
System Architecture Group
Department of Computer Science

Diploma Thesis

Impacts of Asymmetric Processor Speeds
on SMP Operating Systems

by

cand. inform.
Martin Röhricht

Supervisors:

Prof. Dr. Frank Bellosa

Dipl. Inf. Andreas Merkel

August 30, 2007

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have
been used.

Karlsruhe, August 30, 2007

. .
Martin Röhricht

Acknowledgements

First of all, I would like to thank my advisors, Prof. Dr. Frank Bellosa and Andreas
Merkel. Throughout the work on my thesis both provided me with inspiration and
motivation. Without their help this thesis would not have been possible.

Thanks go to all members of the System Architecture Group in Karlsruhe for pro-
viding such a productive and friendly work environment. I would like to thank my
colleagues Christoph Klee and Marco Schnurr for fruitful discussions. Both helped me
with their expertise when I strayed onto the wrong track. David Talbott was a big help
in linguistical questions.

Finally a very special thank you to my parents, Michael and Gudrun, as well as my
girlfriend Karin. I am deeply grateful for all the selfless support and love they give me.

Contents

1 Introduction 5
1.1 Homogeneous Multicore Architectures . 5
1.2 Heterogeneous Multicore Architectures 6
1.3 Motivation . 8

1.3.1 Predictability of a workload’s performance 8
1.3.2 Improvement of the system’s performance 9

1.4 Asymmetry Aware Scheduling . 9
1.5 Structure . 10

2 Background and Related Work 11
2.1 Different Types of Asymmetry . 11

2.1.1 NUMA – Non-uniform Memory Access 11
2.1.2 Clock Modulation . 12
2.1.3 Frequency/Voltage Scaling . 12
2.1.4 Asymmetric Hardware on one Node 13

2.2 Multiprocessor Scheduling . 13
2.2.1 Hierarchical Load Balancing . 15

2.3 Related Work . 17
2.3.1 Real-time Related Approaches . 17
2.3.2 Finding the optimal Setup . 17
2.3.3 Designs based on Simulations . 17

2.4 Methodology . 19

3 Asymmetry-Aware Scheduling 21
3.1 Best Response Time Scheduling . 21

3.1.1 Approach on a timeslices/speed ratio 22
3.1.2 Example . 24
3.1.3 Load Balancing . 25

3.2 Highest Throughput based Design . 27
3.2.1 Example . 30

3.3 Priority based Approach . 31
3.3.1 Assignment Problems . 32
3.3.2 Principal Operation . 34

1

4 Implementation 39
4.1 Relevant Parts of the Linux Scheduler . 39

4.1.1 Load Balancing for Multiprocessor Systems 41
4.2 Asymmetry-aware Scheduling . 41

4.2.1 Passive Load Balancing . 42
4.2.2 Active Load Balancing . 43

5 Experimental Results 45
5.1 Test Setup . 45

5.1.1 Performing Measurements . 45
5.2 Stability and Predictability . 46
5.3 Performance Gains . 48

6 Conclusion 53
6.1 Achievements . 53
6.2 Summary . 53
6.3 Future Directions . 54

2

Abstract

Multiprocessor systems were the industry’s response to an ever rising demand for more
speed in conjunction with less heat and power dissipation. Instead of putting all effort
into gaining more speed from a single-core system, hardware vendors focus today on
building systems that consist of multiple cores. These systems are commonly referred
to as Symmetric Multiprocessing (SMP) systems, where all processors or cores run with
the same speed and build a homogeneous platform.

But instead of focusing on symmetric settings alone, in the future operating systems
might have to deal with asymmetric, heterogeneous systems, which are built in a way
that not every processor runs with the same speed.

This thesis examines what impacts such setups have on today’s operating systems
and develops strategies that promise a gain in terms of performance, stability and pre-
dictability.

We implemented different scheduling strategies for the Linux kernel that focus on dif-
ferent objectives, namely one approach that achieves the best minimal response times on
average for all tasks in the system, another that achieves the highest possible throughput
rate for the entire system, and finally one that takes each task’s priority into account in
order to guarantee the highest priority jobs are assigned to the fastest processors in the
system.

Evaluations show that only an asymmetry-aware scheduler is able to make proper use
of the big potential that is offered by a heterogeneous system. Our proposed solutions
show performance gains of up to 50% compared to an unmodified scheduler. They show
remarkable improvements in terms of performance stability and predictability.

3

4

1 Introduction

This thesis investigates the impacts of asymmetric processor speeds in a multiprocessor
system and proposes operating system enhancements that are essentially designed to
increase system performance. We will show that systems that are not aware of an
underlying asymmetric topology perform poorly in general. We will introduce strategies
which make proper use of the heterogeneity with different performance objectives. A
comparison between a homogeneous and a heterogeneous setup confirms the theories by
benchmark tests.

1.1 Homogeneous Multicore Architectures

Over the past decades processor technology evolved mainly by increasing frequency val-
ues to fulfill the consumer’s needs. Architectural level changes such as sophisticated
pipelining, out-of-order execution or branch prediction focused mainly on an improve-
ment of Instruction Level Parallelism. Hyperthreading was later introduced to establish
another logical processor by replicating some resources such as register sets and the inter-
rupt controller but still sharing other resources among the logical processors like ALUs
and caches. This technique is commonly referred to as Simultaneous Multithreading
(SMT) and improved the system’s performance with regard to Thread Level Parallelism.

In response to the ever increasing circuit density and heat dissipation of modern single-
core systems such as Intel’s Pentium IV processor with its netburst architecture, most
semiconductor manufacturers focus today on developing multiprocessing or multi-core
systems by including more than one CPU on a single physical package such that all
processors are identical and share a common main memory. These Symmetric Multi-
processing Systems (SMP) offer a better performance per Watt balance, and provide
a big potential for multithreaded applications. They allow the execution of multiple
instruction streams simultaneously and can still be combined with SMT technology to
further improve performance.

Chip Multiprocessing (CMP) is a special variant of SMP systems where a portion
of on-die cache (e. g. L2 cache and above) is shared between the cores. Examples are
dual-core processors such as Intel’s Yonah implementation for a CMP system, and one
of Intel’s Pentium D processor families for a typical SMP system.

CMP setups can be especially useful when it comes to a reasonable utilization fac-
tor of a system. Memory intensive applications are known to underutilize a modern
CPU because of the still increasing performance gap between the CPU and the memory
subsystem. Multi-core systems can improve the overall utilization by the execution of
more than one thread that would otherwise have had to wait some time for data from

5

memory. By increasing the number of cores and reducing the core’s clock frequency the
peak system performance will still increase and may help reducing the overall power
consumption and heat dissipation.

We will use the terms CPU, processor and core interchangeably in this paper. The
same convention applies to the terms task, process and job which should not be distin-
guished herein.

1.2 Heterogeneous Multicore Architectures

The above-mentioned multiprocessor systems are homogeneous in the sense that they
provide the user equal performance per core and the same Instruction Set Architecture
(ISA). This is also commonly referred to as Symmetric Multiprocessing (SMP). In order
to apply rules that can be used to fulfill different user’s needs the operating system
should be aware of the underlying topology.

But multiprocessor systems do not necessarily need to be homogeneous. Provided
that each processing unit uses the same ISA, it is possible to create systems where each
processing unit executes these instruction sets at a different performance level. Using the
same ISA on all cores is necessary to allow all processes in the system to execute on every
available core. We will refer to such systems as being heterogeneous or asymmetric. Note
that performance asymmetry contrasts to functional asymmetry where each processor
entity is equipped with a different set of capabilities such that tasks must be matched
with CPUs possessing the capabilities they need. In contrast to the commonly used
term SMP we refer to heterogeneous systems also as Asymmetric Multicore Platforms,
or simply AMP.

The basic idea of asymmetric multicore architectures was postulated some decades ago.
Liu et al. published research on the theory of different scheduling algorithms for real-time
systems in heterogeneous environments in the early 1970’s [LY74]. Recent studies have
not necessarily been limited to real-time, but have focused more on the case of single-ISA
heterogeneous architectures, as described by Ghiasi et al. [GG03, GKR05, KDG+04]. In
response to the lack of appropriate heterogeneous hardware prototypes, most of today’s
work is based on simulations. Balakrishnan et al. [BRUL05] investigated the impacts of
performance asymmetry on a wide range of commercial applications using real hardware
prototypes.

An asymmetric multicore architecture that is composed of cores with different com-
putational capabilities may provide a number of low performance simple cores which
provide an efficient use of computational power in terms of power dissipation and given
thermal budgets for highly parallel applications, and a specific amount of complex cores
that, while inefficient, suit the needs of computational intensive single threaded appli-
cations best.

The quantity of cores of each type and their organization on one chip may vary based
on the particular system requirements. The designers of heterogeneous architectures
focus on different objectives. Examples are business constraints such as the actual costs
of particular cores and their availability. The designer can also be bound to specific power

6

and thermal budgets that should not be exceeded by the die or a given aggregated area
for all cores. Thus there are multiple options and constraints that need to be taken
into consideration which leads to a broad diversity of setups. Figure 1.1 illustrates two
possible compositions which may stem from the constraint of available die area.

First Setup

CPU-7 CPU-6

CPU-5 CPU-4

CPU-3 CPU-2 CPU-1 CPU-0

Second Setup

CPU-7
CPU-6

CPU-5
CPU-4

CPU-3

CPU-2
CPU-1

CPU-0

Figure 1.1: Two possible setups of asymmetric processor speeds on systems with eight
CPUs. Setup one consists of two groups where each of the group’s CPUs
run with the same speed. Setup two is composed of eight CPUs running
with eight different speeds.

A setup composed of multiple cores where each runs at a different speed suits the needs
of any given application in response to its particular runtime characteristics especially
well. A multiprocessor system composed of two groups with two different performance
levels is easier to implement and would perhaps be even more cost-efficient by limitating
the levels of complexity. This is a reasonable tradeoff between business constraints and
technological demands.

But even today we face multiple systems that can be adjusted in speed at runtime.
Frequency scaling is one well-known example of a technique that offers the operating
system the opportunity to change the processor’s frequency according to system de-
mands and leaves the user uncertain about any predictability of the upcoming system’s
performance. With the rise of multicore platforms, different cores can be adjusted to
different speeds at runtime which already introduces the notion of an asymmetric setup.
For example, Intel’s Santa Rosa design allows one of two cores residing on the same chip
to operate temporarily at a higher frequency level.

7

1.3 Motivation

The design of heterogeneous systems breaks a long-standing assumption among devel-
opers, that all CPUs in a multiprocessor system should provide equal performance. An
SMP-aware operating system is primarily concerned with an even distribution of tasks
among all available processors in order to achieve a best possible utilization of all cores
to provide all tasks in the system with the best possible performance. This implies that
runnable tasks would be assigned to processors with the least load so that no processor
stays idle while another one has to serve two tasks at a time, and that all tasks in the
system are provided the same amount of CPU power (with respect to the number of
tasks running on one CPU).

Today’s general purpose operating systems go into architectural details and use so-
phisticated implementations to further improve performance and achieve power savings
if necessary. Enhancements cover the distinction of different forms of multiprocessor
systems, such as Hyperthreading, SMP, CMP, or NUMA systems. A profound knowl-
edge of the operating system about the underlying hardware components, their state
and their topology is very important as it leads to more beneficial decisions.

Hyperthreading systems, for example, introduce new logical processors. These share
some basic components such as execution units and caches. Whenever hyper-threading is
active in multiprocessor systems consisting of multiple physical processors, the scheduler
should be aware of both dimensions and handle them differently.

Such details are already addressed in today’s operating systems like GNU/Linux which
offers special performance or power saving policies. Assume two tasks are to be assigned
by the scheduler to two of these four logical CPUs. It would be rather detrimental in
terms of performance, if the scheduler decided to assign both tasks to one physical CPU,
as this is likely to result in cache thrashing where each task overwrites parts of the shared
cache lines whenever it is active. But in terms of power savings it might be beneficial
to leave one physical processor idle, if this CPU can be put in a sleep state. If a third
task were to enter the system it would be advantageous to put the one with the highest
priority on a separate CPU.

We want to investigate the impacts of performance-asymmetric multicore organiza-
tions on today’s operating systems and focus on some key points of interest.

1.3.1 Predictability of a workload’s performance

Using an asymmetric setup may lead to varying workload performance if the operating
system is not asymmetry-aware. If the operating system scheduler does not assign tasks
to processors based on the actual computational power of a particular CPU but rather
on an even distribution of tasks among all CPUs, we face unpredictable behaviour in
terms of workload performance. This is not acceptable for some commercial servers that
must meet certain performance guarantees.

