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Abstract

Systeme mit uneinheitlichen Speicherzugriffszeiten sind die konsequente Weiter-
entwicklung klassischer Mehrprozessorarchitekturen. Anstelle alle Prozessoren mit-
tels eines gemeinsamen Speicherbusses an einen gemeinsamen Hauptspeicher an-
zubinden, ist jede CPU über einen eigenen Speichercontroller und -bus an eige-
nen, lokalen Speicher angebunden. Auf diesen lokalen Speicher kann die CPU
schnell zugreifen, wohingegen Zugriffe auf entfernten Speicher, also Speicher an-
derer CPUs, länger dauern. Dieser Ansatz hilft, die begrenzte Skalierbarkeit klas-
sischer SMP-Architekturen zu überwinden, bei denen Speichercontroller und -bus
mit steigender CPU-Zahl zum Flaschenhals werden. Die unterschiedlichen Spei-
cherzugriffszeiten stellen eine zusätzliche Herausforderung sowohl für Betriebs-
systementwickler als auch für Anwendungsentwickler dar. Um bestmögliche Lei-
stung zu erreichen, sollten Daten immer möglichst nah an der auf sie zugreifen
CPU gehalten werden. Migration und Replikation sind wichtige Mechanismen zur
Verbesserung der Lokalität, aber es hängt von vielen Faktoren ab, welcher der bei-
den Mechanismen vorzuziehen ist oder ob sie überhaupt anwendbar sind. Diese
Faktoren sind unter anderem die Zugriffshäufigkeit, das Verhältnis zwischen Lese-
und Schreibzugriffen und der Grad, zu dem das betroffene Objekt gemeinsam (also
von mehreren CPUs gleichzeitig) genutzt wird. In dieser Arbeit stellen wir ein auf
NUMA-Hardware optimiertes Betriebssystem vor, das auf dem L4 Mikrokern ba-
siert. Es werden sowohl notwendige Modifikationen am Kern selbst als auch der
Aufbau der im Userlevel realisierten Systemdienste vorgestellt. Insbesondere stel-
len wir ein Konzept vor, das die Replikation von Seitentabellen erlaubt und die
notwendige Synchronisation vollständig im Userlevel durchführt.





Abstract

Systems with non-uniform memory access characteristics are the consequent evo-
lution of “classical” SMP systems. Instead of all CPUs being connected to a single
shared memory via a single memory bus, each CPU is assigned its own “local” mem-
ory, which it can access directly and thus fast. Access to memory of others CPUs
is possible, but is slower than local access. This model overcomes the scalability
problems of classical SMP architectures, where the memory controller and bus be-
come a bottleneck with an increasing number of CPUs in the system. However, the
non-uniform access latencies pose new challenges to both operating system and
application developers. Data should be kept local to the accessing CPU wherever
possible. Migration and replication can be used to improve data locality, but the
choice for the right mechanism depends on many factors like access frequency,
read-to-write ratio, and the degree of sharing of an object. In this thesis, we pro-
pose a design for a NUMA-aware operating system based on the L4 microkernel. We
discuss necessary modifications to the kernel and present a design for user-level
operating system services and applications. We present a concept that allows for
replication of page tables with synchronization performed entirely at user-level.
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CHAPTER 1

Introduction

Systems with non-uniform memory access (NUMA) characteristics are the conse-
quent evolution of classical symmetric multiprocessor (SMP) systems. On SMP
systems, all processors are connected to main memory with a single memory bus
and a single memory controller. Thus, the entire memory can be accessed with
the same latency by all processors. However, with an increasing number of CPUs
in the system, the memory bus becomes a scalability bottleneck. In contrast, on
NUMA systems, each CPU (or group of CPUs) has its own, local memory, to which
it is connected via its own memory controller and memory bus. The combination
of CPU(s), memory controller/bus, and local memory is called a node. Node-local
memory can be accessed fast, while accesses to memory of other nodes can be
significantly slower. However, NUMA systems still provide a contiguous physical
address space. An operating system or application developed without regard for
the NUMAness of the hardware will run without modifications, but might per-
form poorly. NUMA-systems have become popular for UNIX-based servers in the
mid 1990s. Nowadays, NUMA systems are likely to become popular as well for
smaller servers and workstations. For example, the AMD Opteron, a widely used
x86-compatible CPU in small servers and even desktop systems, is NUMA-capable:
Each CPU has its own built-in memory management logic, and can directly access
a subset of the machine’s main memory. It is thus not surprising that both recent
versions of Microsoft Windows and Linux provide mechanisms for exploiting NUMA
capabilities of the hardware [3].

Windows and Linux are, like most other operating systems used nowadays,
based on monolithic kernels. All system services and most of the device drivers
are linked to a single, huge kernel binary. This approach provides no isolation
between components, an error in one component can thus affect the entire kernel.
With increasing size and complexity of operating systems, the probability for errors
increases, while finding and fixing these errors becomes more difficult. Microker-
nels promise a way of overcoming these problems. Instead of having a single kernel
image, there is only a small, privileged code base, the microkernel. System services
and device drivers run as user-level applications within their own protection do-
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2 CHAPTER 1. INTRODUCTION

mains. A microkernel must therefore provide a high degree of flexibility to allow for
the construction of arbitrary systems on top.

1.1 Problem Definition

To exploit the capabilities of NUMA systems, operating system and application pro-
grammers must address efficient code and data placement. Even on systems with a
low remote-to-local access ratio, the performance benefits of a better memory place-
ment can be quite high [35]. It is therefore important that the operating system
itself places its own data in an “efficient” way, and that application programmers
have a possibility to influence memory placement of their applications. Common
solutions to provide better locality are migration and replication. Migration means
that data is moved to the node from where it is accessed most frequently. Repli-
cation means that multiple copies of an object are created and placed on different
nodes. The choice when and where to migrate data is not an easy one, as one
has to decide when the costs for remote memory accesses outweigh the costs for
migration (i.e. copying the data and updating references). In case of replication,
synchronization overhead can eliminate performance advantages of local accesses,
making replication only suitable for data that is more frequently read than writ-
ten. Our work focuses on microkernel-based operating systems. In addition to
the afore mentioned requirements, there are some microkernel-specific additional
problems. A microkernel should be kept “small”, with “small” referring not pri-
marily to its code size, but meaning that the microkernel should only consist of
what is absolutely necessary for correct system operation. In particular, the ker-
nel must be kept policy-free to allow for the construction of arbitrary operating
systems on top. Therefore, policies regarding migration and replication of mem-
ory or processes are to be implemented at user-level. The microkernel should not
make any assumptions on memory or process placement, nor should it influence
or limit the user-level policies. Additionally, in-kernel synchronization primitives
should be avoided when possible. The choice for the best synchronization primitive
depends on access and sharing patterns of the data that is “protected” by the syn-
chronization primitive, but in case of NUMA hardware also on the ratio of remote to
local latency. A static synchronization primitive within the microkernel thus would
limit the kernel’s flexibility and contradict the principle of keeping the kernel free
of policies. Finally, also applications running on top of the operating system must
be able to exploit the hardware characteristics of a NUMA system. The operating
system must offer an API that allows applications to influence both memory and
thread placement, or it must automatically choose a “good” memory placement for
applications. Hence, we have to tackle the following problems:

1. All data structures used by the microkernel must be revised in order to find
out if they can be replicated or migrated.

2. The kernel must be kept minimal. We therefore need to find out which NUMA-
specific changes to the kernel are absolutely necessary and which can be
handled at user-level.
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3. Applications must be given the possibility to exploit the NUMA-capabilities of
the hardware.

In the following chapters, we present our design and implementation of a NUMA-
aware, microkernel-based operating system. Our work focuses on the L4 micro-
kernel, which was not designed with a special regard to NUMA architectures.

1.2 Organization of the Document

This thesis is organized as follows: In Chapter 2, we describe both microkernel-
based systems and multiprocessor architectures, with the focus on NUMA archi-
tectures. We present related work regarding different aspects of NUMA-aware op-
erating systems. In Chapter 3, we start with an overview of our proposed system
architecture for a microkernel-based NUMA-aware operating system. We then go
into detail and have a closer look both on the requirements the microkernel must
satisfy and on the operating system services we construct on top. Chapter 4 de-
tails our implementation. We describe the changes that were necessary to the L4
microkernel as well as the implementation of user-level operating system services.
In Chapter 5, we analyze the performance of our implementation. We compare the
results to the unmodified kernel. Chapter 6 concludes with a recapitulation of our
work and with proposals for future work.
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CHAPTER 2

Background and Related Work

2.1 Microkernel-Based Operating Systems

Most operating systems used nowadays are monolithic. That means that all OS
services such as pager, scheduler, and device drivers run in a single protection
domain. On the one hand, this greatly simplifies interaction between components:
All data is directly accessible by all services, and a service can be requested with
a simple (and cheap) function call. On the other hand, with increasing OS com-
plexity, those systems get harder to debug. An error in one component can affect
other components or even the entire system. Microkernel-based systems follow
another approach: Instead of having all services running with the same privileges
and within the same protection domain, the basic idea is to keep the privileged part
of the operating system as small as possible. This leads to a system with only a
small microkernel running with high privileges, while OS services are implemented
as user-level applications (called servers), strictly isolated from each other. Ide-
ally, the microkernel itself should be as flexible as possible, allowing for arbitrary
operating systems to be constructed on top. This requires the microkernel to be
policy-free.

In contrast to the monolithic approach, interaction between components be-
comes much more complicated. Data of one component is no longer accessible by
all others, unless it is explicitly shared. A service call is no longer a simple function
call, but requires the crossing of protection domain boundaries. Both for shar-
ing of data between address spaces and for invoking services across address space
boundaries, the microkernel must provide a suitable mechanism. Figure 2.1 shows
an example of a microkernel-based operating system. On top of the microkernel
run several operating system services like a pager, a memory server, and several
device drivers, each within its own protection domain. User applications request
services provided by these servers. For example, when a page fault occurs in an
application’s address space, the kernel notifies the pager. The pager might then
have to request a new page of physical memory from the memory server, which it
can map into the application’s address space (by using an appropriate mechanism
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6 CHAPTER 2. BACKGROUND AND RELATED WORK

provided by the kernel) so that the application can resume execution.
In contrast to a monolithic operating system, management information is dis-

tributed amongst the microkernel and the user-level services. For example, a pager
handling a page fault requires knowledge about the layout of the faulting task’s ad-
dress space, i.e. it must know which data to map at the address where the fault
occurred and where that data can be found. The microkernel does not have or
require this knowledge. In contrast, only the microkernel can directly modify the
hardware page tables. A user-level pager (or any other user-level application) must
not be permitted direct access to hardware page tables for security reasons. Con-
sequently, the microkernel must offer an API that allows a pager to install new
mappings in a secure manner.

Microkernel

Pager

FileserverNameserver

Memoryserver

Device DriverDevice DriverDevice Driver

Console Server

Application Application Application Application

Figure 2.1: Exemplary design of a microkernel-based operating system.

The microkernel approach promises several advantages: The absence of policies
in the kernel allows for reuse of the microkernel for operating systems of very dif-
ferent kinds. The strict isolation of components improves system stability, as errors
within one component ideally do not affect the rest of the system. Furthermore,
components can easily be exchanged as long as their API remains the same.

2.1.1 The L4 Microkernel

L4 is a microkernel of the second generation, originally developed by Jochen Liedtke
[23–25]. Apart from some exceptions, it implements the afore mentioned absence of
policies in the kernel. It offers two abstractions, threads and address spaces, where
threads represent an entity of execution (and thus CPU time), and address spaces
represent protection domains. Additionally, L4 offers two basic mechanisms, map-
ping and inter process communication (IPC).
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Threads and Address Spaces

Threads and address spaces are the abstractions offered by L4. A thread is an
entity of execution, identified by a unique thread ID. Threads are also the end
points of L4’s IPC (see below), i.e. a thread can send a message to another thread.
Address spaces form protection domains, that is, data from one address space
cannot be accessed from within another, unless it is explicitly shared. A thread
always belongs to exactly one address space, but an address space can contain
an arbitrary number of threads. Address spaces are identified implicitly by the
thread IDs of their threads. Address spaces are populated by mapping memory into
them. A thread running in an address space can map or grant any page of memory
from its own address space to any other address space, as long as there exists a
thread willing to receive mappings. This leads to a recursive model of address space
construction, as shown in Figure 2.2. Originating from a root address space (called
Sigma0), other address spaces are populated by mapping memory into them. This
design also influences the behavior of unmapping memory from an address space
(or restricting access rights): When a thread inside an address spaces decides to
unmap a page, the page is removed from all address spaces it was mapped on
to. The programmer has the choice if the page shall also be unmapped from the
current address space (referred to as flush) or only from subsequent address spaces
(referred to as unmap). For example, if a thread in address space 0 in Figure 2.2
performs an unmap on the red page, this page would be removed both from address
space 2 and address space 4, but not from address space 0. In case of a flush, it
would also be removed from address space 0.

