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Abstract

Scheduling policies of multitasking operating systems partition the time of proces-
sor assignment among all runnable threads. For most schedulers it is unimportant in
which way a thread utilizes its assigned resources during its time of processor con-
trol. A thread’s resource utilization, however, cannot only affect the thread itself, but
also subsequent scheduled threads. In the case of a thread’spower consumption, the
power consumption can cause throttling of the thread and subsequent threads. Due to
the interference, the processor allocation between the runnable threads is not fair any
longer.

In this thesis, we propose a generic design to enhance general purpose schedulers
to become energy-aware. The enhanced schedulers fairly partition the system’s en-
ergy among threads to favor energy-efficient threads. Furthermore, they assure that
a thread’s power consumption does not affect another thread’s execution negatively
by enforcing another thread’s throttling. In order to make best use of a processor’s
power limit, we present an energy transfer mechanism to fairly transfer energy among
threads. It permits threads having power consumptions beyond a pre-defined power
limit to benefit from threads having a power consumption below the limit.

Our evaluation shows that each of our examined schedulers can become energy-
aware, and that they assure that each thread preserves the power limit individually.
Besides, our enhanced schedulers permit to partition a system’s energy fairly, even in
the case of energy transfers. Due to the energy transfers andthe fair energy partition-
ing, our enhanced schedulers – limiting each thread’s powerconsumption – achieve a
better performance than schedulers only limiting a run-queue’s and a processor’s power
consumption, respectively.
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Chapter 1

Introduction

In this chapter, we motivate why energy-aware schedulers preserving a power limit
and favoring energy-efficient applications can be an advantage for data centers. We
analyze which requirements energy-aware schedulers must fulfill to permit data cen-
ters to bill an application’s caused power consumption. Furthermore, we analyze how
these schedulers can allow applications having power consumptions beyond the power
limit to benefit from applications having power consumptions below the power limit.
Subsequently, we present our solution for these two problems, and outline the structure
of our thesis.

1.1 Problem Analysis & Solving

Motivation Today’s general purpose operating systems are multitasking capable.
They do not grant a thread – the schedulable entity of an application – processor con-
trol until it finishes its execution, instead they execute the thread only for a short period
of time. This period is calledtimeslice. By preempting a thread after it has executed
for the duration of its timeslice and scheduling another thread, it seems as if a sched-
uler would execute several threads in parallel on one physical central processing unit
(CPU).

A scheduler of a multitasking operating system (OS) is responsible for schedul-
ing threads. Depending on a thread’s characteristics, as e.g., priority or its course of
execution, a scheduler can determine a thread’s timeslice length; it can even assign a
pre-defined timeslice length to all threads. After a thread has executed for the duration
of its timeslice, it will at the latest get preempted if more than one thread is eligible to
be scheduled. If a scheduler is priority based, a higher priority thread can preempt the
currently running thread as well.

For a scheduler of a general purpose OS it is mostly unimportant in which way
a thread utilizes its assigned resources during its timeslice. This will be a drawback
if an uncontrolled resource utilization reduces the system’s performance. The power
dissipation, in particular, of a processor caused during a thread’s execution can raise a
processor’s temperature above its critical threshold. If this happens, a processor must
be throttled to reduce its power dissipation and temperature [31].

Due to the thermal resistance of a processor’s heat sink, a processor’s temperature
changes slowly [14]. Hence, a processor’s throttling to reduce its temperature can
last for several timeslices and therefore can affect subsequently executed threads [10].

1



2 CHAPTER 1. INTRODUCTION

Thus, a thread’s execution can have negative impacts on the execution of subsequent
threads. The throttling policy implemented in hardware of aprocessor or an energy-
aware scheduler can throttle the processor. A scheduler cancontrol which thread it can
throttle and for how long. Furthermore, it can even throttlethreads before they raise
the temperature of the processor above a threshold.

A processor cannot only be throttled to avoid an exceedance of a processor’s tem-
perature above a threshold, additionally it can be throttled to restrict its average power
consumption. The reasons for restricting a processor’s average power consumption
can be multifaceted, e.g., a restriction of a power supply, acritical temperature of a
processor as motivated before or even monetary reasons.

A monetary reason can be the costs for a computer room air conditioning (CRAC)
system [28]. Normally, a CRAC must at least have a cooling capacity to discharge the
hot air caused by the components of a data center with cool air, even if these com-
ponents consume their maximum power. If the components may not consume more
power than permitted by a power limit, the CRAC can be sized smaller to reduce the
CRAC’s acquisition and operating costs.

Although the cooling costs of a CRAC and the energy costs to operate servers
depend on the power dissipation of the executed applications in a data center, it is more
usual to pay for an application’s execution time, but not forits caused energy costs.
Sun offers, in particular, its “Sun Grid” [36] computing power for one dollar per CPU-
hour. An application will execute for one CPU-hour if it usesk nodes for its1

k
hours

lasting execution. Similar is Amazon’s approach to sell thecompute power of their
“Amazon Elastic Compute Cloud” [2, 23]. The price for the compute power depends
on the requested resources as data storage, memory and number of compute units.
Amazon considers how much resources a customer requires andbills the performed
data transfer, but does not consider the energy costs resulting from the utilization of the
assigned resources.

Analysis For permitting a company to sell its compute power and to billthe caused
energy consumption, a scheduler must preclude drawbacks from other threads’ power
consumptions. To avoid these drawbacks and unfairness, respectively, which are
caused by a thread’s power consumption, an energy-aware scheduler must consider
to limit a processor’s power consumption by throttling the threads individually [6, 47]
and not the complete run-queue.

In addition to limiting a thread’s power consumption, an energy-aware scheduler
can – independently of a power limit – base its scheduling decisions on the energy
consumption of the system’s threads. If a system’s energy issupposed to be fairly
partitioned among the threads eligible to be scheduled to favor energy-efficient threads,
threads having the same characteristics – as previously outlined – must get the same
amount of energy. This means, a scheduler will no longer execute a thread for the
duration of its timeslice, but as long as its assigned energywill last. Thus, a scheduler
assigns a thread with a lower power consumption to the processor for a longer time
than a thread with a higher power consumption.

Due to the threads having power consumptions below the powerlimit, a proces-
sor’s average power consumption can be below the permitted power limit. This permits
threads with power consumptions above the limit to exceed the power limit as long as
the processor’s average power consumption is not raised above the limit. This energy
transfer must fairly partition the transferred energy to avoid unfairness among the re-
ceiving threads. Besides, a scheduler must limit the accumulation of energy which it
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can transfer, otherwise – if threads consume the energy within a short period of time –
threads can exceed the permitted energy consumption or processor temperature.

Solution In this thesis, we propose a generic design to enhance general purpose
schedulers to become energy-aware. The enhanced schedulers can fairly partition the
system’s energy among threads and can assure that a thread’spower consumption does
not negatively affect another thread’s execution by enforcing another thread’s throt-
tling. For limiting a thread’s power consumption, our energy-aware schedulers throttle
a thread to assure that a thread does not raise its average power consumption above a
limit. This does, however, not guarantee a fair energy partitioning. Therefore, a sched-
ulers only execute a thread until the thread has consumed theenergy permitted by an
energy limit. Thus, a thread’s scheduling period does no longer depend on its times-
lice length, instead it depends on the assigned energy a thread may consume. After a
thread has consumed its assigned energy, a scheduler schedules the next thread. If it is
not desired to execute a thread for a longer period than its timeslice, a scheduler can
discard a thread’s remaining energy and can schedule another thread.

In addition to preserving the power limit per thread, our energy-aware schedulers
can permit threads having power consumptions beyond the power limit to benefit from
threads having power consumptions below the limit. Therefore, we have designed an
energy transfer between threads. As pointed out, the transferred energy must be fairly
partitioned, hence a first come first serve scheme is insufficient for energy transfers. We
partition the offered energy, before a scheduler transfersthe energy to threads having
power consumptions above the power limit.

The power limit and the energy limit are independent of each other. We have out-
lined that each limit can be accomplished in two different fashions. An energy-aware
scheduler can prohibit or permit threads to benefit from another one’s power consump-
tion, and it can schedule a thread at most as long as the thread’s timeslice last or until
the thread has exhausted its assigned energy. Thus, we investigate four different energy
policies.

1.2 Structure

Our thesis is structured as follows: In Chapter2, we present the scheduling policies
we analyze. Furthermore, we point out how the kernel can reveal a thread’s energy
and power consumption as well as a processor’s temperature from a processor’s perfor-
mance counters and how the kernel can limit them. Chapter3 deals with our generic
design to enhance schedulers to become energy-aware and to move away from a times-
lice based scheduler to an energy based scheduler. These schedulers permit to partition
a system’s energy fairly among threads. We consider the implementation of our design
on top of the Linux kernel in Chapter4. In addition to implementation details applying
to all of our analyzed schedulers, we examine scheduler specific adaptions to allow for
scheduler specific characteristics. Afterwards, we evaluate the studied schedulers and
the realization of the fair partitioning of the system’s energy in Chapter5. In Chapter6,
we present related work regarding the fair energy partitioning. At the end of our thesis,
we point out our achievements, give a short summary of our work and outline possible
directions of future work in the last Chapter7.
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Chapter 2

Background

We define in this chapter terms required for our thesis. Afterwards, we present the
seven scheduling policies which we have examined and adapted to become energy-
aware. Then we introduce mechanisms to account a thread’s energy and power con-
sumption as well as a mechanism to estimate a processor’s temperature. At the end, we
outline a mechanism to limit a processor’s power consumption.

2.1 Terminology

In this thesis, we will use the following terms to define the subsequent abstractions:

Thread A thread is a schedulable entity, reflecting a single flow of execution. Each
thread stores its own program counter – to state which instruction is executed next – as
well as registers, stack and status. If a thread is executed,its register state is stored in
the physical registers of a processor, otherwise it is stored in memory.

Task A task is composed of its assigned threads running within oneaddress space.
At least one thread must be assigned to a task.

Timeslice A timeslice is the period of time a scheduler intends to schedule a thread
for. It is assigned to a thread.

Quantum If a scheduler schedules a thread until it has consumed its assigned energy,
a thread can exhaust its assigned energy before or after its timeslice expires. Therefore,
we must distinguish between the period of time a scheduler designates to schedule a
thread for (timeslice) and a thread’s actual execution time. We call the actual execution
time quantum.

Run-Queue A run-queue is a queue containing runnable threads of a processor.

2.2 Scheduling Policies

We present in this section the scheduling policies we have investigated and adapted to
become energy-aware. At first, we introduce the round robin and multilevel feedback

5



6 CHAPTER 2. BACKGROUND

queue policies. Afterwards, we consider three proportional share scheduling policies
and, at last, we examine the two schedulers of the Linux 2.6 kernel series.

2.2.1 Round Robin

The round robin scheduling policy [37] is a preemptive timeslice based scheduling
algorithm. It picks the first thread of a processor’s run-queue, then executes the thread
until its timeslice expires, or the thread blocks or yields processor control back to the
kernel. In the case of a blocking thread, the scheduler removes the thread from the run-
queue, otherwise it reinserts the thread at the end of the run-queue. This assures that
after n schedules each thread of the run-queue is scheduled for one timeslice, while
n is the number of threads of the run-queue. Round robin treatsthreads equally, so
that it can assign a default timeslice length to each thread.Hence, round robin is a
starvation-free scheduling policy. Besides, round robin is anO(1) scheduler, because
its scheduling complexity is independent of the number of threads assigned to a run-
queue.

Due to the fact that round robin treats threads equally, it inherently penalizes
input/output-bound (I/O-bound) threads and favors CPU-bound [46] threads. An I/O-
bound thread normally exhausts only a fraction of its timeslice in contrast to a CPU-
bound thread. This effect can be reduced by a shorter timeslice length, because then
I/O-bound threads get the chance to be executed more frequently. The disadvantage of
a shorter timeslice length is the increased address space switching overhead.

2.2.2 Multilevel Feedback Queue

A multilevel feedback queue (MLFQ) scheduler [39] is a preemptive priority based
scheduling algorithm. Each thread has an assigned priority. These priorities define an
order among the threads. If a thread becomes runnable and hasa higher priority than
the currently running thread, it will preempt the current thread. This means the current
thread will no longer be permitted to execute while the higher priority thread will be
permitted to execute. Thus, a priority based scheduler assures that it executes one of
the runnable threads having the highest priority among the runnable threads.

A MLFQ scheduler consists of multiple queues, where each queue is associated
with a priority and a timeslice length. Its first queue, linked with the highest priority,
has the shortest timeslice length. The more a queue’s priority decreases, the more its
timeslice length is extended. A MLFQ scheduler executes thethreads assigned to a
queue in round robin fashion.

If a thread becomes runnable for the first time, the schedulerwill insert it at the
end of the first queue assigned to the highest priority. As long as the scheduler has only
executed a lower priority thread before or the processor hasbeen idle, the created thread
preempts this thread and starts with its execution, otherwise it waits to be selected by
the scheduler. The preempted thread stays at the front of itsqueue to get the chance to
execute for the remaining time of its timeslice.

In the case a thread executes only for a fraction of its timeslice because it blocks,
the scheduler will increase its priority, otherwise the scheduler will decrease it. Thus,
a MLFQ scheduler ensures that I/O-bound threads execute with a high priority and
preempt low priority CPU-bound threads. Furthermore, the length of a low priority
thread’s timeslice accommodates the requirements of a CPU-bound thread.

The MLFQ scheduler is a priority based scheduling algorithm, therefore it suffers
from starvation. If high priority threads can utilize the processor to100%, a low priority
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thread will suffer from starvation, because the scheduler will not execute the thread as
long as higher priority threads are runnable. Torrey, Coleman and Miller [39] have not
considered starvation in the design and implementation of their MLFQ scheduler. To
overcome this drawback, we introduce an aging mechanism. Each thread’s age is equal
to the timeslice length corresponding to the thread’s priority. The scheduler assigns the
age to a thread whenever it refreshes a thread’s timeslice.

To avoid starvation, the scheduler must at least age the threads which have the
lowest priority among a processor’s threads afterk executions of higher priority threads
if high and low priority threads are runnable. The MLFQ scheduler may raise an aged
thread’s priority up to the highest priority if it does not execute the thread at a lower
priority before.

Our aging mechanism works as follows: it decreases the age ofall lower priority
threads about the timeslice length of the currently executed thread. If a lower priority
thread’s age is afterwards equal or less than zero, the scheduler will raise its priority.
Thus, anO(n) aging mechanism can avoid starvation of lower priority threads.

2.2.3 Start-time Fair Queuing

Start-time fair queuing (SFQ) is a proportional share scheduling algorithm [16]. Before
we present the SFQ scheduler, we outline the general conceptof proportional share
scheduling policies.

Proportional Share Policy A proportional share scheduling policy strives to parti-
tion the time of processor allocation fairly among the threads according to the weights
of the threads. Each thread has an assigned weight, the threads’ weights define the
relation among the threads. A thread withk times the weight of another thread,
executesk times longer than the other thread in a period of time. Furthermore, a
thread with weightr shall get the portion r

rtotal threads
of the processor allocation, while

rtotal threads is the sum of all threads’ weights of a processor. The processor allo-
cation will be fair for a processor’s runnable threads if each thread gets exactly its
portion of time within each time interval[ti, tj ]. This is only an idealized definition of
a proportional share scheduling policy, because a thread cannot allocate a processor in
arbitrarily small units.

Therefore, most proportional share scheduling policies have a concept ofvirtual
time. The virtual time defines which thread is scheduled next. Proportional share
schedulers based on virtual time schedule on of the threads with the smallest virtual
time among all threads of a run-queue. Each thread has its ownvirtual time, which is
synchronized with a per run-queue global virtual time when athread becomes runnable.
The idealized idea of virtual time is that the virtual times of all threads and the global
virtual time of a run-queue are equal at each distinct point of time.

Only during a thread’s execution its virtual time increases. The greater a thread’s
weight is, the slower its virtual time increases. The different increase of the threads’
virtual times per physical time unit assure a proportional share among the threads ac-
cording to their weights. As mentioned before, a thread’s virtual time is synchronized
with a per run-queue global virtual time when a thread becomes runnable. The greater
the total weight of all threads of a run-queue is, the slower the global virtual time in-
creases. Proportional share schedulers measure the virtual time in time units. A time
unit can be, e.g., a timer tick, a processor cycle or even a physical time unit such as a
nanosecond.
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SFQ Scheduler SFQ strives to minimize the unfair processor allocation caused by
the coarse-grained processor allocation. This is achievedby introducing a virtual time
v and extending each thread’s thread control block with a start tagS and a finish tag
F . The start tag corresponds to a thread’s virtual time when the scheduler inserts the
thread into the run-queue. This happens when a thread becomes runnable or after it has
lost processor control and has to compete again for processor control. A thread’s finish
tag denotes a thread’s virtual time after its last execution. After a thread’s execution,
it is equal to a thread’s start tagS increased by the weighted period of time of the
thread’s last quantum it has executed for. A thread’s quantum lasts at most as long as
the thread’s timeslice. To realize a proportional share among threads, SFQ schedules
a thread withk times the weight of another thread,k times more often than the other
thread.

The start tags define the scheduling order of the runnable threads. If several threads
have the same start tag, the scheduler will break the tie arbitrarily. When the scheduling
algorithm is initialized, the virtual time and each thread’s start and finish tag are set to
zero. As long as the processor is not idle, the scheduler schedules one of the threads
with the smallest start tag and virtual time, respectively.Otherwise, the scheduler sets
its virtual time to the maximum of all finish tags. The global virtual time will only
increase if the start tags of all threads are greater than theglobal virtual time or the
processor is idle.

As outlined before, a thread’s finish tag is incremented onlyby the weighted quan-
tum a thread has executed for and not by one weighted timeslice. Therefore, a sched-
uler may schedule blocking threads more frequently than non-blocking threads with the
same weight due to the blocking threads’ smaller start tags and virtual times, respec-
tively. This guarantees a fair proportional share between CPU-bound and I/O-bound
threads. Thus, SFQ is a starvation-free scheduling policy.

2.2.4 Lottery Scheduling

Lottery scheduling is a randomized proportional share scheduling algorithm [42]. In
contrast to the remaining proportional share scheduling policies, it does not have the
concept of virtual time. It selects a thread to be scheduled for the period of one timeslice
by holding a lottery. Each runnable thread holds tickets according to its weight. This
permits to realize a proportional share among threads. The scheduler allocates the
tickets in the order of the threads in the run-queue. The firstthread holdingj1 tickets,
holds the tickets1 up toj1, the second thread holdingj2 tickets, holds the ticketsj1 +1
up toj1 + j2 and so on. The randomized scheduling algorithm chooses a ticket number
m between one and the total number of tickets held by all runnable threads. If the
first thread of the run-queue holds≥ m tickets, then the first thread will be scheduled.
Otherwise, if the first thread holds onlyj1 < m tickets, then the scheduler will check
which one of the following threads holds the winning ticket.Thereto, the scheduler
selects thekth thread of the run-queue fulfilling the following two inequations:

j1 + ... + jk−1 < m (2.1)

j1 + ... + jk ≥ m (2.2)

In contrast to SFQ, lottery scheduling is solely probabilistically fair. This means, it
is not possible to bound the unfairness between two threads for a given interval, because
“the actual allocated proportions are not guaranteed to match the expected proportions
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exactly” [42]. Nevertheless, lottery scheduling does not suffer from starvation, because
each thread holds at least one tickett, its probability to win a lottery isp = t

T
, while

T is the total number of tickets of all runnable threads.
In the case a thread blocks before it has consumed its complete timeslice, a fair

share between this thread and another one exhausting its complete timeslice cannot
be guaranteed any longer. Therefore, if a thread has consumed only a fractionf of its
timeslice, the scheduler will scale the thread’s tickets with 1

f
for the next time the thread

becomes runnable. Consequently, when the thread becomes the next time runnable it
has a1

f
times greater chance to be elected by the scheduler.

2.2.5 Stride Scheduling

Stride scheduling is a proportional share scheduling algorithm [41]. It is based on
the concept of virtual time outlined in Subsection2.2.3. The basic idea of the stride
scheduling policy is to represent the time interval a threadhas to wait between its
consecutive executions. This time interval is calledstride. A thread’s stride is inversely
proportional to a thread’s assigned number of tickets. Thus, a thread with twice as
many tickets as another thread has to wait half as long as the other one to get executed,
because its stride is only half as long as the other thread’s stride.