The system’s throughput is a valuable metric for performance predictability as well as
each single task’s response time. An asymmetry-aware system should predict the work-
loads performance quantitatively and qualitatively—e. g. higher priority tasks should

8

predictably show better performance metrics than their lower priority counterparts.
A system that takes asymmetric processor speeds into account should behave equally

given equal circumstances and workloads. Results should be reproducible and not left
to chance.

1.3.2 Improvement of the system’s performance

We must declare and model ways to increase the total system’s performance. Perfor-
mance can be measured in various ways, two of them being the total system’s throughput
rate and each task’s response time. We will talk about those two metrics in Section 2.2.

If an operating system is not aware of different processor speeds in a multiprocessor
system, it may assign tasks to slow CPUs, while leaving the faster CPUs idle. Within
an SMP system we do not necessarily have to distinguish between response time and
throughput, as an even distribution of tasks among all processors leads to the best
possible performance results in both respects. In this case, we will always avoid leaving
one CPU entity in the system idle, which maximizes the throughput rate. On the other
hand we will only assign more than one task to a particular CPU, if all other CPUs are
loaded, too. As all CPUs run equally fast in an SMP system, this automatically leads
to best response times per task.

But if we face an asymmetric setup, faster cores should be primarily picked for assign-
ment, and the distribution of tasks differs depending on whether we want to maximize
either throughput or each task’s response time.

1.4 Asymmetry Aware Scheduling

An operating system must be aware of heterogeneity in a system’s setup; otherwise
performance degradation can be observed. This affects the process scheduler of the
operating system, which is responsible for the system’s process assignment and load
balancing between the cores during runtime.

Assume an asymmetric setup of CPUs in terms of computational power and a scheduler
that is not aware of this situation. The scheduler would primarily be concerned about
an even distribution of tasks among processors to yield an increased throughput rate.
It will not consider assigning tasks to particular processors to increase their response
times as it treats all CPUs in the entire system equally. This results in suboptimal
scheduling decisions most of the time such that the faster cores are not primarily loaded
with tasks prior to any slower core. Furthermore, even bigger differences between cores,
that would allow assigning proportionally more tasks to the faster one to achieve best
possible response times, would not be recognized at all.

Yet, heterogeneity offers a lot of convenient options that can be utilized by the op-
erating system. These options range from maximized throughput to decreased power
consumption. The latter may be applied by exploiting different program phases and the
resulting instructions per cycle variations. Memory intensive applications may be served
equally well or just with minor performance degradation on slower processors due to the

9

performance gap between the processor and the memory subsystem. This strategy may
be applied by processors that offer frequency/voltage scaling such that any core in a
multiprocessor system can be run at different speed which leads to power savings.

1.5 Structure

The rest of this thesis is organized as follows. Chapter 2 discusses the background and
related work in the field of dynamic thread assignment on multiprocessor architectures
and research that was done in the past on heterogeneous systems. Chapter 3 covers
details of the theories developed to take advantage of asymmetry. Chapter 4 discusses
our implementation which is based on the open source GNU/Linux operating system.
Chapter 5 investigates the strategies applied by providing experimental results before
Chapter 6 finally concludes.

10

2 Background and Related Work

We want to provide a brief overview of existing types of asymmetric multiprocessing
systems and introduce the general operation principles of multiprocessor scheduling.
This chapter concludes with an analysis of related work in the field of heterogeneous
multiprocessors.

2.1 Different Types of Asymmetry

Asymmetric multiprocessing systems are already present in different flavours; some se-
tups are permanently asymmetric whereas others are only temporary for a certain period
during runtime.

2.1.1 NUMA – Non-uniform Memory Access

The NUMA model is a shared memory computer architecture for multiprocessor systems
where each processor can access its own pool of memory directly, and can furthermore
access memory pools of other processors via an interconnection. The access times are
closely related to the memory location, i. e. a processor can access its local memory much
faster than memory that is managed by a different processor.

The entire NUMA system consists of multiple individual systems, called nodes. How
these nodes are connected to one another differs, e. g. via a dedicated processor-to-
processor interconnection or through an external front-side bus and memory controller
hub. In contrast to SMP where all memory accesses are posted to the same shared
memory bus, NUMA limits the number of CPUs on any one memory bus. The various
nodes are then connected by means of a high speed interconnect which surpasses the
scalability limits of the SMP architecture. Hence NUMA systems allow for a greater
number of CPUs competing for access to the shared memory bus.

Today’s operating systems take these architectural characteristics into account and
form logical groups of nodes to build a representation of the underlying topology. The
distance between any two nodes may serve as a direct performance indicator. Hops
between nodes, latency and bandwidth are popular metrics to determine the distance.
Migrating a task from one node to another is a typical case in which the specific distance
costs have a direct influence on the scheduler’s decision.

11

2.1.2 Clock Modulation

A common technique to prevent a processor from overheating is to throttle the processor
by periodically disabling the clock signal for a certain amount of time, hence the name
clock modulation. The amount of throttling is most often specified as a percentage—a
value of 50% states that every second clock cycle is discarded and thus results in a halved
processor performance.

Intel implemented clock modulation by integrating an additional special circuit, the
thermal monitor, on the Pentium 4 core. This monitor frequently checks the current
CPU’s temperature against a certain critical value. In case the temperature exceeds this
critical value, the thermal monitor sends a PROCHOT# signal (from “processor hot”)
to enable the Thermal Control Circuit (TCC) which determines how many clock cycles
should be omitted in order to reduce CPU heat dissipation, and which modulates the
frequency accordingly.

Figure 2.1 shows the basic working principal. Whenever the PROCHOT# signal is
active, the internal clock duty cycle control excludes some of the clock cycles periodically.
This results in lowered heat dissipation but also reduces the CPU’s performance as a
lower resulting frequency is sent to the ALUs.

Resultant

internal clock

Internal clock

Duty cycle

control

Normal clock

PROCHOT#

Figure 2.1: The modulation of the clock signal sent to the CPU.

Though the actual power dissipation can be reduced nearly linearly, the primary
reason it is widely used in today’s systems is the possibility to react quickly in case of
emergency when the internal heat dissipation exceeds certain limits.

Given that in a multiprocessing system clock modulation can be used individually for
each core which results in an asymmetric setup.

2.1.3 Frequency/Voltage Scaling

Variation of the clock’s frequency affects the actual power consumption of any CMOS
microprocessor nearly linearly. In modern processors with up to 600 million transistors,

12

additionally, the leakage power has a major influence on the total energy consumption.
For example, the Pentium 4 processor dispenses about 40 Watt in idle mode.

Leakage power can be drastically reduced by lowering the supply voltage. Dynamic
Voltage Scaling (DVS) is a technique to reduce power consumption of a chip during
runtime. It exploits the fact that the dissipated power P of CMOS circuits is strongly
dependent on the core voltage V and the clock frequency f such that

P ∝ fV 2

This yields the possibility of a proportionally quadratic reduction of power consump-
tion and is thus widely used as the primary method for power reduction.

Systems that operate with a reduced or varying frequency because of voltage/fre-
quency scaling are already present in numerous of today’s multiprocessor systems and
can therefore build asymmetric setups.

2.1.4 Asymmetric Hardware on one Node

In contrast to all aforementioned types of asymmetric setups, we may face hardware in
the future that is composed of heterogeneous cores by design. This is not necessarily
limited to specialized cores like mathematical or graphical units but could refer to a
system consisting of multiple general purpose cores with more than one single speed.

Such systems could be composed in a way such that the accumulated die area of
all cores does not extend a certain limit. Furthermore the different cores would not
necessarily need to implement the same ISA.

A small number of complex cores offers good serial performance whereas a large num-
ber of simple cores performs particularly well on a workload with a high degree of
parallelism. Simple cores are especially useful in regard to an efficient use of transistors,
as they are able to meet strict power and thermal constraints. Complex cores help to
improve performance and time constraints for some workloads.

2.2 Multiprocessor Scheduling

The process scheduler is a major entity in a time-sharing operating system since it
periodically decides which process is chosen to run next on which CPU and how long
this process is allowed to run without interruption according to its timeslice. Switching
from one task to another in a very short time frame gives the impression of simultaneous
execution.

The operating system aims towards the best possible system utilization, for which
it defines a set of rules, the scheduling policy, describing how and when processes are
assigned to processors. But the measurement of computer productivity may lead to con-
flicting objectives such as achieving the highest throughput rate versus a better response
time.

13

Throughput is defined to be the amount of work that can be performed by a computer
in a given time period. In order to achieve the best throughput rates a system should
try to execute as many tasks as possible and avoid idle cycles whenever possible. For
multiprocessor systems, that results in the fact that no processor should be left idle
while any one task in the system is ready to be executed but is forced to wait for
another (running) task to be preempted.

The response time deals with the performance of individual tasks or a set of processes
and hence is measured rather by the responsiveness of any given task. It is defined to be
the time from which a user issues an event until the event is processed and the response
is sent back to the user. Figure 2.2 illustrates the definition of the response time.

ri ci t

ready assigned completed
process time

response time

Figure 2.2: The response time of a task ti is measured from the stimulus at ri until the
user gets feedback at time ci.

The term completion time (ci) in Figure 2.2 is neither limited to the completion of
the entire task nor the one of a particular timeslice, but rather to the completion of an
event that the user waits for from its stimulus at time ri.

With regard to asymmetric systems a fast processor needs less time to process an event
than its slower counterparts. This may lead to a situation in which it is advantageous
to leave single nodes idle that perform worse, while stronger nodes in the system serve
more than one task. Some applications are considered to be more interactive than others,
that is the application responds directly to user activity and thus it is critical to process
interactive tasks quickly, otherwise the user will perceive the system to be unresponsive.
The same applies to soft real-time applications that deal with individual deadlines. For
example video decoders have to discard frames consistently if the processor is not fast
enough.

Operating systems may implement a large set of diverse scheduling strategies. A
typical strategy in a time-sharing environment is called Round Robin. This policy
grants all processes access to the processor consecutively for a limited period of time, a
so-called timeslice. The Round Robin policy uses a queue for runnable processes. After
the expiration of a given timeslice the active process is preempted and reinserted at the
end of the queue, while the head of the queue is assigned to the processor. In Linux, the

14

length of a given task’s timeslice is directly related to its priority, i. e. a higher priority
results in a longer timeslice.

Multiprocessor operating systems are able to assign tasks to any given processor and
are usually capable of migrating them amongst processors dynamically at runtime. The
kernel code is likewise executed on each CPU simultaneously and locking mechanisms
need to ensure data integrity. Therefore each CPU runs an own instance of the scheduler,
and the data structure a scheduler is primarily working on to organize the scheduling
of sets of tasks, is usually called a runqueue. Every task belongs to one runqueue only
at any given point in time. The allocation of tasks to particular runqueues may lead to
load imbalances in case of unequal runqueue lengths. The more tasks are assigned to a
CPU the less CPU time can be provided for each single task. Therefore sophisticated
schedulers aim towards balancing runqueue lengths as much as possible.

Furthermore the scheduler has to deal with process priorities. The Linux kernel for
example uses 140 different priorities—a higher priority is reflected by a lower priority
value of a given task. Priorities 1 to 99 are reserved for real-time tasks, priorities 100
to 139 can also be used by non real-time applications. As mentioned earlier, process
priorities have a direct influence on the process’s timeslice in Linux. A priority of 100
results in a timeslice length of 800 ms, the default priority of 120 will grant the process
a timeslice of 100 ms and the lowest priority in Linux with 139 will result in a base
time quantum of only 5 ms. Timeslice lengths do not increase in a linear fashion but
are rather calculated by a special formula. Besides this static priority of a task, the
scheduler honors or penalizes tasks periodically during runtime with a dynamic priority,
based on their runtime behaviour and average sleep time. That is interactive tasks and
tasks that have been denied the use of the CPU for a long time get a bonus, whereas
very CPU intensive tasks will get a decreased dynamic priority.

Time-sharing operating systems allow processes to be preempted whenever their times-
lices expire. The responsiveness of a system is directly related to the length of the task’s
timeslices—while short timeslices would indeed provide all tasks the opportunity to ex-
ecute their code more frequently, it may lead to a workload where no process makes real
progress at all, due to a significant runtime overhead caused by process switches that
become excessively high.

2.2.1 Hierarchical Load Balancing

Load imbalances occur frequently in a highly dynamic system and the scheduler tries
to solve these events by migrating tasks from highly loaded runqueues to lightly loaded
ones. But task migrations come at a cost, because even though a task was interrupted
by the scheduler, it is likely that the CPU’s cache is filled with data from this particular
task when the task is reassigned later. In this case, the task is said to be cache hot and
migrating it would result in performance penalties.

