid—could not be ported to our new calling conventions: These either jump to their
emulation routine instead of calling it or require a special assembly stub.

The remaining 2882 instructions can effectively benefit from our optimizations, al-
though 708 of them already used standard C calling conventions (without stubs)1. Con-
sequently, the latter do not profit from our new conventions but are still improved by
discarding irrelevant registers. We will now present details on the applicability of all of

1 These direct calls result primarily from memory mapped I/O operations.
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discarded registers 0 1 2 3 total revised
call sites 592 865 1042 383 2882
total of discarded registers 0 865 2084 1149 4098 3628 43.9 %
total of preserved registers 1552 1612 1006 0 4170 4640 56.1 %
preserved register on stack 1488 1400 437 0 3325 3795 81.8 %
preserved registers in registers 64 212 569 0 845 845 18.2 %

Table 5.1: Number of discarded caller-saved registers per call-site.

the proposed techniques.

Discarded Irrelevant Registers

The statistics from the rewriter reveal that more than 40 % of the caller-saved registers
can be discarded due to the provided context-information. With 3 caller-saved registers
being saved and restored around the emulation this results in an average of 0.4 ·3 ·2 = 2.4
saved instructions per emulation call. Table 5.1 provides more detailed information, but
disregards a total of 470 registers, which are first considered to be irrelevant but are later
on pushed onto the stack as arguments nonetheless. These must be subtracted from the
discarded registers and counted as preserved registers to get the statistics right; we give
the revised figures as well.

From the table we further infer that we can discard at least one register at 2290 out of
the 2882 call-sites, which is more than 79 %. At 49 % of the call-site we can discard two
or more registers, and at 13 % of all call-sites we can even discard all three caller-saved
registers.

Caller-Saved Registers Stored in Callee-Saved Registers

Table 5.1 also conveys the applicability of saving caller-saved registers in callee-saved
ones: 845 out of 4640 preserved registers, about 18 %, need not be written to memory but
can be preserved in a register.

Locally Adjusted Calling Conventions

We apply modified calling conventions only for the emulation routine of the iret and
cpuid instructions: The provided emulation takes all registers as arguments on the stack
and has them restored afterwards by the virtualization code, so that the callee does not
need to preserve any registers. Our new conventions prevent the 4 callee-saved registers
%EBX, %ESI, %EDI and %EBP from being saved and restored in the emulation routine
unnecessarily.



5.3. Applicability 59

Our measurements attest a decreased runtime for the emulation of iret in an idle
system (we measured only the C emulation routine, the assembler part with the actual
iret is not included): Without embracing the emulation in serializing instructions, the
runtime goes down from 112 to 104 cycles (-7 %); embraced in cpuid instructions, we
see a decrease from 568 to 560 cycles (-1.4 %). The latter measurement includes the
execution of the serializing cpuid instruction.

Virtualized cpuid instructions are not executed often enough to obtain reliable re-
sults; the results would not even be interesting for the same reason.

Reallocated Registers

We analyzed our test kernel for beneficial applications of the proposed register realloca-
tion technique, but found only 26 possible locations. Most of these are present either in
cpu init or e1000 driver routines and are not on a frequently executed critical path.

Statically Evaluated Dispatch Tables

For port I/O, we can determine the accessed port in 100 of 338 cases (≈30 %) and there-
fore potentially circumvent a dynamic dispatcher. But as the according devices, mainly
the VGA graphics controller, are not yet virtualized in the framework we used, actually
none of the 100 possible cases results in a statically dispatched emulation routine. We
cannot present figures for memory mapped I/O, because no static dispatcher was avail-
able. Concluding, we were unable to determine the effects of static dispatching due to an
incomplete test environment.

Deferred Register Restorations

We previously claimed that this approach mostly applies to routines for device I/O. The
rewriting statistics substantiate this statement: In our testkernel we can defer 430 register
restorations. The annotated e1000 driver alone contributes 113 deferrable registers; floppy
disk (105), VGA (60) and XT-PIC (20) also play a major role. The remaining applications
occur mostly in conjunction with processor identification and setup and the CMOS real-
time clock.

Rescheduled Instruction Streams

With rescheduling we envisage two goals: Firstly, we want to reduce the number of caller-
saved registers that are live during the execution of a sensitive instruction. Secondly, we
want to cluster sensitive instructions to support the deferred register restoration approach.