A thread’s stride is measured in virtual time units called passes. Each thread has its
own virtual time. After a thread has executed for its timeslice, the scheduler updates
a thread’s virtual time. It increases a thread’s virtual time by a thread’s stride. In
comparison to the SFQ’s start tag, the virtual times of all runnable threads define the
scheduling order. Hence, the stride scheduler schedules the thread with the smallest
virtual time. If several threads have the same virtual time,the scheduler will break
the tie arbitrarily. In order to account for threads not having used up their complete
timeslices, the scheduler merely increments a thread’s virtual time by the scaled stride.
The scheduler scales a stride by the fraction of the timeslice which the thread has
executed for. Like the two previous proportional share schedulers, the stride scheduler
schedules a thread withk times the number of tickets of another thread,k times more
often than the other thread.

In addition to a thread’s virtual time, stride and number of tickets, the scheduler
maintains a global virtual time, a global stride and a globalnumber of tickets per run-
queue. A run-queue’s global stride is inversely proportional to the run-queue’s global
number of tickets. The scheduler requires the global virtual time to synchronize a
thread’s virtual time with the global one, whenever it enqueues a thread into the run-
queue. Otherwise, a thread blocking for a long period of timemay monopolize the
processor until its virtual time is larger than any other thread’s virtual time of the run-
queue. In order to avoid that the scheduler schedules each enqueued thread at next, the
scheduler increments a thread’s synchronized virtual time– equal to the global virtual
time – with the remaining number of passes which have to pass until the thread’s next
execution. If the scheduler enqueues a thread for the first time into the run-queue, a
thread’s remaining passes will be equal to its stride. Otherwise, they will be equal
to the passes which had to pass until the thread’s next selection when the thread was
removed from the run-queue.

In analogy to the dependency of a thread’s virtual time on a thread’s tickets or
stride, respectively, the global virtual time depends on the global number of tickets
hold by all runnable threads of a run-queue. Therefore, the scheduler must update the
global number of tickets and the global stride if a thread joins or leaves a run-queue as
well as if a user changes a thread’s number of tickets while itis runnable. Similar to a
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thread’s virtual time, the scheduler increments a global virtual time by the global stride
scaled by the elapsed time having passed since the last update of the global virtual time.
As the other introduced proportional share scheduling algorithms, stride scheduling is
starvation-free.

2.2.6 O(1) Linux Scheduler

The Linux O(1) scheduler was introduced with the Linux 2.6 kernel series. It is an
O(1) priority based scheduling algorithm favoring I/O-bound threads. The scheduler
reserves the first hundred priorities for real time threads.It can assign conventional
threads to the remaining forty priorities100 (highest priority) to139 (lowest prior-
ity) [39]. In contrast to the introduced MLFQ scheduler (cf.Section2.2.2), a thread
with priority 100 has the longest lasting timeslice and a thread with priority139 the
shortest. Each priority has its own priority run-queue, to allow the scheduler to sched-
ule the threads of a priority in round robin fashion.

As long as at least one thread is runnable, theO(1) scheduler schedules the thread
at the head of the first non-empty priority run-queue. This thread belongs to the group
of runnable threads having the highest priority among the runnable threads. Otherwise,
the scheduler schedules the idle thread. In order to favor I/O-bound threads, the sched-
uler bases a thread’s priority on a thread’s static priorityset by the user as well as on a
thread’s dynamic priority bonus determined by the scheduler itself. Due to the dynamic
priority bonus, a thread’s priority can diverge from its static priority about±5. I/O-
bound threads can get a dynamic priority bonus of up to−5 and CPU-bound threads
can get a penalty of up to+5, labeled as interactive and batch threads, respectively.
The scheduler bases a thread’s dynamic priority on a thread’s runtime and the time a
thread sleeps waiting for becoming unblocked. A thread’s dynamic priority credits a
thread for its sleeping time and penalizes it for its execution. The timeslice length of a
thread, however, depends solely on a thread’s static priority and not additionally on its
dynamic priority bonus.

A run-queue is organized as a priority queue, hence lower priority threads may
suffer from starvation. To prevent starvation and to guarantee theO(1) behavior of the
scheduler, a run-queue consists of two priority arrays: an active and an expired priority
array. After a thread of the active array has executed, the scheduler inserts it into the
expired array. The scheduler can at the earliest schedule the thread after the active array
is empty. When the active array is empty, the scheduler switches the arrays. Thus, the
old active array is the new empty expired array and the old expired array the new active
array containing all runnable threads.

A drawback of this approach is that an interactive high priority thread may wait for
a long period of time to be executed. Therefore, if a thread has exhausted its timeslice,
the scheduler will check whether the thread is interactive or not. If it is not an inter-
active thread, the scheduler will insert the thread into theexpired array, otherwise it
will usually reinsert the thread at the tail of the priority queue of the active array. This
special treatment of interactive threads will cause starvation of expired threads if inter-
active threads can completely utilize the processor. Thus,the scheduler must insert an
interactive thread into the expired array under the following conditions:

1. Its priority is less than the highest priority of a thread in the expired array.

2. The first expired thread has waited already for a sufficiently long time, which
depends on the number of runnable threads in a processor’s run-queue.
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At last, the scheduler improves the interactivity between high priority interactive
threads by forbidding an interactive thread to exhaust its timeslice in one piece, instead
its timeslice is split into several pieces ensuring a betterreactivity of threads having the
same priority. Otherwise, a thread would monopolize the processor for a long period,
as in the case of high priority batch threads due to the lengthof their high priority
timeslices.

2.2.7 Completely Fair Scheduler

The completely fair scheduler (CFS) is a proportional sharescheduling algorithm intro-
duced with the Linux kernel 2.6.23. Its aim is to model an “ideal, precise multitasking
CPU” [9] on real hardware. Such an ideal CPU does not exist, therefore CFS executes
the thread with the greatest demand for processor time amongthe runnable threads.
This assures that all threads get an equal share of processortime proportional to their
weight. As SFQ and stride schedulers, CFS is based on the concept of virtual time (cf.
Subsection2.2.3).

In contrast to the previousO(1) Linux scheduler, the CFS is no longer based on
run-queues and priority arrays. Instead, a red-black tree models the future scheduling
order of the runnable threads. Consequently, CFS is not anO(1) scheduler, but an
O(log(n)) scheduler.

CFS schedules the thread with the least difference between the thread’s virtual time
and the per-processor virtual time. A per processor virtualtime increases by the time
having passed since its last update scaled with the total weight of all threads. The
greater the total weight of all threads of a processor is, theslower the per processor
virtual time increases. A thread’s virtual time only increases by its weighted execution
time during a thread’s schedule. The greater a thread’s weight is, the slower increases
the thread’s virtual time.

Contrary to the per priority fixed timeslice length of the oldO(1) scheduler of
Linux, CFS has dynamically determined timeslices of variable length due to the fol-
lowing two reasons:

1. If the currently executing thread’s virtual time is greater than the smallest virtual
time in the red-black tree, while the scheduler allows a small gap between both
virtual times to avoid an over-scheduling of threads and trashing of a processor’s
cache, the thread with the smallest virtual time will preempt the current thread.

2. In order to improve the reactivity of interactive threads, the scheduler can ignore
a thread’s sleeping time. This will be the case, if a thread wakes up from sleeping
and has slept for less than a certain period defined by a tunable scheduling la-
tency. Consequently, it is possible to place a thread at the front of the scheduling
timeline which an event has just woken up.

Unlike waking up a sleeping thread and possibly inserting itat the front of the timeline,
the scheduler inserts a newly woken up thread at the end of thetimeline. The same
applies to threads yielding processor control back to the kernel.

In contrast to CFS, the previous proportional share scheduling algorithms have re-
alized the proportional share by scheduling threads more frequently according to the
threads’ weights. CFS schedules a thread withk times the number of tickets of another
thread,k times longer than the other thread, but not more often. The other differ-
ence between CFS and the previous proportional share schedulers is that the previous
proportional share schedules define a proportional share only between all threads of a



12 CHAPTER 2. BACKGROUND

run-queue. CFS defines an additional hierarchy between these threads. This hierarchy
groups threads together either based on their user ids or on their assignment to an ad-
ministrative defined group of threads (e.g., a group of browsers). Thus, the weight of a
thread does only influence its proportional share within itsassigned group. The group
weight defines the proportional share between the differentgroups.

CFS is a proportional share scheduling policy and each thread as well as each group
gets a non-zero fraction of the system’s share, hence it is starvation-free and therefore
the CFS – unlike theO(1) scheduler – does not need to check whether a thread starves.

2.3 Energy Accounting

With the rising energy costs, energy becomes a first class operating system re-
source [47]. To be able to manage energy as a resource, a scheduler requires to account
the energy consumption caused by a thread’s activities. Dueto the increasing complex-
ity of modern microprocessor architectures, a processor’senergy consumption cannot
be revealed from its utilization and duty cycles, respectively, any longer, because a pro-
cessor’s power consumption shows a wide variety for a given processor utilization [45].
For older microprocessors as the Pentium 2 processor, this was possible due to the sim-
pler architecture [32].

Nevertheless, for limiting a processor’s power consumption or preventing an ex-
ceedance of its temperature above a threshold, it is necessary to account a processor’s
energy consumption or at least its temperature. Bellosa et al. propose to correlate a few
processor’s events with their caused energy consumptions [6] to estimate a processor’s
energy consumption. The energy consumption can be estimated if the events cover
a processor activities contributing mostly to a processor’s energy consumption. To
account the relevant events, they use a processor’s performance counters. Most mod-
ern processors have performance counters; they are responsible for accounting specific
events as mispredicted branches or cache misses [1,18]. By accounting and weighting
the relevant events, a processor’s energy consumption can be estimated. Our proposed
energy policies require this mechanism in order to decide how long they may schedule
a thread if the scheduling decision is based on a thread’s estimated energy consumption.

Power Consumption To limit a thread’s power consumption it is necessary to know
its current power consumption or at least its average power consumption caused during
the lastk milliseconds. The approach of Bellosa et al. to estimate a thread’s energy
consumption can also be used for estimating a thread’s powerconsumption, because
energy is the product of power and time. By periodically accounting a thread’s energy
consumption everyk milliseconds, its average power consumption can be accounted.

A thread’s power consumption can change from time to time because of distinct
phases of execution of a thread. The power consumption can change more frequently
if a scheduler throttles a thread for very short periods of time like the period of one timer
tick. An exponential average can smooth the effect of accounting a quickly changing
power consumption. If it is not possible or not intended to account a thread’s energy
consumption everyk milliseconds, an exponential average can be enhanced to allow
for sampling periods of variable length of a thread’s energyconsumption [25]. An
energy profilecontains a thread’s exponential average energy consumption and its total
consumed energy. To limit a thread’s power consumption, ourenergy policies require
the exponential average energy consumption. For a fair energy partitioning, we need
the total consumed energy.
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2.4 Temperature Estimation

A processor’s consumed energy is dissipated as heat [33]. Its temperature and power
consumption are closely coupled quantities [3], because a processor’s power consump-
tion increases its temperature and vice versa. To reduce a processor’s temperature, a
heat sink mainly accumulates a processor’s dissipated energy; a part is stored within the
processor itself. A heat sink can slow down an increase of a processor’s temperature.
Due to the limited capacity of a heat sink, it emits heat to theambient air [20].

A heat sink can be modeled as a thermal capacitor being charged and discharged
like an electrical capacitor [17]. Due to the exponential course of charging and dis-
charging a capacitor, a processor’s temperature course is exponential as well.

To measure a processor’s temperature, its thermal diode canbe used, but reading
the diode takes several milliseconds (about10mson a Pentium 4) [21]. To avoid this
overhead, Bellosa et al. propose a thermal model for a heat sink. It permits to predict a
processor’s current temperature without reading a thermaldiode. This model depends
on the heat sink’s characteristics, the ambient temperature and the processor’s energy
consumption [6,20].

Skadron et al. [22] propose a more fine-grained solution. They use performance
counters and a processor’s floorplan to predict the temperature of individual functional
units. For our work Bellosa’s thermal model is sufficient.

2.5 Dynamic Thermal Management

With the increasing complexity of modern microprocessors and their applied on-chip
power management techniques, the gap between a processor maximum power con-
sumption and its typical power consumption increases even further [8]. To be able to
deal with a processor’s maximum power dissipation, a processor’s cooling techniques
must be designed for it. The total integration costs for processors having maximum
power dissipations above35-40W increase with each Watt about$1 [38], hence it will
be an advantage if dynamic thermal management (DTM) techniques can reduce the
maximum power dissipation.

In this case, the cooling techniques merely need to be capable to deal with the typ-
ical power dissipation of a processor, but not with the maximum power consumption.
One or more DTM techniques are responsible for reducing the processor’s power con-
sumption and temperature, respectively. It depends on the DTM technique how long
its response delay lasts, until it starts to reduce the processor’s power consumption and
what the resulting performance loss is.

Next, we discuss CPU throttling as a mechanism to limit a processor’s power con-
sumption. More DTM techniques such as voltage and frequencyscaling as well as
instruction cache throttling or speculation control [8] are out of scope of this thesis.
Therefore, we do not discuss them.

CPU Throttling For reducing an idle processor’s power consumption, several archi-
tectures have a special instruction. This special instruction permits the processor to
switch to a low power state. Due to an external event, the processor switches again to
the running state. Additionally, this instruction, e.g, thehlt instruction of x86 proces-
sors [11] gives the opportunity to throttle a thread by executing the instruction during
the thread’s execution [5]. Although throttling does not minimize a processor’s max-
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imum power consumption, it can reduce a processor’s averagepower consumption as
well as its temperature.

If the throttling results in quick changes of a processor’s power consumption, the
usable capacity of a battery can be significantly reduced in comparison to discharging
the battery with a continuous load having the same average power consumption [24].
Therefore, the throttling mechanism has to avoid those quickly changing power con-
sumptions if the system is battery based by executing the special instruction for several
milliseconds.



Chapter 3

Design

Multitasking operating systems partition the time of the processor assignment among
all runnable threads of a system. Thereby, it seems as if the threads execute in par-
allel, although they might only execute on one physical CPU.The operating system’s
scheduling policy decides which thread it schedules next and for how long it executes
the thread. Its scheduling decision is based on a thread’s properties as priority, weight
or position in the processor’s run-queue.

Most scheduling policies do not base their scheduling decision on utilization of
resources assigned to a thread during its processor controland the consequences re-
sulting from its utilization for other threads. A thread’s energy consumption during
its quantum, in particular, has usually no impact on a scheduling policy assuring a
fair processor assignment. The reason for this is that a scheduler considers the fair
processor assignment only in the time dimension, but not in the dimension of energy
consumption.

In an environment where the energy consumption is limited over a period of time
of a processor, due to limits of a power supply or thermal considerations, it will be an
advantage if a scheduler fairly partitions the energy amongall threads.

At first, we motivate why a fair energy partitioning will be anadvantage if a pro-
cessor’s power dissipation is limited or its temperature must not be raised above a
threshold. Afterwards, we outline that to guarantee a fair energy partitioning and to
limit a processor’s power consumption we require energy andpower limits. Then we
introduce four energy policies which strive to assure a fairenergy partitioning. At last,
we propose a design for a per run-queue energy budget permitting to transfer energy
among threads, and we point out how a scheduler can preserve athread’s energy limit.

3.1 Problem Description & Analysis

Most scheduling policies only consider to partition the time of processor assignment
among the processor’s assigned threads. In the case of priority based scheduling poli-
cies, a scheduler fairly partitions the time between threads belonging to the same pri-
ority. Nevertheless, from the point of view of fair processor time partitioning, the
partition cannot be fair if a thread’s resource utilizationhas negative effects on the suc-
cessive execution of other threads. We will consider a thread’s execution as negative
for other threads, if other threads cannot achieve at least the same during their quanta,
as without running the thread additionally.

15
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This is the case, in particular, in an environment with limited energy resources or
a critical processor temperature which may threads not exceed. A thread’s power con-
sumption can force other threads to consume less power to prevent an exceedance of
the processor’s critical temperature or due to a limited amount of energy. This the-
sis addresses mechanisms to avoid an exceedance of processor’s energy consumption
over a period of time or of its critical temperature by limiting and fairly partitioning a
processor’s energy.

Power Consumption Limitation Limiting the energy consumption of a run-queue
over a period of time, is equivalent to limiting its and the processor’s average power
consumption, respectively. Then, threads consuming more energy than assigned to
them within their quanta – having average power consumptions beyond the allowed
power limit –, force other threads in the run-queue to consume less energy than as-
signed to them during their quanta, to meet the overall per run-queue energy consump-
tion limit.

Dynamic frequency or voltage scaling [8,13,15,43,44] as well as throttling [5,45]
can achieve the lower energy consumption of a processor. Theoffered frequencies and
voltages can be insufficient to meet the energy consumption limit, therefore it might be
necessary to throttle the current thread as well. The throttling mechanism to reduce the
power consumption results in a performance degradation of athread, even in the case
of I/O-bound threads.

A thread’s power consumption cannot only affect threads of its own priority-queue,
but also threads of other priority-queues. Consider the following case: a low priority
thread consumes so much power that it enforces its own throttling and also the throttling
of the following higher priority threads. In this case, the higher priority thread suffers
from the behavior of a lower priority thread, possibly resulting in priority inversion.
Consequently, an energy-aware scheduling policy must prevent this behavior.

Fair Energy Partitioning To favor energy-efficient threads, energy-aware sched-
ulers have to partition the system’s energy but not the time among threads. For a fair
energy partitioning, it is mandatory that each thread of a run-queue does not consume
more energy than allowed during its quantum. We call the amount of energy a thread
may consume during its quantumthread energy budget. It is defined as

Ebudgetthread
= Plimit · ttimeslice (3.1)

while Plimit is the pre-defined power consumption which a thread may not exceed and
ttimeslice the timeslice length of the thread assigned by a scheduler. At the beginning of
a thread’s quantum, a scheduler set a thread’s thread energybudget. With the thread’s
further execution, its energy budget decreases until it will be empty. If a thread’s energy
budget is empty, a scheduler will schedule the next thread and will reset the thread’s
energy budget.

To schedule the next thread directly after a thread has exhausted the energy of its
energy budget, would required to account a thread’s energy consumption continuously.
Nevertheless, this is impossible because a thread’s energyconsumption can only be
accounted if the kernel executes, but not while a thread executes. Therefore, during
a thread’s next quantum, the thread has to be charged for the energy it has consumed
more than permitted in its last quantum.

A thread energy budget solely assures a fair energy partitioning by executing a
thread until its energy budget is exhausted. It does not limit a thread’s power consump-
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tion. Consequently, the length of a thread’s quantum depends on the power consump-
tion caused during its execution. If a thread’s average power consumption is below the
power limit Plimit, its quantum will be longer than the thread’s pre-defined timeslice.
Otherwise, if a thread’s average power consumption is beyond Plimit, its quantum will
be shorter than its pre-defined timeslice. Only if its average power consumption is
equal to the permitted one, its quantum is as long as its timeslice.

This is shown in Figure3.1. In this example four threads are scheduled and exe-
cuted until they have exhausted their energy budget. A thread’s energy budgetL · T

is equal to the amount of energy required to execute a thread with the average power
consumptionL for its timesliceT .

Figure 3.1: Thread Energy Budget

We want to fairly partition a processor’s total energy amongthreads, thus we assign
the processor’s leakage energy [34] to a thread as well. Depending on the thread’s
power consumption, the thread spends a greater or lesser amount of its assigned energy
for the processor’s leakage energy. Threads with a low powerconsumption spend most
of their energy for leakage, while threads with a high power consumption spend only a
smaller fraction of their energy for leakage.

In order to prevent an exceeding of a processor’s temperature above a threshold
or to limit its energy consumption over a period of time, a scheduler has to limit the
average power consumption of a thread during its execution.A thread energy budget
is insufficient for this.

Structure In the next Section3.2, we propose a design to limit a thread’s power con-
sumption without negatively affecting other threads and outline how to limit a thread’s
energy consumption. For a fair energy partitioning of a limited amount of energy, it
is necessary to combine these two limits. We outline four different energy policies
limiting a thread’s power consumption and striving to achieve a fair energy partition-
ing by limiting the thread’s power and energy consumption inSection3.3. Thereby,
two of the four policies permit threads having power consumptions above the permit-
ted power limit to benefit from other threads having power consumptions beneath the
limit. In Section3.4, we propose a design of a per run-queue energy budget to permit
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threads to benefit from other threads’ power consumptions. We outline in the last Sec-
tion 3.5of this chapter a mechanism to preserve a thread’s energy limit over several of
its quanta, by charging the thread for its extra consumed energy.