But not only the cache is affected by task migrations. Tasks in NUMA systems even
possess a node-affinity which adds a new dimension to the affinity problem. To prevent
migrations from being penalized in terms of performance, we must try to avoid transfers
across node boundaries and prefer migrations between CPUs belonging to the same

15

node. Once a task is migrated from one node to another one, we face the problem that
we would have to migrate the corresponding memory to the task’s new location or the
task is forced to perform inter-node accesses.

We face multiple different dimensions concerning the actual system’s underlying topol-
ogy, and in order to allow the scheduler to make optimal decisions the scheduler needs
to be topology-aware. The Linux kernel divides the system’s entities into scheduling
domains. Figure 2.3 shows an example of an eight way multiprocessor which consists of
two NUMA-nodes where each of which is composed of four single processors.

Scheduling Domain

Group Group

Group Group

CPU-0 CPU-1

Group Group

CPU-2 CPU-3

Group Group

CPU-4 CPU-5

Group Group

CPU-6 CPU-7

Figure 2.3: Scheduling Domain and different levels of Groups as seen by the Linux
Scheduler in a NUMA-System with two nodes each consisting of four CPUs.

Scheduling domains are set up hierarchically, i. e. the top-most domain, which usually
contains all CPUs in the system includes children scheduling domains which are com-
posed of a subset of CPUs. The subsets themself are organized in groups. Generally
speaking the higher the difference between levels of domains during migration, the more
cost intensive the balancing operations therein are. Therefore the Linux scheduler aims
towards balanced scheduling domains on each level.

We will talk details relevant to the implementation of the Linux kernel process sched-
uler in section 4.1. However, it is important to note that groups may be composed of
multiple physical processors, but are also used as the lowest entity within a scheduling
domain, such that a single CPU is represented by a corresponding group as well.

16

2.3 Related Work

2.3.1 Real-time Related Approaches

Calandrino et al. [CBL+07] discuss possible ways of soft real-time scheduling on asym-
metric multicore platforms using a GNU/Linux operating system. The authors apply a
global view on the different performance characteristics of each core and assign a task
to the slowest core that still satisfies its real-time requirements.

Liu et al. [LY74] already examined the case of optimal scheduling algorithms for
preemptive schedules with minimal completion times as well as non-preemptive schedules
with minimal mean flow times in 1974. Their approach is based on the theory of a
standard processor and processors of speed b being b times as fast as a standard processor.
Furthermore, their study requires an a priori knowledge of each task’s execution time
in relation to the standard processor.

Dealing primarily with real-time systems, Piel et al. [PMSD04] extended the Linux
kernel with more real-time and heterogeneity awareness by classifying the system into
real-time and non real-time CPUs such that real-time tasks are admitted to the former
ones and non real-time tasks are only allowed to run on real-time CPUs if they are not
currently utilized. The scheduler’s pull-strategy had to be changed into a more active
push-strategy.

2.3.2 Finding the optimal Setup

Different workloads perform quite differently on heterogeneous setups, depending on
the workload’s characteristic as well as the underlying architecture’s topology. Kumar,
Tullsen and Jouppi [KTJ06] examine the ideal setup of heterogeneous cores when run-
ning multiple workloads. Their simulation is based on Alpha processors and takes many
micro-architectural structures into account, such as cache sizes or the size of the register
sets. In conclusion the study states that the best heterogeneous systems are not con-
structed of cores that are commonly used as general purpose processors or cores that
are used in today’s homogeneous SMP systems, but rather designed in such a way that
each individual core maps a specific class of applications with common characteristics.

Ghiasi and Grunwald [GG03] analyzed ways to determine the most suitable solution
for an asymmetric dual core system based on specific design goals such as minimized
power, energy and leakage as well as the number of fan-out-of-four inverter delays and
finally overall throughput. The Wattch simulator was chosen to evaluate single-ISA,
heterogeneous processors of the same x86 family, namely the Pentium Pro, Pentium II,
Pentium III and Pentium IV processors.

2.3.3 Designs based on Simulations

Single-ISA heterogeneous multi-core architectures are evaluated in different studies by
Kumar et al. [KFJ+03, KTR+04] in respect to workload performance and potential power
reduction. These initial proposals use different existing cores of the Alpha processor

17

family placed on one single die. The work is based on the methodology of replacing
bigger complex cores by multiple but smaller simple cores that occupy the same die area.
Based on simulators, the studies showed a big potential for performance improvements
and reducible power consumption. The study proved that static thread assignments even
with best knowledge of the specific task’s characteristic is inferior to a dynamic task and
thread migration strategy.

A very promising evaluation was done by Ghiasi et al. [GKR05, KDG+04] where a
heterogeneous system with identical ISAs was explored with regard to scheduling tasks
with different execution characteristics. Specifically the memory intensity of executing
tasks and ways to schedule them in such a way that maximum power savings can be
accomplished by minimal performance loss was the primary focus of this work. The
authors implemented a task-to-frequency scheduler for the Linux kernel that calculates
the ideal frequency for an executing task online and schedules these tasks based on fixed
processor frequencies and their current capacities. The paper shows that big power
savings are possible by taking the memory intensity of workloads into account on a
heterogeneous system.

A very thorough analysis on the impact of performance asymmetry was carried out
by Balakrishnan et al. [BRUL05] where commercial applications were used to quantify
the impact of heterogeneity on a system’s performance variance and the application’s
stability. The authors examined the effects of making either the operating system sched-
uler asymmetry-aware or making the application aware of the underlying topology. The
paper concentrated on predictability, scalability and ways to eliminate negative impacts.
The study proved that asymmetry can adversely effect the system’s performance if the
application already works with fixed assumptions, coming to the conclusion that some
applications need more help than the operating system can provide, and that the per-
formance of an asymmetric system is much better than in a system where all cores run
at a slower speed due to better serial performance of the fast cores.

A different approach was taken by Bender and Rabin [BR00]. The Cilk platform
provides an ANSI C language extension to develop multithreaded parallel programs.
Its runtime system is already delivered with a separate scheduler under the assumption
that every processor is only aware of its own status. The author’s goals were to design
a representation of a parallel program as an acyclic graph and minimize its makespan.
This problem is considered NP-hard and scheduling must occur offline. The existing
scheduler was extended such that faster processors try to obtain more tasks than slower
ones.

Grochowski et al. [GRSW04] investigate the potential of power savings on an archi-
tectural level by observing the fact that processor technology evolution has been char-
acterized by a falling performance-to-power-consumption-ratio. They conclude that a
combination of voltage/frequency scaling and asymmetric cores is a promising approach.

Based on the simulation of two Alpha processors running with different speeds but
using the same ISA, Becchi and Crowley [BC06] find a correlation between IPC variation
and program phases and conclude that some learning mechanisms need to be established
as a heterogeneous system only shows significant benefit in the case of topology-aware
software and may even affect the overall performance adversely in case of unaware system

18

software. How program phases can be discovered and exploited is discussed in detail by
Sherwood et al. [SPH+03].

Asymmetric cluster chip multiprocessor (ACCMP) architectures are explored in emu-
lations by Morad et al. [MWK04, MWK+06]. The designers base their experimentation
on the same ISA and a given constant die area on which cores of different sizes are
placed. They claim that a better performance can be achieved by dividing the die area
into asymmetric cores rather than into symmetric ones. The scheduler is made respon-
sible for reasonable thread assigning strategies based either upon hints supplied by the
thread or by sampling the runtime properties of the thread.

In contrast to all aforementioned published papers of this section whose work is based
on simulations of heterogeneous multiprocessors, we worked on a real multiprocessor
system with cores running at different speeds. Section 5.1 discusses the test setup and
working environment in more detail.

2.4 Methodology

The way we refer to a heterogeneous setup is closely related to the model introduced by
Liu and Yang [LY74]. A so-called standard processor is considered to run at speed 1.
Processors running at a different speed are considered to run at speed b if they are b times
as fast as the standard processor. Without loss of generality, b > 1 for all non-standard
processors, that is the standard processor is the slowest one in our system.

A heterogeneous multiprocessor system consists of n1 processors of speed b1, n2 pro-
cessors of speed b2, . . . , nk processors of speed bk. We refer to a system in general
as

S = (n1, n2, . . . , nk; b1, b2, . . . , bk).

This states that we have N processors in total with N = n1 + n2 + · · ·+ nk and an indi-
vidual processor is referred to as Pi with i = 1, . . . , N . This way the class of processors
with speed b1 consists of P1, P2, . . . , Pn1 , the class of processors with speed b2 consists of
Pn1+1, Pn1+2, . . . , Pn1+n2 and so on.

Using this model, we can express a given system’s setup easily by its number of
processors and their corresponding speed relative to the slowest processor in the system.
For example, S = (2, 6; 4, 1) states that we have eight processors in our system, two
running with a speed that is four times as fast as the speed of each of the six remaining
processors. Such a system may be composed of two processors running with 2.2GHz and
six processors running with 550MHz, respectively.

19

20

3 Asymmetry-Aware Scheduling

The process scheduler of an operating system is the system’s entity that can respond to
an asymmetric multiprocessor the best, as it perpetually assigns tasks to processors at
runtime.

The key point of interest is to find a suitable strategy on how tasks should be assigned
to processors. A scheduling strategy aims at one or more objectives, such as a maximized
performance outcome, and may be based on different aspects such as the task’s priorities,
possible migration costs or specific runtime characteristics. Some objectives may be
mutually exclusive under specific circumstances like a maximized throughput rate versus
an optimal per task response time. Section 2.2 discusses this aspect in greater detail.

We propose three different scheduling strategies that take asymmetric processor speeds
in a multiprocessor environment into account and assign tasks to processors under spe-
cific targets.

3.1 Best Response Time Scheduling

We mentioned earlier in this paper that the response time of a single task may serve
as an appropriate metric for performance measurements. The response time deals with
the responsiveness of a task and is therefore defined as the time a system or functional
unit takes to react to a given input. Consequently, the response time is bound to the
system’s processing speed.

For example, consider the input is to decode a video frame or to parse a text segment.
The response time is the time from the beginning of the transaction to its first reaction,
i. e. until the first video frame is decoded and sent back to the user. The response time
is a self-contained per task metric and does not deal with other tasks or the state of any
of the processors.

Most often the aim is to minimize the response time for a single task. Having more
than one task in the system, we typically aim towards a minimal response time on
average, that is the accumulated response times of each single task divided by the number
of tasks (the arithmetic mean). If there are more tasks in the system than processors,
we will eventually face the situation in which more than one task needs to be assigned
to one single processor. The response time is therefore affected by

(a) the actual speed of the processor the task runs on,

(b) the number of tasks, the processor has to serve concurrently, and

(c) the timeslices of each particular task on a processor.

21

With regard to the actual speed of a processor and the number of tasks that share
one such CPU, we will define the effective CPU power to be the speed that a single
task receives by dividing the actual CPU power by the number of running tasks. For
example by having a processor clocked at 900 MHz and three active tasks running on
it, each task receives an effective CPU power of 300 MHz.

A SMP operating system will always try to distribute tasks evenly among all available
processors, such that the difference of the number of tasks between any two processors
in the system never exceeds one. For example, by having a four-way multiprocessor
system the first four tasks are each assigned to different processors. While the fifth task
can generally be assigned to any of the four processors, the sixth task is bound to one of
the remaining three processors that are loaded with one task only at that point in time.
This provides a maximized throughput, because as many cores as possible are utilized.
Furthermore this yields the best possible response times on average for all tasks, because
all processors run with the same speed and there is no way to distribute the tasks in a
different way in order to achieve higher effective CPU power values.

But dealing with asymmetric setups may lead to situations in which it is desirable
to assign more than one task to a specific processor while another one is still idle,
in order to guarantee minimal response times on average. Consider two processors of
different speed, CPU-0 running with 1 000 MHz and CPU-1 running with only 200
MHz. Generally speaking this leads to a situation in which CPU-0 is five times faster
than CPU-1. Assume the response time for a given task is based on the decoding of a
video frame and this job can be completed in one second on the faster processor, CPU-0,
but would require five seconds on CPU-1. If two instances of this task were active and
we assigned each task to one single CPU, we would end with an average response time
of three seconds. If we assigned both tasks to the faster CPU however, we would be
served with an average response time of only two seconds, as both tasks have to share
the CPU and get only 500 MHz of effective CPU power which translates to two seconds
for this job.

3.1.1 Approach on a timeslices/speed ratio

Our proposed strategy is based on the approach that faster cores should handle propor-
tionally more tasks than their slower counterparts. We want to reduce the response time
and offer as many tasks as possible the opportunity to achieve a performance gain from
the faster cores in the system.