Our analysis on rescheduling reveals 281 possible applications, at which we can re-
duce the number of live caller-saved registers by one. On additional 20 locations the
proposed technique can even remove the need to preserve two such registers across the
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patches per basic block 1 2 3 4 5 6 7 8 9 >9
applications 2034 502 164 55 32 15 5 10 5 23
average size [bytes] 8 16 19 38 44 55 64 68 69 150

Table 5.2: Results of basic block compaction.

emulation of the sensitive instruction. More detailed analysis of these locations disclosed
that only one of the possible applications is contained in a frequently executed function:
In schedule we can discard two additional registers using rescheduling.

The second goal of rescheduling, clustering of sensitive instructions, can only be
achieved once in a frequently executed function, namely in system call. Unfortunately,
even without this clustering, we can defer two registers across the two affected sensitive
instructions, so clustering cannot improve the situation significantly.

We conclude that the static rewriting techniques can be applied in our testkernel, but
are not likely to yield significant improvements.

Compacted Basic Blocks

Basic block compaction moves unused scratch space to the end of the containing basic
block with two intentions: For one, this approach combines the unused scratch space of
all patches within a basic block, so that only one large space must be skipped instead
of multiple smaller ones. In Table 5.2 we therefore present how often we combined the
unused scratch space of any number of patches. Furthermore, we also give the average
size of the resulting “large” space of unused bytes. About 70 % of the basic blocks contain
only a single patch, so that no combining is possible; in 17 % of all cases we can combine
2 patches.

The second reason for moving the unused space to the end of each block is that many
basic blocks end in conditional or even unconditional branches or returns. For backward
jumps or returns the overhead of skipping the unused space is therefore completely re-
moved, only the fall-through code and forward jumps are still affected (see Section 5.2.2).

Again, we instrumented our rewriter to determine the type of the last instruction in the
compacted blocks. We found out that about 14 % of them end in unconditional branches
(98 % of these are directed backwards), and further 9 % end in a return instruction.
Conditional jumps mark the end of additional 29 % of the compacted blocks, but only
11 % of these are directed backwards. The remaining 48 % of the blocks fall through to
the next block.

To sum this up, in about 75 % of the cases we still need to skip over the unused space.
We can avoid doing so in only 25 % of the cases due to returns or unconditional and taken
conditional jumps backwards.
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5.4 Minibenchmarks
To evaluate the effects of our enhancements on a real operating system we conducted a
series of benchmarks on a pre-virtualized Linux 2.6.9. The presented results were mostly
obtained from tests taken from the lmbench3 and netperf test suites. We will conclude the
evaluation with an analysis of the execution frequencies of sensitive instructions during
some of the benchmarks.

5.4.1 Latency Tests
In a first series of benchmarks we measured the effects of our new calling conventions
and optimizations on latencies as reported by a subset of the lmbench3 suite [16]. We
obtained the results in three rounds, during each of which we executed the whole set of
tests five times in a row. We rebooted the machine after each of the three rounds. The
given figures are based on the median of all 15 measurements.

Figure 5.4 presents the relative performance of different calling conventions and opti-
mizations as compared to the original indirect calling conventions. ignore implements the
new conventions, but disregards all available context-information. In the default case, the
rewriter uses context-information to discard irrelevant registers, but fills unused scratch
space with single-byte nops and does not perform basic block compaction. The nop case
implements efficient padding of unused space with multi-byte nops, whereas skip+nop
moreover adds a jump over the multi-byte nops. The compact case shows the effects of
basic block compaction, filling the scratch space with single-byte nops again. Finally,
all implements all proposed optimizations: It performs basic block compaction, fills the
space with multi-byte nops, defers register restorations, and preserves registers in callee-
saved registers.

The remaining two cases, indirect and indirect+, represent our improved variant of
the original calling conventions, which also indirectly call the emulation routine via stubs.
indirect ignores the provided context-information, whereas indirect+ queries it and uses
one of 8 stubs to discard registers at each call-site.

Disregarding the indirect variants for the moment, our measurements show that all
benchmarks benefit from our optimizations. Although many tests only improve by about
0.5 %, which is hardly significant, the stat and open/close syscalls as well as TCP/IP con-
nects to localhost (lat connect) show a reduction of about 1 % in the measured latencies.
File locking via fcntl (lat fcntl), signal catching and local communication via UNIX pipes
even gain nearly 2 %.