3.2 Energy & Power Limit

Before we discuss how to assure a fair energy partitioning within an environment with
limited energy resources or a critical processor temperature which a thread may not
exceed, we introduce energy and power limits in the following two subsections. The
energy limit’s purpose is to assure a fair energy partitioning among threads. Therefore,
a scheduler executes normally a thread until the thread has consumed the amount of
energy permitted by the energy limit. We outline when a thread is preempted, although
its energy budget is not empty. For restricting a processor’s power dissipation an energy
limit is insufficient, instead a power limit is required. It is responsible for limiting a
thread’s power consumption.

3.2.1 Energy Limit

The energy limit is defined analogously to a thread’s energy budget (3.1). The only
difference between the two is that it does not define how much energy a thread may still
consume, instead it defines how much energy a thread may consume at most, before a
scheduler schedules the next thread and refreshes the thread’s energy budget.

When a scheduler assigns to a thread its energy budget, the energy budget is equal
to the energy limit of this thread. The energy limit remains constant during the thread’s
execution, whereas the thread’s energy budget decreases until it is exhausted. A sched-
uler will execute a thread no longer if the thread’s energy budget is exhausted and the
thread has consumed the amount of energy permitted by the energy limit, respectively.

As analyzed in the preceding section, a fair energy partitioning does no longer re-
quire a thread’s timeslice to decide how long a thread is scheduled, instead the thread’s
energy limit and the thread’s power consumption define how long its quantum lasts.
Nevertheless, the timeslice assigned to a thread by its scheduling policy has a big im-
pact, it is proportional to the thread energy budget (3.1) as well as to the energy limit.

Due to the fair energy partitioning, the length of a thread’squantum depends on
the power consumption of a thread. A quantum has a lower as well as an upper bound.
The maximum power consumption of a processor defines the lower bound, whereas a
processor’s idle power consumption defines the upper bound.

Threads having power consumptions below the power limit candecrease the sys-
tem’s reactivity. Their quanta will last longer than their timeslices if a scheduler does
not split their quanta into smaller pieces. In order to avoidto split a quantum into
smaller pieces and to assure a system’s reactivity, it is possible to schedule the next
thread. This has to happen at the latest after the current thread has executed for the
duration of its timeslice, even if the thread’s energy budget is not empty. A scheduler
will discard the preempted thread’s remaining energy of thethread’s energy budget, but
will refresh the thread’s energy budget and quantum.

If a scheduler permits a thread to execute at most for the period of the thread’s
timeslice, although the thread’s energy budget is not empty, we will call this anon-
strict energy limit. Thus, a scheduler penalizes threads having power consumptions
below the power limit in comparison to threads having at least power consumptions
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equal to the permitted one, because threads with power consumptions below the power
limit may not consume their assigned energy.

A fair energy partitioning demands each thread to execute until it has consumed
the assigned energy of its energy budget, as long as it has notgotten preempted or
blocked. As outlined before, this can decrease the system’sreactivity. If – for a fair
energy partitioning – we accept that a thread’s quantum can be longer than a thread’s
timeslice, we will call this astrict energy limit.

We show the difference between the strict energy limit and the non-strict energy
limit in Figure 3.1and in Figure3.2, respectively. ThreadTh1 executes in both cases
for the timeT and threadTh4 for T

2 . Applying the strict energy limit or the non-strict
energy limit has only a consequence for the threadsTh2 andTh3, because their power
consumptions are below the power limit. If we apply the strict energy limit, thread
Th2’s quantum will last for2T , threadTh3’s quantum for3T

2 , otherwise each thread’s
quantum would only last forT .

Figure 3.2: Non-Strict Energy Limit

Strict vs. Non-Strict Energy Limit Next, we compare the strict energy limit and the
non-strict energy limit and outline their implications on afair energy partitioning.

The advantage of a strict energy limit is a fair energy partitioning of the processor’s
total consumed energy among the threads, whereas the disadvantage may be a reduced
system reactivity due to threads having longer lasting quanta than timeslices. In con-
trast to the strict energy limit, the non-strict energy limit bounds a thread’s quantum by
a thread’s timeslice. Therefore, it does not suffer from theproblem of a reduced system
reactivity like the strict energy limit. Its disadvantage is an unfair energy partitioning
among all threads, due to the limited execution time of a thread’s timeslice.

3.2.2 Power Limit

As mentioned before, a thread energy budget and its related energy limit are inadequate
for limiting a processor’s power consumption. Therefore, we require a power limit.
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In contrast to an energy limit which aims at partitioning a processor’s energy fairly
among the threads, a power limit’s aim is to restrict a processor’s power consump-
tion. Mechanisms like dynamic frequency and voltage scaling can achieve this. They
decrease the maximum power consumption of a processor, but the frequencies and
voltages cannot be scaled continuously – instead the hardware offers only a few. This
prohibits to meet an arbitrary power limit. We require the more fine-grained instruc-
tion throttling mechanism to limit a processor’s as well as athread’s average power
consumption in order to meet an arbitrarily pre-defined power limit.

A kernel cannot use throttling for limiting the maximum power consumption of
a processor. It only reduces the processor’s number of duty cycles. During a duty
cycle [12] a thread may consume the maximum power. Nonetheless, throttling permits
to limit the average power consumption of a thread during itsquantum, to meet the pre-
defined power limit. For this thesis we consider instructionthrottling as the mechanism
to limit a thread’s average power consumption in order to meet a pre-defined power
limit.

If we loose the requirement of meeting a pre-defined power limit over the period
of a thread’s quantum, and simply enforce to meet it over a hyper-period of several
threads’ quanta, a scheduler cantransferenergy between threads. The transferred en-
ergy results from threads having power consumptions below the power limit.

Without permitting an energy transfer, a thread’s average power consumption
caused during its quantum must not exceed the power limit. Therefore, we call it a
strict power limit. If a thread may exceed the power limit due to performed energy
transfers, we call it anon-strict power limit. A strict power limit enforces to meet the
pre-defined power limit over the period of a thread’s quantum, and the non-strict power
limit over the hyper-period of several threads’ quanta.

Strict vs. Non-Strict Power Limit After having introduced the strict power limit and
the non-strict power limit, we discuss their implications on a thread’s performance.

The advantage of the non-strict power limit is the permittedenergy transfer be-
tween threads offering energy and threads having power consumptions beyond the
power limit. Energy transfers can reduce a thread’s throttling, in the best case they can
even avoid a thread’s throttling. The offered energy results from threads having power
consumptions beneath the power limit. Consequently, a non-strict power limit can in-
crease the system’s performance significantly in comparison to a strict power limit. For
exhausting a processor’s power limit over a hyper-period, ascheduler needs to transfer
energy. Without performing energy transfers, threads having power consumptions be-
low the power limit cause a processor’s average power consumption beneath the power
limit.

To outline the difference between these two limits, we consider their impacts on our
first example (cf. Figure3.1). Although threadTh4 has a power consumption of about
2L, it consumes solelyL due to the throttling mechanism, which we apply because of
the strict power limit, as shown in Figure3.3. By contrast, the non-consumed energy
of threadsTh2 andTh3 will nearly avoid the throttling of threadTh4, if we apply the
non-strict power limit. We show this in Figure3.4.

We discuss the two proposed power limits in detail in Appendix A. There we
present how one can determine the amount of energyEoffered a thread can offer, and
how a scheduler can assure that a thread receives at most its assigned fraction of offered
energyEfrac.
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Figure 3.3: Strict Power Limit

Figure 3.4: Non-Strict Power Limit

3.3 Energy Policies

In the next section, we explain how both the strict and non-strict energy and power
limits can be combined to apply energy-aware scheduling policies, in order to realize a
fair energy partitioning while limiting the processor’s power consumption. Besides, we
discuss what their advantages and disadvantages are in comparison to one other. The
ensuing section deals with the realization of a fair partitioning of the offered energy in
the case of a non-strict power limit.

We have introduced strict as well as non-strict energy and power limits in the an-
tecedent section. Both limits can be combined with each other, because

• the power limit merely assures that a thread does not exceed apre-defined power
limit in order to restrict a processor’s power dissipation,and
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• the energy limit only assures a fair energy partitioning among threads, but does
not have an influence on the course of a thread’s power consumption.

Thereby, it is unimportant whether an energy policy meets the limits strictly or not.
In the next four subsections, we discuss the four different possible combinations, and
how fair they can partition the system’s energy. Additionally, we consider the energy
policies’ implications on a thread’s runtime.

3.3.1 Strict Power & Non-Strict Energy Limit

We have outlined in Subsection3.2.2that a thread’s average power consumption may
not exceed the power limit in the case of a strict power limit.Therefore, an energy
transfer among threads is not possible. The non-strict energy limit enforces that a non-
blocking thread’s quantum may last at most as long as its timeslice lasts. Without
considering the power limit, the maximum power dissipationof a processor defines its
lower bound (cf. Subsection3.2.1). Due to the limited power consumption caused by
the strict power limit, its lower bound is equal to its upper bound. Both bounds are
equal, because a thread can have consumed its assigned energy at the earliest after a
scheduler has executed it for the period of its timeslice dueto the strictly preserved
power limit. This energy policy is equivalent to a scheduling policy throttling each
thread individually and executing a thread at most for the period of its timeslice.

A scheduler can avoid to account the energy consumption of a thread on each timer
tick; it is sufficient to execute the thread until its timeslice expires. In the case of threads
having average power consumptions below the allowed power limit, their energy bud-
get is never exhausted by themselves. Due to these threads and the strict power limit
forbidding energy transfers, threads cannot exceed a processor’s power limit.

This policy enforces that a thread can at the earliest have consumed its assigned en-
ergy after the period of its timeslice and may execute at mostfor the period of its times-
lice. Thus, a scheduler can avoid to account a thread’s consumed energy. Nonetheless,
to ascertain whether a scheduler must throttle the thread atthe beginning of the thread’s
next quantum to charge it for exceeding the power limit in itsprevious quantum, it is
necessary to account a thread’s power consumption after itsquantum.

Referring to our example, threadTh4 must be throttled assuring an average power
consumption equal to the permitted one ofL. It cannot benefit from the lower power
consumptions of the threadsTh2 andTh3, because we do not allow energy transfers.
Due to the non-strict energy limit, the quanta of the two latter threads are equal to their
timeslices. Which we have outlined in Figure3.5.

The strict power limit and the non-strict energy limit only assure that a thread does
not suffer from the energy consumption caused by the execution of other threads. It is
insufficient for a fair energy partitioning among threads, this can only be achieved by
applying the strict energy limit discussed in the next subsection.

3.3.2 Strict Power & Strict Energy Limit

Analogously to the previous energy policy, this energy policy preserves the pre-defined
power limit strictly. Consequently, the lower bound of a thread’s quantum is its times-
lice length. Before, a thread strictly preserving the powerlimit cannot have consumed
its assigned energy. In contrast to the previous energy policy, the idle power consump-
tion defines the upper bound. The upper bound depends on a thread’s energy budget,
as outlined in Subsection3.2.1.
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Figure 3.5: Strict Power & Non-Strict Energy Limit

In this way, a fair energy partitioning among threads is possible, whereas a sched-
uler prohibits energy transfers. The drawback of the strictenergy limit is the extended
quantum in comparison to the timeslice length of threads having average power con-
sumptions below the power limit. Thus, the system’s reactivity decreases and the
throughput of threads having quanta lasting as long as theirassigned timeslices drops
as well. By contrast, it is possible that threads can increase their throughput which have
average power consumptions below the power limit.

In comparison to the remaining policies, threads which haveaverage power con-
sumptions beyond the power limit, suffer at most from this policy. They cannot benefit
from power consumptions below the power limit of other threads by an energy transfer.
A scheduler executes them less frequently within a period oftime, because of quanta
lasting longer than timeslices. Therefore, this energy policy causes the worst perfor-
mance for these threads, which we show in Figure3.6. We discuss the influence on
threads having extended quanta later on.

3.3.3 Non-Strict Power & Non-Strict Energy Limit

This energy policy and the next energy policy consider the case of a non-strict power
limit and its impacts on strict and non-strict energy limits. Contrary to the energy
policy outlined in Subsection3.3.1, where a scheduler cannot transfer non-consumed
energy to other threads, this policy allows energy transfers. We have pointed out in
Subsection3.2.2that it is mandatory for exhausting a processor’s power limit to transfer
energy between threads. This energy transfer can have two different semantics:

1. Non-consumed energy is given away to other threads.

2. Non-consumed energy can be used to give other threads the permission to exceed
the power limit, but not their thread energy budgets.

We call the first semanticsextended energy budget, because the received energy is given
away to a thread and extends the thread’s energy budget. In contrast to that, we call the
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Figure 3.6: Strict Power & Strict Energy Limit

second semanticsexceeded power limit, because it merely permits a thread to exceed
the power limit, but not its energy budget.

Extended Energy Budget In the case of giving the non-consumed energy away, the
energy neither extends nor reduces an energy receiving thread’s quantum, because the
energy permits a thread to exceed the power limit during its quantum, but not to ex-
tend its quantum. Therefore, a thread’s quantum lasts as long as in the case of non-
performed energy transfers.

A thread receiving energy consumes more energy during a period of time than a
thread offering energy, because the latter thread gives itsoffered energy away. This
applies also for the case of the strict power limit and the non-strict energy limit. The
extended energy budget energy transfer, however, even increases the energy gap be-
tween threads with power consumptions below the limit and others above even more,
because only threads receiving energy can benefit from it. A thread receiving offered
energy can consume the energy of its thread energy budget, and additionally it can con-
sume its fraction of the offered energyEfrac for exceeding the power limit. Hence, this
policy in combination with the extended energy budget energy transfer results in the
best performance for the latter threads with respect to the remaining proposed policies.

Exceeded Power Limit Contrary to giving away the non-consumed energy, the sec-
ond semantics only gives other threads the permission to exceed the power limit. A
thread can exceed the power limit, until it has spent its complete fraction of offered en-
ergyEfrac for the energy caused by the power consumption above the power limit. The
fraction of offered energyEfrac a thread receives does not extend the thread’s energy
budget. Consequently, a thread’s quantum will not last as long as its timeslice if its av-
erage power consumption is beyond the limit due to energy transfers. The advantage of
the exceeded power limit energy transfer is the diminished energy gap between threads
offering and threads receiving energy.
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Independently of an energy transfer’s semantics, it is necessary to account a thread’s
energy consumption in order to determine when a thread has consumed its assigned
fraction of offered energyEfrac. If we apply the exceeded power limit energy transfer,
a thread’s lower bound of its quantum will no longer depend only on its timeslice,
but also on the processor’s maximum power consumption. A thread’s quantum length
still depends on its timeslice, because a thread’s energy budget is proportional to its
timeslice (3.1).

We outline the difference between these two semantics in thefollowing two figures.
Therefore, we consider once again our initial example outlined in Section3.1. If we
apply the extended energy budget energy transfer, the offering threads cannot benefit
from their offered energy (cf. Figure3.7). The offering threads can benefit from their
offered energy if we apply the exceeded power limit energy transfer, because the turn
around time will be decreased (cf. Figure3.8).

Figure 3.7: Non-Strict Power & Non-Strict Energy Limit - Extended Energy Budget

Figure 3.8: Non-Strict Power & Non-Strict Energy Limit - Exceeded Power Limit
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3.3.4 Non-Strict Power & Strict Energy Limit

In contrast to the energy policy realizing the strict power limit and the strict energy
limit outlined in Subsection3.3.2, this energy policy permits energy transfers. In this
subsection we outline which thread may receive the energy, and discuss the implica-
tions of our four proposed energy policies on the performance of threads receiving and
threads offering energy.

The non-strict energy limit of the preceding policy forbidsto transfer energy to
threads not exceeding the power limit due to the restricted quantum length of a thread’s
timeslice. In contrast to that, the strict energy limit of this policy allows to transfer
energy to threads not exceeding the power limit by extendingtheir quanta. Nonetheless,
such an energy transfer has the following drawbacks:

• A thread’s quantum will no longer have an upper bound or the upper bound will
solely be defined if the amount of received energy is limited.Consequently,
the turn around time of a thread within a run-queue may increase steadily, if a
thread’s quantum has no upper bound as presented in Figure3.9.

• The energy transfer is no longer only used for exhausting a processor’s power
limit, instead it is additionally used for extending a thread’s quantum, but this is
not the intention of the energy transfer.

Next, we show how an energy-aware scheduler can realize a fair energy transfer without
these drawbacks.

Figure 3.9: Energy Transfer Permitting Unbound Turn AroundTime

We have outlined in the last subsection two different ways ofperforming an energy
transfer. The energy can be given away to a thread or merely beused for permitting
a thread to exceed the power limit. This applies also for thispolicy. The non-strict
energy limit of the previous policy inhibits a fair energy partitioning, even in the case
of applying the exceeded power limit energy transfer. This policy, however, can achieve
this by applying the exceeded power limit energy transfers.
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Extended Energy Budget The extended energy budget energy transfer prevents
threads offering energy to other threads to benefit from their offered energy. This is
the case because a scheduler does not decrease the quanta of threads receiving en-
ergy. These non-decreased quanta are the reason why the performance of threads only
offering and not receiving energy remains unchanged in comparison to their perfor-
mance while prohibiting an energy transfer. Nevertheless,energy transfers result in an
increase of the system’s throughput caused by the threads receiving energy in compar-
ison to the energy policy realizing the strict power limit asseen in Figure3.10.

Figure 3.10: Non-Strict Power & Strict Energy Limit - Extended Energy Budget

Exceeded Power Limit This policy in combination with the exceeded power limit
energy transfer assures a fair energy partitioning like thepolicy introduced in Sub-
section3.3.2, which realizes the strict power limit and the strict energylimit. The
advantages of this policy are its permitted energy transfers to increase the system’s
throughput. The increase is achieved on no thread’s account. Threads having power
consumptions below the power limit and other having power consumptions beyond the
power limit can both benefit from this policy as long as they apply the exceeded power
limit energy transfer.

Threads offering energy to other threads benefit from this policy, because a sched-
uler diminishes the quanta of threads receiving the offeredenergy. Thus, a scheduler
executes them more frequently within a period of time and their throughput increases.
The same applies to threads receiving energy. Although their quanta are shorter, they
can make the same progress as during their non-reduced quanta. Moreover, they can
normally achieve more progress during their quanta. They exhaust a smaller fraction
of their thread energy budgets for a processor’s leakage power. We have illustrated this
scenario in Figure3.11.

Energy Policy Comparison After we have outlined the design of the four policies
and have already discussed the impacts of this policy on the performance of threads
which may – if allowed – offer or receive energy, we proceed with the discussion of
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Figure 3.11: Non-Strict Power & Strict Energy Limit - Exceeded Power Limit

the three previously introduced policies. For our considerations, we examine a set of
threads consisting of both types.

At first, we have proposed the strict power limit and the non-strict energy limit
energy policy. This policy forbids energy transfers and restricts a quantum length to
a timeslice, hence threads of both types suffer from this policy. This policy results in
the worst performance for threads offering energy, becauseit limits a thread’s quantum
length and prohibits energy transfers. Due to the prohibited energy transfer, the per-
formance of threads receiving energy is not as good as in the case of permitted energy
transfers, but not as bad as in the case of the second energy policy, which realizes the
strict power limit as well as the strict energy limit. Threads which receive energy suffer
from this policy because of the extended quanta of threads which offer energy. There-
fore, they will have the worst performance if we apply this policy. Contrary, the longer
quanta of threads offering energy can improve their performance in comparison to the
first policy.

The last two proposed policies allow energy transfers, therefore the performance
for both types of threads is at least as good as without energytransfers but often even
better. In the case of the non-strict power limit and the non-strict energy limit, threads
receiving energy can achieve their best performance if we apply the extended energy
budget energy transfer. This policy does not consider theirreceived energy. Their
performance is not as good as if we apply the exceeded power limit energy transfer, but
even better than with prohibited energy transfers. Threadsoffering energy can achieve
the same performance as in the case of the strict power limit if we apply the extended
energy budget energy transfers, because they cannot benefitfrom their transfers. If
we apply the exceeded power limit energy transfer, their performance will improve
because a scheduler will execute them more frequently due tothe shorter quanta of
threads receiving energy.
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3.4 Run-Queue Energy Budget

In the antecedent section, we have outlined how a fair energypartitioning can be real-
ized. Thereby, we have only considered in which way each thread receives its assigned
amount of energy, but we have not discussed what is required to fairly partition offered
energy. Within this section we propose a design for a per run-queue energy budget
permitting to fairly partition offered energy among threads. Before, we outline why a
first come first serve scheme is insufficient.