As mentioned earlier in this chapter, the timeslices of each task differ according to
their priorities and have an impact on the actual response time, i. e. by having two tasks
being executed on one CPU, the task with the bigger timeslice will be served with a
better response time. Therefore we concentrate on the ratio of a task’s timeslice and
any given speed of a present processor in the system. We refer to this ratio as the load
which is incurred by a particular task i on a particular CPU j:

loadij =
timeslice(i)

CPU power(j)

22

According to our methodology detailed in Section 2.4 we assume to have k processors,
n1, . . . , nk, running at speeds b1, . . . , bk proportional to the slowest processor in the
system, and n tasks t1, . . . , tn with corresponding timeslice lengths τ1, . . . , τn. Timeslices
are not necessarily of equal length and processor frequencies may vary.

When a scheduler decision takes place, we calculate the vector vi for a given task ti
by dividing the specific task’s timeslice by each single processor speed, such that

vi = (τi/b1, τi/b2, . . . , τi/bk) (3.1)

Once we know how much load a specific task with a given timeslice would cause on
each processor, we calculate which of the available processors would best fit the needs of
this task, if it were to be scheduled on it, such that the system-wide load is minimized.
That is, we look for the CPU which will end up with the least accumulated load after a
possible task assignment.

Each CPU in the system is assigned a specific number of tasks and each task increases
the load of this CPU according to its timeslice length as seen in formula 3.1. In order to
attain the current total load Lj of CPU j, we need to accumulate the load of all tasks
on this CPU separately.

Lj =
m∑

i=1

τi

bj

=
τ1 + τ2 + · · ·+ τm

bj
(3.2)

All k CPUs are now represented by a system-wide load vector ` which holds all indi-
vidual CPU’s total loads:

` = (L1, . . . , Lk) (3.3)

The next step consists in a summation of the task i’s vector vi and the CPU’s load
vector `. The outcome would now indicate the resulting load of all CPUs in case the
task would have been assigned to each of those processors:

` + vi =

(
L1 +

τi

b1

, . . . , Lj +
τi

bj

, . . . , Lk +
τi

bk

)
(3.4)

We focus on the lowest value within this vector and the corresponding CPU is chosen
to be the one where the task should be assigned to, in order to guarantee best response
times on average. That is, we are looking for the index j that holds the minimum value
of ` + vi. If ej denotes the unit vector for position j, we schedule task ti on CPU-j and
add the value of (τi/bj) · ej to `.

This model ensures that high performance cores are utilized proportionally to their
speed and the speed of all the other cores in the system. That leads eventually to
workload setups in which a faster core is loaded with more than one task, while slower

23

cores may stay idle. But as we already discussed at the beginning of this section, this is
sufficient whenever one of two cores is substantially slower and tasks are better served
by sharing one fast core than running exclusively on a slower one.

However this strategy will not necessarily maximize the total system’s throughput
rate as the computing power of any idle core should be utilized prior to assigning more
than one task to a processor in this case, regardless of how fast it runs compared to the
slower core.

3.1.2 Example

Given four CPUs with corresponding frequencies:

f1 = 250 MHz, f2 = 250 MHz, f3 = 500 MHz, and f4 = 1 000 MHz.

Following our methodology we would face the current setup of

(2, 1, 1; 1, 2, 4)

We assume five tasks enter the system in this particular order:

• t1 with τ1 = 150 ms,

• t2 with τ2 = 200 ms,

• t3 with τ3 = 150 ms,

• t4 with τ4 = 50 ms,

• t5 with τ5 = 10 ms,

• t6 with τ6 = 300 ms.

Then the calculation for the task-to-processor assignments will be as follows:

Step 1: Current load vector ` = (0, 0, 0, 0); Task t1 with τ1 = 150 ms enters the system.
Resulting temporary vector v1 = (150, 150, 75, 37.5).
 L = (150, 150, 75,37.5), j = 4.
Schedule task t1 on CPU-4.

Step 2: ` = (0, 0, 0, 37.5). Task t2 with τ2 = 200 ms enters the system.
v2 = (200, 200, 100, 50).
 L = (200, 200, 100,87.5), j = 4.
Schedule task t2 on CPU-4.

24

Step 3: ` = (0, 0, 0, 87.5). Task t3 with τ3 = 150 ms enters the system.
v3 = (150, 150, 75, 37.5).
 L = (150, 150,75, 87.5), j = 3.
Schedule task t3 on CPU-3.

Step 4: ` = (0, 0, 75, 87.5). Task t4 with τ4 = 50 ms enters the system.
v4 = (50, 50, 25, 12.5).
 L = (50,50, 100, 100) j = 2.
Schedule task t4 on CPU-2.

Step 5: ` = (0, 50, 75, 87.5). Task t5 with τ5 = 10 ms enters the system.
v5 = (10, 10, 5, 2.5).
 L = (10, 60, 80, 90), j = 1.
Schedule task t5 on CPU-1.

Step 6: ` = (10, 50, 75, 87.5). Task t6 with τ6 = 300 ms enters the system.
v6 = (300, 300, 150, 75).
 L = (310, 350, 225,162.5), j = 4.
Schedule task t6 on CPU-4.

This example illustrates the instantaneous task-to-processor assignment whenever a
task enters the system. We see from the example above, that CPU-4 handles three tasks,
whereas the other three processors handle only one each. This is based on valid schedul-
ing decisions in terms of the best response times on average, as CPU-4 is substantially
faster than the remaining CPUs in the system.

3.1.3 Load Balancing

Until now, we have covered only the distribution of newly started tasks to different
processors which can be derived directly from the above model. However, this model is
rather static and does not take dynamic characteristics of a system into consideration,
that is tasks may enter or leave the runqueues at any given point in time. Therefore, we
expand our strategy to perform load balancing on all processors periodically.

Load balancing is performed frequently by today’s general purpose SMP-aware oper-
ating systems. The Linux kernel scheduler for example compares runqueues of physical
processors against each other in the order of every other 100 milliseconds. The focus lies
on the most even distribution possible of running tasks among the available processors.
However, since these operating systems are currently not asymmetry-aware, they assign
processes to CPUs according to the number of running tasks in the system, no matter
how fast one core operates. Scheduling decisions are thereby likely to be suboptimal in
terms of performance considerations.

We need to provide a load balancing mechanism that is invoked periodically by the
scheduler and which detects any imbalances between processors. But an imbalance is
not defined to be based on the number of running tasks per CPU in this regard. Rather

25

we speak about an imbalance if the current distribution of tasks among the processors
does not yield the best possible results in form of mean response times.

Once the scheduler detects an imbalance, it should resolve it automatically by migrat-
ing tasks from one processor to another so that the average response time of all running
tasks in the system increases. In order to perform load balancing in this context, all
cores with their corresponding load values and processing power need to be considered
and compared to one another.

As described in Section 2.2, the scheduler is executed on each processor simultaneously.
Thus load balancing is invoked on each CPU independently and we will refer to the
processor that is currently executing the code as the local one, whereas all other CPUs
are referred to as being remote ones.

Whenever load balancing is invoked on one of our cores, we iterate over all remote
processors in the system, fetching their appropriate frequency value and the load of
the tasks currently running on this particular CPU. As we are interested mainly in
the response times of tasks, we calculate the possible future ratio between processing
power and timeslice lengths of the local node and the actual ratio of each remote node.
The possible future ratio is composed of the processing power of the corresponding
processor, the timeslices of all current active tasks in the runqueue of this processor,
and the timeslice of the task that would be the one to be migrated from the remote
CPU to the local one. This is an important aspect as we are interested in the fact if we
obtain better response times by migrating a particular task to our local CPU, compared
to the current situation.

By comparing the two ratios to one another, we aim towards locating the core which
achieves worse response times than our local one. This remote node is considered to be
the node from which we will pull one or more tasks.

A possible task to processor assignment of six tasks on an eight-fold multiprocessor
system where each processor runs at a different speed, ranging from 275 MHz up to 2 200
MHz is shown in Figure 3.1.

Note how the task aluadd2 is soon migrated from CPU-2—running with 825 MHz—to
the fastest processor in the system, CPU-7, with 2 200 MHz. Although the latter is
already loaded with another task (aluadd3), the response time for both tasks increases
on average if they are assigned to the faster core instead of each having a processor
for themselves. We further observe that once task aluadd4 exits the system, aluadd2 is
pulled by the now idle CPU-6, as it may serve with better response times compared to
CPU-7 which is loaded with two tasks at that point.

Again, we now face the situation that the fastest core is loaded with only one task
and as soon as this processor notices the imbalance compared to CPU-3, it pulls the
task memrw to itself. And once again, as soon as aluadd2 on CPU-6 exits the system,
the scheduler detects an imbalance and assigns task aluadd3 from CPU-7 to CPU-6.

Although we measured the task to processor assignments every 100 ms, we plot only
every fifth point of each sequence to improve readability. For the same reasons we
connected the points with lines, even though the measurement is based on distinct
values only.

26

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

C
P

U
n
o.

Time [s]

Task to Processor Admission

CPU 7: 2200 MHz
CPU 6: 1925 MHz
CPU 5: 1650 MHz
CPU 4: 1375 MHz
CPU 3: 1100 MHz
CPU 2: 825 MHz
CPU 1: 550 MHz
CPU 0: 275 MHz

aluadd4
aluadd3
aluadd2
aluadd
memrw

pushpop

Figure 3.1: The first strategy which deals with best possible response times for all tasks
on average applied to an eight-fold multiprocessor systems where each of
the CPUs run at a different speed, ranging from 275 MHz up to 2.2 GHz.

3.2 Highest Throughput based Design

Another strategy is based on maximizing the system’s throughput rate. We declare
throughput in a multi-processor system to be the amount of data that can be computed in
a certain amount of time. As a rule of thumb we can calculate the amount of instructions
being executed on all CPUs within a certain time frame ∆t.

This simplification doesn’t deal with the specific runtime characteristics of individual
tasks such as different levels of memory-intensity. Consider two distinct tasks, one
very CPU bound by using very few memory access instructions, whereas another one
deals frequently with instructions that need to operate on data from memory locations.
Accessing memory is significantly slower than just working on CPU registers. Therefore,
we note that memory-intensive applications spend much more time waiting for the data
from memory and cannot execute as many instructions as CPU-intensive tasks, although
both operate on equally fast processors. Nevertheless, this simplification serves well
enough in order to get a basic understanding of the term throughput.

Throughput centers on the entire system rather than with individual processors or
tasks. That is, no processor should be left idle before assigning a second task to any one
processor by definition, no matter how big the differences between these two cores are.

To get a better understanding of the differences between optimizing for the best mean
response time and the highest throughput rate, consider having two processors of very
unequal speed, e. g. 1 000 MHz and 200 MHz, and two tasks with equal timeslices of

27

50 ms. Assume a processor executes 1 000 instructions per MHz and ms, such that
the faster CPU executes 50 000 000 instructions of the above-mentioned task within
each timeslice, whereas the slower CPU could only execute 10 000 000 instructions per
timeslice. If both tasks were to be assigned to the faster CPU, both may be served
with an average execution rate of about 25 000 000 instructions per timeslice as they
would be preempted every other 50 ms by the other task. This would be quite beneficial
for the task that would have been initially assigned to the slower core. Therefore, in
terms of mean response times we would favour the latter setup. However, in terms of a
maximized throughput rate we observe that assigning both tasks to different processors
would result in a total of 120 000 000 instructions for two timeslices, compared to the
100 000 000 we would achieve by assigning both tasks to the same processor and leaving
one core idle.

Therefore, none of our processors should be left idle before any other one is loaded
with more than one task. However, when we face a workload with more runnable tasks
than processors in the system, we need to find a suitable strategy to distribute these
tasks among all processors.

In case all processors are allocated at least one task, the total system’s throughput rate
is already maximized because we cannot increase the amount of data to be computed by
the system in a certain time period. However, we can consider maximizing the system’s
average response time under the condition that as many processors will be utilized as
possible, that is we concentrate primarily on a maximized throughput rate and only
afterwards on each task’s individual response time.

In order to do so, we assign tasks to processors stepwise, going from the fastest CPU
to the slowest, such that each processor serves only one single task. Once all CPUs are
loaded with one task each, any further task is assigned to a processor that yields the
best response time for this particular task.

Consider again a dual-core system with each core running at a different performance
level. If we were to assign three tasks to those two cores we would certainly ensure each
core to be loaded with at least one task, no matter how fast or slow a particular core is.
With respect to the mean response time we should assign the third task to the faster
core because even though both tasks would have to share its processing power, this core
still serves with a better computational power for each task, which finally results in a
greater amount of data that can be computed in a certain time period on average.