The ignore case shows that, in most cases, more than 50 % of the beneficial effects
originate from the new, direct calling conventions; discarding registers does not yield con-
sistent or significant effects. Of all implemented optimizations, the multi-byte nops are
generally the most influential one, closely followed by basic block compaction (compact).
The combination of both of them clearly dominates the effects of the all case. Register-
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Figure 5.4: Benchmark results on latencies. The figures are differences in per cent, the reference
measurements are those obtained with the original, indirect calling conventions. All benchmarks
measure latencies, so smaller values are better.
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to-register copies or deferring registers do not seem to contribute much, otherwise the
effects of all should be significantly different from the pure nop and compact cases.

Lastly, both indirect and indirect+ generally perform worse than the original indirect
approach. We attribute this observation to the larger glue code: For both approaches we
supply 8 stubs per emulation routine; combined with 25 emulation routines and 16 bytes
per stub this makes up for 3200 byte of stub code—nearly a page of its own. Compared to
the original approach, which only requires 400 bytes for the stubs, the execution of many
emulation routines will now require one additional TLB entry for the page containing the
stub. Consequently, overall system performance degrades firstly due to TLB faults on the
stubs and secondly when reestablishing a potentially evicted TLB entry.

indirect+ performs significantly worse than the indirect approach in three of the tests,
namely file locking, signal catching and communication via UNIX pipes. We relate this
effect to the increased working set of the indirect+ approach: Both the original approach
and indirect only use one stub per emulation routine—the one that preserves all caller-
saved registers. indirect+ selects one of the 8 provided stubs depending on the context
of the call-site, consequently this approach touches more code fragments and more cache
lines and floods the trace-cache with more µ-ops. The larger cache footprints might cause
the eviction of “hot” entries from the caches and thus negatively affect the overall perfor-
mance.

To summarize our evaluation of the latency tests, our optimizations improve 3 of the
16 presented tests by about 2 %, additional 3 by about 1 %, and leave the remaining tests
virtually unaffected.

5.4.2 Bandwidth Tests

In the second and final set of benchmarks we compared the previously presented con-
figurations regarding (network) bandwidths. In Table 5.3 we give the results of four
benchmarks from the netperf benchmark suite [9] and a pingpong (or hot potato)
benchmark, which repeatedly transfers a single byte via a pipe between two processes.
UDP STREAM and TCP STREAM transfer data from the test machine (client) to the
server, whereas TCP MAERTS does the same, but from server to client. TCP CRR con-
nects to the server, sends a request and waits for the reply. The presented figures are
averages over 9 results, which were obtained in three rounds with three test runs each.
The machines were rebooted after every round. The netperf tests were setup to run 10
seconds and to achieve a confidence interval of 3 % at a confidence level of 99 %.

UDP STREAM and pingpong show reliable improvements of 1.3–1.7 %. All TCP-
related measurements suffered from high variances, which is expressed in fairly long
confidence intervals (2.18–6.49 %). Therefore the results are inconclusive, but indicate
no significant improvement.
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original ignore default nop all
UDP STREAM [MBit/s] 729 733 731 734 741
difference [%] @ 0.61 +0.6 +0.3 +0.7 +1.7
TCP STREAM [MBit/s] 684 669 688 678 686
difference [%] @ 2.18 -2.2 +0.6 -0.9 +0.4
TCP MAERTS [MBit/s] 704 684 704 696 720
difference [%] @ 2.52 -2.8 ±0.0 -1.2 +2.3
TCP CRR [connects/s] 1788 1735 1803 1791 1660
difference [%] @ 6.49 -3.0 +0.8 +0.2 -7.2
pingpong [kByte/s] 22.7 22.9 22.9 23.0 23.0
difference [%] @ 0.55 +0.9 +1.0 +1.3 +1.3

Table 5.3: Benchmark results on bandwidths. We give the absolute throughput as reported by
netperf (or pingpong) and the relative performance as compared to the original calling conven-
tions. In the first column, we give the intra-row maximum 95 %-confidence interval in percent of
the absolute throughput instead of relative performance. The columns represent different calling
conventions and optimizations.

5.5 Execution Profiles
We conclude our evaluation with execution profiles of the previously discussed bench-
marks. In an extra run of the tests, we injected an additional increment instructions before
each sensitive instruction, so that we could record the execution frequencies of all sensi-
tive instructions. Table 5.4 gives the results, expressed as the percentage of each sensitive
instruction type during the execution of the listed benchmarks. At the bottom we also
provide total numbers of sensitive instructions executed and clock cycles spent during the
execution of the tests. The last row conveys the average number of clock cycles between
two sensitive instructions.