Root AS

AS 0

AS 2

AS 4

AS 1

AS 3

Figure 2.2: Recursive construction of address spaces.
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Interprocess Communication

L4 offers an IPC primitive that allows for efficient communication between threads.
L4’s IPC is synchronous, meaning that both sender and receiver must explicitly
invoke an IPC operation and that they are blocked until the operation completes.
The kernel thus does not need to buffer any message contents. A message can
consist of both untyped and typed items. Typed items can be map items, grant
items, or string items. Map and grant items allow for mapping/granting of memory
from one address space to another. String items can be used to transfer larger
message contents, i.e. to copy arbitrary amounts of data from one address space
into another. To transfer message contents and to control IPC operations, each
thread has a number of message registers (MRs) and buffer registers (BRs). MRs
are used to transfer the contents of the message, BRs control the receiving of string
items.
IPC is also possible for threads residing on different CPUs. In that case, inter-
processor interrupts are used to synchronize CPUs, making cross-CPU IPC more
expensive than IPC between two threads on the same CPU.

Page Fault, Exception, and Interrupt Handling

As stated before, L4 is policy-free. Arbitrary policies can be implemented on top.
Therefore, also page fault, exception, and interrupt handling is delegated to user-
level servers.

Page Faults Each L4 thread is assigned a pager thread, that is responsible for
handling the thread’s page faults. L4 makes no restrictions regarding the pager
hierarchy, the only condition that must hold true is that each thread is assigned
exactly one pager. When the hardware raises a page fault exception, the kernel
checks in which address space the page fault occurred. If it is valid, the kernel
sends an IPC message to the faulting thread’s pager on behalf of the faulting thread.
The message contains the virtual address the thread faulted on, the instruction
pointer of the instruction that performed the access, and the kind of access it
performed (read, write, or execute, if the hardware supports this). The pager’s
reply specifies the page of memory that shall be mapped to the address the thread
faulted on. L4 offers fpages to specify memory that shall be mapped. Fpages are an
abstraction of hardware memory pages. The smallest possible size of an fpage is the
hardware page size offered by a specific machine, but fpages can also be larger than
the largest page size the hardware supports. The kernel handles the pager’s reply
message transparently for the faulting thread by establishing the correct mapping
and then discarding the reply message.

Exceptions Exceptions are handled in a way similar to page faults. A thread can be
assigned an exception handler thread. When an exception occurs, L4 generates an
exception message on behalf of the thread that raised the exception. This message
contains the faulting instruction pointer as well as architecture specific exception
words. The handler’s reply contains the instruction pointer where the thread shall
be resumed, and can optionally contain additional architecture specific words.
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Interrupts On L4, hardware interrupts are regarded as hardware-implemented
threads, and consequently identified by a thread ID. The interrupt handler for a
hardware interrupt must be registered as the interrupt’s pager. When the hard-
ware raises an interrupt, the interrupt thread sends an IPC to it’s handler (i.e.
pager). The corresponding hardware interrupt is disabled until the handler replies
with a reenable message.

Basic System Services

In addition to the microkernel itself, two servers are always created on system
startup: Sigma0, which is the root pager and thus owns all available physical mem-
ory (including device memory), and a roottask. Sigma0 hands out physical memory
to applications (either by the applications explicitly requesting the memory or by
handling page faults). Yet, Sigma0 hands out each free physical page exactly once.
This is for security reasons: At system startup, all memory is distributed amongst
the operating system services that require it (e.g. pagers). If another process at-
tempts to request memory from Sigma0 afterwards, the request will fail.
The roottask and all threads that are created in the roottask’s address space later
on are privileged in that they are allowed to execute certain L4 system calls, mainly
for thread and address space creation and manipulation. Threads running out-
side the roottask’s address space are not permitted to execute these system calls.
Instead, a system call server thread running in the roottask’s address space can
be used as a wrapper for system calls, allowing to implement additional security
policies at user-level.
With this initial configuration, it is possible to create all other necessary servers
and thus bootstrap the entire system.

Performance Analysis

As seen in the previous paragraphs, even elementary system services like pagers,
exception handlers, and interrupt handlers are implemented as user-level applica-
tions. A thread requesting a service offered by a server must use L4’s IPC primitive
to call that service. The most common case of IPC is communication between two
threads in different address spaces, but on the same CPU. In that case, a single
IPC send operation requires to change the privilege level (i.e. to enter the kernel),
to switch address spaces, and to change the privilege level again (to leave the ker-
nel and switch to the receiver thread). The same effort is needed for the reply.
With hierarchical services, the required number of IPCs can increase dramatically.
Although L4 is said to be one of the fastest microkernels currently available, one
must keep IPC costs in mind when designing a system architecture. Long call
chains should be avoided as well as communication across CPUs. Shared memory
can be an alternative in some cases.

2.2 NUMA Systems

Multiprocessor systems in general are systems with more than one CPU (or CPU
core). With symmetric multi-processing, all CPUs in the system are equal in that
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every CPU can execute every task. In a “classical” SMP system, all CPUs are con-
nected to a single shared memory via a single memory controller and bus. This
design ensures uniform access latencies for the entire memory, but the memory
interconnect becomes a bottleneck with increasing number of CPUs. Parallel mem-
ory accesses of multiple CPUs must be serialized and thus limit scalability of SMP
machines. Systems with a non-uniform memory architecture (NUMA) are very sim-
ilar to SMP systems, but eliminate the single memory interconnect as a bottleneck.
Instead of having all CPUs equally connected to main memory, the system is par-
titioned in so-called nodes, where each node consists of one or more CPUs (or
cores) and an amount of node-local memory (together with a memory-controller).
Nodes are connected via a fast local interconnect. This interconnect allows a CPU
to access memory of another but the own node (so-called remote memory). How-
ever, remote accesses can be much more expensive than accesses to local memory.
Costs depend on hardware and timing characteristics, but also on the distance (i.e.
the number of hops) between the CPU performing the access and the memory that
shall be accessed. Figure 2.3 and 2.4 show simple examples of an SMP- and a
NUMA-system, respectively.

CPU 0 CPU 1

Memory

Figure 2.3: A ”classical” SMP system with uniform memory access characteristics. Both CPUs are
directly connected to a single shared memory.

Nowadays CPUs normally have a hierarchy of caches to reduce the number of
code and data fetches from main memory. Caches pose additional challenges to
multiprocessor system: If data in memory is altered by one CPU, there might still
exist copies in another CPU’s cache. These copies must be found and either be
updated or invalidated. This cache coherence nowadays is commonly hardware-
implemented. In case of NUMA systems, one also speaks of ccNUMA if cache co-
herence is ensured “automatically”, i.e. in hardware. In this work, we do not deal
with NUMA systems where cache coherence is ensured in software. Therefore, we
use the terms NUMA and ccNUMA interchangeably.

While NUMA allows for better scalability with high numbers of CPUs, it also
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Node 1Node 0

Memory Memory

CPU 0 CPU 1

Figure 2.4: A NUMA system consisting of two nodes, each with one CPU. Accesses to remote
memory are passed over the interconnect between the CPUs.

makes system- and application programming more complicated. Operating sys-
tems and applications designed only with regard to SMP machines will also run
on NUMA machines, but with performance penalties, especially on large-scaled
machines with a high remote-to-local latency ratio.

2.2.1 Memory Management for NUMA Systems

Optimizing data locality on NUMA systems is an important requirement to allow
for good performance of both operating system and applications. Data locality
means that data is placed on the node or near to the node where it is accessed
from. There are two general possibilities: Manual placement, where the application
programmer decides on which nodes memory is allocated and when and where to
move it, and automated placement, where the operating system or a memory man-
ager make these decisions at runtime, depending on the current system behavior.
Both approaches have advantages and disadvantages, and combinations of both
are possible.
Cox and Fowler implemented a coherent memory abstraction for NUMA systems,
which hides most of the hardware’s NUMA characteristics by transparently repli-
cating and migrating pages [13]. The authors replicated page tables to allow for
per-CPU mappings of replicated code and data. They state that replication of page
tables does not limit scalability because a page table needs not contain all map-
pings of an address space, i.e. can be synchronized lazily when necessary. For
shootdowns, the authors chose an approach that requires notification only of those
processors that are using a mapping of the affected page. Additionally, only proces-
sors on which an affected address space is currently active need to be interrupted.
Our approach for updating page tables is similar in that we also populate page
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tables lazily. For unmaps, we are also able to determine a subset of all processors
that must be notified. However, as our approach works entirely at user-level and
uses only abstractions and mechanisms offered by the L4 microkernel, we are not
able to tell which address space is currently active on a specific CPU.
Bolosky et al. [7,8] implemented several NUMA memory management policies and
compared them to an off-line, optimal cost policy. Their results show that a good
NUMA policy is of importance, as it can improve overall program performance by
as much as 25% to 50%, and that different memory architectures can require dif-
ferent policies. They identified false sharing as a dominant factor that negatively
affects application performance.
Sandhu et al. [34] argue that a hardware page is the wrong abstraction for manag-
ing shared data, because data sharing in applications does not occur at page gran-
ularity. Instead, they group locations of shared data that are accessed together
and in the same way (read and/or write) to a so-called shared region. Cache and
memory coherence is then enforced at region granularity. Yet, an application pro-
grammer must manually specify regions in the source code. Before data of a region
is accessed, a process must explicitly request read or write access. Such a request
not only performs locking, but also interacts with the system to enforce cache and
memory coherence. While the authors state that their approach has several ad-
vantages over traditional NUMA memory management schemes (like reduced false
sharing and reduced costs for maintaining consistency), the disadvantage of their
approach is that it relies on information either given by the application program-
mer or by the compiler.
The authors of [27] showed that a simple first-touch allocation policy can lead to
significant performance improvements both on systems with hardware and soft-
ware coherent caches. To deal with the problem that one thread initializes data
that is later used by another thread on another node, the authors introduced a
“done with initialization” annotation, allowing a programmer to specify the point at
which the operating system should begin with dynamic placement. An additional
“phase change” annotation can be used to tell the operating system to reevaluate
its placement decisions. More sophisticated migration and replication strategies
(including some which require additional hardware support) did not lead to much
improvement for the programs used for evaluation.
In [40], the authors developed an algorithm to decide whether a page of memory
shall be migrated or not. Their approach requires information about cache misses
or TLB misses, both on a per-page granularity. The hardware raises an inter-
rupt when the number of misses exceeds a predefined threshold. Their approach
achieved good results, however, the required hardware support is not available on
most machines.
The authors of [32] implemented a user-level solution for dynamic page migration,
loosely based on the afore mentioned approach. Their approach also requires refer-
ence counters per page, which are available on the SGI Origin2000 hardware they
used.
The authors of [9] focused on building an x86-based NUMA system. However,
special hardware was used to realize the interconnect between nodes and to al-
low for monitoring of memory accesses. The gathered information was not used
for dynamic page migration/replication, but only for profiling purposes, allowing
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an application programmer to find and eliminate performance bottlenecks and to
manually optimize a program to improve data locality.
[26] suggests another approach. The authors used x86 performance counters to
capture memory accesses and logged calls used for memory allocation during a first
run of a program. From the collected information, a profile is generated, which can
then be used to take better page-placement decisions when the program is run a
second time.
The authors of [22] compared various policies for dynamic page replication and
page migration. They derived the following conclusions from their observations:
The performance of programs written for UMA architectures can be improved by
applying dynamic page migration and replication, but normally does not achieve
the performance of “hand-tuned” programs. They didn’t find a single policy that
could be considered as best for all kinds of programs that were used for bench-
marking.