In case the throughput rate is maximized and all processors are loaded with one or
more tasks each, we intend to utilize faster cores proportionally to their actual power,
i. e. a processor running two times as fast as its slower counterpart should be loaded
with two times as many tasks.

Therefore, we look at the ratio between any two processor speeds, and in order to
obtain the CPU ratio, we divide the speed of the faster CPU by the speed of the slower
one. In regard to the two CPUs and their tasks’ response times, we then want to achieve
a distribution of tasks among both CPUs that matches their speed ratio best. Before
we provide a formula which serves as an axiomatic solution to this subproblem, we want
to traverse an incremental solution step by step.

First of all, we would need to sum up all processes of both runqueues to a total number

28

of n. Starting from this total number, n + 1 possible combinations of task-to-processor
assignments exist, namely:

n : 0 n− 1 : 1 n− 2 : 2 . . . 2 : n− 2 1 : n− 1 0 : n

Based on these combinations we aim towards finding the one that matches our CPU
ratio the best. This assignment is called the task ratio accordingly. However, it would be
rather inefficient to test all of these ratios for the best possible setup. As we mentioned
earlier, some should never occur such as idle processors in highly loaded systems or
slower processors that serve more tasks then their faster counterparts.

There are basically three different objectives that should be considered in order to
avoid unnecessary load comparison calculations:

• First of all, we do not consider cases in which the slower CPU has more processes
running than the faster one, as this will never maximize the system’s average
response times.

• In case of a 1 : 1 or 1 : 0 setup as seen from the faster CPU, we are already
balanced and do not need any further calculations.

• Apart from that, we do not consider the case of an i : 0 setup either, if i > 1.

Although this reduces the maximal possible calculations to nearly half of the original
number stated above, we present a formula from which the values can be directly ob-
tained. Within this formula, we use n to denote the total number of tasks on any two
CPU’s and x to denote the number of tasks that would have to be assigned to the faster
core in order to accomplish the given CPU’s ratio which we specify as y.

The number of tasks on the slower core can be directly derived by subtracting the
number of tasks on the faster core from the total number of tasks. Having two processors
in our system with corresponding frequency values f1 and f2, this leads to

n− x

x
=

f1

f2

= y

n− x = xy

n = x(y + 1)

x =
n

y + 1
(3.5)

Using equation 3.5, the scheduler can quickly derive the best possible distribution of
tasks among two processors and hence decide if a current setup fulfills the needs of op-
timal mean response times by still guaranteeing to achieve the best possible throughput
rate.

This strategy works well for comparison calculations between two different processors
with two runqueues. To make it work well in a multi-processing environment with more

29

than two CPUs, we try to find the current worst setup between any two processors by
locating the biggest divergence between the corresponding CPU and task ratios. We will
stick to the same scheduling methodology as in the preceding section, namely one local
processor and several remote ones. The local processor is again the one which currently
executes the scheduler and which tries to detect any imbalances compared to any of the
other (remote) processors.

All we need to do is to iterate over all remote CPUs in the system and compare the
corresponding value of CPU power and the number of running tasks to the local CPU.
In case the current task distribution is optimal for the purpose of our needs, there is
no need to migrate any tasks. The first imbalance found will be considered the worst
setup until another one is found with an even worse task distribution in regard to the
corresponding power ratio.

As long as load balancing is executed frequently and in short time intervals inde-
pendently on every single CPU this strategy pays off soon and resolves any imbalances
quickly.

For the sake of clarity we provide an example that illustrates the applied strategy.

3.2.1 Example

CPU-1 runs at 800 MHz; CPU-2 runs at 600 MHz. This results in a CPU ratio of
4
3

= 1, 33. The following listing shows a total number of tasks for both runqueues and
all possible task distributions with their corresponding task ratio. The task ratio closest
to the afforementioned CPU ratio is set in bold.

• 4 Tasks – 3:1 (3) or 2:2 (1)

• 5 Tasks – 4:1 (4) or 3:2 (1,5)

• 6 Tasks – 5:1 (5) or 4:2 (2) or 3:3 (1)

• 7 Tasks – 6:1 (6) or 5:2 (2,5) or 4:3 (1,33)

• 8 Tasks – 7:1 (7) or 6:2 (3) or 5:3 (1,66) or 4:4 (1)

We omitted cases of one, two, and three tasks. The corresponding distributions would
be 1:0, 1:1, and 2:1, respectively.

The last example with eight tasks illustrates that there may also be two possible
solutions for the best distributions among two processors. In this case it might be worth
considering the current task’s distribution and computing which new setup would cause
the least migrations.

Figure 3.2 shows an example of the runtime behaviour of six different tasks in an
eight-fold multiprocessor system with four processors running at a speed of 275 MHz
and four processors running at a speed of 2 200 MHz. Compared to the first strategy
which was primarily focused on an optimal average response time, we can note that
no CPU has more than one task to serve at any given time. The two tasks on CPU-1

30

(aluadd2) and on CPU-3 (pushpop) would have been scheduled on one of the faster cores
together with another task while the lower four processors would have stood idle. This
strategy prohibits such behaviour.

1

2

3

4

5

6

7

0 5 10 15 20 25 30

C
P

U
n
o.

Time [s]

Task to Processor Admission

CPU 7: 2200 MHz
CPU 6: 2200 MHz
CPU 5: 2200 MHz
CPU 4: 2200 MHz
CPU 3: 275 MHz
CPU 2: 275 MHz
CPU 1: 275 MHz
CPU 0: 275 MHz

aluadd4
aluadd3
aluadd2
aluadd
memrw

pushpop

Figure 3.2: A strategy focused on achieving the highest possible throughput rate ap-
plied on an eight-fold multiprocessor system with four CPUs running at
speed 275 MHz and four CPUs running at speed 2.2 GHz.

Instead tasks are assigned to processors based on the premise that as few CPUs should
stay idle as possible. However, what we can derive from this measurement is that faster
cores are preferred over the slower ones. We note how the task aluadd2 is migrated from
CPU-2, which belongs to one of the slower four processors, to CPU-6, which is one of the
faster four. And as soon as this task exits the system on CPU-6, a task named pushpop
is migrated from a slower CPU as well.

3.3 Priority based Approach

The preceding sections proposed different solutions on how to assign tasks to processors
in an asymmetric system, so that faster cores are utilized primarily in order to increase
the total system performance. Neither of the designs took into account the actual task
that was to be assigned to one of the CPUs and the user had little chance to interact with
the system in order to prioritize one task over another in terms of processor assignments.

In this section we propose an assignment strategy that is based on process priorities.
That is we assign tasks to processors based on their static priority, so that a high
priority job runs on a faster core whereas a lower priority job runs on a slower core.

31

This approach lets users interact and exert influence on the system as tasks can be
arranged with different priorities once they are started.

3.3.1 Assignment Problems

Whenever we search for a specific solution we need to agree on the problem domain
and exactly what we want to solve. What is considered to be the best solution may
vary greatly and some solutions to different problems are even mutually exclusive. For
example finding an optimal solution differs, depending on whether we want to minimize
the system’s response time or whether we want to minimize the system’s throughput, as
we have seen in the last two sections.

Best minimal Response Time

The response time is meant to be the time from a stimulus until the user gets feedback
from the system. In this regard it is better to schedule two tasks on one single processor
in a dual-core system if one core is a great deal faster than the other one. In this case
we are interested in the effective speed that each task obtains.

Assume the highest priority task in the system is always guaranteed to be the one to
receive the most effective CPU power and that each remaining task receives as much
effective CPU power as it deserves according to its priority compared to all other tasks
in the system.

An approach based on these strict rules faces two major problems. Working in a
dynamic environment where tasks enter and leave the system frequently, makes it difficult
to find a suitable system-wide assignment and forces the scheduler to recalculate the best
load distribution among all processors every once in a while. This may incur a sizable
scheduling overhead.

Moreover we will notice numerous migrations over time, because in systems where the
speed difference between two cores is small, entering or leaving tasks will oftentimes lead
to necessary migrations which result in a ping-pong-like effect.

For example, consider a dual-core system with core one running at 800 MHz and core
two running at 600 MHz. The first task is assigned to the first CPU. The second task
with a lower priority will be assigned to the second CPU. In case a third task enters the
system, we still want to guarantee the highest priority job the maximum CPU power.
In order to achieve the best possible average response times, the first CPU needs to be
shared by two processes, resulting in an effective CPU power of 400 MHz per task on
this CPU and 600 MHz for one single task on the second CPU.

Regardless of the new task’s priority, the scheduler is forced to perform migration.
If the new task is the now highest priority job the scheduler assigns it on CPU two to
provide it with 600 MHz but task two needs to be migrated from CPU two to the first
CPU, as well. If the new task is not the new highest priority job amongst all three, it
would be even worse, as the scheduler would have to migrate twice: task one from CPU
one to CPU two and task two in the opposite direction.

32

By having a fourth task entering the system, the scheduler would again have to migrate
all tasks around, because in order to achieve the best possible effective CPU power
values, CPU two would be shared among two tasks, resulting in an effective CPU power
of 300 MHz per process. That leads to the situation that the processor providing the
best effective CPU speed changes again from CPU two to CPU one in this case and
thus this is the CPU which is the designated one for the highest priority jobs. The
highest priority job, however, was just migrated to CPU two in order to guarantee best
performance values.

These three steps are illustrated in Figure 3.3. The length of a given process in the
illustration indicates the resulting effective CPU power.

CPU-0

(800 MHz)

CPU-1

(600 MHz)

2 Tasks 3 Tasks 4 Tasks

A

B

B C

A

A B

C D

Figure 3.3: Priority-based scheduling depending on effective CPU power results in con-
secutive migrations whenever tasks enter or leave the system. The illustra-
tion above may differ slightly according to each task’s priority.

This means that whenever only one task enters or leaves the system, we face numerous
migrations which are necessary to fulfill the condition of best response times based on
priorities.

Strict Priority based Best Effort

An optimal solution based on the latter approach relies on frequent migrations. When-
ever necessary migrations are not performed, the resulting workload faces a kind of
priority inversion, because a low priority job receives more effective CPU power than a
higher priority one.

In order to avoid the aforementioned problems while still guaranteeing the highest
priority task receives the best possible effective CPU power, we propose another approach
that deals with two more generic aspects; first of all we always want to guarantee that we
never face a priority inversion like the one mentioned above, i. e. the effective processor
power must always be greater for a high priority job than the one provided for a lower
priority job.

Besides this basic rule, we define a convention that requires that a faster core will
never handle more tasks than any slower core in the system. It may handle an equivalent
amount of tasks, but never more. Given this convention, a faster core will always serve
high priority processes exclusively as shown in Figure 3.4.

33

Processors

Tasks

CPU-0
(300 MHz)

CPU-1
(600 MHz)

CPU-2
(800 MHz)

CPU-3
(900 MHz)

T T T T

T T T

T

Figure 3.4: A best effort mechanism based on priorities would always guarantee a high
priority job to be assigned to a faster processor than any lower priority job
in the system. Furthermore no faster core would ever have to serve more
tasks than any of the slower cores. The distance of assigned tasks between
any two neighboring cores should never exceed one.

However, this is only a best effort approach since we do not compare the actual pro-
cessor speeds to one another but only take into consideration whether one processor is
faster than the other. This may lead to suboptimal scheduling decisions regarding re-
sponse times as we do no distribute tasks among processors such that effective processor
capacities are not completely utilized.

3.3.2 Principal Operation

Building a scheduling mechanism for heterogeneous systems based on priorities should
ensure that a high priority task will always be assigned to the faster processor compared
to any lower priority task, thus avoiding a priority inversion. Besides this basic demand,
we want to guarantee reasonable response times. The last section showed which assign-
ment problems we face if we either work towards a guaranteed best minimal response
time at any given point in time, or a simplistic strict priority based best effort approach.
This section proposes an approach that does not face any of the aforementioned prob-
lems, but guarantees the highest priority jobs are assigned to the fastest cores in the
system while still yielding good average response times.

Dealing with response times leads again to the notion of effective processor power per
task on each core. Section 3.3.1 showed that trying to obtain the maximum possible
effective CPU power for each task based on priorities, leads to an unacceptable migration
overhead in a highly dynamic system. Therefore we aim towards a mechanism that avoids
such ping-pong effects but yields significantly better results than the aforementioned best
effort approach in terms of response times per task.

We want to achieve a good balance of both objectives. To fulfill these needs we factor
the ratio of the specific power values of two CPUs into the calculation. Dealing with
integral numbers of tasks we only consider the floor of each ratio, i. e. given two CPUs
with speeds of 800 MHz and 600 MHz, we end up with a ratio of 1, whereas two CPUs

34

with speeds of 1 000 MHz and 300 MHz result in a ratio of 3.
A given ratio of n, states that we may distribute n times more tasks on the faster

core than on the slower one. The conservative floor estimation protects us from an
unnecessary ping-pong migration overhead and still yields good average response times.