These figures provide a possible explanation for the mediocre benchmark results:
From the commonly executed instructions, only pushf, popf, iret and cli actually
profit from our optimizations. The others are emulated inline and do not use the new
calling conventions, to which attributed about 50 % of the effects on latencies.

From Table 5.4 we infer that for lat connect and lat unix, which could both be im-
proved by 1.5–2 %, about 50 % of the executed sensitive instructions are emulated ex-
ternally. As both tests yield an average of about 2,300 clock cycles between two sensi-
tive instructions, this results in an application of our optimized calling conventions about
once every 4,600 clock cycles. Similarly, about 60 % of the sensitive instructions in
UDP STREAM are emulated externally; with one sensitive instruction every 1,258 cy-
cles, an external emulation routine is called about once every 2,100 cycles using our
improved conventions.
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lat connect lat unix lat syscall UDP TCP
localhost null write STREAM CRR

cli† 25.83 24.80 12.95 12.69 27.88 25.09
pushf 31.59 19.97 0.56 0.21 33.46 24.94
popf 18.91 19.97 0.56 0.20 25.88 18.14
push %DS† 2.77 3.20 12.18 12.35 0.55 2.50
pop %DS† 2.77 3.20 12.18 12.35 0.55 2.50
iret 2.77 3.20 12.18 12.35 0.55 2.50
move to %DS† 2.77 3.20 12.18 12.35 0.55 2.50
pop %ES† 2.77 3.20 12.18 12.35 0.55 2.50
move to %ES† 2.77 3.20 12.18 12.35 0.55 2.50
push %ES† 2.77 3.20 12.16 12.35 0.55 2.50
sti 4.14 3.22 0.19 0.11 1.99 5.93
move to %CR3 0.00 3.17 0.00 0.00 0.00 0.00
move from %FS† 0.00 3.17 0.00 0.00 0.08 0.67
move from %GS† 0.00 3.17 0.00 0.00 0.08 0.67
out 0.08 0.08 0.29 0.21 1.87 3.38
e1000 write 0.00 0.00 0.00 0.00 3.65 1.33
103 SIs 28,731 27,783 1,128 10,202 85,101 9,664
106 cycles 64,228 63,952 9,728 61,986 107,078 22,535
cycles/SI 2,235 2,302 8,624 6,076 1,258 2,332

Table 5.4: Benchmark profiles with respect to sensitive instructions. The figures convey the
relative execution frequencies of each type of sensitive instructions (SIs) per benchmark. Below
we give the total number of executed sensitive instructions and the total number of cycles spent
during execution of the tests. Instructions marked† are emulated inline.
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For the lat syscall tests, only about 13 % (or every 7th) of the executed sensitive in-
structions are emulated externally, raising the number of cycles between two applications
of our optimizations to 42,000–60,000. The well-improved tests execute sensitive instruc-
tions about ten times more frequently than the others, which might be the cause for their
stronger reaction to our optimizations.

Unfortunately, the reverse does not hold: TCP CRR has about 50 % of its sensitive
instructions emulated externally, which are therefore executed about once every 4,600
cycles. This matches the figures for lat connect and lat unix, so TCP CRR should also
benefit from our optimizations. The measurements we performed were inconclusive, but
indicated rather a degradation (-7 %) than a positive trend.

To conclude our analysis of the execution profiles, we shall give an estimation of
the expected effects of our optimizations: As shown earlier, our new calling conventions
save 8–10 cycles per application as compared to the original conventions. With a single
application of these less than every 4,600 cycles, we should expect improvements on
runtime of below 0.2 %. We attribute the improvement of 1–2 % for certain tests to
non-uniform distribution of sensitive instructions.
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Conclusion

In the following sections we shall briefly summarize this thesis and point out open ques-
tions. We shall then provide ideas for future work based on the results of this thesis.

6.1 Summary

This thesis was motivated by the observation that the pre-virtualization approach to vir-
tualizing IA-32 hardware used static virtualization code to replace sensitive instructions.
We reasoned that this approach incurs unnecessarily high overhead in many cases due
to unnecessarily preserved registers and proposed to dynamically create more specific
virtualization code on a per-instruction basis.