2.2.2 Microkernels and NUMA architectures

IPC performance is of paramount importance for microkernel-based operating sys-
tems. Gamsa et al. optimized IPC for shared-memory multiprocessors [15]. Their
design is based on protected procedure calls rather than on message passing. It
preserves parallelism and avoids accesses to shared data and locking in the com-
mon case. A service call is always executed on the CPU of the caller, thus avoiding
cross-CPU notifications. Although their implementation runs on a NUMA machine,
the authors state that the non-uniform memory access time had no measurable ef-
fect on the IPC performance because their design avoids accesses to remote mem-
ory. In contrast, L4’s IPC based on message passing allows for communication
between threads on different CPUs (with considerably higher costs because of the
required cross-CPU notifications). Our user-level design aims for minimizing the
required number of cross-CPU IPCs and for preserving parallelism by explicitly
replicating service threads per CPU. Yet, we cannot completely avoid cross-CPU
IPC, but require it for unmapping memory.
The Raven kernel [33] is a microkernel tailored to shared memory multiprocessors.
Many of its services are implemented at user-level, with the goal to minimize kernel
invocations. However, the Raven kernel focuses on systems with a uniform mem-
ory architecture, not on NUMA systems.
Tornado [14] and its successor K42 [4] are both microkernel systems designed with
a special regard towards NUMA machines. An object-oriented structure is used to
reduce contention and to improve locality. Furthermore, Tornado introduces clus-
tered objects, which allow multiple component objects to appear like a single object.
K42 additionally allows hot-swapping of objects, i.e. to change implementations at
runtime to better suit the current needs. Clustered objects are useful to replicate
or migrate objects transparently for the client that uses the object. We did not
require such a flexible abstraction for the changes to L4’s kernel objects we made.
However, although not explicitly designed as a clustered object, our abstraction of
a task address space is comparable: While the task running within its task ad-
dress space has the illusion of a single address space, different address spaces are
used per node so that address space management information (e.g. page tables) is
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replicated. These per-node address spaces are created and populated on demand.
Disco [10] chooses a different approach. The authors argue that modifying existing
operating systems to better support multiprocessor architectures (including, but
not limited to NUMA machines) is a difficult and resource-intensive task. Instead,
they introduce an additional layer between hardware and operating system, which
acts like a virtual machine monitor, but with the goal to hide the hardware specifics
(such as the non-uniform memory access latencies) from the guest operating sys-
tems. Multiple instances of unmodified (and non-optimized) operating systems can
run on top on a single, scalable computer. Disco also implements page replication
and migration to provide local memory to the virtual machines where possible. The
guest operating systems running on top thus do not need to be aware of the NUMA
characteristics of the underlying hardware. Cellular Disco [16] extends Disco’s
approach by turning a large-scale shared-memory multiprocessor into a virtual
cluster, consisting of a number of different “cells”. It allows for fault containment,
i.e. faults in one cell do only affect virtual machines running in that cell, while
still preserving the benefits of shared-memory multiprocessors by implementing
dynamic resource sharing. Both for Disco and Cellular Disco, the virtual machine
monitor introduced to abstract the hardware is comparable to a microkernel, as
it is intended to be kept small, and its main purpose is to abstract the hardware.
However, the (Cellular)Disco hypervisor is not required to be policy free. For ex-
ample, Cellular Disco implements two separate CPU load-balancing policies and a
gang scheduler.
VMWare’s ESX Server is also NUMA-aware [41]: Each virtual machine running on
top is assigned a home node, and the virtual machine is only scheduled on CPUs
on this node. The hypervisor periodically checks load distribution and migrates
virtual machines between nodes if appropriate. The virtual machine’s memory is
transparently migrated to the new node to avoid accesses to remote memory. Mem-
ory sharing between virtual machines is also realized on a per-node basis, again
eliminating the need for remote accesses. Additionally, memory and processor uti-
lization can also be controlled manually.

2.3 Synchronization

The performance of synchronization mechanisms is crucial for the overall system
performance. It is therefore not surprising that synchronization mechanisms were
and still are a popular research area. The authors of [11] compared remote invo-
cation (i.e. message passing) with direct access to remote memory. They conclude
that the choice between these two alternatives heavily depends on architectural
features, mainly the costs for remote invocation, the costs for atomic operations
(required for synchronization), and the ratio of remote to local memory access time.
It is also influenced by cache characteristics. The authors argue that for every ma-
chine there exists a break-even point regarding the length of an operation above
which remote invocation is favorable.
The microkernel-based Hurricane operating system combines several locking tech-
niques to improve performance and scalability [38]. The authors implemented a
hybrid approach, using coarse-grained locks when held only for a short period of
time and fine-grained locks to protect data for longer periods of time. They used
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distributed locks to allow processors to spin locally when waiting for a lock, thus
reducing traffic on the inter-connection network. Hierarchical clustering [39] was
used to allow for replication and migration of system data structures. Hierarchi-
cal clustering is a technique that partitions a multiprocessor system into clusters,
each of which runs an independent copy of the microkernel. Data is replicated to
clusters where possible.
MCS locks are a scalable implementation of spin locks, with a constant (i.e. inde-
pendent of the number of CPUs competing for the lock) number of remote accesses
per lock acquisition [31].
Uhlig invented dynamic locks [36,37], allowing the lock granularity to be adjusted
at runtime, depending on access and sharing patterns of the protected objects.
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CHAPTER 3

Design

Our design decisions are driven by two main requirements: preserving parallelism
and locality of accesses. Preserving parallelism means that parallel, independent
request must be handled in parallel by the operating system. This leads to bet-
ter scalability, which is a general requirement for all multiprocessor systems. In
this context, scalability means that system performance increases (optimally lin-
ear) with the number of CPUs in the system. Locality is of particular relevance on
NUMA machines, meaning that data should be kept in local memory of the access-
ing node wherever possible.
For the sake of the following discussion, we define the abstract term of an object,
which can refer to concrete data objects such as page tables or thread control
blocks, but also to more abstract objects such as address spaces or threads. There
exist several possibilities to satisfy the requirements for parallelism and locality,
with none of them being perfect for all cases. Instead, it heavily depends on the
access and sharing patterns of an object to decide which one to choose. The fol-
lowing paragraph discusses possible solutions to allow for preserving of parallelism
and/or improving locality:

Replication of objects: Instead of having only a single instance of an object, one or
more replicas are created. This has two advantages: First, contention can
be reduced or avoided, thus preserving parallelism. Second, the replicas can
be placed in local memory of all accessing nodes, making all accesses to the
object local accesses. However, replication comes at some cost: If the repli-
cated object is modified, all copies must be kept consistent by propagating the
changes to all replicas. This makes replication feasible only for objects with
a high read-to-write ratio, i.e. objects that are much more often read than
written.

Migration of objects: In case of an object with a high number of write accesses, the
overhead for synchronization of replicas is too high. In that case, instead of
replicating the object, it can be a better choice to migrate it to the accessing
node. Of course, migration also comes at some cost: The object has to be
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copied to the destination node’s memory, the memory on the source node has
to be freed, and references to the object might need to be updated. Further-
more, migration only makes sense if the object is accessed mainly by a single
node. In case of multiple nodes accessing an object in parallel, pingpong-
effects (i.e. the object being migrated between nodes all the time) must be
avoided. In contrast to replication, migration only improves locality, but not
scalability.

Pinning of data objects: If an object cannot be replicated because of frequent write
accesses and cannot be migrated because it is accessed by different nodes
simultaneously, the only remaining possibility is to keep a single instance
of the object in local memory of one node. This solution of course neither
preserves parallelism nor does it favor local accesses over remote accesses
(the object is in remote memory for all but one node). It can, however, be
useful if an object is known to be accessed mostly by a single node. Pinning
thus can avoid accidental migration or unnecessary replication of such an
object.

When an object can be accessed from different CPUs simultaneously, accesses
must be serialized to avoid race conditions. Serialization can either be performed
lock-based or message-based. The decision which is favorable depends on the ac-
cess and sharing patterns of the data object as well as on the characteristics of the
underlying hardware, mainly the costs of remote memory accesses and the costs of
inter processor interrupts (IPIs). Uhlig suggests dynamic locking to adapt lock im-
plementation and granularity at runtime, depending on the degree of sharing [36].
Yet, dynamic locks don’t take hardware characteristics into account, which also
affect the choice for an “optimal” synchronization mechanism. For example, on
a machine with low IPI-costs, message based synchronization might be favorable
over lock base synchronization, especially if the costs for remote accesses are high.

3.1 System Architecture Overview

A microkernel provides only a minimal abstraction of the underlying hardware and
does not implement operating system services like pagers, file system handling,
and so on. These services must be implemented as separate tasks, running at
user-level. The implementation of these services must follow the afore mentioned
principles: Preserving parallelism and locality of accesses. Therefore, each service
must offer at least one thread per CPU that can handle incoming service requests.
Each of these threads must work on local data where possible. In this way, par-
allelism is preserved, as independent, parallel requests to the same server can be
handled in parallel. Furthermore, the amount of cross-CPU communication (which
is far more expensive than communication between threads on the same CPU) is
minimized, because a thread requesting a service can always call a server thread
on the same CPU. Figure 3.1 shows a simple, microkernel-based operating system,
running on a system with two nodes (and one CPU per node). In this example, two
servers run on top of the microkernel: a memory server and a pager. Each of these
servers consists of two threads, i.e. one per CPU. On top of the servers run differ-
ent applications, both single-threaded applications (assigned to exactly one node
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at a time) and multi-threaded applications (that might be active on both nodes
simultaneously). We now have a look at the required operating system servers.

Node 1Node 0

Microkernel

Pager

Memoryserver

Application Application Application Application

Application

Thread

Figure 3.1: Architecture of a microkernel-based operating system for NUMA hardware.

3.1.1 Pager/Memory Manager

A pager and a memory manager are needed to satisfy an application’s demand for
memory. If a paged thread touches a region of virtual memory that is currently not
mapped to physical memory, the pager must handle the resulting page fault in co-
operation with the memory manager, most likely by mapping some memory into the
thread’s address space (if the thread performed an illegal access, the pager might
initiate to kill that thread instead). In our design, a pager is responsible for paging
all threads that run on the same CPU. If a thread migrates to another CPU, one
pager must hand the thread over to the other. While this handoff itself is straight-
forward, there remains the open question of how the new pager gets the required
information about the migrated thread’s address space layout, i.e. which pages are
currently mapped in, etc. If all pager threads run within the same address space
(as shown in Figure 3.1), this is not a problem - in that case, management infor-
mation for all address spaces is visible to all pager threads. However, there are
some good reasons to place each pager thread into its own address space, which
we will discuss later. In that case, data from one pager is not easily accessible by
other pagers, but must instead be shared explicitly. It is either possible to copy the
entire management information upon migration, or to query the originating pager
on demand, i.e. when a page fault occurs. For both solutions, one has the choice
between using IPC or shared memory. We discuss thread migration in more detail
in Section 4.2.4.
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3.1.2 Load Balancer

Load balancing is an important task in multiprocessor systems. If the load on one
CPU becomes too high, threads or processes must be migrated to other CPUs with
less load. For NUMA systems, CPUs in the system should not be treated equally
when considering load balancing: It is generally favorable to migrate threads or
tasks to another processor of the same node than to an arbitrary processor in the
system, at least if the thread/task has large parts of its working set in local memory
of the current node. To be able to model the system topology for load balancing
decisions, we propose a design with one (potentially multi-threaded) load balancer
per node, which is responsible only for surveying the load within its own node
and to migrate threads between CPUs of its node. When the overall load of the
node is too high, it can notify a master load balancer which keeps track of the load
distribution of the entire system. This solution is similar to the scheduling domains
of recent Linux versions, which are also used to model the system’s topology to be
able to take better scheduling/balancing decisions [6].

3.2 Node-Local User-Level Data

Parallel applications consisting of multiple threads are a likely workload on a NUMA
machine. With only a small number of CPUs per node, the application’s threads
must be distributed amongst nodes to execute the application in parallel. In that
case, the application’s address space is active on different nodes simultaneously.
This scenario raises a number of questions to deal with:

• Where to place page management information both for the microkernel and for
the user-level pagers? With L4’s current implementation of address spaces,
the layout of an address space is represented with a single kernel page table
hierarchy which lies in physical memory of a specific node. If the correspond-
ing address space is active on multiple nodes in parallel, page table accesses
are remote accesses for all but one node, which contradicts the principle of
locality. A similar problem arises for the address space information the user-
level pagers have to keep.

• How to provide node-local data for applications? An application should be
given the possibility to allocate data on and migrate data to a specific node,
either by offering an API that allows the application to influence memory al-
location or by an OS subsystem that performs automated allocation, replica-
tion, and migration of memory.

In the following, we present different approaches to tackle these problems.

3.2.1 A First Approach

An application can create a designated region within its virtual address space which
is partitioned into different areas, each backed by physical memory of a specific
node, as depicted in Figure 3.2. Those areas can then be used as a “pool” of node-
local data. All data that is important only or mostly on a specific node can be
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Node 0 Node 1 Node 2 Node 3

User Address Space

Physical Memory

Virtual Memory

Code Static Data

Figure 3.2: Pools of memory from each node can be mapped to different locations within the appli-
cation’s virtual address space, allowing for dynamic allocation of node-local memory.

placed inside the corresponding node pool. Thread stacks can be allocated in the
pool of the node the corresponding thread belongs to. However, this approach lacks
some flexibility: Replication of the application’s code is difficult: Unless relative ad-
dressing is used, code is expected at a specific virtual address and cannot easily
be copied to different locations. To do this, relocation would have to be performed.
More generally spoken, it is not possible to map the same range of virtual addresses
to different physical addresses on every node, which is a fundamental requirement
for dynamic page replication. Any form of node-local data thus requires indirec-
tion. A more flexible solution is desirable, which allows an address space layout as
shown in Figure 3.3: While the gray, global region of the virtual address space is
backed by the same physical memory on every node, the local regions are mapped
to different physical memory on every node.
Additionally, while this first approach does not require any changes to L4 or the
way L4’s address spaces are used, it also leaves the question how to handle address
space management information open.