3.4.1 Näıve Solution

We have pointed out in the previous section that the semantics of an energy transfer de-
termines whether we can fairly partition energy among all threads or whether it leads to
an increased unfairness between threads offering energy and threads receiving energy.
If we consider that a scheduler can fairly partition the system’s energy among threads, a
first come first serve scheme might result in an unequal performance of threads with the
same priority and weight, respectively, as well as an equal power consumption, even
in the case of permitted energy transfers. An example for these threads are several in-
stances of the same task. The unequal performance results from throttling one instance
of the task more frequently than another instance. The more frequently throttled task
spends more of its energy for the idle energy consumed duringits throttling than the
other one.

In the following, we consider the case of a set of threads consisting of both threads
offering and receiving energy. A scheduler transfers the offered energy in a first come
first serve scheme. Thus, each thread willing to receive energy may receive its re-
quested amount of energy until the offered energy is exhausted. Besides, we consider
that the amount of offered energy is insufficient to avoid a throttling of each thread, a
scheduler must at least throttle one thread.

Extended Energy Budget At first, we consider that the offered energy is given away
in a first come first serve scheme. A scheduler does not have to throttle threads re-
ceiving their requested energy. These threads’ quanta lastas long as their timeslices.
They can achieve their best performance during their quanta. Threads requesting of-
fered energy which a scheduler schedules after the offered energy has been exhausted
cannot consume as much energy as the threads before. In addition, a scheduler must
throttle them due to the non-received energy. Hence, they cannot achieve as much as
the previously scheduled threads during their quanta. Consequently, a first come first
serve scheme is insufficient for a fair energy partitioning,which strives to ensure the
same performance for each instance of a task.

Exceeded Power Limit This will be also the case if we apply the exceeded power
limit energy transfer and permit threads to receive the energy in a first come first serve
scheme. The threads receiving energy and therefore avoiding their throttling can real-
ize their best performance during their quanta, although their quanta are shorter than
their timeslices. After the first threads have exhausted theoffered energy, a scheduler
must throttle the remaining threads requesting offered energy. The quanta of the latter
threads last as long as their timeslices, but they have to spend a fraction of their as-
signed energy for their throttling. This prevents that theycan make the same progress
as threads which have received the offered energy resultingin an unfair partitioning
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of offered energy. The performance gap between threads receiving energy and threads
being throttled results from throttling the latter threads. In the case of the extended en-
ergy budget energy transfer the gap is even larger, because the throttled threads receive
less energy than the energy receiving threads.

To confirm this, we consider a setting of three threads. The first threadTh1 offers the
two remaining threadsTh2′ andTh2′′ – instances of threadTh2 – its non-consumed
energy. We show this in Figure3.12. These two latter threads have a power consump-
tion of 2L. The offered energy is insufficient to fulfillTh2′ ’s request, therefore its
average power consumption is only3L

2 and it must be throttled. ThreadTh2′′ has only
an average power consumption ofL, because afterTh2′ ’s execution no more offered
energy was left.

Figure 3.12: Näıve Run-Queue Energy Budget - Extended Energy Budget

As mentioned before, if we apply the exceeded power limit energy transfer, the
unfairness will result from throttling one thread and not the other one. We present this
in Figure3.13.

3.4.2 Proposed Solution

The run-queue energy budget proposed in this subsection solves the problems outlined
in the previous subsection. Our proposed run-queue energy budget assures a fair energy
partitioning of offered energy.

As discussed before, a simple first come first serve scheme is insufficient for a fair
partitioning of offered energy. An obvious solution for this problem is to partition
the offered energy among all threads of a run-queue or priority queue. Thereby, for
proportional share scheduling policies one has to considerthe amount of tickets or
the weights of threads to partition the energy fairly. The drawback of this policy is
the coarse-grained partitioning of offered energy. Therefore, some threads can get
a fraction of the offered energy, although they do not require it. Consequently, the
system’s performance cannot be as good as if a scheduler fairly partitions the energy
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Figure 3.13: Näıve Run-Queue Energy Budget - Exceeded Power Limit

only among threads requiring it. The same will happen if a thread receiving energy
cannot exhaust its fraction of offered energy.

The idea of the proposed per run-queue energy budget is that after a thread has
executed for its quantum, it defines for how many threads the offered energy lasts and
how much of the offered energy each thread may receive at most. Our proposed energy
budget has the following structure:

• Efrac

• threads

• Enon-consumed

The energyEfrac defines the amount of energy each thread may receive at most and
threads defines the remaining number of threads permitted to receiveenergy. In the
case of proportional share scheduling policies,threads defines the sum of tickets or
the sum of weights of threads allowed to receive energy. If a thread has not con-
sumed its complete energyEfrac, a scheduler adds the remaining energy to the energy
Enon-consumed. A scheduler can partition this energy among threads later on.

Independently of any scheduling policy, the total amount ofoffered energy which
a scheduler can still transfer is defined as:

Etotal offered = Efrac · threads +Enon-consumed (3.2)

After we have presented the structure of a per run-queue energy budget, we outline
how it assures a fair energy transfer. We have to distinguishthe following three cases:

1. A thread exhausts its complete fraction of offered energy.

2. A thread receives a share of its fraction of offered energy.

3. A thread offers its non-consumed energy.
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Case 1 If a thread has exhausted its complete fractionEfrac of the offered energy,
a scheduler will decrementthreads to reflect the thread’s energy consumption. In
the case of a proportional share scheduling policy, a threadwill have consumed the
energyEfrac·ticketsthread, whileticketsthread is the number of tickets held by a thread.
Therefore, a scheduler will decrementthreads aboutticketsthread.

Case 2 If a thread has not consumed the energy of its complete fraction Efrac and
Efrac · ticketsthread, respectively, a scheduler must once again partition the remaining
energy among the threads. One possibility is to partition this energy among the remain-
ing threads having not already received their fractions of the offered energy. The draw-
back of this approach is the dependency of a thread’s fraction Efrac on the scheduling
sequence. This makes it impossible to fairly partition the offered energy. To prevent
this, the update ofEfrac must be delayed untilthreads is zero. This permits to ac-
cumulate the non-consumed energy of several threads’ fractions. The valuethreads
will be zero if the number of predicted threads willing to receive the offered energy
threadsreceive have received their energy. If a thread has consumed less of the offered
energy than permittedEreceived < Efrac, the non-consumed energyEnon-consumed will
be updated:

Enon-consumed = Efrac − Ereceived + Enon-consumed (3.3)

Afterwards, if the threads which have received the offered energy have caused a sched-
uler to decrementthreads to zero, a scheduler can partition the non-consumed energy
Enon-consumed of threads’ fractions amongthreadsreceive threads.

Case 3 If a thread has an average power consumption below the power limit, it can
offer its non-consumed energyEoffered to other threads. A scheduler can fairly parti-
tion the energy and, in addition to that can fairly partitionthe non-consumed energy
Enon-consumed if threads is zero. The fraction of the offered energy a thread may
receive is:

Efrac =
Eoffered + Enon-consumed

threadsreceive
(3.4)

while a scheduler has resetthreads to the number of threadsthreadsreceive which may
receive the energy.

Due to the scheduling sequence or several threads offering energy,threads can be
greater than zero. In this case, a scheduler has to increase the non-consumed energy
Enon-consumed by Eoffered, so that it can fairly partition the energy later on.

After we have outlined how our run-queue energy budget assures a fair energy trans-
fer, we discuss under which conditions we can update or avoidthe update of the energy
Efrac. Afterwards, we present two figures outlining that our run-queue energy budget
applies to both semantics of an energy transfer.

A thread receiving only a share of its assigned fraction of the offered energy can
update the energyEfrac. Additionally, it can update this energy if its average power
consumption is below the power limit. To avoid updatingEfrac twice, a scheduler will
solely update the non-consumed energyEnon-consumed if a thread receives energy but
does not consume its complete fraction.

Furthermore, a scheduler can updateEfrac not only if threads is zero, but also if
threadsreceive < threads or both are equal andEnon-consumed is not zero. In the two
latter cases, a scheduler can offer the non-consumed energyto the receiving threads,
because it does not induce an unfair energy transfer.
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Our run-queue energy budget is independent of the semanticsof the energy transfer
itself. It permits a fair partitioning of the offered energyfor the extended energy budget
energy transfer shown in Figure3.14as well as for the exceeded power limit energy
transfer presented in Figure3.15.

Figure 3.14: Proposed Run-Queue Energy Budget - Extended Energy Budget

Figure 3.15: Proposed Run-Queue Energy Budget - Exceeded Power Limit

For the design of our run-queue energy budget, it is unimportant how many threads
may receive the energy. The amount of offered energy, however, a thread may receive
depends on the number of threads among a scheduler partitions the offered energy.
Consequently, restricting the number of threads which may receive the energy can
avoid throttling of threads requiring the non-consumed offered energy. Within the fol-
lowing part of this subsection, we discuss how a scheduler can estimate the number of
receiving threads.
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3.4.2.1 Receiving Threads

We have mentioned before that a scheduler can partition the offered energy among
all threads of a run-queue. Next, we discuss what problem arises from a too coarse
partitioning of offered energy. Afterwards, we outline howa scheduler can estimate
the number of threads willing to receive the offered energy to partition the offered
energy only among this number of threads.

Coarse Partitioning A scheduler can partition the offered energy among all threads
of a run-queue. This is a drawback, in particular, for priority based schedulers. Of-
ten only a subset of threads is eligible to be scheduled due tothe threads’ priorities.
Nonetheless, even partitioning the energy among all threads of a priority-queue belong-
ing to a run-queue may be a too coarse partitioning, because not all of these threads
require to receive energy.

The consequence of a too coarse partitioning is a smaller size of Efrac than neces-
sary. Thus, a scheduler may throttle threads more often thannecessary if the threads’
required power consumptions to achieve their best performances cannot be satisfied.
Later on we will prove in AppendixB, that a scheduler will fulfill each thread’s request
at the latest aftern2 runs of then threads of a run-queue if the offered energy is suffi-
cient to fulfill the requests. Even if each thread’s request can be fulfilled aftern2 runs,
it will be an advantage if a scheduler only partitions the offered energy among threads
which are eligible to be scheduled and require the offered energy.

Fine Partitioning To estimate the number of threadsthreadsreceive requiring the
energy, it is sufficient that a scheduler accounts how many threads it has or would have
throttled during the last execution of the scheduled threads. A scheduler would have
throttled a thread, if the thread’s estimated power consumption had been beyond the
power limit, but it had not throttled the thread due to energytransfers.

For proportional share scheduling policies, it is insufficient to account only the
number of threads requiring the energy, instead a schedulermust account the threads’
tickets or weights. Consequently, a thread has to decrementthreadsreceive about its
number of tickets and its weight, respectively. The energyEnon-consumed will only
be made available ifthreads is zero or equal tothreadsreceive. Hence, an energy
transfer will be impossible ifthreads is smaller than any receiving thread’s weight
and its number of tickets, respectively. Therefore, a receiving thread may consume the
offered energy, even ifthreads is smaller than its assigned weight or number of tickets.
Consequently, the fraction of offered energy a thread holding ticketsthread tickets may
receive is:

Efrac = min{Ebudgetthread
· threads, Ebudgetthread

· ticketsthread} (3.5)

After the thread has executed for its quantum and ifthreads is smaller than its number
of assigned tickets, it must not decrementtickets aboutticketsthread, instead it must
reset it to zero.

We have explained that it is unnecessary to partition the offered energy among all
threads of a run-queue, because a scheduler can efficiently estimate how many threads
will probably require the offered energy.
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3.4.2.2 Handling Preemptions

Next, we discuss when we have to updateEfrac and threadsreceive to realize a pri-
oritized energy transfer to fulfill the demands of a prioritybased scheduling policy.
Afterwards, we outline how to assure that the run-queue energy budget reflects the
offered energy after a thread’s preemption and before the preempted thread continues
with its execution.

Priority based scheduling policies require a prioritized energy transfer. A prior-
itized energy transfer partitions the offered energy only among the threads eligible
to run belonging to the highest priority and probably requesting the offered energy.
Runnable threads assigned to lower priorities and requesting the offered energy are
not considered by a scheduler. Only if the lower priority threads are eligible to run, a
scheduler will consider them.

A priority based scheduling policy requires to updatethreadsreceive as well as
Efrac, whenever the priority of the previously executed thread isunequal to the priority
of the next scheduled thread. The offered energy is solely partitioned among threads
of a priority-queue willing to receive the energy. If no thread is willing to receive the
energy, we will setthreadsreceive to one, in order to give a thread the opportunity to re-
ceive the offered energy. This permits to realize a prioritized energy transfer. Without a
prioritized energy transfer, the number of lower priority threads can affect the fraction
a high priority thread can receive of the offered energy.

The main disadvantage of a priority based scheduler is the unfair partitioning of
offered energy among eligible threads of a priority-queue.This will be the case if
a scheduler has scheduled a few lower priority threads having already received their
complete fraction and a scheduler has not already scheduledthe remaining threads of
a priority-queue. Moreover, if these latter threads are scheduled after a higher priority
thread having received an amount of the offered energy, theycannot receive the fraction
of the offered energy previously designated to them. In the worst case, the higher
priority thread has received the complete offered energy and the lower priority threads
which have not yet received a share of this energy cannot receive any offered energy
anymore, because it is exhausted.

As preliminarily pointed out in Subsection3.4.2, the invariant of our proposed run-
queue energy budget structure is the definition of the energywhich is left for subsequent
energy transfers after a thread’s execution. Next, we outline how we assure that the run-
queue energy budget reflects the offered energy, which a scheduler can transfer after a
thread’s execution. We have to consider the following two cases:

1. A thread gets preempted during its quantum.

2. A thread continues with its execution after another thread has preempted this
thread.

Case 1 To meet the requirement that the run-queue energy budget defines the amount
of energy which can be transferred, it is not sufficient to defineEfraci+1

as follows:1

Efraci+1
=

Efraci
· threads

threadsreceive
(3.6)

Efraci
is the offered energy before the update, andEfraci+1 is the offered energy after

the update. The reason for this is that a preempted thread mayhave received energy of

1for clarity, we have not consideredEnon-consumed in the following equations
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its fraction, but a scheduler has not yet decrementedthreads before this thread has got
preempted. To account this,Efraci+1 must be defined as follows:

Efraci+1
=

Efraci
· threads−Ereceivedpreempted

threadsreceive
(3.7)

Here,threads is the number of remaining lower priority threads permittedto receive
the offered energy, andthreadsreceive is the number of higher priority threads willing
to receive the offered energy.Ereceivedpreempted

is the already received energy of the
preempted thread.

Case 2 Equation (3.6) will not apply if the preempted thread continues with its ex-
ecution, because its already received energy is not considered. If one prohibits the
preempted thread to receive more energy, it may receive lessenergy than the subse-
quent threads of its priority-queue. Alternatively, if oneallows the preempted thread
to receive more energy, and if one does not consider its already received energy, a
scheduler cannot fairly partition this received energy among the eligible threads.

Therefore, if a preempted thread continues with its execution, Efraci+1 has to be
defined as:

Efraci+1
=

Efraci
· threads +Ereceivedpreempted

threadsreceive
(3.8)

If Efraci+1
< Ereceivedpreempted

, the preempted thread has received more energy
than permitted by the new fraction of offered energyEfraci+1

. Therefore, the preempted
thread must not receive more energy. In addition, this equation indicates a run-queue
energy budget allowing to transfer more energy than previously offered. It permits
each of the remainingthreadsreceive −1 threads to receive more energy than previously
offered:

Ereceivedpreempted
− Efraci+1

threadsreceive −1
(3.9)

To avoid transferring more energy than offered before, a scheduler must check
whetherEfraci+1

< Ereceivepreempted
(3.8). If this is the case,Efraci+1

must be defined
as:

Efraci+1 =
Efraci

· threads

threadsreceive −1
(3.10)

After the preempted thread has executed for its quantum, a scheduler only decrements
threads. Thus, the run-queue energy budget defines how much energy a scheduler can
transfer.

3.4.3 Maximum Capacity of the Run-Queue Energy Budget

At last, we outline in this section why the capacity of the energy budget has to be
limited and on which factors the limitation depends.

The idea of the run-queue energy budget is to permit to exhaust a processor’s power
limit over a hyper-period of threads’ quanta. If some threads which are eligible to be
scheduled offer more energy than other threads receive, therun-queue energy bud-
get will accumulate this non-consumed offered energy. A scheduler can transfer this
offered energy to threads requiring this energy for their best performance later on. Ex-
hausting the accumulated energy in a short period of time cancause problems, e.g.,
the transferred energy can raise a processor’s temperaturebeyond the threshold, or can
permit threads to receive more energy than permitted per hyper-period.
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Therefore, the maximum capacity of the run-queue energy budget must be defined
to avoid a violation of one of these limits. We will outline how one can determine the
maximum capacity in the case of limiting a processor’s temperature for avoiding its ex-
ceedance above the processor’s critical temperature. Therefore, we consider Kellner’s
temperature model of a processor [20].

Example We assume an ambient air temperature of24.0◦C, a processor idle tem-
perature of33.5◦C and72.5◦C as the processor’s critical temperature. The maximal
power dissipation of the processor is115W and the permitted average power consump-
tion Plimit is 80W . This average power consumption yields a processor temperature
of about70.1◦C. To assure that a thread cannot raise the processor’s energyabove
the critical temperature by performed energy transfers, wehave to consider a proces-
sor’s maximal power dissipation. The capacity of the run-queue energy budget must be
exhausted before a thread consuming the maximal power can raise the processor’s tem-
perature above the threshold. In our example, a thread dissipating the maximal power
will raise the processor’s temperature above its critical temperature after54s if the pro-
cessor temperature is70.1◦C. Consequently, the maximum capacity of the run-queue
energy budget may be at most

Etotal offered = tmaximal runtime · (Pmax − Plimit) (3.11)

Here,tmaximal runtime is the maximal execution time of a thread consuming the pro-
cessor’s maximal powerPmax before it raises the processor’s temperature yielded by
Plimit above the critical temperature. Considering our example, the maximum capacity
of the run-queue energy budget may be at most1, 855J .

In our example (cf. Figure3.16), at first the processor is idle for100s and yields
a temperature of35.5◦C. Afterwards, a thread with an average power consumption
of 80W executes for2200s and raises the processor temperature to70.1◦C. If the
thread executes also for the following100s, the processor temperature will remain
constant, but if we replace the thread with another one dissipating115W , the processor
temperature will exceed the threshold temperature after executing that thread for54s.

3.5 Controlling a Thread’s Energy Limit

The last section of our design considers how a thread’s energy budget can be met over
several quanta. It cannot be met during one quantum, becausethe kernel cannot account
the energy consumption constantly. Thus, a thread exceeds its energy budget before a
scheduler can schedule the next thread.

Depending on the energy policy, the length of a thread’s quantum can be based
on a thread’s energy budget. If this is the case, a scheduler must account the energy
consumption of a thread periodically, to determine how longits quantum may last
and when its energy budget is exhausted, respectively. A scheduler can perform this
during the timer interrupt handling. As long as a thread’s energy budget has not been
exhausted, a scheduler executes the thread at least for the time until the next timer
interrupt occurs.

If a thread has exhausted its energy budget, a scheduler willschedule the next
thread. Usually, a thread has consumed more energy than permitted by the energy limit,
because a scheduler accounts a thread’s energy consumptiononly at distinct points in
time. Besides, it depends on a scheduler whether it directlyperforms a thread switch
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Figure 3.16: Processor Temperature

after the accounting or whether the kernel delays the threadswitch. Consequently, a
thread’s energy consumption can significantly differ from its energy limit. In order
to preserve the threads’ energy budgets over several schedules, the additional, non-
permitted energy must be accounted.

We call itextra used energyEextra used and it is defined as:

Eextra usedi
= Paverage · tquantum − Ebudgetthread

+ Eextra usedi−1
(3.12)

To penalize a thread in itsi+1th quantum for its extra consumed energy caused during
its ith quantum, a thread will lose processor control if the following equation is true:

Ebudgetthread
≤ Paverage · tquantum + Eextra usedi

(3.13)

If a thread loses processor control because it has exhaustedits quantum or has
blocked, a scheduler will reset the thread’s energy budget after it has calculated the
thread’s extra used energy. A scheduler will setEextra used to zero, if the last equa-
tion (3.13) is false. This can happen if a thread blocks or we apply the non-strict
energy limit, causing a thread to lose processor control, although it has not exhausted
its energy budget.

A scheduler must not reset a thread’s energy budget if it doesnot reset a thread’s
quantum after the thread has been preempted by another thread. If a thread’s energy
budget was reset, it would cause to reset the thread’s quantum. This would permit
the thread to execute once again for the duration of its complete quantum. Thus, by
steadily interrupting a thread’s execution, a scheduler would reset the thread’s energy
budget periodically. This would possibly cause starvationof other threads.