We have therefore provided techniques that use context-information like live regis-
ters for sensitive instructions to generate efficient virtualization code. To increase the
applicability and effectiveness of the proposed optimizations, we proposed and evaluated
additional, static rewriting techniques—namely register reallocation, rescheduling, and
modified calling conventions for emulation code. We then described how the context-
information can be obtained solely from the binary by means of static program analysis.
To overcome the problem of incomplete knowledge about the structure of the analyzed
guest OS, which is caused by indirect branches, we provided safe approximations for the
context-information where necessary.

The evaluation of our implementation was two-sided: On the one hand, we confirmed
that the proposed techniques actually do improve the quality of the generated virtualiza-
tion code—about 40 % of the previously saved registers have been identified as irrelevant
and are discarded. On the other hand, the majority of the conducted benchmarks did not
show statistically significant differences between optimized and unoptimized guest OSs.

67
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6.2 Open Issues
We conclude that the presented optimizations are incompatible with the microarchitecture
of the test machines: Our optimizations require a monotonic increasing mapping of exe-
cuted instructions to clock cycles spent, because most of them are designed to reduce the
number of instructions in the generated code. Our microbenchmarks showed that this pre-
requisite is not always fulfilled by the NetBurst Microarchitecture, which is implemented
in the Pentium 4 that served as our test machine, due to out-of-order execution.

A second limitation to the possible effects of our optimizations results from the small
register set of IA-32 machines: With 8 registers and only 3 caller-saved ones, the possi-
ble effects of of discarding caller-saved registers rather than preserving them are tightly
bounded.

Finally, we reasoned that the low execution frequency of non-inlined virtualization
code—about once every 4,000 clock cycles—presumably limits the effects on runtime of
our optimizations to less than 0.2 %.

6.3 Outlook
Future work is required to evaluate our system on different implementations of IA-32,
such as the Pentium III or the Opteron, to verify or falsify our conclusion about the Pen-
tium 4 microarchitecture. Also porting our system to architectures like IA-64 or even
RISC architectures, such as PowerPC or MIPS, with a larger register set seems to be
worth exploring.

Furthermore, we believe that the analysis component can be reused in a more complex
rewriting tool, that does not rewrite individual sensitive instructions but rather complete
subroutines. Such a system could even abolish the preparation phase of pre-virtualization
by finding and rewriting sensitive instructions fully-automatically, thus moving towards
binary translation. Only annotations for sensitive memory operations would still be re-
quired.

Apart from virtualization, dynamic binary instrumentation tools might use the infor-
mation from our analysis to efficiently integrate the instrumentation code into their target.
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Examples of IA-32 Glue Code

This appendix lists three different calling conventions between the rewritten guest OS and
the emulation routines. For each convention we give the rewritten guest OS code, which
replaced the sensitive instruction being emulated, and the glue code involved in the call.
We also provide a snapshot of the stack right after the trampoline has been called. This
shall demonstrate why indirect approaches require additional indirection when accessing
their argument, whereas inlined stub code can efficiently use standard C conventions for
parameter passing.

The examples below show the general case of N arguments being passed to the emu-
lation routine, typical emulation code requires 0 ≤ N ≤ 3 parameters. We additionally
demonstrate the special cases that one of the arguments is a caller-saved register or the
return address (RA) to the guest OS.

A.1 Original Calling Conventions
Rewritten guest OS:

pushl arg{N-1}
...
pushl arg0
call stub

RA_guest:
addl $4N, %esp

Stub code:

stub:
/* save caller-saves */
pushl %eax
pushl %ecx
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pushl %edx
/* argument to trampoline */
pushl %esp
subl $8, (%esp)
call trampoline

RA_stub:
/* remove argument */
addl $4, %esp
/* restore caller-saves */
popl %edx
popl %ecx
popl %eax
ret

Stack layout:

arg{N-1}
...
arg0
RA_guest
%eax
%ecx
%edx
pointer to "RA_stub"
RA_stub <-----+

Trampoline used to access the arguments:

typedef struct {
uint32_t stub_ra;
uint32_t frame_pointer;
uint32_t edx;
uint32_t ecx;
uint32_t eax;
uint32_t guest_ra;
uint32_t param[0];

} burn_clobber_frame_t;

void
trampoline( burn_clobber_frame_t *frame )
{
emulation( frame->param[0], frame->param[1], ...,

frame->param[N-1], &frame->edx,
frame->guest_ra );

}
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This approach requires a fixed structure of the burn clobber frame, which ham-
pers discarding of irrelevant caller-saved registers: The stack layout must match the
burn clobber frame and therefore include all caller-saved registers’ slots.