3.2.2 In-Kernel Replication of Page Tables

Instead of having a single page table hierarchy per address space, L4 could be mod-
ified to have a page table hierarchy for every node (or even for every CPU) in the
system. These hierarchies can be placed in local memory of the node they belong
to, thus improving data locality. Additionally, this approach allows for a flexible
form of node-local data: As the replicated page table hierarchies need not nec-
essarily be consistent, different mappings can be established for different nodes,
allowing the same region of the virtual address space to be mapped to different
physical locations, depending on the node on which the access is performed. This
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Figure 3.3: The local region of the virtual address space is mapped to different physical addresses on
every node.

greatly simplifies code replication, because code can always be mapped to the “cor-
rect” virtual addresses, but backed by different physical memory on every node. As
the kernel cannot know whether a newly established mapping shall be made global
or local, changes to the API are necessary. With an additional bit in each map or
grant item, the user can specify whether a mapping shall be made local or global,
i.e. equally visible on all nodes. Global mappings must be propagated to all other
page table replicas, i.e. synchronization must be performed. The choice for the
right synchronization primitive is not a trivial one: If lock-based synchronization is
used, one has the choice between different locking granularities (the possibilities
range from locking of an entire page table hierarchy to locking of single entries) and
lock implementations. Additionally, lock-based synchronization requires accessing
remote memory to perform modifications. In contrast, message-based synchro-
nization avoids or at least reduces both the need for locking and accesses to remote
memory, but one has to take into account the costs for notifications across CPUs,
i.e. inter processor interrupts. Hence, the decision which synchronization prim-
itive is favorable does not only depend on the access and sharing patterns of the
page table hierarchies, but is also influenced by the costs for IPIs and for remote
accesses [11]. While locking granularity can be adjusted at runtime, depending on
the access and sharing patterns [36], it is difficult to also take hardware character-
istics into account. Manually modifying the kernel to suit the hardware platform
it is designated to run on contradicts the idea of a minimal, flexibly useable mi-
crokernel. Additionally, propagating a newly established mapping to all page table
replicas might be unnecessary, as it might never be accessed on all nodes. Thus,
a lazy approach that performs synchronization only when and where necessary is
preferable. In case of address space organization, there exists an alternative that
avoids eager, explicit in-kernel synchronization of page table replicas, while still
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providing the desired flexibility. We present this approach in the next section.

3.2.3 Using Different Address Spaces

The approach we suggest can be realized entirely at user-level, without requiring
changes to the kernel or the kernel API. Instead of explicitly replicating the page
table hierarchy of an address space in the kernel, we use different, unmodified
address spaces for each node. From the viewpoint of the kernel, these different
address spaces are completely unrelated, the kernel thus does not perform any
form of synchronization between them. Instead, synchronization is performed en-
tirely at user-level between the pagers of the address spaces. Figure 3.4 shows an
example with an application running on two nodes (each with one CPU). A differ-
ent address space is used on each node, and each is managed by its own pager
thread. Synchronization of the two address spaces is the pagers’ task. As Fig-
ure 3.4 also shows, this approach allows both for node-local mappings (green) and
global mappings (gray).

Node 0 Node 1

Pager 0

Address Space 0

Node Mem 0

Pager 1

Node Mem 1

Address Space 1

Sync

Figure 3.4: Per-node address spaces allow both for global and node-local mappings and avoid intro-
ducing an additional synchronization primitive in the microkernel.

The required synchronization between the pagers affects the way mappings are
established and removed. While the pagers perform explicit synchronization at
user-level, the kernel page tables are implicitly synchronized. In the following, we
discuss how the usage of per-node address spaces affects both establishment and
revocation of mappings.



24 CHAPTER 3. DESIGN

Establishing Mappings

Establishing a node-local mapping is straightforward: If a pager receives a page
fault IPC on a virtual address where a node-local mapping is expected (e.g. an ad-
dress where the application code lies), it can simply reply with a map item to map
the correct physical memory. No form of synchronization is required. Establishing
a global mapping is a more complex operation. When a pager is notified of a page
fault on a virtual address that shall be global and for which no valid mapping exists
yet, it also replies with the correct map item, but this time, the other pagers must
be made aware of that newly established mapping. As for the in-kernel approach,
there exists a multitude of synchronization possibilities between the pagers, which
we discuss later. When the virtual address where the new mapping was estab-
lished is accessed on another node, there will also occur a page fault because the
kernel page tables of the address space on that node are not yet updated: From
the viewpoint of the kernel, the different address spaces are completely unrelated,
it does therefore not perform any form of synchronization. However, because of the
synchronization between the pagers, this pager now knows what physical memory
must be mapped to that address and can reply with the correct map item. Every
pager must therefore be able to access and map all physical memory.
In conclusion, arbitrary synchronization strategies can be applied between the
user-level pagers, while the synchronization of kernel page tables for the different
address spaces works implicitly and lazily, as new global mappings are established
on a page fault basis.

Revoking Mappings

In this section, when we talk about revocation of a mapping, this can mean both
that the mapping is completely removed (i.e. the corresponding page(s) are un-
mapped) or that the access rights of the mapping are restricted (e.g. from read-
write to read-only). Revocation of global mappings is a more complex task than
establishment of global mappings, as this time, the in-kernel page tables cannot
be updated lazily. If a global mapping is revoked, this change must be made visible
to all affected address spaces immediately. Otherwise, it can happen that the map-
ping can still be accessed in another address space. The recursive nature of L4’s
map and unmap operations allows for different approaches to tackle this problem.
If a thread calls the unmap system call on a page within its address space, the
page is unmapped from all address spaces to which it was mapped onward from
the current address space. In Figure 3.4, if pager 0 would call unmap on one of the
gray pages, this paged would be unmapped only from address space 0. To unmap
a page from all affected address spaces, there exist various approaches:

1. The originating pager notifies all other pagers to call unmap for themselves.
An IPC-based protocol can be used for this. The disadvantage of this solution
is that the number of required IPCs scales linearly with the number of remote
pagers that must be notified. This number is influenced by the number of
tasks to which a page was mapped and by the parallelism of these tasks, i.e.
on how many nodes a task is active simultaneously. The total number of
nodes in the system is an upper bound for the required number of cross-CPU
notifications.
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2. A root pager is used that donates memory to and revokes memory from the
pagers running on top. In that case, the originating pager can call the root
pager to perform the unmap, and the corresponding page will be unmapped
from all address spaces it was mapped to, including the address spaces of the
pagers. For example, if the root pager in Figure 3.5 calls unmap for one of the
gray pages, this page will be removed from the application’s address spaces
(i.e. address space 0 and address space 1), but also from the address spaces
of pager 0 and pager 1. In contrast to solution 1, only a single IPC call to the
root pager is required. However, revoking the mapping also from the pagers’
address spaces is an unwanted behavior.

3. The unmap system call is modified to allow a “directed unmap”, i.e. allowing
a pager to directly unmap memory from another but its own address space.
Such a modification would impose great security problems, as a pager must
not be permitted to unmap arbitrary pages it is not responsible for. One
would have to introduce an additional security model into the kernel, e.g. by
grouping pagers together that are allowed to unmap each other’s memory.
Even if this was done, there remain open questions. For example, a pager
that wants to unmap a page handled by another pager would have to know at
which virtual address this page is mapped in the other pager’s address space.
To revoke a global mapping from n address spaces, n calls to the directed
unmap system call are needed, thus the costs for this solution also are in
O(n).

From these three possibilities, we favor the first, but the second can be an alterna-
tive if the overhead of the first turns out to be too high. In Chapter 5, we discuss
the expected costs and potential optimizations.

Pager 0

Address Space 0

Pager 1

Address Space 1

Root Pager

Figure 3.5: Recursive mapping hierarchy with a root pager donating memory to all other pagers.
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Synchronization between Pagers

Any changes made to a global mapping (including the creation of a new global map-
ping) by one pager must become visible in the other pager’s data structures, too.
The easiest solution for this is to let all pagers work on the same data structures
by mapping them into every pager’s address space. This, however, does not only
require locking, but also contradicts the principle of locality, as the management
information would be in remote memory for all pagers except for one. Additionally,
a single instance of management information makes it difficult to store information
about node-local mappings. As the pagers need the management information si-
multaneously and frequently, migration also is not an option. We therefore decided
to replicate the information, so that each pager can work on its own data. Yet,
the problem how these replicas are synchronized remains. As we stated in Section
3.2.3, in case of revocation of a mapping, changes must be propagated to other
pagers eagerly. This requires an eager, push-based approach, i.e. the originat-
ing pager must notify all other pagers to revoke the mapping and to update their
management information. Therefore, an IPC-based solution is favorable: The orig-
inating pager calls an appropriate function of the other pagers, triggering remote
revocation of the mapping. In the opposite case, if a new, global mapping is estab-
lished by one pager, other pagers will still suffer a page fault on the corresponding
virtual addresses afterwards, allowing synchronization of pager management infor-
mation to be performed lazily. Alternatively, the originating pager (i.e. the one that
established the new mapping) can also eagerly update the other pagers’ data struc-
tures. The disadvantage of the eager approach is that it might cause unnecessary
updates, in case the newly established mapping will not be accessed on all nodes.
With a lazy approach, a pager receiving a page fault at a virtual address that is not
explicitly marked as local must query all other pagers to find out if there already
exists a valid, global mapping. This solution scales bad, as the costs grew linearly
with the number of pagers (and thus CPUs or nodes) in the system. We decided to
use a combination of eager and lazy propagation to avoid the necessity of querying
all other pagers: One of the pagers is designated as a “master pager”. Whenever
one of the other pagers establishes a new mapping, it eagerly notifies the master
pager of the changes. Upon a page fault on a global mapping, a pager now only
needs to query the master pager to find if there already exists a valid mapping. To
avoid that the master pager becomes a scalability bottleneck, a different master
pager can be used for every task, for example the pager on the node where the task
was created on. This reduces contention on a single pager. Both the update of
the master pager’s management information and querying the master pager to find
valid global mappings can be done via IPC or via shared memory. In the latter case,
locks are required to ensure consistency. The same arguments as for the in-kernel
solution influence the choice for a synchronization primitive: Access and sharing
patterns as well as latencies of remote accesses. With our user-level based solu-
tion however, the kernel is kept free of such a primitive and remains flexible, while
user-level servers can be adapted to better suit a specific hardware, if necessary.
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Thread Migration

Migrating a thread to another CPU on another node now becomes more compli-
cated, as it is no longer sufficient to only put the thread on the new CPU with an
appropriate system call. Instead, it must also be migrated into the corresponding
address space on the target node. If no address space exists yet, one must be cre-
ated. The pagers therefore must be aware of which address spaces belong to the
same task. We discuss implementation-depended problems of thread migrations in
Section 4.2.4.

3.3 Kernel Objects

For all kernel objects, such as page tables and thread control blocks (TCBs), it must
be decided how locality can be improved, and how parallelism can be preserved.
Because L4 is a microkernel, the number of objects we need to revise is small.
We identified page tables, thread control blocks, and the entries of the mapping
database.

3.3.1 Page Tables

Page tables are potential candidates for replication. Write accesses are rare com-
pared to read accesses and normally only affect a small part of the table (i.e. a
few entries). Dynamic locks as suggested by Uhlig [36] could be used to serialize
accesses to page tables, with the lock granularity being adjusted depending on the
access pattern of a page table (which depends on the number of nodes on which the
address space is active). Additionally, L4 already uses different page directories for
each CPU to allow for CPU-local kernel data, as shown in Figure 3.6: Most entries
of the per-CPU page directories point to the same, shared subtables (depicted in
green), but some entries point to CPU-local subtables (depicted in red). The virtual
addresses that are occupied by these “CPU-local” entries are mapped to different
physical addresses on every CPU. This allows for CPU-local data without having to
use indirection. L4 uses this concept for some statically defined in-kernel data, e.g.
the thread control block of the idle thread. However, the concept currently does not
support dynamic allocation of CPU-local memory, nor is it exported to user-level
applications. Yet, it could be further enhanced in that the entire page table hier-
archy is replicated instead of only the CPU-local tables. In that case, each page
table hierarchy can be placed in node memory of the node the page tables belong
to, thus making all page table accesses local. This leads to the problems we de-
scribed in Section 3.2.2: Synchronization of page tables must be performed across
node boundaries, requiring a synchronization primitive in the kernel that also de-
pends on remote memory latencies. However, as described in Section 3.2.3, we use
per-node address spaces instead of a single, node-spanning address space for each
application. Therefore, we decided to optimize our solution for that case and not for
the case of address spaces spanning across multiple nodes. Each address space
is assigned a ”home node“, on which all shared page tables are allocated on, while
“CPU-local” tables are allocated on the node of the corresponding CPU. With this
model, an address space can still become active on every node (and on different
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PDIR CPU0

Figure 3.6: Exemplary page table hierarchy for a system with two CPUs. The green entries in both
page directories point to the same page tables and thus to non-CPU-local data. The red entries point
to different page tables. The corresponding virtual addresses can thus be mapped to different physical
addresses on each CPU.

nodes simultaneously), but it is favorable that it is active only on its home node.
In that case, the entire page table hierarchy will be placed in node-local memory,
and no in-kernel synchronization of page tables must be performed across node
boundaries. It us up to the user-level to ensure that address spaces are active on
exactly one node.