Chapter 4

Implementation

After we have presented our design assuring a fair energy partitioning among threads,
this chapter addresses implementation details of our design on top of the Linux
2.6.22.15 kernel. Our implementation is based on the formerworks of Waitz [40]
and Merkel [25]. They have implemented the support for accounting a thread’s energy
consumption as well as estimating a thread’s power consumption.

This chapter at first addresses how one can realize the throttling mechanism in
Linux for preserving a pre-defined power limit. Afterwards,we consider when we can
avoid to update a thread’s energy profile to increase the accounting period for estimat-
ing a thread’s power consumption per update of a thread’s energy profile. Furthermore,
we outline which enhancements we have performed for handling preemptions within
a thread’s quantum and for accounting appropriately a thread’s energy transfers. We
point out how to estimate the number of throttled threads or their weight and tickets,
respectively. Afterwards, we propose the Linux sysfs interfaces to change the energy
policy as well as the semantics of energy transfers and to define the maximum capacity
of a run-queue’s energy budget. At the end of this chapter, wemotivate why some
scheduling policies will require to be notified if a user changes the energy policy and
which data structures must be updated then. At last, we consider scheduler specific
adaptions to realize our proposed design.

4.1 Power Limit

In order to limit a thread’s power consumption, in our designwe have considered throt-
tling as the mechanism of choice, because it allows to meet a pre-defined power limit
(cf. Subsection3.2.2). Throttling is achieved by executing a special instruction of
a processor, which simply consumes a processor’s idle powerconsumption, e.g., the
hlt instruction of x86 processors [11]. This instruction is architecture specific, thus
Linux executes an architecture specific idle thread to execute the instruction. We dis-
cuss in this section how we can throttle a thread as well as assure a proper accounting
of a thread’s throttling and outline when we can avoid to account a thread’s power
consumption.

Thread Throttling For throttling a thread in Linux, a scheduler must schedule apro-
cessor’s idle thread at least for the duration of one timer tick. We have proposed to ac-
count a thread’s power consumption while handling the timerinterrupt, and to throttle
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afterwards the current thread if necessary. Linux forbids to schedule a thread while han-
dling the timer interrupt, therefore it is not possible to schedule the idle thread eagerly.
Instead, it must be done lazily by setting the current thread’s TIF_NEED_RESCHED flag.
This flag indicates the kernel to schedule another thread. The kernel evaluates this flag
before it returns to user mode and after it has handled the timer interrupt.

The flag only indicates a scheduler to schedule another thread, but not which one.
Hence, a scheduler would not schedule the idle thread next, because at least the thread
to be throttled is runnable. Therefore, we have extended a processor’s run-queue data
structure by a pointer pointing to the scheduled thread which might be throttled. The
pointerscheduled_thread indicates which thread is executed, that is why it is unim-
portant whether the thread is throttled or not. In contrast to the pointercurr, pointing
to the currently executed thread of a run-queue, a schedulerwill not change the pointer
scheduled_thread if it schedules the idle thread in order to throttle a thread.Thus, if
a scheduler does not throttle a thread, the pointersscheduled_thread andcurr will
both point to the same thread. If a scheduler throttles a thread,scheduled_thread
will point to the throttled thread currently not executed and curr to the idle thread cur-
rently executed. Besides, we have extended a thread’s thread control block (TCB) by a
resched flag. A scheduler will set the flag if it shall throttle a non-throttled thread or
shall no longer throttle a throttled thread.

These two enhancements allow a scheduler to decide whether it has been called
because it shall schedule another thread, throttle a threador stop a thread’s throt-
tling. If the scheduled thread’sresched flag is set, a scheduler will throttle or stop
throttling the scheduled thread. Otherwise, a scheduler has been called to sched-
ule another thread. Due to the lazy thread scheduling, it is possible that a scheduler
has set a thread’sTIF_NEED_RESCHED flag more than once before the kernel eval-
uates it. Therefore, a scheduler may only set the flagresched if it has not set the
TIF_NEED_RESCHED flag before. Additionally, if a scheduler sets this flag afterit has
set theresched flag, it must reset theresched flag to preempt the scheduled thread.

As pointed out, for throttling a thread, a scheduler must schedule the processor’s
idle thread. Consequently, the idle thread is the current thread. This raises the following
problems:

• A scheduler does not charge a thread for its throttling, because a scheduler does
not decrease the thread’s remaining timeslice length as long as the idle thread
is scheduled. Moreover, a scheduler does even not increase athread’s runtime.
Consequently, a thread’s throttling extends its quantum.

• A thread’s user and system times will not increase, if a scheduler executes the
idle thread.

To solve these problems, we replace the pointer to the current thread with the pointer
to the scheduled thread, whenever it is necessary.

Power Consumption Accounting If a thread does not exceed the power limit, it can
be an advantage to avoid accounting a thread’s power consumption on each timer tick.
Therefore, we have to consider under which circumstances wecan avoid the accounting
within the timer interrupt.

To estimate the number of threads which might receive energyif we allow energy
transfers, we proposed in Subsubsection3.4.2.1to account how many threads have
been or would have been throttled. Therefore, we have extended a thread’s TCB with
two flags: throttled andthrottled_last. These two flags indicate whether a



4.2. ENERGY PROFILE 41

scheduler has throttled or has intended to throttle a threadduring the thread’s current or
previous quantum. The latter flag is not required for estimating how many threads may
receive energy, instead its purpose is to extend the period while a scheduler accounts a
thread’s power consumption on each timer tick.

Thus, a scheduler will not require to account a thread’s power consumption on
each timer tick if both flags are not set. Nonetheless, it is required to account a thread’s
power consumption periodically afterk timer ticks to conclude whether the thread’s
power consumption is still below the power limit.

4.2 Energy Profile

We outline in this section when a scheduler has to update the complete data structures
of a thread’s energy profile, or when it is sufficient to updateonly a subset of it, to
account a thread’s power consumption and its energy consumption.

In the following three subsections, we explain how we can avoid to update a
thread’s energy profile each time a thread’s power or energy consumption is ac-
counted. We want to decrease the frequency of updating a thread’s energy pro-
file in order to increase the accounting period for estimating a thread’s power
consumption per update. Therefore, we extend the energy profile by the field
consumed_energy_accounting_period. It stores the energy consumed dur-
ing a thread’s quantum. In addition, we point out how to update a preempted
thread’s and its preemptor’s energy profile for accounting their consumed energy ac-
curately. To account their consumed energy, we extend the energy profile by the
field preemption_energy. At last, we discuss how the energy transfer can be re-
alized as presented in our design. It requires to extend the energy profile by the field
received_energy. This accounts the amount of energy a thread has received dueto
energy transfers.

4.2.1 Updating a Thread’s Energy Profile

A thread’s energy profile contains a thread’s amount of totalconsumed energy and a
thread’s exponential average energy consumption. This exponential average smoothes
the change of a thread’s energy consumption. The former works solely required to
update a thread’s energy profile before scheduling the next thread. Thus, the kernel
can save the performance counter values as well as a thread’sconsumed energy in
appropriate data structures after accounting them. Our proposed policies require to
account a thread’s energy consumption – depending on the energy policy – on every
timer tick for estimating at least a thread’s power consumption or even for limiting a
thread’s energy consumption during its quantum. Our proposed policies, however, do
not require to update the data structures each time the poweror energy consumption is
accounted.

By updating these values after each timer tick, a scheduler decreases the period
for accounting a thread’s current power consumption. The period is diminished to the
duration of one timer tick; without updating the values it can last up to a thread’s quan-
tum. If a scheduler updates the power consumption on each timer tick, it will weight
the power consumption caused during each period of one timertick exponentially. Oth-
erwise, it will only weight the average power consumption consumed during a thread’s
quantum exponentially. Consequently, the thread’s current power consumption has a
greater impact on its estimated power consumption in the latter case. Aside from the
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longer accounting period, this mechanism reduces the overhead for maintaining the
energy profile, but this is only a minor reason.

Not only the power limit requires to account a thread’s consumed energy on
each timer tick, the energy limit does require this as well. To account a thread’s
power consumption, the accounting mechanism simply needs to yield the exponen-
tially weighted power consumption. Limiting a thread’s energy consumption requires
to account its consumption during its quantum, additionally. Therefore, a scheduler
must update the sum of energy a thread has already consumed. Otherwise, it must
save how much energy a thread has consumed since the last update of a thread’s
energy profile. We have chosen the latter approach and have therefore extended a
thread’s energy profile by the fieldconsumed_energy_accounting_period. A
scheduler is required merely to account each time a thread’spower or energy con-
sumption; it does not need to update the complete energy profile. It updates only the
field consumed_energy_accounting_period and the energy profile yields the es-
timated power consumption.

4.2.2 Handling Preemptions

In Section3.5 of our design, we have pointed out that a scheduler must not reset a
thread’s energy budget if it does not reset a thread’s quantum after a thread gets pre-
empted, otherwise we would not account a thread’s energy budget appropriately. Con-
trary to the former works, we must account the total consumedenergy caused during a
thread’s quantum. Thereby, it is unimportant whether a thread gets preempted during
its quantum or not.

The field consumed_energy_accounting_period accounts the energy con-
sumed since the last complete update of its energy profile’s data structure. In the case of
priority based schedulers, we update a thread’s energy profile not only after the thread
has exhausted its energy budget, but also after a thread has been preempted. Thus, the
field consumed_energy_accounting_period will no longer reflect a thread’s con-
sumed energy within its quantum if a scheduler reads it aftera thread gets preempted.

To account how much energy the thread has already consumed within its quan-
tum, we must enhance the thread’s energy profile. A schedulerincreases the
field preemption_energy by the energy a thread has consumed during its last
scheduling period when it gets preempted. Furthermore, a scheduler must reset the
consumed_energy_accounting_period to zero, thuspreemption_energy and
consumed_energy_accounting_period together mirror a thread’s consumed en-
ergy during its quantum. A scheduler must reset thepreemption_energy to zero
after a thread has blocked or exhausted its quantum. Hence, it is possible to account
a thread’s energy consumption appropriately, even in the case of priority based sched-
ulers.

4.2.3 Energy Transfer

The extended energy profile simply allows to control a thread’s energy limit as well
as its power limit, but it is not possible to realize the energy transfer, as proposed
in Subsection3.4.2. In order to perform the energy transfer, we must account how
much offered energy a thread has already received, to assurethat it does not receive
more offered energy than permitted byEfrac. To permit energy transfers, we extend
the energy profile by the fieldreceived_energy. After a scheduler has accounted
a thread’s energy consumption within the timer tick, it calculates the energy a thread
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may have received. It updates the received energy as described in Appendix (A.3). Due
to the performed energy transfers, a thread’s power consumption can be beyond the
allowed limit. Because we do not measure a thread’s power consumption, but estimate
the power consumption – it is based on a thread’s previous energy consumptions –, a
scheduler would throttle a thread due to an average power consumption above the limit
if the power limit was not reset to the allowed one.

Only reseting a thread’s power consumption to the pre-defined power limit does
not avoid its throttling, because we have chosen to update a thread’s energy profile
only after the thread has lost processor ownership. Consequently, a scheduler consid-
ers a thread’s power consumption caused during the performed energy transfers for
the estimated power consumption. To avoid this, a schedulermust update a thread’s
energy profile after a thread has exceeded its assigned fraction of transferred energy.
After reseting the power consumption to the pre-defined limit, the thread behaves as
expected from the perspective of the power limit. To accounta thread’s energy budget
appropriately, the energy consumed during its schedule must be considered until the
update of its energy profile. Analogously to the case of preempting a thread, a sched-
uler increasespreemption_energy by consumed_energy_accounting_period

and resets the latter value to zero. Only in the case of priority based schedulers the pre-
emption energy can be non-zero. Otherwise, a scheduler usesthis value only to permit
a proper accounting of a thread’s energy consumption. Thus,it is possible to account a
thread’s power and energy consumption appropriately.

4.3 Counting Throttled Threads

We have considered in our design to partition the offered energy only among threads
being eligible to be scheduled and probably willing to receive this energy. This section
addresses how one can account these threads.

In the case of non-priority based schedulers, it is sufficient to account the total num-
ber of throttled threads. If a scheduler applies a proportional share scheduling policy, it
must account a throttled thread’s number of tickets and its weight, respectively, instead
of accounting the thread itself.

We will consider a thread as willing to receive offered energy if a scheduler has
or would have throttled a thread within the thread’s currentor previous quantum. To
avoid accounting the number of probably receiving threads,their weights or number
of tickets threadsreceive every time before partitioning the offered energy, we store
a counter per run-queue. For a correct accounting, it is necessary to know whether
a thread has already increased the counter and must not increase the counter another
time, or whether it has already increased the counter and maynow decrease it. Besides,
we have extended a thread’s TCB with thereceive_energy flag. This flag indicates
whether a thread has already increased the counter or not.

A scheduler will increase the counter and will set a thread’sreceive_energy flag
if

• a thread gets enqueued into the run-queue and a scheduler hasthrottled the thread
within the thread’s current or previous quantum before the thread got dequeued,
or

• a thread’sreceive_energy flag is not set and a scheduler has throttled the
thread within the thread’s currently expired quantum.
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Opposite to incrementing the counter, a scheduler will decrement the counter and will
reset a thread’sreceive_energy flag to zero if this flag is set and

• a thread gets dequeued from the run-queue, or

• a scheduler has not throttled the thread within the thread’scurrently expired
quantum and the thread is still enqueued.

In the case of proportional share scheduling policies, a scheduler must update the
counter according to a thread’s number of tickets or weight.Additionally, if a user
changes a thread’s weight or number of tickets and a thread’sreceive_energy flag
is set, a scheduler must update the counter appropriately.

Priority based schedulers require one counter per priority-queue. A runnable
thread’s priority change requires to dequeue the thread from its current priority-queue
and enqueue it into its new priority-queue, hence a scheduler can update the counters
analogously to the run-queue’s counter of a non-priority based scheduler.

4.4 Sysfs Interface

This section deals with the Linux sysfs interface to select one of our four proposed
energy policies. Besides, it allows to set the maximum capacity of a run-queue energy
budget and to choose which energy transfer semantics shall be applied.

Normally, a user cannot change the internal data structuresof the Linux kernel.
Nonetheless, Linux offers two interfaces to export internal kernel data structures from
kernel space to user space: the proc filesystem and sysfs filesystem [7]. We have chosen
the sysfs interface to allow the user to select one of the proposed energy policies, to
set the maximum capacity of a run-queue’s energy budget, andto choose the semantics
of energy transfers. The proc filesystem is used to define the power limit as described
in [25].

4.4.1 Energy Policy

To allow the user to select one of our four proposed energy policies on runtime, we have
extended the virtual sysfs filesystem with the file/sys/kernel/energy_policy. A
user can select one of the four following policies by writingthe policy’s number into
the file. When reading this file, it provides the names and descriptions of the four
policies and indicates which of these policies is active (cf. Table4.4.1).

Number Policy

0 strict power & non-strict energy limit
1 strict power & strict energy limit
2 non-strict power & non-strict energy limit
3 non-strict power & strict energy limit

Table 4.1: Energy Policies
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4.4.2 Maximum Capacity of a Run-Queue’s Energy Budget

To avoid a violation of a processor’s critical temperature or a higher energy consump-
tion during a long period of time, it is required to limit the maximum capacity of a run-
queue’s energy budget. A user can set the limit by writing thenew maximum capacity
measured inµJ into the file/sys/kernel/maximum_capacity_energy_budget.
When reading the file, it returns the current maximum capacityof a run-queue’s energy
budget inµJ .

We would set the maximum capacity of the run-queue’s energy budget of our ex-
ample discussed in Subsection3.4.3to 1, 855, 000, 000µJ .

4.4.3 Energy Transfer

In our design, we have outlined two different semantics for an energy transfer: the
transferred energy can be given away or can merely permit a thread to exceed the
power limit.

Therefore, we have added the file/sys/kernel/give_energy_away to the vir-
tual sysfs filesystem. Reading this file supplies the user with the information which
semantics a scheduler currently applies for energy transfers. It will return zero if the
energy transfer only permits to exceed the power limit, and it will return one if the
transferred energy is given away by the offering threads.

4.5 Changing the Energy Policy

The sysfs file/sys/kernel/energy_policy allows the user to specify which en-
ergy policy a scheduler shall apply. In this section, we outline which scheduling poli-
cies will require to update their own internal data structures, and the TCB structure of
the system’s threads if a user changes the applied energy policy.

This applies especially to the SFQ scheduling policy outlined in Subsection2.2.3.
If we select the strict power limit and the non-strict energylimit energy policy and do
no longer apply the strict energy limit energy policy, the scheduler must reset its virtual
time and maximum finish tag as well as each thread’s start and finish tag. The virtual
time and these tags have been based on a thread’s consumed energy before. After
the switch, they are based on a thread’s exhausted fraction of its timeslice measured in
timer ticks. A thread’s consumed energy causes the virtual time to increase much faster
than the exhausted fraction of a thread’s timeslice due to the finer resolution. Therefore,
the resulting gap between the virtual times of the individual threads is substantially
larger in the first case than in the latter. If one did not resetthe virtual time and the
tags, the thread with the lowest virtual time would execute for a long period of time,
until its virtual time would be larger than any other thread’s virtual time of the run-
queue. Consequently, it is necessary to reset the scheduler’s and threads’ virtual time
related fields.

To avoid the overhead of accounting the throttled threads for energy policies imple-
menting the strict power limit, each scheduler resets its counter for the throttled threads
as well as thereceive_energy flag of each thread. Therefore, the kernel notifies the
current scheduler when the user changes the energy policy. It does not notify the cur-
rent scheduler when the user changes the semantics of the energy transfers, because the
semantics simply defines whether a thread’s received energyinfluences the length of a
thread’s quantum or not, but does not affect data structures.
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4.6 Scheduler Specific Adaptions

In addition to our proposed enhancements to permit a fair energy partitioning, some
schedulers will require changes for adapting their specificcharacteristics and applying
our proposed design if the scheduling decision is based on a thread’s energy consump-
tion. This applies to the CFS and theO(1) scheduler. In the following two subsections,
we outline the adaptions for these two schedulers.

4.6.1 O(1) Linux Scheduler

The Linux scheduler does not only favor interactive threadsby increasing their priority
in contrast to decreasing the priority of CPU-bound threads. Additionally, it splits
the timeslices of interactive threads into several small pieces (cf. Subsection2.2.6).
The scheduler reinserts a thread into the run-queue after the thread has executed for
the duration of the piece of its timeslice. This increases the reactivity of interactive
threads, thus it shall also be possible if the scheduling decision is based on a thread’s
energy consumption.

At first, we outline how the original timeslice based scheduler implements this
mechanism. Afterwards, we propose our adaption for the energy based energy policies.
The scheduler will reinsert an interactive thread into the run-queue if the thread resides
in the active array of the run-queue and its remaining timeslice is not smaller than
its timeslice granularity. A thread’s timeslice granularity assures that the scheduler
executes a thread for a minimum number of timer ticks before it may reinsert the thread.
Therefore, the following equation must be fulfilled in addition:

0 ≡ (timeslicetotal − timesliceremaining) mod timeslicegranularity (4.1)

Here,timeslicetotal is the timeslice length of the priority-queue a thread is assigned to,
timesliceremaining the remaining length of its timeslice andtimeslicegranularity the pre-
viously introduced timeslice granularity of a thread’s priority. If an interactive thread
fulfills these three conditions, the scheduler will reinsert the thread into the thread’s
priority-queue.

In the case of an energy based scheduler, a thread’s consumedenergy does not sim-
ply increase by one unit. This applies only to a thread’s remaining timeslice decreasing
after each timer tick by one unit. Therefore, it is inadequate to solely adapt the previ-
ous equation (4.1) for splitting a thread’s energy budget, because its fulfillment is very
improbable. This can be seen in the following equation:

0 ≡ Ebudgetthread
mod (Plimit · timeslicegranularity) (4.2)

Instead, we have to allow for a non-predictable increase of athread’s consumed
energy from one timer tick to another. The scheduler will split an interactive thread’s
energy budget if the thread is enqueued in the active array, and the thread’s energy
consumption fulfills the following inequation:

Econsumed ≥ (timeslicesplit +1) · (Plimit · timeslicegranularity) (4.3)

Econsumed is the energy a thread has already consumed during its quantum, and
timeslicesplit counts how often the inequation has already been fulfilled within the
quantum. Thereto, on each timer tick the scheduler checks whether the thread’s con-
sumed energy solves this inequation. If this is the case, thescheduler will increment
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timeslicesplit. Afterwards, if the thread is interactive, the scheduler has just incre-
mentedtimeslicesplit and the thread is enqueued into the active array, the scheduler
will reinsert the thread into the thread’s priority-queue.In this way, it is possible to
split a thread’s energy budget into small fragments, analogously to splitting a thread’s
timeslice.