A.2 Efficient Calling Conventions Using Stubs
We propose the following variant of the above scheme to allow discarding irrelevant
caller-saved registers.
Rewritten guest OS (unmodified):

pushl arg{N-1}
...
pushl arg0
call stub

RA_guest:
addl $4N, %esp

We provide a set of stubs, each saving a different subset of the caller-saved registers.
Lines like ?pushl %eax? indicate that the enclosed code is only present in some of these
stubs. The number of saved caller-saved registers is known for each stub and symbolized
with an X in the following stub code:

stub:
/* register arguments */
pushl %edx
/* save relevant caller-saves */
?pushl %eax?
?pushl %ecx?
/* argument to trampoline */
lea 4*X(%esp), %eax
call trampoline

RA_stub:
/* restore caller-saves */
?popl %ecx?
?popl %eax?
/* restore register arguments */
popl %edx
ret

Stack layout:

arg{N-1}
...
arg0
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RA_guest
%edx <----- %eax
?%eax?
?%ecx?
RA_stub

Trampoline used to access the arguments:

void __attribute__(( regparm(1) ))
trampoline( uint32_t *args )
{
emulation( args[2], args[3], ...,

args[N+1], &args[0], args[1] );
}

Using this approach, we use the argument to the trampoline to skip over the variable
part of the stack. The pointed to region on the stack only contains items that are always
necessary and in a fixed order: First, the N arguments are pushed onto the stack, then the
stub gets called, which implicitly pushes the return address to the guest OS on the stack.
In the stub, we first push all caller-saved registers that have been marked as arguments to
the emulation (regardless of whether they are relevant or not). Afterwards, we are free
to preserve the relevant caller-saved registers—or refrain from doing so if they may be
discarded. We then pass the address of the fixed frame to the trampoline—in %EAX to
avoid an additional stack access.

Besides allowing to discard irrelevant registers, this approach also saves two instruc-
tions in passing the argument to the trampoline.

A.3 Inlined Stubs
Both previous approaches implied both an additional control-flow indirection via a stub
and an additional indirection for accessing the arguments within the trampoline. Inlining
the complete stub code into the guest OS removes both indirections and further reduces
the number of instructions needed to call the emulation:
Rewritten guest OS:

/* save relevant caller-saves */
?pushl %eax?
?pushl %ecx?
/* register arguments */
pushl %edx
/* arguments */
pushl arg{N-1}
...
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pushl arg0
call trampoline

RA_guest:
addl $4N, %esp
/* restore register arguments */
popl %edx
/* restore caller-saves */
?popl %ecx?
?popl %eax?

Stack layout:

?%eax?
?%ecx?
%edx
arg{N-1}
...
arg0
RA_guest

Trampoline used to access the arguments:

void
trampoline( uint32_t arg0, uint32_t arg1, ...,

uint32_t arg{N-1}, uint32_t edx )
{
emulation( arg0, arg1, ..., arg{N-1}, edx,

__builtin_return_address(0) );
}

We reordered the stack frame layout, so that we can call the trampoline along the usual
C calling conventions—no further indirections are required. We therefore first preserve
all relevant caller-saved registers (unless they are explicitly used as arguments to the emu-
lation), then pass the explicit register arguments, followed by the N “variable” arguments:
The latter depend on the operands of the replaced sensitive instruction.
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[7] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, and Sebastian Schönberg. The
performance of µ-kernel based systems. In Proceedings of the 16th Symposium on
Operating System Principles (SOSP), pages 66–77. ACM Press, October 1997.

[8] Intel Corporation. IA-32 Intel Architecture Optimization Reference Manual, June
2005.

[9] Rick Jones. Netperf benchmark. Available from
http://www.netperf.org/netperf/NetperfPage.html.

79



80 BIBLIOGRAPHY

[10] The L4Ka Team. Marzipan: The L4Ka virtual machine environment. Available
from http://l4ka.org/projects/virtualization/resourcemon/.

[11] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing.
In Proceedings of the 1995 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 291–300. ACM Press, June 1995.

[12] Kevin Lawton. The bochs IA-32 emulator project. Available from
http://bochs.sourceforge.net/.

[13] Joshua LeVasseur. Pre-virtualization with compiler afterburning. Available from
http://l4ka.org/projects/virtualization/afterburn/.