3.3.2 Thread Control Blocks

A thread’s TCB is used to store relevant information for that thread, including its
state and its kernel stack. As a thread is always assigned to a single CPU (and
thus to a single node), it seems to be a good idea to always keep a thread’s TCB on
the thread’s node and migrate it whenever the corresponding thread is migrated.
However, a TCB is not only accessed by its own thread, but also by other threads.
For example, if a thread wants to send an IPC to another thread, it has to check
the destination thread’s state and thus its TCB. To avoid remote accesses in that
case, every TCB would have to be replicated to every node’s memory. We decided
not to do this, but to migrate TCBs instead for two reasons: First, we consider the
overhead for synchronization of the replicas too high - a thread’s TCB is written
on every IPC operation. Second, we favor IPC between threads on the same CPU
over cross-CPU IPC, as the latter requires inter-processor interrupts and thus is
more costly. If both threads run on the same CPU, accesses to the sender’s and
receiver’s TCB are both local accesses. In case of a cross-CPU IPC, the additional
penalty caused be accessing a TCB in remote memory is not significant compared
to the overall costs for a cross-CPU IPC.

L4 currently addresses TCBs via a virtual linear array with a fixed size. A
thread’s ID is used to calculate the virtual address of its TCB. No memory is
mapped into the virtual array initially. On a read-fault, a zero-filled “dummy TCB”
is mapped in. On a write fault, memory for a new TCB is allocated and mapped at
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the desired location. Figure 3.7 shows an example. Theoretically, migration of a

Virtual Linear TCB Array

Physical Memory

dummy dummy TCB TCB

0

Figure 3.7: Virtual linear TCB array. The two dummy TCBs (gray) are both mapped to a zero-filled
page. “Real” TCBs (green and blue) are mapped to different pages of physical memory, allocated on
demand. In this picture, the mapping granularity is fine enough to allow for mapping on a per-TCB
basis.

TCB is straightforward: Allocating a new physical page for it, copying the old page
to the new page, and finally changing the mapping to the new physical address.
Furthermore, the affected entries must be flushed from all CPUs’ TLBs. However, a
problem arises when more than one TCB occupies a single page (which is the case
for the IA32 kernel): As mappings can only be changed on a per-page basis, all
TCBs on a page have to be migrated. However, it cannot be ensured that the cor-
responding threads run on the same node. By migrating one TCB from remote to
local memory, another TCB lying in the same page might be migrated away from its
“home node”. A more fine-grained solution is required, which allows for migration
of one TCB without side effects for other TCBs. One approach is to expand the size
of a TCB so that only a single TCB occupies a page. This either requires to reduce
the maximum number of allowed threads or to increase the size of the virtual TCB
array. The former approach might lead to a system running out of thread IDs too
early, the latter approach is a problem on 32 Bit architectures, where the kernel
area currently is limited to a size of 1 GB. Furthermore, also physical memory is
wasted because it is questionable if there are any benefits from larger TCBs, even
though the additional space could be used for the thread’s kernel stack. L4 does
not perform any recursion in the kernel, and in-kernel function call chains are
short, thus there is no need for larger kernel stacks. Additionally, larger TCBs lead
to a higher occupation of the TLB, leading to a higher TLB-footprint of the kernel,
with negative effects on the overall system performance, at least when the number
of existing threads is high.
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Another approach is to discard the scheme of direct addressed TCBs and to
use indirect addressing instead. A thread’s ID can be used to index into an array
of pointers to TCBs. When migrating a TCB, new memory is allocated from the
destination node’s memory pool, the TCB is copied, and the pointer is changed to
point to the new location. The memory on the source node can then be freed. This
approach introduces an additional level of indirection, but provides the desired
flexibility without limiting the number of threads or wasting both virtual and phys-
ical memory. There are two problems one has to take care of with this approach:
First, when a thread is going to be migrated, it must be ensured that its TCB is
not accessed by any other thread (running on a different CPU) in this moment.
Read-Copy Update (RCU) [28–30] can be used to ensure that no other threads are
currently accessing the TCB. Second, there might be threads which are currently
not active but still have direct references to their own or another TCB on their ker-
nel stack. As threads can be sleeping for an arbitrary amount of time, one cannot
make any assumptions if and how long such references exist. Finding and updat-
ing all existing old references to a TCB when this TCB is migrated is not possible,
as those references are stored on a thread’s kernel stack, the layout of which is
not known. Instead, a thread has to reload all TCB references it keeps when it
is reactivated. This requires to identify all points within the kernel code at which
stale TCB pointers might be accessed, which is not a trivial task. The pointer array
itself is a candidate for replication, as write accesses are only required in case of
a thread migration. Additionally, as a thread migration is always performed by
the source CPU of the to-be-migrated thread, concurrent modifications of the same
TCB pointer can not occur. Yet, it must be ensured that a TCB pointer is not ac-
cessed and dereferenced while migration is in progress.
Mainly due to time constraints, we decided to favor the first approach for our im-
plementation.

User-Level Thread Control Blocks

Parts of a thread’s TCB are mapped into the user area instead of the kernel area.
These so-called UTCBs contain information that can be exposed to user applica-
tions without affecting security. In particular, a thread’s message and buffer regis-
ters are part of its UTCB. As for kernel TCBs, there also arises the question where
to place a thread’s UTCB, and how to migrate it when the thread migrates. In
contrast to TCBs, however, increasing the size of a UTCB to allow for migration of
single UTCBs is even a bigger problem: For example, on IA32, a UTCB is only 512
bytes in size. Increasing the size to 4 kilobytes (i.e. eight times the size it actually
requires) is not reasonable. On the other hand, changing the addressing scheme of
UTCBs is even more complicated as it is for TCBs: The address of a UTCB is used
as the thread’s local ID (i.e. an ID that is only unique within its address space),
and the kernel API specification ensures that the location of a thread’s UTCB will
not change during the lifetime of that thread [21]. If indirect addressing was used,
this assertion would no longer hold true, causing problems with applications that
might rely on that assumption.
However, the design decisions we made for the organization of address spaces, i.e.
using different address spaces on each node, also offer a simple solution to this
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problem, allowing for migration of UTCBs without indirection and without increas-
ing their size. The reason why this is possible is that all threads within an address
space run on the same node. Therefore, even if numerous UTCBs occupy a single
hardware page, all of them can be backed with memory from the local node. If a
thread is going to be migrated to another node, this implies migrating it into an-
other address space. Only two conditions must hold true to allow for migration of
a thread into another space: First, there must not exist a thread with the same
local thread ID (i.e. UTCB location) in the target address space. Second, the UTCB
area in the target address space must occupy the same region as it does in the
source address space, so that the migrated thread’s UTCB can be placed at the
same address as it has been before.

3.3.3 Mapping Database

The kernel’s mapping database (MDB) keeps track for each page of physical mem-
ory to which address spaces and at which virtual addresses it is mapped. Figure
3.8 shows an example: A physical page (green) is hierarchically mapped into three
different address spaces, as seen in Figure 3.8(a). Figure 3.8(b) shows the corre-
sponding tree of map nodes. We decided to allocate memory for map nodes from the
home node of the corresponding space, i.e. the space to which the page is mapped.
This is an optimization tailored to the design we described in Section 3.2.3, with
different address spaces per node. The most frequent reason for accessing the
mapping database is a pager mapping memory into or unmapping memory from
an address space it pages. With our design, a pager only pages threads/address
spaces that run on the same node as the pager itself. Therefore, both the mapnode
that describes a physical page within the pager’s address space and the mapnode
that describes the page within the application’s address space are node-local.
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Figure 3.8: Hierarchy of address spaces and corresponding mapping database tree.



CHAPTER 4

Implementation

The design we presented in the last chapter affects both kernel objects and the
user-level architecture. We identified TCBs, page tables, and the mapping database
as the most important kernel objects. We decided to migrate TCBs whenever the
corresponding thread is migrated to another node. Page tables are allocated on
the home node of the corresponding address space, i.e. the node on which the
address space is created. The map nodes of the mapping database are allocated
on the home node of the corresponding address space. In this way, accesses to
the mapping database for mappings between two address spaces on the same node
access mostly local memory. Our user-level architecture requires each service to
be replicated per CPU (i.e. each service must offer at least one thread per CPU),
so that concurrent requests can be handled in parallel. Additionally, instead of
using a single address space for an application, we propose to use one address
space per node. This allows for an efficient, kernel-transparent replication of page
tables, where synchronization is performed entirely at user-level. Replicated page
tables do not only improve locality, but also allow for different virtual-to-physical
mappings of the same virtual addresses on every node, which is a fundamental re-
quirement for any form of dynamic page replication (e.g. for code replication). This
chapter describes our implementation, which closely follows the proposed design.
We start with the changes that we made to the L4 microkernel and then detail the
implementation of our user-level services.

4.1 Kernel Objects

This section describes the necessary changes to kernel objects. The basis of all
further changes to the kernel is a modified version of the kernel memory allocator,
which we describe first. Our modifications allow for memory allocation from a
specific node. We then detail our changes to the implementation of address spaces,
the replication of kernel code, and finally our implementation of TCB migration.

33
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4.1.1 A NUMA-Aware Kernel Memory Allocator

The basis of making kernel objects such as page tables or TCBs node-local (i.e.
by replicating or migrating them) is the possibility to allocate memory on a spe-
cific node. Therefore, we had to modify the kernel memory allocator so that one
can specify from which node memory shall be allocated. L4’s non-NUMA-aware
kernel memory allocator works as follows: On system startup, Kickstart (that is
L4’s boot strapper) parses the BIOS memory map to find free physical memory. A
configurable amount of that memory is marked as reserved for the kernel memory
allocator. The information where this memory is located is passed to the kernel via
the kernel interface page (KIP). L4 evaluates the informations in the KIP, remaps
the memory to the upper end of the kernel area, and donates the reserved memory
to the kernel memory allocator, which handles memory requests from that memory
pool. A static, fixed offset is used for remapping the memory pool, which allows for
an easy translation between physical and virtual addresses, as the following holds
true for all memory of the pool:

addrp = addrv − offset

That is, an arbitrary virtual address from the pool can be translated to the cor-
responding physical address by subtracting the fixed offset, and vice versa. With
a single fixed offset however, it is only possible to map one contiguous block of
physical memory into the kernel area. For a NUMA system, one pool per node is
required, so using only a single block of physical memory for the kernel memory
allocator is not sufficient. Therefore, we made some changes to Kickstart as well
as to the kernel memory allocator itself. Instead of setting up a single pool of phys-
ical memory, Kickstart now creates one pool per node, each of which can consist
of a contiguous block of free physical memory at an arbitrary location. Thus, the
memory can no longer be remapped with a fixed offset, instead, the offset differs
from pool to pool. When translating a virtual address to its corresponding physical
address and vice versa, it must be checked in which pool the address falls to be
able to choose the correct offset. This makes translations between physical and
virtual addresses more expensive: Given a memory address, a minimum of two
comparisons is required to find out in which pool the address falls, and an ad-
ditional memory access is needed to load the corresponding offset. This solution
is still cheaper than walking page tables (which could only be used for virtual-to-
physical translations anyway). Figure 4.1 shows an example for a system with four
nodes. The reason for having the memory of the first node (node 0) at the upper-
most virtual address is only simplification of the implementation: The uppermost
address to which a memory pool can be mapped is statically defined, and the first
pool the kernel finds in the KIP (i.e. the pool of node 0) is mapped directly below
that address. Each following pool is then mapped below the previous one.

The memory pools allocated by Kickstart are passed to the kernel via the KIP,
and then donated to the kernel memory allocator, which keeps a free list for each
of the pools. Each list is protected with its own lock so that requests to different
pools can be handled in parallel. We extended the kmem_alloc function with an
additional parameter to specify the node to get the memory from. The free function
does not need such an additional parameter, instead, it checks in which node pool
the virtual address to be freed falls.
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Figure 4.1: The NUMA-aware kernel memory allocator: For each node, a pool of physical memory
is mapped into the kernel area of each virtual address space.