4.6.2 Completely Fair Scheduler

For our implementation we have used the Linux 2.6.22.15 kernel. This kernel imple-
ments the presentedO(1) scheduler. From Linux kernel version 2.6.23 on, theO(1)
scheduler has been replaced by the Completely Fair Scheduler (cf. Subsection2.2.7).
To evaluate this new Linux scheduler, we have applied a patchreplacing the old sched-
uler with the CFS of the Linux 2.6.24.1 kernel. Molnar [26] has provided the patch.

The CFS uses timeslices of variable length which it dynamically determines to
realize the proportional share among the threads. Therefore, a thread’s weight extends
a thread’s timeslice length, but does not affect how often the scheduler schedules a
thread, like in the case of the other presented proportionalshare scheduling policies.
If merely one thread is runnable, the thread’s timeslice length will be unbound, until
another thread will become runnable. Therefore, CFS avoidsto check whether another
thread is eligible to be scheduled or not.

As outlined in Section4.2, we only want to update a thread’s energy profile before
scheduling the next thread, after a thread has completely received the energyEfrac or
has exhausted its energy budget. If just one thread is runnable, the scheduler will never
update a thread’s energy profile. In this case, the thread’s estimated power consumption
is equal to its average power consumption caused since its schedule. Therefore, the
scheduler must update a thread’s energy profile after the period of k timer ticks, if it
has not updated the energy profile within this period.

In addition to an unbound timeslice of a thread, the CFS has – in contrast to the
remaining proportional share scheduling policies – a two-level hierarchy for its pro-
portional share and not only one. The top-level defines the proportional share between
different groups or users, whereas the bottom-level definesthe proportional share be-
tween the threads assigned to a group or to a user. An administrator can group a user’s
threads to an administrator defined group together. We use inthe following the more
abstract concept of groups for our considerations, but theyapply for users as well.
To account the weight of all throttled threads, it is insufficient to account only their
own weight, instead the scheduler must consider the weight of the group a thread is
assigned to as well. The scheduler represents a thread’s group by a per group run-
queue, calledCFS_rq. Each group is assigned to the top-levelCFS_rq. We have
extended the data structure by a counter. This counter accounts the weight of the throt-
tled threads assigned to theCFS_rq. If the scheduler considers a thread to be willing
to receive energy, the scheduler will increment at first the counter of the thread’s group
by the thread’s own weightthreadweight. Afterwards, the scheduler will increment the
counter of the top-levelCFS_rq by threadweight · groupweight.

Thus, if a user changes a group’s share, the CFS can update thenew total weight of
the throttled threads easily. The scheduler must update thetop-level counter as follows:

countertop = countertop +(− groupweightold
+groupweightnew

) ·countergroup (4.4)

In this way, it is possible to efficiently account the weight of the throttled threads, even
in the case of a multi-level proportional share scheduling policy.
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Chapter 5

Evaluation

This chapter deals with the evaluation of our proposed design. At first, we describe our
evaluation environment, and compare the performance of ourseven examined sched-
ulers with each other. Subsequently, we evaluate whether each of these schedulers can
fulfill the demands of our designed energy policies. Afterwards, we examine whether
the proportional share scheduling policies performing ourdesigned energy transfer can
fairly partition the offered energy according to the threads’ weights. Furthermore, we
discuss the implications of I/O load on our fair energy partitioning. At last, we evaluate
the performance of our designed energy transfer.

5.1 Evaluation Environment

We evaluate the performance and fairness of our implementation on a simultaneously
multithreaded3.8GHz Pentium 4 processor with two logical processors and2GByte
memory. To preclude an influence of a load balancing mechanism for our evaluation,
we have deactivated one of the two logical processors. Due totimeslice lengths of10ms
in case of proportional share schedulers, we have set the timer frequency to1000Hz.

To analyze our design we have chosen two benchmarks of the SPEC CPU2006
benchmark suite [35]: thehmmer benchmark and thelbm benchmark (cf. Table5.1).
We have chosen these two benchmarks, because thehmmer benchmark can benefit from
thelbm benchmark if we permit energy transfers. Furthermore, thehmmer benchmark
requires more energy for its execution, but has a shorter runtime than thelbm bench-

Bencha Min PC [ W ]b Av PC [W ]c Max PC [W ]d Av RT [ s]e EC [J ]f

hmmer 106 107 110 1,209 128,700J
lbm 93 94 96 1,343 127,000J
a Benchmark
b Minimum Power Consumption
c Average Power Consumption
d Maximum Power Consumption
e Average Runtime
f Energy Consumption

Table 5.1: Benchmarks

49
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mark. This permits to explore the consequences of our energypolicies. For our consid-
erations, we only consider the energy consumption of the CPU, but not of the complete
system.

To investigate the interrupt latency induced by our enhancements, and to measure
the network performance, we have attached an Intel E1000 Gigabit network interface
card to the system. An external client and our target system execute theNetperf
benchmark [27] to generate I/O load on our system. TheNetperf benchmark has an
average power consumption of approximately100W .

5.2 Evaluation Setup

To evaluate our generic design, we have set the average powerlimit of our system to
100W and restricted the maximum capacity of a run-queue’s energybudget to300J .
We have chosen300J to permit thehmmer benchmark to exceed the power limit about
10W for 30s. In order to only compare the performance of our seven examined sched-
ulers, we have not applied these restrictions and deactivated energy accounting.

We have set the timeslice lengths of the schedulers to the following values:

Scheduler Timeslice Length [ms]

O(1) Scheduler 100
MLFQ Scheduler 5,7,10,14, . . . , 824
Round Robin (RR) Scheduler 100
SFQ Scheduler 10
Stride Scheduler 10
Lottery Scheduler 10
CFS variable

Table 5.2: Timeslice Length

The timeslice length of100msis the default timeslice length of theO(1) scheduler.
We have chosen this timeslice length for the round robin scheduler as well, and set
the timeslice length of SFQ, stride and lottery schedulers to 10msto favor I/O-bound
threads. To assign the appropriate timeslice length to eachthread, the MLFQ sched-
uler has a specific timeslice length per priority. The CFS does not have a concept of
timeslices. It determines a thread’s time of processor control dynamically.

We have proposed four different energy policies and two semantics for energy
transfers. Therefore, we have to evaluate six different energy policies. In addition,
we evaluate the performance of a per run-queue throttling policy to examine whether
we can achieve a better performance by throttling each thread individually than by
throttling the complete run-queue. The run-queue throttling policy throttles the current
thread as long as the estimated power consumption is beyond the power limit. There-
fore,hmmer’s power consumption and exceedance of the power limit can causelbm’s
throttling, resulting in an unfairness among the two benchmarks. The abbreviations of
our policies are shown in Table5.3.

The kernel does not display its output on a monitor, but sendsit through the serial
interface. This permits to log the kernel messages from an external client. To evaluate
a thread’s energy consumption, we have extended the exit system call. It transfers
to the serial interface the data how often a thread was throttled, not throttled, or its



5.3. SCHEDULER PERFORMANCE 51

Energy Policy Energy Transfer Abbrev.

Strict Power & Non-Strict Energy Limit None SPNE
Strict Power & Strict Energy Limit None SPSE
Non-Strict Power & Non-Strict Energy Limit Extended E. Budget NPNE1
Non-Strict Power & Non-Strict Energy Limit Exceeded P. Limit NPNE2
Non-Strict Power & Strict Energy Limit Extended E. Budget NPSE1
Non-Strict Power & Strict Energy Limit Exceeded P. Limit NPSE2
Run-Queue Throttling None RQTH

E. = Energy
P. = Power
Abbrev. = Abbreviation

Table 5.3: Energy Policy Abbreviations

throttling was avoided due to energy transfers. Additionally, it transmits a thread’s
runtime, consumed energy and received energy.

5.3 Scheduler Performance

Before we evaluate the fairness and performance of our design, we compare the perfor-
mance of the seven examined schedulers. Therefore, we have executed the complete
SPEC CPU2006 int and fp benchmark suite per scheduler. We have executed each
individual benchmark of the benchmark suites three times. To evaluate the overhead
caused by an individual scheduler in comparison to our reference scheduler, theO(1)
scheduler, we have selected the shortest runtime of each benchmark out of the three
runs. The overall execution times of the SPEC CPU2006 int andfp benchmark suite
are shown in Table5.4and in Table5.5, respectively.

The overhead in the following two evaluations indicates theoverhead for executing
the complete benchmark suite by a specific scheduler compared to our reference sched-
uler. Minimum and maximum overhead outline how far the performance between the
investigated and the reference scheduler drifts throughout a benchmark suite.

Scheduler Runtime [s] Ovh [%]a Min Ovh [ %]b Max Ovh [%]c

O(1) Scheduler 12511.94 0.00 0.00 0.00
MLFQ Scheduler 12522.01 0.08 -0.6 0.93
RR Scheduler 12550.15 0.31 -1.08 1.21
SFQ Scheduler 12573.78 0.49 -0.64 1.84
Stride Scheduler 12551.92 0.32 -0.62 1.51
Lottery Scheduler 12571.02 0.47 -0.46 2.19
CFS 12518.46 0.05 -0.19 2.44
a Overhead
b Minimum Overhead
c Maximum Overhead

Table 5.4: SPEC CPU2006 int Benchmark Suite
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Scheduler Runtime [s] Ovh [%] Min Ovh [ %] Max Ovh [%]

O(1) Scheduler 23459.74 0.00 0.00 0.00
MLFQ Scheduler 23508.65 0.21 -0.71 0.94
RR Scheduler 23553.68 0.40 -0.09 3.08
SFQ Scheduler 23544.92 0.36 -0.11 1.43
Stride Scheduler 23530.82 0.30 -0.70 4.03
Lottery Scheduler 23512.79 0.23 -0.75 3.45
CFS 23500.38 0.17 -0.67 1.5

Table 5.5: SPEC CPU2006 fp Benchmark Suite

For an individual benchmark, the runtime difference between the reference sched-
uler and one of the six remaining schedulers is at most about4%. The overall overhead
for executing the benchmark suite by one of the non-reference schedulers is at most
0.5% in comparison to the reference scheduler. Therefore, we expect that the later
evaluation results are comparable among the seven schedulers.

5.4 Energy Policies

In Subsection3.3.4, we have discussed the expected performance of our proposeden-
ergy policies. To expose the effect of energy transfers, we have selected thehmmer
benchmark and thelbm benchmark. We execute these benchmarks in parallel and set
the power limit to100W . If a scheduler performs energy transfers, thehmmer bench-
mark can benefit from thelbm benchmark’s lower power consumption. Independently
of performed energy transfers, we expect that a scheduler cannot completely avoid the
hmmer benchmark’s throttling.

5.4.1 Scheduler Comparison

Before we examine the impacts of the six energy policies and the run-queue throttling
policy on these two benchmarks individually, we analyze theimpacts of the energy
policies on the total execution time of this scenario. It lasts from the start of these two
benchmarks until both have finished with their execution.

Energy Policies The non-strict power limit reduces the total execution timeof this
scenario significantly as seen in Figure5.1. Depending on the scheduler, the total exe-
cution time can be reduced between3.1% and4.8% in comparison to the two policies
realizing the strict power limit.

If a scheduler’s energy policy forbids energy transfers,hmmer must spend between
8.3% and9.0% of its executed ticks for its throttling. Otherwise, if we permit energy
transfers, a scheduler will throttlehmmer at most about3.5%. Depending on the esti-
mated power consumption oflbm – it varies between93.3W and96.4W –, a scheduler
can avoid completelyhmmer’s throttling. This applies to SFQ and stride schedulers as
well as CFS while applying one of the following energy policies: NPSE1, NPNE2 or
NPSE2. If a scheduler applies one of these energy policies,lbm has a longer lasting
quantum in comparison tohmmer. Due to its longer execution time per quantum, it can
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Figure 5.1: Scheduler Comparison - Total Execution Time

offer more energy than in the case of applying the NPNE1 energy policy and there-
fore avoidinghmmer’s throttling. Applying the strict energy limit in contrastto the
non-strict energy limit and permitting energy transfers reduces the total execution time
in the case ofO(1), MLFQ, round robin and lottery schedulers. This outlines that a
fair energy partitioning does not necessarily increase thetotal execution time of several
threads.

The lottery scheduler is a probabilistic proportional share scheduling policy. Conse-
quently, the scheduling order of these two benchmarks is nondeterministic. The sched-
uler can schedule a benchmark consecutively for several quanta and not only for one
which reduces the number of context switches. If the scheduler schedules thehmmer
benchmark consecutively for several quanta,hmmer can consume up to the complete
offered energy of thelbm benchmark and enforces its own throttling. Thehmmer
benchmark must spend at most1.4% of its executed ticks for its own throttling if the
scheduler permits energy transfers. Nevertheless, due to the reduced number of context
switches, the performance of the lottery scheduler is comparable to the performance of
the remaining schedulers. Among our seven examined schedulers, the total execution
time of the two benchmarks differs at most between0.6% and1.7% for the six energy
policies. Consequently, the aim of each energy policy can beachieved independently
from a specific scheduler. To execute the two benchmarks our energy-aware sched-
ulers with the exception of the CFS scheduler require approximately3.3% more time
than an unmodified LinuxO(1) scheduler. The CFS requires3.7% more time than an
unmodified LinuxO(1) scheduler, but only2.8% more time than an unmodified CFS.
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Run-Queue Throttling Policy After we have compared the energy policies with one
another, we compare them with the run-queue throttling policy. The run-queue throt-
tling policy has been applied in the former works of Waitz [40] and Merkel [25] to limit
a processor’s power consumption and temperature, but not tolimit them per thread like
in our work. To limit a processor’s temperature, a run-queuethrottling policy is suffi-
cient, but it induces unfairness because it can throttle threads which have not consumed
more power than permitted.

If we prohibit energy transfers, the run-queue throttling policy will achieve a better
performance than our strict power limit energy policies, because the run-queue throt-
tling policy preserves a processor’s power limit over a hyper-period of several thread’s
quanta. Therefore, it will finish the execution of both benchmarks between0.5% and
3.3% earlier. In comparison to the fastest energy policy of each scheduler permitting
energy transfers, the run-queue throttling policy requires between1.0% and4.5% more
time to finish the execution of this scenario.

5.4.2 Comparison of Energy Policies

After we have compared the performance of the schedulers with one another and have
come to the conclusion that each scheduler can fulfill the aims of the energy policies,
we analyze the implications of the six energy policies on thehmmer benchmark and
thelbm benchmark. We have chosen theO(1) scheduler to evaluate the performance
of these benchmarks. The performance of the remaining schedulers is comparable.
In Figure5.2, we show the runtime of the benchmarks for each energy policy.
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Energy Policies The hmmer benchmark cannot benefit from the lower power con-
sumption of thelbm benchmark if we apply energy policies enforcing the strict power
limit. In case of the strict power limit and the non-strict energy limit energy policy,
hmmer finishes its execution earlier thanlbm, because its runtime is shorter thanlbm’s
runtime. This energy policy does not consider thathmmer consumes more energy.

In comparison to that energy policy, the strict power limit and the strict energy limit
energy policy favorslbm by extending its quantum due to its low power consumption.
Therefore,lbm finishes its execution first, because in total it consumes less energy
during its execution thanhmmer. In this particular case,hmmer requires53s longer for
its execution thanlbm. This time corresponds roughly to the greater amount of energy
(5124J) it requires.

As pointed out in Subsection3.3.3, a thread receiving offered energy will benefit
at most from the non-strict power limit and the non-strict energy limit energy policy
if the offered energy extends the thread’s energy budget. This applies to thehmmer
benchmark as well. It finishes its execution80s beforelbm finishes its execution. We
have analyzed in Subsection3.3.4that threads offering energy do not benefit from their
offered energy. Nevertheless,lbm has finished101s earlier than in the case of the
prohibited energy transfers. This results from the fact that thelbm benchmark has to
compete for processor control only for2484s and not for2648s.

The gap of80s between the two benchmarks can be diminished to36s if the sched-
uler applies the strict energy limit in contrast to the non-strict energy limit. The sched-
uler cannot achieve a fair energy partitioning, because thelbm benchmark gives its
offered energy away. If thelbm benchmark permits thehmmer benchmark to exceed
its power limit but not to extend its energy budget, the gap between the two benchmarks
can be reduced significantly.

Yet, thehmmer benchmark will still finish33s before thelbm benchmark if we
apply the non-strict energy limit. In contrast to that, thelbm benchmark will finish
41s earlier its execution than thehmmer benchmark if the offered energy is not given
away. In general, if a scheduler applies the strict energy limit in contrast to the non-
strict energy limit, the gap between these two benchmarks can be at least diminished
by about45% or thelbm benchmark can finish even earlier than thehmmer benchmark.

In the case of the deterministic proportional share scheduling policies, we cannot
recognize a significant difference between the NPNE2 and NPSE2 energy policies.
These schedulers realize a proportional share based on the threads energy consump-
tions. Therefore,lbm can execute for another time iflbm’s virtual time and energy,
respectively, are belowhmmer’s one.

Run-Queue Throttling Policy As outlined before, the run-queue throttling policy
requires more time for the execution of the two benchmarks than most of our energy
policies. This results from throttling thelbm benchmark, which has a longer runtime
than thehmmer benchmark. Thus, the drawback of the run-queue throttling policy is
that it can also throttle threads which have not exceeded thepower limit. In Table5.6,
we outline how often a scheduler has throttledhmmer andlbm during their execution.

The drawback of the run-queue throttling policy becomes most obvious in the case
of the MLFQ scheduler. It causeshmmer to be throttled in0.1% of its executed ticks
andlbm to be throttled in4.0% of its executed ticks by the scheduler. The scheduler’s
throttling oflbm further increaseslbm’s runtime. This benchmark finishes its execution
294s later thanhmmer. In the case of our energy policies,lbm finishes its execution at
most165s later thanhmmer.
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Scheduler H. Th. Ticks H. To. Ticks L. Th. Ticks L. To. Ticks

O(1) Scheduler 2700 1189484 43488 1392513
MLFQ Scheduler 1383 1194582 59553 1477219
RR Scheduler 2700 1187132 1000 1419862
SFQ Scheduler 410 1093335 600 1396696
Stride Scheduler 170 1091977 80 1391428
Lottery Scheduler 1470 1086519 1580 1398468
CFS 1475 1213850 2521 1379748

H. = Hmmer
L. = Lbm
Th. = Throttled
To. = Total

Table 5.6: Run-Queue Throttling

5.5 Proportional Share Schedulers

In contrast to round robin or MLFQ schedulers, a proportional share scheduler per-
mits to fairly partition the time of processor allocation orthe processor energy among
threads according to their weights. We want to evaluate how fairly a scheduler parti-
tions the offered energy among threads with different weights.

Therefore, we have executed twohmmer benchmarks and onelbm benchmark in
parallel. Thelbm benchmark and one of thehmmer benchmarks (hmmer-1) have
weight one and the secondhmmer benchmark has weight two (hmmer-2). The
hmmer-2 benchmark has to execute two iterations of the benchmark, instead of one
iteration like the two other benchmarks. Thus, the twohmmer benchmarks shall finish
at the same time.

In contrast to the previous scenario, the offered energy of the lbm benchmark is
insufficient to avoid a throttling of the twohmmer benchmarks, because we have set the
power limit to100W . Nonetheless, energy transfers can significantly reduce the total
execution time of this scenario as shown in Figure5.3. Among our four proportional
share scheduling policies, the total execution time of the three benchmarks differs at
most between0.2% and2.1% for the six energy policies. Due to the throttling of the
two hmmer benchmarks, our energy-aware schedulers require at most2.0% more time
for the execution of the three benchmarks than an unmodified CFS.

The run-queue throttling policy requires between1.1% and2.6% more time for the
execution of this scenario than our energy policies permitting energy transfers. This
applies to each of the four schedulers. Like in the previous scenario, the run-queue
throttling policy will finish the execution of this scenarioearlier if we apply the strict
power limit.

After we have analyzed the total execution times, we exemplarily analyze the run-
times of the individual benchmarks for the stride scheduler. The results of the three
remaining schedulers are comparable for the six energy policies and the run-queue
throttling policy.