However, it is a strict convention that we do not compute the ratios of any two
processors to one another. Rather it is necessary to compare only the power values of
two neighbouring CPUs, that is two CPUs which are adjacent to each other in terms of
speed.

Figure 3.5 illustrates the load balancing behaviour. A higher task number reflects a
greater priority. Note that the initial task placement of tasks four and five was ran-
domized. The important aspect is the fact that CPU-1 observes the imbalance between
CPU-2 and itself and pulls the lowest priority task from CPU-2. Later, on the other
hand, CPU-2 observes an imbalance between itself and CPU-1 as the power ratio be-
tween both CPUs is only 1:1 but the current task ratio is 3:1. Therefore CPU-2 pulls
the highest priority task from its weaker neighbour.

We evaluated our design on an eight-way multiprocessor system where each of the
CPUs runs at a different speed, ranging from 275 MHz to 2.2 GHz. Four tasks were
started, each with a different priority. The results are shown in Figure 3.6. aluadd was
the task with the highest priority and was scheduled on the fastest processor CPU-7,
whereas aluadd2 was scheduled on the second fastest processor, CPU-6, as its priority
was the second highest in the system. pushpop was the task with the lowest priority
and hence scheduled on the CPU with the highest possible speed which was not already
occupied by another task of higher priority.

We note that aluadd2 exits the system after approximately 5 seconds and memrw, the
task with the next highest priority switches to CPU-6 immediately. As soon as pushpop
on CPU-4 notices that a faster CPU is idle, it switches to CPU-5.

35

(4) A fifth task enters the system

with priority 5.

CPU-0
(300 MHz)

CPU-1
(600 MHz)

CPU-2
(800 MHz)

1 2 4

3

5

(3) One task is migrated from

CPU-1 to CPU-2.

CPU-0
(300 MHz)

CPU-1
(600 MHz)

CPU-2
(800 MHz)

1 2 4

3 5

(3) Task 3 was pulled by CPU-1

hence load balancing is com-

plete.

CPU-0
(300 MHz)

CPU-1
(600 MHz)

CPU-2
(800 MHz)

1 2

3

4

(1) Three tasks are distributed

evenly among three proces-

sors.

CPU-0
(300 MHz)

CPU-1
(600 MHz)

CPU-2
(800 MHz)

1 2 3

(2) The new highest priority task

4 enters the system on CPU-2

which results in an imbalance

between CPU-1 and CPU-2.

CPU-0
(300 MHz)

CPU-1
(600 MHz)

CPU-2
(800 MHz)

1 2 3

4

Figure 3.5: An illustrated example of priority based load balancing on a three-way
multiprocessor system.

36

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

C
P

U
n
o
.

Time [s]

Task to Processor Admission

CPU 7: 2200 MHz
CPU 6: 1925 MHz
CPU 5: 1650 MHz
CPU 4: 1375 MHz
CPU 3: 1100 MHz
CPU 2: 825 MHz
CPU 1: 550 MHz
CPU 0: 275 MHz

aluadd
aluadd2
memrw

pushpop

Figure 3.6: Task to processor assignments achieved by an approach based on the task’s
priorities and applied on an eight-fold multiprocessor system, each CPU
running at a different speed.

37

38

4 Implementation

We implemented the strategies described in the preceding chapter—best throughput
rates, best response times, and a priority based design—for the Linux kernel 2.6.21.
Our goal was to keep most of the original scheduler code as it is, because we want to
prove that today’s SMP operating systems such as GNU/Linux can be easily adapted
to fulfill the need to be asymmetry-aware and do not need to be entirely rewritten. All
changes amount to roughly 600 lines of newly inserted code and about the same number
of deleted lines of code. The additions are completely architecture independent, except
for the part that actually picks the current CPU’s frequency, which is only implemented
for the following three architectures: i386, ia64, and x86_64.

4.1 Relevant Parts of the Linux Scheduler

Linux uses the round-robin scheduler algorithm for non real-time tasks, that is, every
process is assigned a time quantum and on expiration of the time quantum, a new process
is dispatched, hence processes are preemptible. The length of a given time quantum is
directly related to the process’s priority, such that high priority tasks get larger timeslices
than low priority tasks. The priority itself is composed of a static part and a dynamic
part. The static priority is inherited from a process by its parent and can be adjusted by
a user via the nice() system call. The dynamic part is used in order to adjust the static
priority according the process’s runtime behaviour. That is, a process gets a bonus if it
had to wait for a long time or is penalized if it has run on the CPU for a long time.

The Linux scheduler manages two sets of runnable processes for each CPU, a set of
active and a set of expired ones. Even though both types of processes are ready to run,
the ones in the expired array have already exhausted their time quantums and have to
wait for all other processes in the active array to conclude. That means, that whenever a
process is preempted by another process but didn’t finish its timeslice, it remains in the
active array, whereas processes that have exhausted their timeslices are transferred from
the active to the expired array. This mechanism helps avoiding process starvation as
low priority processes are eventually allowed to run, no matter how many high priority
processes compete for the CPU. Once no more processes are present in the active array,
the scheduler exchanges pointers pointing to the active and expired array.

Linux calls the expired and active queues priority arrays as they contain all tasks in
arrays of linked lists. The size of each array reflects the number of linked lists and each
list serves one of the possible 140 priorities in a Linux system, hence the name priority
array. Figure 4.1 shows the section of a CPU’s runqueue that deals with both priority
arrays. Two pointers, active and expired, point to the corresponding priority arrays.

39

A priority array is composed of the following structure which contains three elements:

struct prio_array {
unsigned int nr_active;
DECLARE_BITMAP(bitmap , MAX_PRIO +1);
struct list_head queue[MAX_PRIO];

};

First, the number of runnable processes in this array; then a 140 bit wide bitmap1;
and at last an array of 140 linked lists. The bitmap represents the existing priorities of
the runnable processes within the array, i. e. a set bit indicates a present process of this
particular priority. Using architecture dependant assembly instructions, the scheduler
uses sched_find_first_bit() to find the lowest order bit in O(1). The returned index
serves as a pointer increment to a list of processes with this particular priority.

arrays[1]

arrays[0]

expired

active
140 bit
bitmap

P P

P P P

P

Figure 4.1: The runqueue’s priority arrays section. The 140 bit wide bitmap indicates
whether a task of this particular priority is present with a set bit. In this
case all tasks with this priority can be accessed via a doubly linked list.

The Linux kernel 2.6 shows major improvements in terms of scalability in multipro-
cessor environments compared to its 2.4 predecessor. These performance gains were
achieved amongst other things by the allocation of one runqueue per CPU in multi-
processor systems2. The runqueue is the most important data structure of the Linux
2.6 scheduler. Besides other things it keeps track of the number of runnable processes
on the CPU, as well as the CPU load caused by the present processes and pointers to
the currently running task on the CPU (struct task_struct *curr); the idle thread;
the aforementioned priority arrays; the scheduling domain in which this CPU is located
(please see Section 2.3 for an illustration) and the migration thread.

1here one extra bit serves as a delimiter.
2The 2.4 scheduler used one global runqeue for all processors.

40

The main concern of the SMP-aware Linux scheduler is an even distribution of tasks
among all available processors and any avoidance of biasing towards one CPU. The
decision which task is to be executed on which CPU is affected by the underlying type
of multiprocessing system, the current load of the available CPUs, and the load weight
of the task.

4.1.1 Load Balancing for Multiprocessor Systems

The Linux scheduler is responsible for an even distribution of tasks among processors.
To fulfill this requirement there are two points in time when the scheduler reviews cur-
rent configurations. The first one occurs with an initial task placement, that is when-
ever a new task is created and started. This is done primarily by sched_fork() and
sched_exec(), each of which calls sched_balance_self() with a special flag indicating
whether the process was forked or if a binary image is to be executed. The second one
handles task migration among processors during runtime in a multiprocessor environ-
ment. A rebalance_tick() function is invoked by scheduler_tick() once every tick
and iterates over all processors in a given scheduling domain to determine whether the
load_balance() function should be invoked or not.

The basic idea of the load balancing design is based on a so-called pull strategy. Once
an imbalance is detected, a CPU does not actively push tasks to remote CPUs. Rather,
a CPU iterates over all groups of its scheduling domain and whenever it notes that
the remote group is loaded with more tasks per CPU than itself, it initiates a task
migration towards itself. The three basic functions that implement this mechanism
are find_busiest_group() to retrieve the group that has the highest load within the
scheduling domain; find_busiest_queue() to search for the busiest queue within that
group; and finally, move_tasks() to pull tasks from the CPU belonging to the busiest
queue towards the CPU currently performing load balancing.

We observed a frequent intercommunication regarding load comparisons between any
two processors in the system which leads to an exchange of information at least every
two to three seconds, depending on the arrangement of cores.

4.2 Asymmetry-aware Scheduling

We extended the Linux scheduler to be asymmetry-aware in the sense that it knows
about a CPU’s frequency at every point in time and takes the speeds into consideration
when making scheduling and assignment decisions.

Therefore, the very first implementation detail had to deal with a proper extension of
the current scheduler’s runqueue data structure to reflect the actual CPU’s frequency.
To obtain the frequency values at runtime, we used an already present kernel function
called cpufreq_quick_get() which we slightly modified so that it could be used at
each load balancing invocation. As mentioned earlier in this chapter, this function is
currently only available for the three architectures i386, ia64, and x86_64.

41

The function is called frequently during load balancing to keep track of any recent
changes in the underlying system. The frequency value obtained is stored in the CPU
specific runqueue data structure, from where it can easily be accessed for any further
calculations.

4.2.1 Passive Load Balancing

Whenever load balancing calculations are invoked by the scheduler, the group with the
highest load at that point in time is searched for, in response to the aforementioned
pull strategy. The scheduler executes the function find_busiest_group() which is the
major entry point for our adaptations.

The goal of all implemented strategies was to achieve a self-organizing system that
performs the necessary load balancing steps in a suitable amount of time. Unlike the
native scheduler implementation, we do not aim to find the least loaded group in terms of
the number of running tasks on any given core, but rather to compare processor speeds
with number of running tasks and the priorities of tasks.

In the original implementation, Linux simply uses a constant (SCHED_LOAD_SCALE) as
a load balancing factor per processor which summed up corresponds to a group’s specific
power value. Using this constant the scheduler compares groups of different sizes and
their current load with tasks and decides based upon this information where tasks, if
any, need to be migrated to. However this implementation does not take the actual
power values into account. We changed that behaviour in the way that the power value
reflects the current CPU’s frequency value. If a group is composed of more than one
CPU, we adopted the already present design which simply sums up all CPU’s power
values of this group. These changes were applied to all three asymmetry-aware design
proposals.

The load balancing mechanism within find_busiest_group() is divided into two ma-
jor parts. At first the scheduler iterates over all present cores in the scheduling domain.
All necessary values for load comparisons are obtained herein, such as the number of
tasks in the runqueue, the CPU power, and the load of all tasks in the runqueue. We
mentioned earlier in this paper that each CPU in a multiprocessor system runs its own
instance of the scheduler, such that all instances are executed simultaneously. This
means that any such instance considers the runqueue belonging to its processor to be
the local one, whereas all other runqueues are considered remote ones.

In order to find optimal solutions for load comparison calculations in all of our pro-
posed designs, a new data structure was implemented which yields a global view of all
necessary remote CPU variables. The data structure is designed to be used as a linked
list, such that the scheduler can iterate over all remote CPUs and fetch CPU-specific
data without the necessity of having to access each remote runqueue every once in a
while.

The data structure is defined as

struct asym_list {
int cpu;

42

unsigned long load;
unsigned long pwr;
unsigned long nr_running;
struct sched_group *group;
unsigned long best_prio;
unsigned long worst_prio;
struct list_head list;

};

Every remote CPU within our domain is added in sorted order to the list with the
CPU’s power as the sort key.

The second part of this function is the actual load balancing calculation. Based on the
different objectives of each of our three proposed designs, the code slightly varies. The
scheduler should ultimately obtain the pointer to the remote group that is considered
to be the busiest one, and from which it can migrate tasks towards itself. In case the
local CPU is not loaded less than any of the remote CPUs, the scheduler discards this
calculation and signals the load balancing function that no migration has to take place.

The designs based on the approach to achieve the highest average response times and
the one to achieve a maximum throughput rate used the number of active tasks in each
runqueue, the CPU power values, and the current load of each CPU in order to start
load balancing calculations as described in Section 3.1.3 and 3.2.