4.1.2 Address Spaces

The space_t Object

L4’s space_t object on IA32 used to represent an address space is basically the page
directory itself, plus a so-called shadow table of another 4k, used to store pointers
to the corresponding mapping database entries. Additional information, like the
number of threads in that address space, is stored inside some page directory en-
tries marked as invalid. On SMP systems, L4’s implementation for CPU-local data
requires a separate page directory per CPU. In that case, the space_t object is ex-
panded to hold the additional page directories, which lie contiguously in memory.
Thus, it includes a page directory per CPU, no matter if the corresponding space
ever gets activated on all CPUs. Additionally, modifications in one of the CPU-local
page directories (e.g. a newly established mapping) are eagerly propagated to all
other CPU-local page directories. It is obvious that this implementation does not
scale well with an increasing number of CPUs, as the size of the space_t object
increases linearly with the number of CPUs the kernel supports. We therefore
adapted a recent implementation of a new space_t object [36]. Instead of having
the CPU-local page directories allocated contiguously and all at once (namely upon
address space creation), we keep an array of pointers to these page directories,
which allows for arbitrary allocation and placement. Furthermore, all additional
information that was stored in invalidated page directory entries is moved out and
now stored on a separate page, together with the pointers to the per-CPU page di-
rectories. Figure 4.2 shows the old space_t object, Figure 4.3 the new one. A page
directory for a specific CPU is allocated when the corresponding space becomes
active on that very CPU for the first time. Memory is taken from the node to which
the CPU belongs. The newly allocated page directory is initialized by copying all
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entries for user mappings from a reference page directory belonging to the same
address space (i.e. the page directory that was allocated upon address space cre-
ation), while the kernel mappings are copied from the kernel address space’s page
directory from the corresponding CPU (the kernel address space’s per-CPU page
directories are not allocated on demand, but eagerly when it is created). When a
thread is migrated to another CPU for which no page directory exists yet, we do
not allocate it immediately, but set a bit in the thread’s resource bitmap instead.
Resources of a thread are loaded whenever a switch to this thread is performed.
While allocation could also be performed whenever a thread is going to be migrated,
the advantage of using a resource bit is that allocation is always performed on the
CPU the thread is going to run on next. Thus, no remote memory must be touched.
Additionally, if a thread is migrated but never becomes active for some reason, no
unnecessary allocations are performed. This solution fits well to our user-level

PDIR CPU0 Shadow PDIRPDIR CPU1

Abused entries

Figure 4.2: L4’s old space_t object. Page directories for each CPU are allocated contiguously and all
at once upon address space creation. Some entries are marked as invalid and used to store additional
information.

PDIR CPU0 PDIR CPU1

space_t object

Figure 4.3: The new space_t object. A 4k page is used to store mapnode pointers for superpages
(yellow), additional information for each space (green), and pointers to the page directories for each
CPU (red). Page directories do not longer need to lie contiguously, and can be allocated on demand.

architecture: As long as an address space is active only on a single CPU, the kernel
does not have to allocate additional per-CPU page directories or subtables. Memory
consumption is drastically reduced compared to the old solution, and there is also
no need to perform synchronization between per-CPU page table hierarchies.
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Address Space Creation

When a new address space is created, its “home node” is set to the node on which
the corresponding system call was performed, and memory for the space_t object as
well as for all page tables (except those for CPU-local data) is allocated on the home
node. It is not necessary, but desirable that an address space in only active on its
home node. It is not possible to create an address space on a remote node, nor is
it possible to change the home node of an address space once it has been created.
This approach makes address space creation on a specific node more complicated,
as one must ensure that the address space is created by another thread already
running on that node. The alternative would have been to modify L4’s API to allow
for specifying a home node when a new address space is created. However, this
would have introduced a special case to the API that is only relevant on NUMA
systems, which we wanted to avoid.

4.1.3 Replication of Kernel Code

We use L4’s already existing implementation of CPU-local data to also allow for
replication of kernel code. Initially, L4’s binary is placed in memory of node 0.
When the kernel space (including CPU-local mappings) is initialized, we copy the
code pages to every node’s memory pool and map the corresponding virtual ad-
dresses to the replicated code on every node. The code section must be aligned at
the hardware page size (i.e. 4k on IA32) so that it is ensured that code replication
does not affect other objects within the address space, e.g. writable global vari-
ables. As L4 does not contain self-modifying code, no synchronization between the
code replicas is necessary.

4.1.4 TCB Migration

To be able to migrate TCBs and retain the scheme of direct addressed TCBs (via a
virtual linear array), the TCB size must be increased to equal the minimal hardware
page size. We therefore doubled the size from 2k to 4k on the IA32 kernel. We did
not change the overall size of the virtual linear array, thus halving the maximum
number of threads in the system. The migration itself is straightforward: When a
thread is migrated, we check if the destination CPU is on the same or on another
node. In the former case, no TCB migration has to be performed. In the latter, we
allocate a page from the destination node’s memory pool. We then lock the TCB,
copy its contents to the new location and finally adjust the mapping so that the
TCB’s virtual address is mapped to the new physical location. Before the lock is
released, we must ensure that the old mapping is no longer cached in any CPU’s
TLB. We therefore flush the mapping (a single TLB entry) from the local CPU and
invoke a remote handler on all other CPUs that flushes the corresponding entry of
the remote CPUs’ TLBs. The originating CPU waits for a reply from all other CPUs
before it proceeds, ensuring that all TLBs are consistent when execution resumes.
Thread migration is always performed by the CPU to which the thread belongs,
thus ensuring that the thread that shall be migrated is currently not running (and
consequently not accessing its TCB).
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4.2 User-Level Services

In this section, we describe the implementation of basic operating system services
of our NUMA operating system. We construct a two-level pager hierarchy on top of
L4’s root pager, Sigma0. Additionally, we implement a system call server that allows
non-privileged threads to execute system calls. We also present the interface which
each of these services has to offer, defined in IDL4 [17]. Particular attention is paid
to the mechanisms of synchronization between pagers, which are elementary to
preserve applications the view of a single, node-spanning address space, although
multiple address spaces are used. First, we clarify some terms and definitions
we use in the following sections: When we talk of a task, we mean all threads
and address spaces belonging to the same application. This definition differs from
common definitions insofar as a task normally consists only of a single address
space. To the collectivity of all address spaces that belong to a task we refer to as
the task address space. In other words: A task address space consists of one or
more (L4) address spaces, depending on the number of nodes on which the task is
active. A task is active on a specific node or CPU when at least one thread of the
task resides on that node/CPU (this definition does not require that the thread is
actually running).

4.2.1 User-Level Pagers

L4’s address spaces are constructed recursively. Initially, all free physical memory
is owned by Sigma0, which is the root pager of all address spaces. Arbitrary ad-
dress spaces and pager hierarchies can be constructed on top by mapping pages
from Sigma0 into other address spaces (and from there again to other address
spaces, and so forth).

As stated in Chapter 3, our design of user-level services requires one pager
thread on each CPU. These pager threads then manage the address spaces of
applications running on top. It is their responsibility to perform necessary syn-
chronization between address spaces belonging to the same application. For the
reasons of more flexible node-local data (e.g. to allow for code replication) and for
node-local page table hierarchies, it is desirable that our application pagers run in
different address spaces, too. To be able to handle page faults on global mappings
originally established by another pager, each pager must be able to hand out all
physical memory, not only physical memory from the node to which it belongs. As
we described in 2.1.1, Sigma0 hands out every page of memory only once. It is
thus not possible to map all physical memory into every application pager’s ad-
dress space by directly requesting the memory from Sigma0. Instead, we introduce
an additional root pager, leading to the pager hierarchy depicted in Figure 4.4. The
root pager acquires one memory pool from each node from Sigma0. These pools
are mapped onward into every application pager’s address space. With this design,
the amount of physical memory supported is limited by the size of the application
pagers’ virtual address spaces. On IA32, virtual address spaces are 4 GB in size,
of which one GB is used by L4. Therefore, our solution cannot handle more than 3
GB of physical memory. With the trend towards 64 bit architectures, we consider
this not to be a serious problem. Alternatively, data spaces [5] can be used to over-
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come limitations caused by too small virtual address spaces and to offer a more
powerful virtual memory abstraction.

To ease synchronization between application pagers, the address space layout
is the same for every application pager, i.e. the node pools are mapped to the
same virtual addresses in every application pager’s address space. The root pager
is not only responsible for handing out node memory to all application pagers,
but can additionally back the application pager’s code with memory from different
node pools, allowing the application pager’s code to be node-local. Yet, the root
pager itself is running in a single address space, thus using only a single page
table hierarchy, and lacking the possibility to replicate its code. In contrast to the
application pagers, the root pager is mainly required on system startup. Before
starting any applications, the application pagers request all their memory from
the root pager. Performance penalties caused by accesses to remote memory are
negligible in this startup phase. Once initialized, the application pagers will suffer
no more page faults in their own address space.

Sigma 0

Root Pager

Application Pager 0 Application Pager 1

Figure 4.4: The pager hierarchy of our operating system. Example with two nodes. The application
pagers’ code (yellow) is replicated. The two node pools (red and green) are mapped into the address
spaces of both application pagers.

The Root Pager

In addition to the kernel itself, L4 initially starts two system servers: Sigma0 and
a roottask. Our root pager is part of the roottask. On startup, its master thread
spawns additional worker threads and places one on every CPU in the system.
The master thread then acquires a pool of memory from each node from Sigma0
and maps these pools to predefined locations within its own address space. Ad-
ditionally, it acquires the memory in which the application pager module resides,
ELF-loads the binary and places a copy of it in each node pool within its own
address space. Afterwards, the master thread (which is set as pager of the other
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worker threads) starts each of the worker threads by sending a message, as defined
by the L4 API [21]. Each of the worker threads (as well as the master thread) then
create an address space and a thread for the application pager on their node. It is
important that these address spaces are created on the node they will reside on, so
that the home node of each space is set correctly, and kernel page tables are allo-
cated in local memory. Finally, each worker thread (including the master) sends a
startup IPC to the corresponding application pager thread and enters a pager loop
do be able to handle page faults of the application pagers.

Root Pager API The root pager offers only a simple interface to the application
pagers:

interface pager
{

[kernelmsg(idl4::pagefault)]
void pagefault(in long addr, in long uip,

in long access, out fpage fp);
};

That is, it does nothing else but to handle page faults from the application pagers.

Application Pagers

As stated before, the application pagers set up their address spaces before any
applications are started. Because the root pager offers only an interface to handle
page faults, this is done by touching all regions within the virtual address space.
The layout of each application pager’s address space is statically defined, with
fixed-sized regions for the node pools, thread stacks, and the heap. When all
regions are touched, it is ensured that no further page faults will occur on the
application pagers’ virtual memory. In our system, application pagers are also
used to create and start threads and to migrated threads between CPUs/nodes.
Application startup is described in Section 4.2.3.

Application Pager API Due to the additional duties of the application pagers, i.e.
managing thread creation and thread migration, their interface is more complex
than the root pager’s interface:

interface app_pager
{

[kernelmsg(idl4::pagefault)]
void pagefault(in long addr, in long uip,

in long access, out fpage fp);

void make_local(in long start, in long size);

void create_thread(in long ip, in long sp,
out L4_ThreadId_t new_thread);
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void delete_thread(in L4_ThreadId_t thread_id);

void migrate_thread(in L4_ThreadId_t thread,
in long dest_cpu);

void unmap( inout L4_Fpage_t fpage1,
...,
inout L4_Fpage_t fpage63 );

};

The make_local function allows a task to explicitly mark a region of its task address
space as node-local. All page faults that will occur in this region are handled by
establishing a local mapping. That is, the pager that handles the page fault will
map in memory from its own pool, and the newly established mapping is not in-
serted into the master pager’s data structures. create_thread allows an application
to create a new thread on the current CPU, which belongs to the same task as the
caller. The function chooses a unique ID for the thread, inserts the thread into the
data structures of all pagers on which the corresponding task is active and invokes
the system call server (see 4.2.2) thread on the same CPU to finally create the new
thread. The thread ID is returned to the caller.
delete_thread is used to delete a thread. Deletion implies that the thread is re-
moved eagerly from the task structures of all pagers on which the corresponding
task is active. Otherwise, a pager might come to an incorrect migration decision,
i.e. trying to migrate a thread into a target address space that is no longer existent.
migrate_thread is invoked when a thread shall be migrated to another CPU. The
pager ensures that threads can only be migrated by either other threads belonging
to the same task or by a designated load balancer.
unmap1 is a function used for synchronization between pagers. A pager revoking
a global mapping must call all other pagers’ unmap function. The function takes
up to 63 parameters, each specifying an fpage of “physical”2 memory that shall be
unmapped (each L4 thread has 64 message registers, but one of these registers is
required for the message tag). If the limited number of parameters turns out to be
not sufficient, string IPC can be used to pass larger numbers of fpages, but with a
higher overhead for the message itself.
The called pager can then update its own data structures and call L4’s unmap sys-
tem call with the corresponding fpages and then return the result (i.e. the fpages
as returned by L4’s unmap) to the calling pager. It is important to note that the
parameters of our unmap function are not map items, i.e. they are ignored by the
kernel. Therefore, L4_Fpage_t is used as data type instead of the fpage type, which
would lead to the pages being handled as map items. For security reasons, only
pagers must be permitted to call another pager’s unmap function.