Energy Policies If we apply the extended energy budget energy transfer, the two
hmmer benchmarks will finish earlier thanlbm. Thelbm benchmark will finish earlier
its execution than the twohmmer benchmarks if we apply the exceeded power limit
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Figure 5.3: Proportional Share Scheduler Comparison - Total Execution Time

energy transfer. It benefits from a fair energy partitioning. If we apply the NPSE2
energy policy, it will finish76s beforehmmer-2 and95s beforehmmer-1. The gap
between thehmmer benchmarks and thelbm benchmark will be larger, if we apply
the strict power limit and the strict energy limit energy policy. In this case, thelbm
benchmark will finish159s beforehmmer-2 and170s beforehmmer-1.

Run-Queue Throttling Policy As outlined before, our seven schedulers can achieve
a better performance if they apply our energy policies permitting energy transfers in
contrast to applying the run-queue throttling policy. The run-queue throttling pol-
icy causes a performance degradation, because it throttlesthe lbm benchmark. This
benchmark has to spend between4.4% and9.6% of its executed ticks for its throttling.
Therefore,lbm finishes its execution between165s and308s after the slower one of
the twohmmer benchmarks has finished its execution.

Energy Policies At last, we compare the twohmmer benchmarks with each other. To
examine whether a fixed timeslice length is a drawback in comparison to a timeslice
of variable length, we examine the performance of the stridescheduler and the CFS.
For comparing the twohmmer benchmarks with each other, we consider the following
ratios: runtime, consumed energy (energy sum), received energy, throttled ticks, not
throttled ticks and avoided throttled ticks due to energy transfers. The run-queue throt-
tling policy does not transfer energy, therefore we have setthe ratios received energy
and avoided throttling to zero. We outline the first three ratios in Figure5.4 and the
latter three ratios in Figure5.5.
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Figure 5.4: Proportional Share Scheduler Comparison - Hmmer Ratios Part 1

The ratios runtime and amount of consumed energy correspondto the ratio of the
two hmmer benchmarks’ weights, independently from the applied energy policy or the
scheduler. In the case of the stride scheduler the ratio received energy does not corre-
spond to the ratio of the twohmmer benchmarks. Thehmmer-2 benchmark receives
more than twice the energy of thehmmer-1 benchmark. Therefore,hmmer-2 will fin-
ish43s, 13s, 18s and19s earlier than the other benchmark if we apply NPNE1, NPSE1,
NPSE1, NPNE2 and NPSE2 energy policies, respectively. The43s, 13s, 18s and19s

correspond to runtime ratios of1.97, 1.99, 1.98 and1.98, respectively. These ratios
result from the fixed timeslice length of the stride scheduler. To achieve a proportional
share among the threads, it schedules a thread havingk times the weight of another
threadk times more often. The thread with a higher weight has a greater chance to
receive the offered energy. This, however, does not apply tothe CFS, because this
scheduler uses timeslices of variable length and thereforedoes not schedule a thread
more often than another one. Consequently, each thread receives its designated offered
energy.

Considering the ratios throttled, not throttled and avoided throttling, one can see
that these ratios vary significantly. If the stride scheduler throttles thehmmer-2 bench-
mark less than twice as often as thehmmer-1 benchmark,hmmer-2 will receive a
bigger share of offered energy than expected. This does not affect the ratios runtime
and energy sum significantly, because thehmmer benchmarks must spend at most5.3%
of their timer ticks for their throttling. Consequently, our proposed energy transfer in
combination with our energy policies achieve to partition the energy among threads
fairly according to their weights.
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Figure 5.5: Proportional Share Scheduler Comparison - Hmmer Ratios Part 2

Run-Queue Throttling Policy If we apply the run-queue throttling policy, the gap
between the twohmmer benchmarks will be19s, 40s, 3s and72s when the benchmarks
will be executed by SFQ, stride, lottery and completely fairschedulers, respectively.
This gap will result from throttlinghmmer-2 not twice as often ashmmer-1. In the
case of the CFS, the gap betweenhmmer-2 andhmmer-1 is 72s, because CFS ex-
ecuteshmmer-2 twice as long ashmmer-1, but not twice as often as the remaining
schedulers. Hence,hmmer-2 can benefit twice as long fromlbm’s throttling and lower
power consumption ifhmmer-2 is scheduled right afterlbm. Therefore,hmmer-1 is
throttled1.5 times more often thanhmmer-2. The other schedulers throttlehmmer-2
between1.4 and2.4 times more often thanhmmer-1.

5.6 Interactive Tasks

In the previous sections, we have evaluated the performanceof CPU-bound tasks, but
have not considered I/O-bound tasks. To analyze how an I/O-bound thread affects our
proposed fair energy partitioning, we execute theNetperf benchmark [27] as well as
hmmer andlbm in parallel. We set once again the power limit to100W . TheNetperf
benchmark sends as many data packages as possible from an external client to our
system within10s. Afterwards, it returns the average throughput achieved within this
time. The benchmark executes over and over again until thehmmer benchmark and
thelbm benchmark have finished with their execution. An unmodified Linux system
can achieve a throughput of approximately852Mbit

s
. We analyze in the following two
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subsectionsNetperf’s throughput and the implications of the generated I/O loadon
thehmmer benchmark and thelbm benchmark.

5.6.1 Netperf Throughput
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Figure 5.6: Scheduler Comparison - Netperf Performance

CFS as well asO(1) and MLFQ schedulers achieve the throughput of the unmod-
ified O(1) Linux scheduler of about852Mbit

s
. Stride and SFQ schedulers achieve the

highest throughput of about880Mbit
s

, whereas the round robin scheduler achieves the
lowest throughput of about35Mbit

s
as shown in Figure5.6. With the exception of the

SFQ scheduler, these six schedulers have in common that the variation of through-
put does not depend on the applied energy policy. Merely the throughput achieved by
lottery and SFQ schedulers varies substantially.

SFQ and lottery schedulers will achieve a throughput of approximately759Mbit
s

and
825Mbit

s
, respectively, if the scheduling decision is based on the thread’s execution time

(SPNE and NPNE1) and of about880Mbit
s

and830Mbit
s

, respectively, if the schedul-
ing decision is based on a thread’s energy consumption (SPSE, NPSE1, NPNE2 and
NPSE2). To benefit I/O-bound threads, the SFQ scheduler increases a thread’s virtual
time only by the fraction of a thread’s timeslice the thread has executed for. If the SFQ
scheduler measures a thread’s period of execution in coarse-grained timer ticks, it will
overestimate a thread’s execution time. An overestimated execution time causes that a
thread’s virtual time increases further than necessary. This will be not the case, if the
SFQ scheduler measures a thread’s execution time in nanoseconds. Then, the scheduler
schedulesNetperf more frequently, which increasesNetperf’s throughput.
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Similar to the SFQ scheduler, the lottery scheduler benefitsfrom measuring a
thread’s execution time in nanoseconds and not in timer ticks, because it has to deter-
mine the fraction of a thread’s timeslice a thread has executed for. The lottery scheduler
requires this fractionf , because it scales a thread’s tickets with the factor1

f
to increase

an I/O-bound thread’s chance to be elected the next time the thread becomes runnable.
The CFS and our implementation of the stride scheduler measure a thread’s execu-

tion in nanoseconds, therefore they do not suffer from the problem of an overestimation
of a thread’s execution time. This outlines that measuring athread’s execution time in
timer ticks is to coarse-grained for proportional share policies.
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Figure 5.7: Scheduler Comparison - Total Execution Time of Hmmer and Lbm While
Executing Netperf

Although the CFS is not a priority based scheduler, it will favor I/O-bound threads
by inserting them at the front of the scheduling timeline if athread has slept just for a
short period of time. Due to the high rate of interrupts caused by theNetperf bench-
mark, the benchmark sleeps only for a short period of time andtherefore preempts the
currently executed thread to handle the outstanding interrupts. In the case ofO(1) and
MLFQ schedulers, theNetperf benchmark has a higher priority thanhmmer andlbm
and thus preempts these ones.

Contrary, SFQ, stride, round robin and lottery schedulers do not preempt the current
thread and therefore delay the interrupt handling. How longthe delay lasts, depends
on the number of threads in the run-queue and the scheduler’stimeslice length. The
timeslice length of100msof the round robin scheduler delays the interrupt handling
considerably. The achieved throughput is simply about35Mbit

s
.
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Although SFQ, stride and lottery schedulers all have a timeslice length of10ms, the
throughput gap between the lottery scheduler (below840Mbit

s
) on the one hand and the

stride and SFQ schedulers (880Mbit
s

) on the other hand is noticeable. The gap results
from lotteries passing until the scheduler elects theNetperf benchmark to be sched-
uled. SFQ and stride schedulers permit theNetperf benchmark to achieve a better
performance than852Mbit

s
, becauseNetperf can handle more outstanding interrupts

when they execute it, which reduces the overhead. In case of SFQ, stride and lottery
schedulers,Netperf’s throughput will decrease ifNetperf has to compete with more
than the two benchmarks for processor control, because it isscheduled less frequently
and therefore loses interrupts. As pointed out in Subsection 5.4.2, one cannot recognize
a significant performance difference between the NPNE2 and NPSE2 energy policies.
Therefore, the throughput for the two policies is comparable.

To evaluate the overhead caused by the logic of our energy policies and by the en-
ergy accounting mechanism, stride and SFQ schedulers are inappropriate. They delay
the interrupt handling and thereby achieve the highest throughput among the sched-
ulers. Therefore, we think that CFS as well asO(1) and MLFQ schedulers are better
indicators for the overhead. We cannot notice a throughput loss, but an increase of the
runtimes ofhmmer andlbm. For the execution of both benchmarks,O(1) and MLFQ
schedulers require2.4% and3.2% more time, respectively. The overhead of the CFS
is more significant. It requires9.4% and7.1% more time for the execution of this
scenario than the unmodifiedO(1) scheduler and CFS, respectively.

5.6.2 Benchmark Runtime

After we have stated that the throughput of theNetperf benchmark depends on the
scheduler and its timeslice length, but not on the energy policy, we analyze the impli-
cations of the generated I/O load on thehmmer benchmark and thelbm benchmark.

Energy Policies Energy transfers can decrease with one exception the total execu-
tion time of this scenario at least about0.3% and at most about5.3% as shown in
Figure5.7. If the CFS applies the NPNE1 energy policy, it will increasethe total ex-
ecution time of this scenario about1.2% in comparison to applying the SPNE energy
policy. In Section5.1, we have pointed out that the runtime of thelbm benchmark is
longer than the runtime of thehmmer benchmark. Hence, the generated I/O load affects
thelbm benchmark more seriously than thehmmer benchmark, becauselbm’s execu-
tion is interrupted more often, and in the case of schedulersfavoring I/O-bound threads
preempted more often. Although preempting the current thread assures a quicker han-
dling of the outstanding interrupts, it degrades the throughput and increases the total
execution time of the two benchmarks. The throughput degradation and increase of the
total execution time result from the additionally requiredaddress space switches and
from estimating the threads’ energy consumptions.

Due to these drawbacks, it depends on the scheduler whether thelbm benchmark
finishes earlier than thehmmer benchmark in the case of SPSE or NPSE2 energy poli-
cies. Nevertheless, all schedulers have in common that theycan reduce the gap between
hmmer andlbm if we apply the strict energy limit. Thus, even in the case of I/O-bound
threads, our strict energy limit energy policies favor thelbm benchmark as intended.

Run-Queue Throttling Policy The performance of the run-queue throttling policy
is comparable to the performance of the NPSE1 energy policy.This applies to the
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individual runtimes of the two benchmarks as well to the total execution time of both
benchmarks. The runtimes vary at most about1.8%.

5.7 Evaluation of Energy Transfer

At last, we evaluate the performance of our examined schedulers applying the non-strict
energy limit and the strict energy limit. These two policiesdo not limit a processor’s
power consumption. We want to ascertain whether our energy policies permitting en-
ergy transfers and preserving a power limit of100W can achieve – due to the energy
transfers – the performance of the non-strict energy limit and the strict energy limit not
applying a power limit.

The non-strict energy limit preempts a thread at the latest after the thread has exe-
cuted for the period of its timeslice, the strict energy limit executes a thread until the
thread has consumed the energy of its energy budget. To evaluate the performance of
the schedulers applying the strict energy limit, we have setthe power limit to100W .
This power limit does not cause a thread’s throttling, it is only required to define a
thread’s energy budget (3.1). We compare the results of the schedulers applying the
non-strict energy limit and the strict energy limit with theresults achieved by the sched-
ulers applying our energy policies preserving the power limit of 100W . Our energy
policies prohibiting energy transfers and therefore strictly preserving the power limit
cannot achieve the performance of the non-strict energy limit and the strict energy lim-
its, because they must throttlehmmer to preserve the power limit. This applies to each
of the previously discussed scenarios.

Energy Policies In our first scenario, we have only executed thelbm benchmark
and thehmmer benchmark in parallel. If we apply the non-strict energy limit, most
of the examined schedulers applying our non-strict energy limit energy policies will
require between0.2% and 1.5% more time to execute both benchmarks. The CFS
and the stride scheduler can decrease the total execution time about0.8% and0.4%,
respectively. If we apply the strict energy limit energy policies, the schedulers can
reduce the execution time between0.9% and3.3%. Depending on the scheduler, our
energy policies can decreaselbm’s runtime at most about3.3%, or increaselbm’s
runtime at most about1.5% in comparison to the schedulers applying non-strict or strict
energy limits. In contrast tolbm, the non-strict energy limit energy policies cannot
decreasehmmer’s runtime. NPNE1 energy policies increase the runtime between0.1%
and3.8%, whereas NPNE2 energy policies increase the runtime between 4.1% and
6.7%. The overhead caused by the NPNE2 energy policies results from their shorter
quanta to favor thelbm benchmark. Our strict energy limit energy policies can decrease
the runtime ofhmmer between0.9% and6.1%.

Proportional Share Schedulers We have executed twohmmer benchmarks and one
lbm benchmark in parallel in our second scenario. Onehmmer benchmark has weight
two (hmmer-2), the other two benchmarks have weight one (hmmer-1 andlbm-1).
Each of the latter benchmarks has to execute one iteration ofits benchmark, whereas
hmmer-2 has to execute two iterations of its benchmark.

Our non-strict energy limit energy policies permitting energy transfers require be-
tween1.0% and3.1% more time to finish the execution of these three benchmarks.
The overhead results from throttling the twohmmer benchmarks, it cannot be com-
pletely prevented by the offered energy of thelbm-1 benchmark. In the case of our



64 CHAPTER 5. EVALUATION

non-strict energy limit energy policies, the overhead varies between2.0% and2.6%.
In Figure5.8, we outline the runtime of the three benchmarks for each scheduler. At
first, each scheduler has applied the non-strict energy limit which preempts each thread
after exhausting its timeslice. Afterwards, each scheduler has applied the strict energy
limit which executes a thread until it has exhausted its energy budget. One can see that
each scheduler fulfills the demands of the strict energy limit, and that the strict energy
limit can mostly reduce the total execution time of this scenario.

lbm-1
hmmer-2
hmmer-1

Scheduler & Policy

T
im

e
[s

]

CFS
SE

CFS
NE

Lottery
SE

Lottery
NE

Stride
SE

Stride
NE

SFQ
SE

SFQ
NE

5200

5100

5000

4900

4800

4700

Figure 5.8: Proportional Share Scheduler Comparison - Execution Time Non-Strict
Energy Limit & Strict Energy Limit

Interactive Tasks In our third scenario, we have executedNetperf, hmmer andlbm
benchmarks in parallel.O(1) and MLFQ schedulers applying our non-strict energy
limit energy policies can reduce the total execution time ofhmmer andlbm about0.3%
and0.1%. The remaining schedulers cause an overhead between2.0% and4.6%. With
the exception ofO(1) and MLFQ schedulers, the schedulers will increase the total
execution time of the benchmarks at most about3.9% if we apply the strict energy
limit energy policies. O(1) and MLFQ schedulers applying our strict energy limit
energy policies reducelbm’s execution time about0.6% and0.7%, respectively, and
hence also the total execution time about0.6% and0.7%, respectively. As discussed
previously, the throughput ofNetperf cannot be significantly affected by our energy
policies, instead it depends on a specific scheduler. This also applies to the case of
not throttling our benchmarks. Therefore, theNetperf results are comparable to the
results of our energy policies and not discussed further.



Chapter 6

Related Work

In this chapter, we present two approaches to account the energy consumption of activ-
ities in a client-server environment appropriately, and torealize a fair energy partition-
ing among activities. These approaches are similar to our energy policies realizing the
strict power limit combined with the strict energy limit as well as the non-strict power
limit combined with the non-strict energy limit.

6.1 Energy Containers

An energy container is an abstract kernel entity, permitting to account and to limit the
energy consumption caused by a specific activity [6]. It is based on the concept of
resource containers [4].

A resource container permits to account the usage of resources by a thread’s activity
in a client-server environment. Thereto, a resource container – initially bound to its
creator – can be bound to several threads, and one thread can be bound to several
resource containers. Thus, a thread’s protection domain isno longer the limitation
to account an activity’s resource usage. It is possible to realize a proportional share
among resource containers, because each resource container has a share defining the
fraction of resource allocations it gets from its parent. The parent-child relationship
among resource containers defines a hierarchy among the resource containers.

Each energy container has an assigned amount of energy. Energy containers can
consume this energy within an epoch. An epoch is a period of time after which a sched-
uler refreshes an energy container [47]. By limiting the energy consumption of the root
energy container, an exceedance of a processor’s temperature above a threshold can
be prevented, because the child containers can at least consume the energy of the root
container. Bellosa et al. propose to penalize threads having high power consumptions
and to favor threads having low power consumptions by adjusting the timeslice length
of a thread. A scheduler assigns shorter timeslices to threads having high power con-
sumptions and assigns longer timeslices to threads having low power consumptions.
This is very similar to our approach of the strict power limitcombined with the strict
energy limit.

The major difference between the approach of energy containers and our approach
is that if all energy containers have run out of energy, the processor will stop the en-
ergy containers’ activities and will enter a low power stateto reduce its power dissi-
pation [6]. The energy consumed by the processor’s low powerstate is not assigned
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to the energy containers which have average power consumptions beyond the power
limit and have caused the processor’s throttling. Thus, a scheduler does not consider
the contribution of throttling an energy container to an energy container’s energy con-
sumption. We instead do not exceed a thread’s energy budget,by throttling a thread
as soon as the thread’s estimated power consumption exceedsthe power limit, and by
assigning the energy caused during a thread’s throttling tothe thread itself. Hence, the
approach of energy containers forbids an accurate and fair energy partitioning.

6.2 ECOSystem

ECOSystem is a system [47] to manage energy as a first class resource. Like the energy
containers it is based on the concept of resource containers. The resource containers,
however, are not based on energy, instead they are based on acurrentcymodel to ac-
count the energy consumption of an activity. The term currentcy is a combination of
the terms current and currency.

In contrast to assigning an amount of energy to an energy container, the currentcy
model assigns a number of currentcy units to a resource container. A currentcy unit
corresponds to a defined amount of energy which a resource at most must consume
within a pre-defined time limit. If a thread does not consume all of its currentcy units,
it can accumulate them. Nevertheless, the ECOSystem restricts the accumulation to
avoid high peaks of power consumptions in the future. This approach is similar to
our non-strict power limit and non-strict energy limit energy policy, but instead of
accumulating the energy per thread, we will accumulate it per run-queue if we permit
energy transfers.

If a thread runs out of currentcy before the kernel refreshesthe resource container,
the kernel will stop the thread’s execution and will enter a low power state. Thus,
an accurate and fair energy partitioning is impossible likein the case of the energy
containers. They divide the time into energy-epochs as well. After each energy-epoch,
a kernel thread distributes the total currentcy among the resource containers according
to the shares of the resource containers. By defining the total currentcy which the
system can distribute per energy-epoch, the system’s average power consumption can
be regulated.

The main difference between the ECOSystem and the concept ofenergy containers
is the handling of threads having power consumptions below the power limit. ECOSys-
tem permits to accumulate the non-consumed currentcy, whereas the energy containers
extend the timeslices of these threads.

Because the ECOSystem merely limits the amount of currentcyand energy, respec-
tively, which a thread can accumulate, but not all threads together can accumulate, it
cannot prevent that threads raise a processor’s temperature above a threshold. This can
happen if threads consume their accumulated energy together in a short period of time.



Chapter 7

Conclusion

At first, we outline in this chapter our achievements. Afterwards, we give a short
summary of our thesis, and point out possible directions of future work.