The priority based strategy was designed such that a slower CPU pulls the highest
priority task of a faster CPU, if any of the local tasks is of a higher priority than any
of the remote ones. A faster CPU in contrast always searches for the highest priority
process of any slower CPU. We added functionality to retrieve the highest and the lowest
priority of any given runqueue in order to fulfill these conditions.

4.2.2 Active Load Balancing

It turned out to be insufficient to rely on passive load balancing where a highly loaded
CPU has to wait for a lightly loaded CPU to help it out and migrate tasks towards
it. The first reason for this is that sometimes tasks are not migrated fast enough.
As we mentioned earlier in this chapter, CPUs share their runqueue characteristics
frequently, but some combinations do so only once every two seconds. Even then it is
not guaranteed that all environmental circumstances hold for a successful migration.
Therefore, especially short running processes will seldom profit from the design.

Finally, we observed major problems when using the passive pull strategy while dealing
with a priority based design. As noted in Section 3.3 the slower core is assigned to pull
the lowest priority job of a remote CPU’s runqueue, once it detects an imbalance between
the cores. The faster core must migrate the highest priority process towards itself from
a slower core.

The original Linux scheduler implementation is designed to always pull the lowest
priority process from a remote runqueue. Using passive load balancing in order to
migrate the highest priority process of a given runqueue proved to fail too often. The
reason for this anomaly is that high priority processes receive greater timeslices than

43

the lower priority processes. Thus, the high priority process is much more likely to be
the one that is currently running on any given CPU. The Linux scheduler tries to avoid
moving an actively running, so-called hot, task from a CPU. It does so by querying the
function task_running() if a task is currently active or not, and in case it is, does not
take this task into consideration for migration.

We extended the Linux scheduler to use active migration by invoking the move_tasks()
function with a special flag, indicating whether the highest priority process is to be mi-
grated or not, and with the number of the local CPU to which the remote CPU should
push tasks. Once these two fields are filled, we wake up the migration thread of the busi-
est CPU which will immediately notice the flags set for active load balancing and migrate
the task towards the runqueue of the former local CPU. As active migration happens
immediately and can be used to migrate the highest priority process of a runqueue, it
yields better results even for short running tasks.

44

5 Experimental Results

We evaluated our different implementations of asymmetry-aware schedulers to show how
the performance of only SMP aware systems are negatively affected when running on a
heterogeneous system. We provide results that prove that an asymmetry-aware scheduler
is necessary in order to benefit from the system’s hardware.

5.1 Test Setup

Our test environment was based on an 8-way Pentium 4 Xeon multiprocessor consisting
of two NUMA-nodes containing 4 processors each. Every single processor supplied 2.2
GHz but could be throttled to one of eight possible speeds ranging from 275 MHz to 2.2
GHz. To achieve a real asymmetric setup, we used the clock modulation mechanism as
described in Section 2.1.2. Although Hyperthreading was available on all processors, we
disabled it completely in order to focus just on the case of different processor speeds.

To evaluate our implementations we used different benchmarking programs, ranging
from simple CPU-intensive programs to much more sophisticated applications from the
SPEC CPU2006 suite. Table 5.1 on the following page summarizes the programs along
with a short description of what they are meant to compute.

In order to avoid any influences of the measuring tasks on our actual test suite, we
ran all these measurement tasks on CPU-0 permanently. This can be achieved either
via a Linux system call, namely sched_setaffinity() or via an open source utility
called taskset. This was an important precondition as some of our tools monitored
the benchmarking programs permanently and within short time intervals, such as that
they would have been considered as running tasks by our scheduler and would have
accidentally prevented some benchmarking tasks from being migrated to a particular
CPU.

5.1.1 Performing Measurements

Linux provides several interfaces to export information to user space or to let users
interact with the kernel directly. Some of those interfaces are implemented by using a
virtual filesystem such as /proc or SysFS under /sys. The main advantage of these
filesystems is that they do not occupy permanent storage on disk, but rather are an in-
memory filesystem, whose entries are created only after a corresponding read or write
call was issued by the user. This makes it then highly dynamic but avoids a constant
runtime overhead that would have been caused if the kernel was to update the filesystem
entries frequently.

45

Program Language Description

memrw C Memory Reads/Writes

aluadd x86 assembly Integer Additions

pushpop x86 assembly Stack push/pop Operations

400.perlbench C PERL programming language

401.bzip2 C Compression

429.mcf C Combinatorial Optimization

456.hmmer C Search Gene Sequence

435.gromacs C/Fortran Biochemistry/Molecular Dynamics

436.cactusADM C/Fortran Physics / General Relativity

459.GemsFDTD Fortran Computational Electromagnetics

Table 5.1: All programs used for the tests and evaluations. Program names beginning
with a number belong to the SPEC CPU2006 suite.

The Linux scheduler offers runtime statistics via the /proc/schedstat file such as
the number of times schedule() was called, the number of times load_balance() was
called under different circumstances, or further individual statistics for all runqueues in
the system. This interface can easily be adopted and extended. Besides the schedstats,
the /proc/<pid>/stat file has proven to be quite useful. It contains the current state
of the task with PID <pid> (S for sleeping, D for uninterrupted sleep, R for running, Z
for zombied, or T for stopped or traced), the dynamic priority of a process, or the CPU
the process is currently assigned to. Both files are used to perform benchmark tests and
are periodically (e. g. every 100 ms) traced from a user space program.

5.2 Stability and Predictability

One of our objectives was to demonstrate that an operating system that is unaware of the
underlying heterogeneous architecture produces results which are less stable and show
a decreased predictability. The terms stability and predictability stand for the balance
we can reach on average by multiple, possibly thousands or millions of executions of a
given workload.

These attributes are very important for a number of different applications and work-
loads. For example, business applications or soft real-time applications profit from rela-
tively stable and predictable runtime behaviour. Assume stock exchange software would
behave unpredictably to a great extent—no broker would ever use it if he could avoid it.

46

Even home users are annoyed quickly if the runtime behaviour of frequently used tasks
differ substantially in terms of occurrence and durability. For example, using a system
that may be good enough on one day to watch a video but not on another one would be
unacceptable.

Therefore, our applied strategies had to achieve a stable and predictable behaviour.
We carried out the performance benchmarks multiple times such that all of them yielded
results that do not differ too much from one another.

We ran tests with some benchmarking tasks of the SPEC CPU2006 suite in order
to quantify the performance of our implementation against one that is currently not
asymmetry-aware. Figure 5.1 shows an example of different benchmarking results. All
tasks were executed five times on our 8-way multiprocessor system which was set up to
use eight different speeds, ranging from 275 MHz for the slowest processor to 2.2 GHz
for the fastest.

0

10

20

30

40

50

60

70

80

GemsFDTDhmmercactusbzip2mcfgromacsperlbench

T
im

e
[s

]

benchmarking programs

Distribution of results for SPEC2006 benchmarking programs

Original Scheduler

Response Time Design

Figure 5.1: Different SPEC CPU2006 benchmarking programs tested with the unmodi-
fied Linux 2.6.21 scheduler and our best mean response times based design.
Error bars indicate the varying degree of results for each implementation.

The figure illustrates how firstly we observe a performance boost by using the im-
plementation that is based on achieving the best possible average response times. All
results belonging to this implementation outperform the ones obtained by using an un-
modified Linux 2.6.21 kernel. In terms of performance we need to especially consider
the average values within each error bar.

However, by considering the predictability and stability of workloads, the figure pro-

47

vides even more promising results. The figure illustrates the maximum and minimum
achieved values of any given benchmark with the average values located in between. We
used error bars to show the diversity of results achieved by the original scheduler and
the one that we adapted to be asymmetry-aware.

We note the distance between any two turning points for each of our benchmarking
program and how it differs for both implementations, stating that our implementation
is remarkably stable compared to the unmodified one.

5.3 Performance Gains

We showed that the original asymmetry-unaware scheduler fails in providing constantly
good performance. We saw that the results obtained differ greatly but it is important
to verify that the user profits from our new scheduler designs significantly.

Single task benchmarks are a good indicator in terms of performance and stability, but
by using multiprocessor systems it is likewise more important to test the implementations
against workloads that consist of multiple tasks. We used all three implementations that
we proposed in this thesis—namely a scheduler based on a design which aims towards
attaining best average response times, one that tries to achieve the highest throughput,
and one that utilizes a task-to-processor-assignment based on each task’s priority—to
test them against the original not asymmetry-aware Linux 2.6.21 scheduler, by using
different workloads.

The workloads are composed of one single program which is very CPU-intensive and is
started in one or more instances. The program was built so that it needs 4.5 seconds to
finish its calculations on the fastest core in the system and 32 seconds to be completed
by being executed on the slowest core. Table 5.2 shows some of the results for our
benchmarking program.

Strategy 1 instance 2 instances 4 instances

Total Avg Gain Total Avg Gain Total Avg Gain

Unmodified 19.34 13.85 — 19.36 12.74 — 19.36 11.09 —

Response times 7.12 6.59 52.4% 7.87 6.15 51.7% 8.80 6.14 44.7%

Throughput 12.23 7.21 47.9% 10.38 7.49 41.2% 12.26 7.52 32.2%

Priority based 12.26 8.40 39.3% 17.09 8.65 32.1% 13.98 7.72 30.4%

We conducted five measurements per workload and implementation. The workloads
consisted of 12 different setups, ranging from one single task being executed, to 12
instances of one task being executed concurrently. For the purpose of clarity we picked
only six workloads out of all 12 for Table 5.2.

The columns headed Total represent the total runtime of the entire workload, that is
from the time when all instances of the task were started to the time when the last one

48

Strategy 8 instances 10 instances 12 instances

Total Avg Gain Total Avg Gain Total Avg Gain

Unmodified 35.64 12.18 — 33.50 10.95 — 35.16 10.31 —

Response times 10.26 6.68 45.1% 12.21 6.74 38.4% 13.72 6.74 34.6%

Throughput 16.78 8.70 28.6% 15.40 8.05 26.4% 15.60 8.09 21.5%

Priority based 17.31 8.87 27.2% 15.71 8.26 24.6% 23.53 8.70 15.6%

Table 5.2: Benchmarking results of one program run with a different amount of in-
stances and with each particular scheduler implementation.

was completed. The Avg time represents the time that each instance was executed on
our system on average. We obtained this value from the total accumulated time that
the system spent executing all instances.

In order to see the system’s improvement performance-wise, we compared the results
of each workload’s average values of the new designs to the one’s of the original scheduler.
The obtained difference is expressed as a percentage within each Gain column.

We observe performance boosts for each of our implementations, each of them being
remarkably high in the range between 15.6% and 52.4%. From the numbers given above
we derive that the design based on the best possible average response time will lead to
the best results in terms of performance. This is what we expected when we elaborated
the purpose of this design in section 3.1.

Besides that we further note a decreasing performance gain as the number of tasks
increases. This is due to the fact that the original asymmetry unaware scheduler already
distributes tasks to processors evenly. Although it does not deal with the actual fre-
quencies of the processors, it will assign the tasks to CPUs in a comparable manner to
our new designs. That is if there are more tasks than CPUs in the system, it becomes
more and more likely that all cores are occupied by at least one task. This leads to a
load distribution which differs only slightly from one processor to another.

Figure 5.2 illustrates the average results for all three scheduler implementations com-
pared to the original scheduler. We note the instability of the original scheduler that
is not asymmetry-aware, but which achieves two times better results on average than
two of our proposed designs, namely when running three instances of our benchmarking
program and when running six instances of it. However, in both cases performance gains
of the original scheduler are rather small, especially compared to the performance loss
that can be observed in all other cases.

We further note that our approach based on the best average response times is very
stable, ranging from 5.74 seconds to 6.77 seconds, whereas the original scheduler fluctu-
ates between 8.56 seconds and 13.86 seconds.

Figure 5.3 shows the maximum execution times for this benchmarking program for a

49

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

T
im

e
[s

]

no. of program instances

Average Execution Times

original
response time based design

highest throughput based design
priority based design

Figure 5.2: Benchmarking results of all three scheduler implementations compared to
the original. The graph shows the average execution times for one program
run with a different amount of instances on an eight-way multiprocessor
system with eight different speeds.

different number of instances and all four scheduler implementations. From this figure
we note the big discrepancy between the original scheduler and all asymmetry-aware
implementations, especially when five or more instances are executed simultaneously on
our eight-way multiprocessor system.

The original scheduler assigns tasks to processors based on the load of each particular
processor in the system. In case multiple CPUs are idle with empty runqueues, the
actual assignment of a particular task can not be foreseen and can be considered as
being random. Therefore it is likely to see those tasks being assigned to processors
ranging between the slowest and the fastest core which results in medium execution
times.