Required Data Structures The application pagers have to keep track of three kinds
of information: First, they must know which threads and address spaces belong

1This function definition is given in pseudocode and is meant that one can specify up to 63 fpages to unmap. As IDL4

doesn’t support function overloading, a more complex interface with an appropriate C++ wrapper must be used “in reality”.
2In this context, physical memory is actually virtual memory from the application pagers’ own address spaces.
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together, i.e. form a task. This knowledge is required both for the synchronization
of mappings and for migration of threads between CPUs. Second, the application
pagers must also know about the layout of each address space they page, i.e. which
physical memory is mapped to which virtual addresses. Third, they must keep a
list of free physical memory so that they can allocate new memory when necessary.
To describe a task, we propose the following object:

class task_t
{

L4_Word_t task_id;
pdir_t * pdir;
thread_t * thread_list[NUMBER_OF_CPUS];

};

The task_id is used to uniquely identify tasks. pdir is a pointer to the pager’s
management information of the task’s address space, which we describe below in
more detail. The thread_list array is an array of pointers, each pointing to a list of
thread objects (which are also described below). There is one thread list per CPU,
holding objects for all threads that run on this CPU. With this information, it is
easy for a pager to find out if a task already has threads (and thus an address
space) active on a specific CPU.
To describe threads, we use the following thread object:

class thread_t
{

L4_ThreadId_t thread_id;
task_t * task;
thread_t * next;
thread_t * prev;

};

thread_id is the global ID of the thread, under which it is also known to L4. task is
a pointer to the task object of the task to which the thread belongs. next and prev
are used to be able to form lists of thread objects, as required to describe tasks.
With this structure, a pager can easily find all threads of a task: If a function
provided by the pager’s API is called, the pager needs to find the corresponding
thread object. With that, it can retrieve the task object of the task to which the
thread belongs, and from there all other threads, and thus address spaces. To
quickly retrieve a thread object, given a thread ID, we propose a linear array of
thread objects, with the position of a thread object derived from its thread ID.
To be able to keep track of the layout of address spaces, we decided to implement
two-level page tables similar to those that are used by the IA32 hardware.
To keep track of physical memory, a simple free list can be used, with functions to
allocate and free memory.
Additionally, each pager must keep track of which physical memory it mapped to
which task(s). This knowledge is important in case of an unmap: If a physical page
must be unmapped, all affected page table entries must be invalidated so that the
pager does not reestablish the old mapping when receiving a page fault on a page
that was previously unmapped. A list-based structure per physical page can be
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used, which stores the task ID and the virtual address within the task’s address
space to which the physical page is mapped.

Synchronization of Task Management Information

Pagers only need to be aware of those tasks that have threads residing on their
CPU/node. However, a pager requires a complete view of a task, i.e. it must
know about all its threads and on which nodes the threads reside. Therefore,
no synchronization has to be performed when a new task is created on a node.
Yet, thread creation, deletion, and migration require synchronization between the
pagers of those nodes on which the task is active. The pager that invokes such an
action (e.g. a thread migration) not only updates its own data structures, but also
all data structures of other pagers on which the same task is active. We propose a
lock-based approach for this, i.e. the originating pager directly modifies the other
pagers’ data structures in remote memory.

Synchronization of Free Lists

Application pagers must keep track of which physical memory is free and which
is in use. If a page is allocated by one pager, the other pagers must not hand out
the same page for another purpose. To avoid synchronization of free lists between
pagers, we decided to use a different approach: Pagers are only allowed to allocate
new memory from their own node, and must therefore only keep track of free and
used memory within their own pool. In case of multiple CPUs (and thus pager
threads) per node, it is either possible to partition each node pool further into CPU
pools, or to share free lists between pagers of the same node. This solution leads
to a first touch allocation policy: Global regions of a task address space are always
backed by memory from the node on which they are accessed for the first time.

Synchronization of User-Level Page Management Structures

If a new, global mapping is established, removed, or modified by one pager, the
other pagers must be made aware of this. In case of a newly established mapping
or when access rights are widened, this synchronization can be performed lazily.
As we stated in Section 3.2.3, we define a master pager and keep its data struc-
tures always up-to-date. The master pager can thus be queried to find out if a
valid mapping exists if a page fault on a global mapping is handled. Due to the
low remote-to-local latency ratio of our test system, we decided to perform lock-
based synchronization instead of message-based synchronization between pagers,
i.e. the pagers can directly modify each others data structures via shared mem-
ory. If a pager receives a page fault message at a virtual address that shall be
global (which is the default), it acquires a lock on the master pager’s page table
and checks it to find out if there already exists a valid mapping. If there is one,
it inserts the mapping into its own data structures, releases the lock and answers
with the physical page of memory that is expected at this location. If no mapping
exists yet, the pager allocates a new page of memory from its own node pool and
inserts the corresponding mapping both in its own page table hierarchy and in the
master pager’s page table hierarchy (the lock must be held while this is done). After



44 CHAPTER 4. IMPLEMENTATION

that, the lock can be released and the newly allocated page can be mapped to the
application. Locking is required to avoid race conditions, that can occur otherwise
when multiple pagers have to handle a page fault at the same virtual address of the
same task simultaneously. To avoid the master pager becoming a bottleneck, dif-
ferent master pagers can be used for each task, for example by assigning the pager
of the CPU on which the task was created as master pager, or by assigning pagers
in a round robin fashion to newly created tasks. Additionally, instead of using a
simple spin lock, more sophisticated locking techniques like MCS locks [31] can be
used, which allow each processor to spin on local memory and can thus help to
reduce cache coherence overhead and remote accesses.

In case of an unmap (including restriction of access rights), synchronization
must be performed eagerly. We therefore decided to implement an IPC-based pro-
tocol. If a pager unmaps a globally mapped page from a task, it must notify all other
pagers by calling the other pagers’ unmap function with appropriate parameters.
The called pagers can then invalidate the mapping within their own page tables (so
that they will query the master pager when the receive a page fault on the corre-
sponding virtual address the next time), update their mapping information and call
L4’s unmap by themselves. The originating pager must not resume execution until
all other pagers have completed the unmap. An unmap should be initiated by the
pager to the pool of which the page of memory that shall be unmapped belongs. As
we stated above, a pager never hands out memory from another but its own node,
except for already existing global mappings. Therefore, two conditions hold true for
pages that belong to a pager’s own pool: Firstly, there exist no local mappings of
this page established by other pagers. When the originating pager itself unmaps
the page, all existing local mappings are removed. Secondly, all global mappings of
that physical page were originally established by the pager to the pool of which the
page belongs. This means that the pager is aware of all tasks to which the page
is mapped. It is thus sufficient to only call the unmap function of those remote
pagers where such a task is active. It is not necessary to query the master pager
or any other pager in the system. The called pagers must return the status bits
(i.e. accessed and dirty in case of IA32) for each page they unmapped to the calling
pager. With this information, the calling pager can find out if a page that was un-
mapped was modified on any node. This knowledge is important e.g. if a page shall
be swapped out: There is no need to write the contents of a physical page back to
the disk if there already exists an older copy and the page was not modified since
it was swapped in for the last time.
If each application pager consists only of a single thread that handles all incoming
requests, there exists the risk that the IPC-based unmap will deadlock. Consider
a system with two application pagers that try to unmap a page of their own pool
simultaneously. Each of these two pagers will first unmap the page locally and
then try to call the other pager’s unmap function. As each pager now waits for the
remote call to complete, none of them is able to handle the pending call issued by
the other. If no IPC timeout is specified, both pagers will be blocked forever. Even
with timeouts, it is difficult to find a solution that guarantees successful comple-
tion of all unmaps and predictable time to completion. A better solution is to use
an additional worker thread per application pager that is responsible for nothing
but handling remote unmaps. The pager that triggers the unmap (i.e. the one that
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owns the memory that shall be unmapped) calls all other pagers’ worker thread to
perform the unmap, while it uses its “master” thread to issue these calls. There-
fore, the originating pager’s worker thread is still able to handle unmap requests
triggered by other application pagers. This additional parallelism within each ap-
plication pager requires additional locking of pager-local data structures if they are
possibly accessed by both threads. For example, the worker thread has to modify
page tables to invalidate mappings, while the master thread also must modify page
tables if it handles a page fault caused by a client.
A separate thread for handling incoming unmap requests issued by other pagers
not only avoids deadlocks, but can also help to reduce latency and thus improve
performance of an unmap.

4.2.2 System Call Servers

In L4, some system calls can only be executed by privileged threads, including
both SpaceControl and ThreadControl, which are required to create new threads
and address spaces. Privileged threads are all threads that run in the same ad-
dress space as the initial privileged threads, i.e. Sigma0 and the roottask. If other
threads shall be able to perform these system calls, a system call server must be
implemented that performs the calls on behalf of the calling thread. In addition
to the root pager threads we create in the roottask’s address space, we therefore
also spawn a system call thread per CPU. These threads offer the following API to
applications:

interface syscall
{

void ThreadControl( in L4_ThreadId_t dest,
in L4_ThreadId_t space,
in L4_ThreadId_t scheduler,
in L4_ThreadId_t pager,
in void* UtcbLocation );

void SpaceControl( in L4_ThreadId_t space_spec,
in L4_Word_t control,
in L4_Fpage_t kip,
in L4_Fpage_t utcb_area,
in L4_ThreadId_t redirector );

};

The implementation of these functions does nothing but calling the corresponding
L4 system calls with the accordant parameters. Of course, additional security
policies are possible, like restricting the number of threads that are allowed to
perform these system calls. As the system call server threads run in the roottask’s
address space, neither their code nor the page tables can be replicated.

4.2.3 Application Startup

For the sake of simplicity, our system provides only a minimal set of services.
In a “real” system, one would also have a task server, which is responsible for
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the creation and management of new tasks, i.e. threads and the corresponding
address spaces. In our system, task creation is also part of the pagers’ work.
When a new task is going to be created, the pager that creates a task loads the
task’s binary, creates a new thread and a new address space on its own node, and
sends a startup message to the application’s thread. If the application wants to
create more threads, it can call its pager, which in turn calls the roottask (as only
privileged threads can create other threads). The application must not bypass its
pager (i.e. call the system call server directly), because the pager must be made
aware of the new thread. Each newly created thread is placed on the CPU on which
it was created, and can be migrated afterwards.

4.2.4 Thread Migration

Migrating a thread from one to another node implies not only to migrate it to a new
CPU, but also to migrate it into another address space. The pagers therefore need
to be aware of which address spaces belong together, i.e. to the same task. L4’s
API poses some additional challenges here, as an address space is identified only
implicitly by the threads that reside within it. When a thread of an application shall
be migrated to a node where no other threads of this application exist yet, a new
address space must be created. To create a new address space on L4, the Thread-
Control system call must be used, with the first parameter (the new thread’s id)
being equal to the second parameter (the address space specifier). Calling Thread-
Control in this way creates a new thread and a new address space in which the
newly created thread is placed. Our scenario, however, would require to create
only a new address space on the target node (i.e. with no threads associated to it),
and then to migrate an already existing thread into this new address space. This is
not possible with L4’s API. To work around this without having to change the API
to explicitly identify address spaces, there exist two solutions:

1. The thread that shall be migrated is deleted on the source node and recreated
on the destination node (together with a new address space) by the destination
node’s pager. The thread must be recreated with the same global thread ID
it had had before. The problem with this solution is that the thread’s state
is lost when it is deleted. Thus, important state (like the thread’s user-level
stack pointer and instruction pointer) must be explicitly saved and restored.

2. Instead of deleting and recreating the thread, a “dummy thread” is created on
the destination node, together with a new address space (implicitly identified
by the dummy thread’s id). The thread that shall be migrated can then easily
be placed in the newly created address spaces and afterwards be put on a CPU
on the destination node. After the thread is migrated into the new address
space, the dummy thread can be deleted - without ever becoming active.