7.1 Achievements

In this thesis, we have proposed a generic design to enhance general purpose schedulers
to become fair energy-aware schedulers. These schedulers can fairly partition the sys-
tem’s energy as well as preserve a pre-defined power limit. Each thread preserves the
power limit individually, to preclude drawbacks for other threads caused by its power
consumption. In contrast to the former works in the field of fair energy partition-
ing [6,47], we consider the energy consumed during a thread’s throttling, to assure that
a thread does not consume more energy as permitted in a periodof time. This permits
data centers to base their accounting not only on the time of processor control, but also
on the caused energy consumption. The main contribution of this work is the design
of a fair energy transfer to exhaust a processor’s power limit over the period of several
threads’ quanta. It allows threads having power consumptions beyond the power limit
to benefit from threads having power consumptions below the limit, while assuring a
fair energy partitioning. We have achieved that our energy-aware schedulers can fairly
partition the transferred energy among the receiving threads according to each thread’s
weight. Our energy policies applying the strict energy limit are capable of favoring
energy efficient threads by extending their period of execution in contrast to energy
inefficient threads. Thereby, it is unimportant whether thethreads are CPU-bound or
I/O-bound. By throttling each thread individually and permitting energy transfers, we
achieve a better performance than by throttling the complete run-queue of a processor.

7.2 Summary

General purpose schedulers are only responsible for fairlypartitioning the processor
control among the threads. They do not consider the resourceutilization caused by
a thread during its schedule, although the resource utilization can also affect other
threads. For a fair partitioning of processor assignment they should consider it.

We have proposed in this thesis a generic design to enhance schedulers to take
a thread’s energy consumption into account for their scheduling decisions to become
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fair energy-aware schedulers. These enhanced schedulers offer four different energy
policies. All four energy policies have in common that they can limit a processor’s
power consumption in order to avoid exceeding a processor’spower limit or raising its
temperature above a threshold.

Out of these four policies, two realize a fair energy partitioning by executing a
thread until it has consumed its assigned energy. The two other policies preempt a
thread at the latest after it has executed for the time of its timeslice to increase the
system’s reactivity and to discard the remaining energy assigned to a thread.

Furthermore, two of our four proposed policies – one realizing a fair energy par-
titioning and the other one not – request of each thread not toraise its average power
consumption beyond the pre-defined power limit, which prohibits to accumulate en-
ergy. The two remaining energy policies will permit threadsto exceed the power limit
if other threads have average power consumptions below the limit. This permits to
transfer energy among threads for exhausting a processor’spower limit. Due to the en-
ergy transfers, a scheduler does not preserve the power limit over a thread’s quantum,
but over a hyper-period of several threads’ quanta. The non-consumed energy cannot
only be consumed later on by the thread itself, but also by other threads. Our per run-
queue energy budget prevents that threads can cause an exceedance of a processor’s
temperature threshold. To assure that threads with the samecharacteristics receive the
same amount of energy, the scheduler fairly partitions the offered energy before the
threads willing to receive the energy may receive it.

We have shown that the fairness of the individual energy policies does not depend
on a specific scheduler. To evaluate the fairness of the different energy policies, we
have executed two benchmarks in parallel, while one benchmark has an average power
consumption above the power limit and the other benchmark has an average power
consumption beneath the power limit. If the energy policiespermit the first benchmark
to benefit from the latter’s power consumption, the two benchmarks will finish earlier
with their execution, because they exhaust the processor’spower limit. Otherwise, the
processor’s average power consumption is below the pre-defined power limit. More-
over, our evaluation has shown that an instance of a thread with k times the weight of
another instance, also receivesk times the amount of offered energy as requested by our
fair energy transfer. In summary, each scheduler can achieve a fair energy partitioning,
thereby it is unimportant whether a scheduler permits or prohibits energy transfers.

7.3 Future Work

Although we have designed a per run-queue fair energy partitioning, we have evalu-
ated our design only on a uni-processor system to preclude side-effects from the load
balancing mechanism. The side-effects of different migration strategies of a load bal-
ancing mechanism should be considered in order to design a multi-processor capable
fair energy-aware scheduler. Furthermore, more appropriate dynamic thermal manage-
ment mechanisms like throttling should be considered for reducing a thread’s power
consumption. Especially, quickly changing power consumptions caused by throttling a
processor only for one timer tick should be avoided in order not only to be an energy-
aware scheduler for servers, but also for battery based systems. Our proposed throt-
tling mechanism is not applicable for battery based systems, because a non-constant
discharge rate reduces the capacity of a battery substantially [24]. To increase the en-
ergy saving or to offer more energy to threads willing to receive it, a scheduler should
select each thread’s appropriate voltage and corresponding frequency [29,30,44]. The
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increased overhead caused by the voltage switches should beacceptable for today’s
processors [19].

Although preserving the power limit per thread is adequate for systems without
client-server interactions, preserving the power limit per resource [4] or energy con-
tainer [6] can be an advantage in client-server environments. Data centers, in particu-
lar, can benefit from accounting the energy consumption caused by an activity, by per-
mitting energy transfers between different activities to exhaust the pre-defined power
limit.
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Appendix A

Power Limit

A throttling mechanism assures that the average power consumption of a thread and of
a processor is not raised above a pre-defined power limit. As outlined in our design,
a scheduler will strictly preserve the power limit if it forbids energy transfers. Thus,
each thread has to preserve the power limit during its quantum, and threads having
power consumptions above the power limit cannot benefit fromthreads having power
consumptions beneath the limit. If we loose the requirementof preserving the power
limit over the period of a thread’s quantum, and it must be merely met over a hyper-
period of several threads’ quanta, a scheduler can transferenergy.

In the following two sections of this chapter, we discuss strict and non-strict power
limits in detail. Besides, we present how a scheduler can determine the amount of
offered energy for energy transfers, and outline how a scheduler can assure that a thread
receives at most the amount of offered energy assigned to it.

In order to discuss the differences between these two power limits, we distinguish
the following three courses of power consumptions in the subsequent sections of this
chapter:

1. A thread has continuously a power consumption below the power limit.

2. A thread has continuously a power consumption beyond the power limit.

3. A thread has partially a power consumption above the powerlimit.

A.1 Strict Power Limit

Case 1 A scheduler should preserve the strict power limit over the period of a thread’s
quantum. It inherently strictly preserves the limit, because a thread has a power con-
sumption below the power limit.

Case 2 The power consumption would cause a constant violation of the power limit.
Thus, a scheduler must throttle a thread if the thread has a power consumption beyond
the power limit, in order to meet the pre-defined power limit.This throttling lasts until
the thread’s power consumption is below the allowed limit. During a thread’s quantum,
a thread’s throttling and its execution can alternate several times. Hence, the average
power consumption of a thread should be – after its quantum – equal to the power limit.
The partially lower power consumption of the thread does notresult from its execution,
it is only caused by the throttling mechanism.
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Case 3 In distinction to a lower power consumption caused by the throttling mech-
anism, a thread itself can cause its lower power consumption. It has only partially
a power consumption above the allowed power limit. Depending on the course of
a thread’s power consumption, it is possible that the accounted power consumption
never violates the power limit although it does happen, because a scheduler cannot ac-
count the power consumption constantly. In this case, the average power consumption
during a thread’s quantum is at most equal to the power limit,otherwise a scheduler
must throttle a thread during the thread’s execution. This assures that a scheduler can
strictly preserve the power limit.

A.2 Non-Strict Power Limit

The major difference between the strict power limit and the non-strict power limit is
the permitted energy transfer in the latter case. Therefore, we loose the requirement to
preserve the power limit over a thread’s quantum, and we allow to preserve the power
limit over a hyper-period of several threads’ quanta. Due tothe maximum capacity of a
run-queue’s energy budget (cf. Subsection3.4.3), the hyper-period does not need to be
limited, additionally. To point out which thread can offer energy for energy transfers
and how much energy a thread may receive of the offered energy, we consider the three
courses of power consumption previously outlined.

Case 1 A thread has continuously a power consumption below the power limit. Con-
sequently, a thread has not consumed as much energy as allowed by the power limit.
This non-consumed energy can a scheduler now partition, offer and transfer among all
threads or only among a subset of threads of the run-queue. Itis defined as

Eoffered = (Plimit − Paverage) · tquantum (A.1)

while Plimit is the pre-defined power consumption limit andPaverage a thread’s ac-
counted average power consumption during its quantumtquantum.

Case 2 This type of thread will have continuously a power consumption beyond the
power limit if a scheduler does not throttle it. The share of the fraction or the complete
fraction a thread receives of this offered energyEfrac may a thread only use for exceed-
ing the power limit during its quantum. After each timer ticka scheduler accounts a
thread’s energy consumptionElast tick. The following equation will be true, if a sched-
uler does not throttle a thread of this type. It shows that theenergy consumption caused
within the periodtlast tick between the last and the current timer tick is greater than the
allowed consumption due to the power limit:

Elast tick > Plimit · tlast tick = Elimit tick (A.2)

A scheduler does not need to throttle a thread as long as the thread has not consumed
the complete fraction of the offered energyEfrac assigned to it. Therefore, a scheduler
increases on each timer tick the amount of energyEreceivei−1 a thread has received
during the previousi − 1 timer ticks by the received energyElast tick − Elimit tick the
thread has received during itsith timer tick. A thread must not receive more energy
than offered to it (Efrac), thereforeEreceivei

must be limited byEfrac, as outlined in
the next equation:

Ereceivedi
= min{Ereceivedi−1 + (Elast tick − Elimit tick), Efrac} (A.3)



A.2. NON-STRICT POWER LIMIT 73

After a thread has received its assigned fraction of offeredenergy and may there-
fore exceed the power limit no longer, its power consumptionmust meet the power
limit. Its current power consumption is above the power limit due to the received en-
ergy which has permitted the thread to exceed the pre-definedpower limit. Depending
on the mechanism to account a thread’s power consumption, the mechanism considers
a thread’s power consumption caused during the energy transfer for a thread’s cur-
rent power consumption. In this case, a scheduler would throttle the thread until the
thread’s power consumption would be beneath the power limit, but we do not desire
this. Only the power consumption should be considered to meet the power limit caused
after the energy transfer. Therefore, a scheduler must assure that the previous power
consumption has no longer any impact on a thread’s accountedpower consumption.

If a thread has not completely consumed the amount of energyEfrac before it loses
processor control, a scheduler can offer the non-consumed energy of a thread’s fraction
Efrac −Ereceived to other threads. Furthermore, if a thread’s power consumption is be-
yond the permitted power limit due to performed energy transfers, the thread’s received
energy must not cause the thread’s throttling later on.

Case 3 As outlined in regard to the strict power limit, the average power consumption
of a thread can be below the power limit, although a thread haspartially violated the
power limit. It would be a drawback for the further executionof such a thread if
we assume a thread’s current power consumption to be equal tothe permitted power
limit after its quantum. Consequently, we may only assume that a thread’s power
consumption is equal to the power limit if it is a benefit for a thread.

A thread of this type partially exceeds the power limit, hence equation (A.2) can be
true from time to time. Only if this equation is true, the estimated power consumption
exceeds the power limit andEreceived < Efrac, a thread may receive energy. If this
equation is true but a thread’s accounted power consumptiondoes not exceed the power
limit, an energy transfer will be unnecessary.

Another difference between threads consuming steadily or only partially more
power than allowed is that the average power consumption of the latter allows an energy
transfer. This will be obvious for the case if a thread’s average power consumption is
below the power limit, in spite of performed energy transfers. Nevertheless, it is even
mandatory if a thread’s average power consumption is above the power limit, but it
had a partial power consumption beneath the power limit as well. Otherwise, the non-
consumed energy caused by a thread’s power consumption below the limit would not
be offered to other threads for exhausting the processor’s power limit. Instead, the per-
formed energy transfers decrease the amount of offered energy. Next, we outline how
we can assure that a thread’s received energyEreceive does not reduce the amount of
energy it can offer to other threads.

In order to account that a thread can receive energy as well asoffer energy, because
it has partially a power consumption below the limit, we mustconsider a thread’s re-
ceived energyEreceive if we offer a thread’s non-consumed energy. This received en-
ergy does not only have to be considered for the case of an average power consumption
beyond the limit but also beneath, because the received energy has raised the average
power consumption of both.

After a thread has executed for its quantumtquantum, a scheduler can transfer the
following energyEoffered to other threads:

Eoffered = (Plimit − Paverage) · tquantum + Ereceived (A.4)
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In contrast to the preceding definition ofEoffered in (A.1), we have considered the re-
ceived energy. In the case of threads continuously consuming less power than allowed
during their execution, their received energyEreceived is zero. Therefore, the more
general equation (A.4) applies to them.

To point out why the latter equation is necessary, we have changed thread’sTh3

course of its power consumption in comparison to the previous examples. The thread
still has an average power consumption of2L

3 , but at first it receives a share of thread
Th2’s offered energy. In FigureA.1 we have applied equation (A.1) and in FigureA.2
we have deployed the last equation. We outline in the first example that threadTh3

receives energy, but does not offer this received energy again. This causes that thread
Th4 is throttled more often in comparison to the latter example,which considers the
received energy.

Figure A.1: Non-Strict Power Limit Without Considering Received Energy

Figure A.2: Non-Strict Power Limit With Considering Received Energy



Appendix B

Run-Queue Energy Budget

We have proposed in Subsection3.4.2a design to partition the offered energy fairly
among threads. To partition the offered energyEoffered only among threads eligible
to be scheduled and willing to receive the energy, we have restricted the number of
receiving threads tothreadsreceive as outlined in Subsubsection3.4.2.1. If we do not
adjust the number of receiving threads, a scheduler will partition the offered energy
among alln threads of a run-queue. Therefore, even if the offered energy is sufficient
to fulfill each thread’s request to receive the amount of offered energy to achieve its
best performance, a scheduler cannot fulfill the requests after the first run, because it
partitions the energy among all threads of a run-queue. Consequently, the receiving
threads have only consumed a fraction of the offered energy after a run, the remaining
offered energy of a run offers a scheduler during the next run. We will prove at next that
at the latest aftern2 runs –n is the number of threads of a run-queue – a scheduler can
fulfill each thread’s request if the offered energy is sufficient to fulfill their requests.

Theorem If a scheduler fairly partitions the offered energy, as outlined in Subsec-
tion 3.4.2, and the offered energy is sufficient to fulfill each thread’srequest to receive
the amount of offered energy to achieve its best performance, a scheduler can fulfill
each thread’s request at the latest aftern2 runs.

Proof We assume without loss of generality (w.l.o.g.) that the threadsTh1 to Thk

offer energy and the threadsThk+1 to Thn receive the offered energy. The offered
energy is sufficient to fulfill the receiving threads requests. To assure that a scheduler
has not to offer more energy as later on received by the requesting threads, we assume
that the offered energyE1 up to Ek of the firstk threads is equal to the requested
energyEk+1 up toEn of the lastn − k threads:

Eoffered = E1 + · · · + Ek
︸ ︷︷ ︸

k threads offering energy

= Ek+1 + · · · + En
︸ ︷︷ ︸

n−k threads receiving energy

(B.1)

After the first run, the threadsThk+1 to Thn have consumedEconsumed1
energy of

the offered energy. A scheduler partitions the energy amongall n threads, but not only
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among then−k threads requesting the energy, therefore it is not possibleto fulfill each
thread’s request.

Eoffered ≥ min
k+1≤i≤n

{Ei,
Eoffered

n
}(n − k)

= Econsumed1
(B.2)

In order to prove the correctness of our theorem, we have to distinguish between
the two borderline cases:

1. (n − k − 1) requests can be fulfilled, but one request cannot be fulfilled.

2. (n − k) requests cannot be fulfilled.

These two borderline cases are important, because they willreveal the worst case num-
ber of runs required to fulfill each thread’s request.

Case 1 W.l.o.g. we assume that a scheduler can fulfill the requests of the threads
Thk+1 up to Thn−1. Only thread’sThn request cannot be fulfilled by a scheduler.
Additionally, we assume that only threadThn requires energy. This can happen if
the threadsThk+1 up to Thn−1 have power consumptions equal to the power limit
and neither offer nor receive energy. Therefore, this permits to evaluate the worst case
number of runs until a scheduler can fulfill each thread’s request:

Ek+1 = · · · = En−1 = 0, En = Eoffered (B.3)

Run1 ThreadThn has consumed after the first run onlyEconsumed1
of the offered

energy.

(B.3)
⇒ Econsumed1

=
Eoffered

n
(B.4)

Run2 The energyEoffered − Econsumed1
which the thread has not received after

the first run, offers a scheduler additionally to the offeredenergy designated for the
second runEoffered to the thread.

2Eoffered − Econsumed1
≥ min

k+1≥i≥n
{Ei,

2Eoffered − Econsumed1

n
}

·(n − k) = Econsumed2
(B.5)

Although threadThn is the only thread receiving energy, it has not received its re-
quested energyEn. Instead, it has only consumed the following energy in the second
run:

(B.3)
⇒ Econsumed2 =

2Eoffered − Econsumed1

n

=
2Eoffered − Eoffered

n

n

=
2Eoffered

n
−

Eoffered

n2

=

2∑

i=1

(
2
i

)
Eoffered

ni
(−1)(i+1)

= Eoffered − Eoffered

(
−1 + n

n

)2

(B.6)
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Runn2 After n(n−1) runs, threadThn has already received
∑n(n−1)

j=1 Econsumej

energy of then(n−1)Eoffered amount of offered energy. In runn2, threadThn receives
the energyEconsume

n2 .

n2Eoffered − Econsumed1
− · · · − Econsumen(n−1)

︸ ︷︷ ︸

α

≥ min
k+1≤i≤n

{Ei,
α

n
}(n − k)

= Econsume
n2 (B.7)

If we assume that the threadThn has still not consumed its requested energyEn,
Econsume

n2 is:

(B.3)
⇒ Econsumed

n2 =

n2
∑

i=1

(
n2

i

)
Eoffered

ni
(−1)(i+1)

= Eoffered − Eoffered

(
−1 + n

n

)n2

(B.8)

After n2 runs, a scheduler can fulfill the thread’s request of receiving energyEn.

lim
n→∞

(

Eoffered − Eoffered

(
−1 + n

n

)n2)

= Eoffered = En (B.9)

Consequently, also a scheduler can fulfill the thread’s requests of the subsequent runs.

Case 2 A scheduler cannot fulfill the requests of the threadsThk+1 up toThn.
W.l.o.g. we assume that each of these threadsThi requires the same amount of energy.
This permits to evaluate the worst case number of runs until ascheduler can fulfill each
thread’s request:

Ek+1 = · · · = En =
Eoffered

n − k
(B.10)

Run1 After the first run, the receiving threads have received togetherEconsumed1

energy of the offered energy.

(B.10)
⇒ Econsumed1

= (n − k)
Eoffered

n
(B.11)

Run 2 The energyEoffered − Econsumed1 which the threads have not received
after the first run, offers a scheduler in addition to the offered energy designated for the
second runEoffered to the threads.

2Eoffered − Econsumed1
≥ min

k+1≥i≥n
{Ei,

2Eoffered − Econsumed1

n
}

·(n − k) = Econsumed2
(B.12)
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The receiving threads have not received their requested energy Eoffered

n−k
in this run,

therefore they have only consumed the following energy:

(B.10)
⇒ Econsume2 =

2Eoffered − Econsume1

n
(n − k)

=
2Eoffered

n
(n − k) −

Eoffered

n2
(n − k)2

=

2∑

i=1

(
2
i

)
Eoffered(n − k)i

ni
(−1)(i+1)

= Eoffered − Eoffered

(
k

n

)2

(B.13)

Runn After n−1 runs, the threadsThk to Thn have already received the energy
∑n−1

j=1 Econsumej
of the amount of offered energy(n−1)Eoffered. In runn, they receive

the energyEconsumen
.

nEoffered − Econsumed1
− · · · − Econsumen−1

︸ ︷︷ ︸

α

≥ min
k+1≤i≤n

{Ei,
α

n
}(n − k)

= Econsumen
(B.14)

If we assume that the threadsThk+1 to Thn have still not consumed their requested
energyEoffered

n−k
, Econsumen

is:

(B.10)
⇒ Econsumen

=

n∑

i=1

(
n

i

)
Eoffered(n − k)i

ni
(−1)(i+1)

= Eoffered − Eoffered

(
k

n

)n

(B.15)

After n runs, a scheduler can fulfill each thread’s request to receive the energyEoffered

n−k
.

lim
n→∞

(

Eoffered − Eoffered

(
k

n

)n)

= Eoffered =
n∑

i=k+1

Ei (B.16)

Thus, a scheduler can fulfill the subsequent requests of the threadsThk+1 to Thn after
n runs.

In summary, our proposed energy transfer assures that a scheduler can fulfill at the
latest aftern2 runs each thread’s request to receive the thread’s requiredenergy if the
offered energy is sufficient to fulfill each thread’s request.
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