50

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

T
im

e
[s

]

no. of program instances

Maximum Execution Times

original
response time

throughput
priority

Figure 5.3: Benchmarking results of all three scheduler implementations compared to
the original. The graph shows the maximum execution times for one pro-
gram run with a different amount of instances on an eight-way multipro-
cessor system with eight different speeds.

51

52

6 Conclusion

6.1 Achievements

This thesis discussed the impacts of asymmetric processor speeds on SMP operating
systems. We showed that an unaware operating system may suffer performance degra-
dation and behave exceedingly unpredictably. We evaluated different designs that make
an operating system aware of the underlying heterogeneous processors. The scheduler
is best suited in order to benefit from the asymmetric setup.

Based on different objectives we proposed three different scheduler implementations
which can be used to either guarantee best average minimum response times for all
tasks in the system, or to achieve the highest throughput rate for the entire system, or
by being priority bound to an extremely high degree.

Using an asymmetry-aware scheduler we obtained

• A greatly increased system performance for a variety of different workloads

• A much higher degree of stability and predictability of each individual workload
in terms of performance and processor utilization.

All proposals enable the operating system to profit from the asymmetry in terms of
performance to its full potential. Tasks will be assigned to faster processors preferen-
tially and load balancing strategies ensure a balance of tasks among processors strictly
according to the objectives of the specific design. These assignments and load balanc-
ing strategies further avoid a more random distribution of tasks which would lead to
unpredictable performance results.

6.2 Summary

Modern computer systems are equipped more and more with an increasing number of
CPUs. In the future we may observe multiprocessor systems that are composed of cores
running at different speeds, hence asymmetric systems. Such systems exhibit multiple
benefits, such as the potential from a business point of view to provide more cores
per system at a lower price. Several simple low performance cores can be put on one
chip together with some high performance cores. While the simpler cores are very cost
efficient and provide good parallel performance, a few complex cores could be used to
provide good serial performance.

Asymmetric systems are also interesting from an architectural point of view as they
offer a lot of convenient options for system designers. Provided that all cores use the

53

same instruction set architecture, the architect may mix some new high performance
cores together with some older ones. Low performance cores may serve with a better
MHz per Watt ratio through a lower heat and power dissipation.

Our approach aims towards making today’s SMP operating systems asymmetry aware.
It considers primarily the system’s process scheduler as the main entity to benefit from
the underlying hardware instantaneously and continuously.

For this, we proposed three different possible scheduler adaptations that will utilize
the system resources as best as possible. We determine either the best mean response
times for all tasks in the system, according to the available processors, or the highest
throughput rate for the entire system, or a strict priority-based approach which assigns
the highest priority tasks to the fastest cores in the system, while still yielding good
response times for all tasks.

All strategies were implemented for the Linux kernel 2.6.21. We conducted multiple
tests on an eight-way Pentium 4 Xeon multiprocessor system where each of the CPUs
could be throttled to one of eight possible performance levels.

Benchmarking results show that the operating system needs to be asymmetry-aware
in order to avoid performance degradation and unpredictable behaviour. Depending on
the particular strategy applied we observed performance gains of more than 50% and
could prove that our designs are not subject to high fluctuations any more, but rather
behave very stably and predictably in terms of system performance.

6.3 Future Directions

The currently evaluated designs are basically meant to be a proof of concept. Asym-
metric systems are not currently under development by chip manufactures; therefore we
face plenty of possible configurations that may be designed in the future.

The three scheduling strategies aim towards highly different objectives. While re-
sponse times and throughput rates are treated equally in today’s SMP systems, this is
not the case for AMP systems any more. Faster load balancing mechanisms represent
a limitation of our current designs. Migrations should take place immediately. This
may be solved by changing the basic scheduling strategy to perform a more active load
balancing by pushing tasks from one processor to another instead of relying on the pull
strategy which sometimes leaves an imbalance unsolved for some seconds. Load bal-
ancing may also be invoked much more frequently within shorter time intervals. Our
strategies are therefore much more applicable to long running tasks than for short run-
ning ones, although an implementation favouring short running tasks may be of more
use for some interactive workload simulations.

We discarded some system specialities such as Hyperthreading abilities or the actual
migration costs which differ highly between Hyperthreading nodes and NUMA nodes
for example.

Future work may be directed towards a detection of highly parallelized applications in
contrast to single-threaded applications. Heuristics can be designed in order to decide
at which point in time a particular distribution of tasks has negative or positive effects

54

on the system’s performance.
Each task’s specific execution characteristic should be considered for scheduling de-

cisions as well. Memory intensive or very I/O bound tasks may be served well enough
on low performance cores, while CPU bound tasks should preferably be executed on the
high performance processors. These mechanisms can be extended in order to achieve
real power and energy savings.

Asymmetry-aware schedulers can be of particular interest for soft real-time applica-
tions and environments. Guaranteeing high priority tasks to be executed on the high
performance cores could still enable the system to profit from the hardware if low priority
tasks can use these cores during times in which no high priority task is active.

55

56

Bibliography

[BC06] Michela Becchi and Patrick Crowley. Dynamic thread assignment on het-
erogeneous multiprocessor architectures. In CF ’06: Proceedings of the 3rd
conference on Computing frontiers, pages 29–40, New York, NY, USA, 2006.
ACM Press.

[BR00] Michael A. Bender and Michael O. Rabin. Scheduling Cilk multithreaded
parallel programs on processors of different speeds. In ACM Symposium on
Parallel Algorithms and Architectures, pages 13–21, 2000.

[BRUL05] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The
Impact of Performance Asymmetry in Emerging Multicore Architectures.
SIGARCH Comput. Archit. News, 33(2):506–517, 2005.

[CBL+07] John M. Calandrino, Dan Baumberger, Tong Li, Scott Hahn, and James H.
Anderson. Soft Real-Time Scheduling on Performance Asymmetric Mul-
ticore Platforms. Proceedings of the 13th IEEE Real-Time and Embedded
Technology and Applications Symposium, 0:101–112, 2007.

[DM06] James Donald and Margaret Martonosi. Techniques for Multicore Thermal
Management: Classification and New Exploration. In ISCA ’06: Proceed-
ings of the 33rd annual international symposium on Computer Architecture,
pages 78–88, Washington, DC, USA, 2006. IEEE Computer Society.

[FSNS04] Alexandra Fedorova, Christopher Small, Daniel Nussbaum, and Margo
Seltzer. Chip multithreading systems need a new operating system sched-
uler. In EW11: Proceedings of the 11th workshop on ACM SIGOPS Euro-
pean workshop: beyond the PC, page 9, New York, NY, USA, 2004. ACM
Press.

[FSSN05] Alexandra Fedorova, Margo I. Seltzer, Christopher Small, and Daniel Nuss-
baum. Performance of Multithreaded Chip Multiprocessors and Implica-
tions for Operating System Design. In USENIX Annual Technical Confer-
ence, General Track [USE05], pages 395–398.

[GG03] Soraya Ghiasi and Dirk Grunwald. Aide de Camp: Asymmetric Dual Core
Design for Power and Energy Reduction. Technical Report CU-CS-964-03,
University of Colorado, Boulder, 2003.

57

[GKR05] Soraya Ghiasi, Tom Keller, and Freeman Rawson. Scheduling for Hetero-
geneous Processors in Server Systems. In CF ’05: Proceedings of the 2nd
conference on Computing frontiers, pages 199–210, New York, NY, USA,
2005. ACM Press.

[GRSW04] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of Both
Latency and Throughput. In ICCD ’04: Proceedings of the IEEE Interna-
tional Conference on Computer Design (ICCD’04), pages 236–243, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[KDG+04] Ramakrishna Kotla, Anirudh Devgan, Soraya Ghiasi, Tom Keller, and Free-
man Rawson. Characterizing the Impact of Different Memory-Intensity Lev-
els. In WWC-7: IEEE 7th Annual Workshop on Workload Characterization,
pages 3–10, Austin, Texas, USA, October 2004. IEEE Computer Society.

[KFJ+03] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-
ganathan, and Dean M. Tullsen. Single-ISA Heterogeneous Multi-Core Ar-
chitectures: The Potential for Processor Power Reduction. In MICRO 36:
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, page 81, Washington, DC, USA, 2003. IEEE Computer
Society.

[KTJ06] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core architec-
ture optimization for heterogeneous chip multiprocessors. In PACT ’06:
Proceedings of the 15th international conference on Parallel architectures
and compilation techniques, pages 23–32, New York, NY, USA, 2006. ACM
Press.

[KTR+04] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P.
Jouppi, and Keith I. Farkas. Single-ISA Heterogeneous Multi-Core Archi-
tectures for Multithreaded Workload Performance. In ISCA ’04: Proceed-
ings of the 31st annual international symposium on Computer architecture,
page 64, Washington, DC, USA, 2004. IEEE Computer Society.

[LY74] Jane W. S. Liu and Ai-Tsung Yang. Optimal scheduling of independent
tasks on heterogeneous computing systems. In ACM 74: Proceedings of
the 1974 annual conference, pages 38–45, New York, NY, USA, 1974. ACM
Press.

[MB06] Andreas Merkel and Frank Bellosa. Balancing power consumption in mul-
tiprocessor systems. In EuroSys ’06: Proceedings of the 2006 EuroSys con-
ference, pages 403–414, New York, NY, USA, 2006. ACM Press.

[MBW05] Andreas Merkel, Frank Bellosa, and Andreas Weissel. Event-Driven Ther-
mal Management in SMP Systems. In Second Workshop on Temperature-
Aware Computer Systems (TACS’05), Madison, USA, June 2005.

58

[MWK04] Tomer Morad, Uri Weiser, and Avnoam Kolody. ACCMP – Asymmetric
Cluster Chip Multi-Processing. Technical report, CCIT, 2004.

[MWK+06] Tomer Y. Morad, Uri C. Weiser, Avinoam Kolodny, Mateo Valero, and Ed-
uard Ayguade. Performance, Power Efficiency and Scalability of Asymmetric
Cluster Chip Multiprocessors. IEEE Comput. Archit. Lett., 5(1):4, 2006.

[NP02] Jun Nakajima and Venkatesh Pallipadi. Enhancements for Hyper-Threading
Technology in the Operating System: Seeking the Optimal Scheduling. In
WIESS [USE02], pages 25–38.

[PMSD04] Éric Piel, Philippe Marquet, J. Soula, and J.-L. Dekeyser. Load-Balancing
for a Real-Time System Based on Asymmetric Multi-Processing. Internal
Paper, April 2004.

[SPH+03] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and
Brad Calder. Discovering and Exploiting Program Phases. IEEE Micro,
23(6):84–93, December 2003.

[SPM05] Suresh Siddha, Venkatesh Pallipadi, and Asit Mallick. Chip Multi Process-
ing aware Linux Kernel Scheduler. In Proceedings of the 2005 Ottawa Linux
Symposium (OLS 2005), Volume 2, pages 193–204, July 2005.

[USE02] USENIX Association. Proceedings of the Second Workshop on Industrial Ex-
periences with Systems Software, WIESS 2002, December 8, 2002, Boston,
MA, USA. USENIX, 2002.

[USE05] USENIX Association. Proceedings of the 2005 USENIX Annual Technical
Conference, April 10-15, 2005, Anaheim, CA, USA. USENIX, 2005.

59

	Introduction
	Homogeneous Multicore Architectures
	Heterogeneous Multicore Architectures
	Motivation
	Predictability of a workload's performance
	Improvement of the system's performance

	Asymmetry Aware Scheduling
	Structure

	Background and Related Work
	Different Types of Asymmetry
	NUMA -- Non-uniform Memory Access
	Clock Modulation
	Frequency/Voltage Scaling
	Asymmetric Hardware on one Node

	Multiprocessor Scheduling
	Hierarchical Load Balancing

	Related Work
	Real-time Related Approaches
	Finding the optimal Setup
	Designs based on Simulations

	Methodology

	Asymmetry-Aware Scheduling
	Best Response Time Scheduling
	Approach on a timeslices/speed ratio
	Example
	Load Balancing

	Highest Throughput based Design
	Example

	Priority based Approach
	Assignment Problems
	Principal Operation

	Implementation
	Relevant Parts of the Linux Scheduler
	Load Balancing for Multiprocessor Systems

	Asymmetry-aware Scheduling
	Passive Load Balancing
	Active Load Balancing

	Experimental Results
	Test Setup
	Performing Measurements

	Stability and Predictability
	Performance Gains

	Conclusion
	Achievements
	Summary
	Future Directions