[14] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben Leslie,
and Gernot Heiser. Pre-virtualization: Slashing the cost of virtualization. Techni-
cal Report 2005-30, Fakultät für Informatik, Universität Karlsruhe (TH), November
2005.

[15] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, 1996.

[16] Larry McVoy and Carl Staelin. LMbench - tools for performance analysis. Available
from http://www.bitmover.com/lmbench/.

[17] Microsoft. Virtual PC 2004, 2004. Information available from
http://www.microsoft.com/windows/virtualpc/.

[18] Robert Morgan. Building an Optimizing Compiler. Digital Press, 1998.

[19] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Verlag, 1999.

[20] Pascal Schmidt. ttylinux. Information and distribution available from
http://www.minimalinux.org/ttylinux/showpage.php?pid=1.

[21] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. Binary translation. Communications of the ACM, 36(2):69–81, February
1993.

[22] Amitabh Srivastava and Alan Eustace. ATOM: a system for building customized
program analysis tools. In Proceedings of the 1994 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 196–205. ACM
Press, June 1994.

[23] GNU Team. GNU binutils. Available from http://www.gnu.org/software/binutils/.



BIBLIOGRAPHY 81

[24] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen
De Bosschere. DIABLO: a reliable, retargetable and extensible link-time rewrit-
ing framework. In Proceedings of the 2005 IEEE International Symposium on Sig-
nal Processing and Information Technology (ISSPIT), pages 7–12. IEEE, December
2005.

[25] VMware. VMware ESX server. Information available from
http://www.vmware.com/products/server/esx features.html.

[26] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual machines for
distributed and networked applications. In Proceedings of the 2002 USENIX Annual
Technical Conference. USENIX Association, June 2002.

[27] A. Whitaker, M. Shaw, and S. Gribble. Scale and performance in the denali isolation
kernel. In Proceedings of the 5th Symposium on Operating System Design and
Implementation (OSDI), pages 195–210. USENIX Association, December 2002.



82 BIBLIOGRAPHY


	1 Introduction
	1.1 The Problem: Missing Context-Information
	1.2 Approach
	1.3 Structure of This Thesis

	2 Background And Related Work
	2.1 Virtualization
	2.1.1 Terminology
	2.1.2 Simulation and Interpretation
	2.1.3 Pure Virtualization
	2.1.4 Para-Virtualization
	2.1.5 Pre-Virtualization

	2.2 Binary Rewriting

	3 Proposed Solution
	3.1 Terminology
	3.2 Optimizations for Individual Patches
	3.2.1 Discarding Irrelevant Registers
	3.2.2 Reducing the Overhead of Callee-Saved Registers
	3.2.3 Statically Evaluating Dispatch Tables

	3.3 Optimizations for Successive Patches
	3.3.1 Deferring Register Restoration
	3.3.2 Rescheduling the Instruction Stream
	3.3.3 Compacting Basic Blocks

	3.4 Context-Aware Rewriting System
	3.4.1 Goals of Our Design
	3.4.2 System Structure
	3.4.3 Sources of Context-Information
	3.4.4 Analysis Component
	3.4.5 Rewriter Component


	4 Implementation
	4.1 Rewriter Component
	4.1.1 General Approach
	4.1.2 Efficient Handling of Caller-Saved Registers
	4.1.3 Static Dispatch
	4.1.4 Deferred Register Restoration
	4.1.5 Compaction of Basic Blocks

	4.2 Glue Code Generators
	4.2.1 Specification Language for Glue Code
	4.2.2 Generated Glue Code
	4.2.3 Locally Modified Calling-Conventions

	4.3 Analysis Component
	4.3.1 Overview
	4.3.2 Code Discovery
	4.3.3 Disassembly
	4.3.4 CFG Reconstruction
	4.3.5 Data-Flow Analysis
	4.3.6 Static Rewriter


	5 Evaluation
	5.1 Test Environment
	5.2 Microbenchmarks
	5.2.1 General Virtualization Code
	5.2.2 Unused Scratch Space

	5.3 Applicability
	5.4 Minibenchmarks
	5.4.1 Latency Tests
	5.4.2 Bandwidth Tests

	5.5 Execution Profiles

	6 Conclusion
	6.1 Summary
	6.2 Open Issues
	6.3 Outlook

	A Examples of IA-32 Glue Code
	A.1 Original Calling Conventions
	A.2 Efficient Calling Conventions Using Stubs
	A.3 Inlined Stubs