To avoid the problems of explicitly saving important thread state when the thread
is deleted and restoring the state when it is recreated, we favor the second solu-
tion, i.e. creating a dummy thread on the destination node, together with a new
address space. Once the target address space exists, the pager on the destination
node can put the to-be-migrated thread into the newly created address space and
migrate it to the target CPU. The dummy thread can be removed after the migration
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is complete. Figure 4.5 summarizes the steps necessary to migrate a thread. The
destination pager is only invoked when there exists no thread of the affected task
on the destination node. In that case, the destination pager does not have any in-
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Figure 4.5: Necessary steps to migrate a thread between CPUs/nodes.

formation about the task’s address space layout. It creates an empty page directory
and queries the master pager with every page fault it receives. Alternatively, it can
eagerly copy the master pager’s page table hierarchy after the thread is migrated.
Note that copying the master pager’s tables does not avoid page faults in the newly
created address space, but only avoids querying the master pager when handling
a page fault on an already valid mapping. In addition to the mapping information
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(i.e. page tables), the pager requires the task management information (i.e. which
threads belong to the task and on which CPUs these threads currently reside). The
destination pager copies this data from the source pager. Of course, it has to adapt
the pdir pointer of the copied task object so that it points to the destination pager’s
newly allocated page directory.

A special case of thread migration is when the last thread of a task on a specific
node is migrated away to another node. In that case, the address space on the
source node will automatically be destroyed (L4 destroys an address space when
the last thread in that address space is killed or moved away). If the pager on
the source node is the root pager, it either must not delete the address space
management informations (so that the other pagers can still update it), or a new
root pager must be chosen. This change must be propagated to all other pagers so
that they use the new root pager from now on. Currently, our API does not support
to change the root pager. If the pager on the source node is not the root pager, it
must discard all address space management information. Storing the informations
for the case that the task will become active on the corresponding node again in
the future is not possible, because these informations cannot be guaranteed to be
kept up-to-date. For example, if a page is unmapped from a task, only pagers of
those nodes where the task is active will be notified. Thus, mappings that are no
longer valid might remain in a page table hierarchy that is “cached” for future use.
Alternatively, more complex synchronization strategies can be used to ensure that
cached page tables are also kept up-to-date. Yet, the expected benefits of such
a solution are rather small: Caching page tables only avoids querying the master
pager in case a task is reactivated on a node. It does not reduce the number of
page faults: As stated before, L4 implicitly destroys an address space once no more
threads reside in it. Thus, in case of reactivation, a new L4 address space must be
created and populated (by means of page faults) anyway.

Our design does not allow to change the home node of an address space. This
could be a helpful feature if a complete task shall be migrated from one node to an-
other node. If it was possible to change the home node of the corresponding space
on the source node in that case, one would not have to pay the costs for creating
and repopulating a new address space on the destination node. However, allowing
to change the home node would require to modify L4’s API (either by modifying an
existing system call or by introducing a new one) and introduce a NUMA-specific
special case. Additionally, the kernel would have to migrate the entire page table
hierarchy to the destination node, which also causes additional overhead.

Frequent migrations of the last thread of a task or of an entire task are thus
a worst-case migration scenario for our design: In that case, the corresponding
address space on the source node is always destroyed and must be recreated and
repopulated in case the task becomes active on this node again, making migration
more expensive than it would be if only a single address space per task was used.
One has to keep this fact in mind when designing a load balancer for the system. In
addition to the fact that too frequent thread migrations should generally be avoided
(mainly because of the overhead due to “cold” caches on the destination CPU), a
load balancer for our system should also avoid migrating the last thread of a task
on a specific node when possible. Additionally, thread migrations between CPUs of
the same node are preferable for locality reasons.
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4.2.5 Local and Global Mappings

As we explained above, synchronization of address space management informa-
tion is only necessary when global mappings are affected. Yet, there remains the
questions which mappings can be treated as local and which must be global. If
an application is not “tuned” towards a NUMA system in that it explicitly marks
regions of its address space as local, a pager must treat all virtual addresses as
global. Global mappings ensure that the application has the impression of running
in a single address space that spans across multiple nodes. An exception from
this rule is all data that is known or expected to be read-only: In that case, the
pagers can transparently replicate the data amongst nodes and map it node-local
into every address space. An example for such read-only data is the application’s
code itself: The binary can be loaded into different node pools, and all code faults
can be handled locally. However, there remains the possibility that code is written
for some reasons: For example, the application might contain self-modifying code,
or writable, static data might occupy parts of a page of memory that also contains
code. To handle with such cases, we implemented a mechanism that is similar to
copy on write: When a pager receives a page fault with read access on a code page
of an application, it first checks the master pager if there is already mapped a page
with write access permitted. If so, the pager answers with this page, thus making
the mapping global. If not, it answers with the corresponding code page from its
own pool, with the access rights set to read-only. Whenever a pager receives a
write fault on such a read-only mapping, the mapping must be made global. This
implies that all pagers are notified to unmap existing local mappings. Additionally,
the new, global mapping must be inserted into the master pager’s data structures.

4.2.6 Static and Dynamic Page Placement

Our current implementation with a pager handing out a page of its own memory
when no valid global mapping exits yet leads to a first-touch allocation policy, i.e.
a virtual address is always backed by physical memory from the node on which it
was accessed for the first time. Such a simple policy is expected to be sufficient in
most cases. However, there are some scenarios where a first-touch allocation pol-
icy will lead to a suboptimal memory placement. For example, consider a parallel
application where a single thread first initializes all memory required by the ap-
plication and then spawns additional worker threads and distributes these worker
threads amongst all nodes. In that case, memory initialized by the initial thread
will be backed by memory on this thread’s node, although it is only accessed by the
worker threads, residing on remote nodes. Therefore, the operating system should
either offer an API that allows for allocation of memory on a specific node, or it
should be able to detect whether a physical page is accessed mainly from remote
nodes and migrate or replicate the page dynamically. While our current imple-
mentation neither offers an API for manual placement (apart from the possibility
to mark a region of the virtual address space as node-local) nor supports any form
of dynamic migration and replication, our design influences the implementation of
such techniques. For example, our application pagers are not permitted to allocate
memory from another but their own node. Static placement on a specific node as
well as dynamic migration and replication however require to allocate memory on
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a remote node. One possibility to tackle this problem is to discard our allocation
scheme so that an application pager is allowed to allocate memory on arbitrary
nodes. This in turn requires locking of the memory management information to
ensure consistency. We expect allocation of memory on the local node to be much
more frequently required than allocation of memory on a remote node. Therefore,
locking would induce significant overhead for the common case, which is why an
IPC-based solution is favorable. This requires to extend the application pagers’ API
with a function that allows for remote allocation. The called pager has to do nothing
but to allocate the desired amount of memory on its node, to insert the mapping
in its data structures (the calling pager must therefore specify to which task the
memory is mapped) and to return the corresponding virtual address within its own
address space to the calling pager. The calling pager can then map this memory
as if it was memory from its own node. Additionally, dynamic migration or repli-
cation must be carefully implemented so that consistency is ensured. First, the
page that shall be migrated/replicated must be globally unmapped from all ad-
dress spaces to which it is mapped. Next, it must be ensured that no application
pager reestablishes the old mapping while the migration/replication is in progress,
i.e. while the contents of the page are copied to the new location. Therefore, the
application pager performing the migration/replication must hold the correspond-
ing master pager lock during the entire operation. The lock must not be released
before the new mapping is inserted into the master pager’s page table. Once this
state is reached, all other pagers will see the new mapping when querying the
master pager’s page table.



CHAPTER 5

Evaluation

In this chapter, we evaluate our work. We analyze the effects of TCB migration
and kernel code replication on the performance of L4’s inter address space IPC. We
compare our user-level solution with a non-NUMA-aware operating system. Special
attention is payed on the overhead caused by the additional number of page faults
that can occur when multiple address spaces are used for a single application. We
also analyze the impacts of our design on the performance of an unmap operation.

5.1 Evaluation Environment

We used a system of two AMD Opteron CPUs to evaluate our work. The AMD
Opteron is NUMA-capable, i.e. each CPU has a built-in memory controller. The
processors are connected with a coherent HyperTransport link. A detailed descrip-
tion of the Opteron northbridge architecture can be found in [12]. In our system,
each CPU was attached to two GB of main memory.

5.2 NUMA Memory Latencies

We started with evaluating the “raw” access latencies for both local and remote
memory. To avoid page faults, we ran our benchmark in protected mode, but
with paging disabled. The benchmark consisted of two phases: An initialization
phase and the actual benchmarking phase. In the initialization phase, a linked
list was created by writing a pointer to the next memory location (determined by
a fixed offset) to the current memory location. In the benchmarking phase, the
time required to walk this list was measured. Walking the list is simply a sequence
of consecutive memory reads. Reading the location for the next memory access
from the list (i.e. from memory) instead of calculating it by adding a fixed offset
is necessary to eliminate effects caused by hardware optimization techniques such
as prefetching. With the list approach, the CPU has to wait for a read operation to
finish before the next operation can be carried out. The results of this benchmark
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are shown in Figure 5.1. As one can see, the remote-to-local ratio is very low, i.e.

r =
cremote

clocal
≈ 1.4 (5.1)

AMD even states a remote-to-local ratio for one-hop read accesses of r < 1.1 [3].
We therefore expected only modest performance improvements caused by better
locality of kernel objects.
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Figure 5.1: Average costs for read accesses to local and remote memory, respectively.

5.3 TCB Migration and Code Replication

Next, we analyzed how TCB migration and kernel code replication affect the perfor-
mance of L4’s IPC primitive. We therefore put two threads on node 1, each within
its own address space. These threads send IPC messages to each other. If TCB mi-
gration and code replication are turned off, TCB accesses and kernel invocations
require accesses to remote memory in case the accessed code/data is not found
in the caches. Both threads (together with their address spaces) were created on
node 0 and migrated to node 1 before starting the measurement. In this way, both
the kernel page tables for the address spaces and the UTCBs of the two threads
lie in memory of node 0, i.e. in remote memory. This is because we wanted to
evaluate the effects of node-local UTCB placement separately. We measured the
performance of inter address space IPC with both code replication and TCB migra-
tion disabled, with either code replication or TCB migration enabled, and finally,
with both enabled. Figure 5.2 shows the results. Neither TCB migration nor kernel
code replication have a significant effect on the IPC performance. To find out the
reasons for this, we counted the number of accesses to remote memory during an
IPC by configuring a performance counter of the Opteron CPU. Figure 5.3 shows
the results for the same kernel configurations as above. Again, almost no differ-
ences can be measured. For further analyses, we disabled caching on both CPUs
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Figure 5.2: Average number of cycles per IPC, caches enabled
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Figure 5.3: Average number of remote accesses per IPC, caches enabled.
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and reran our benchmarks. The results can be seen in Figure 5.4 and Figure 5.5.
This time, one can see a clear performance improvement caused both by TCB mi-
gration and kernel code replication, whereas TCB migration is more beneficial than
code replication. The number of accesses to remote memory during an IPC also de-
creases drastically. One has to keep in mind that both the application code and
the UTCBs lie in remote memory, so that there are still remote accesses necessary.
Obviously, our ping pong scenario suffers only very few cache misses. This is not
surprising: PingPong is a very small program, and the same code path is executed
several times. Additionally, also L4’s IPC code path for inter address space IPC on
the same CPU is very short. We were surprised to find out that TCB migration is
more beneficial than code replication: As every access to a TCB requires the exe-
cution of some code, one can assume that the number of code fetches is at least as
high as the number of TCB accesses. However, other hardware optimizations like
instruction prefetching are still enabled and can reduce the penalty for instruction
fetches from remote memory.
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Figure 5.4: Average number of cycles per IPC, caches disabled.

As said above, for this benchmark both threads and address spaces were cre-
ated on node 0 and afterwards migrated to node 1, leading to the fact that both
UTCBs and page tables (except for the page directory) lay in remote memory. We
modified our benchmarking scenario to also have UTCBs and page tables node-
local: Instead of a master thread creating both threads and then migrating them,
we migrated the master thread to node 1 and created the two threads and address
spaces for the measurement there. This way, node 1 is set as home node for both
spaces, and also the UTCBs are allocated on node 1. We then compared the perfor-
mance of this solution with the initial configuration, where UTCBs and page tables
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Figure 5.5: Average number of remote accesses per IPC, caches disabled.

were in remote memory. For this benchmark, caches were enabled. Figure 5.6
compares the IPC performance in both cases, Figure 5.7 the number of accesses to
remote memory. While the overall performance (i.e. the number of cycles per IPC)
is not improved, the average number of remote accesses per IPC is clearly reduced.
As the working set of PingPong is rather small, we expect all virtual-to-physical
translations to be cached in the TLB. Therefore, local placement of page tables is
not of importance in this scenario, and the reduction of remote accesses is caused
by local UTCB placement. As a thread’s UTCB holds the thread’s message registers,
it is frequently accessed during an IPC.
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5.4 User-Level Architecture

5.4.1 Establishment of Mappings

Next, we wanted to analyze the impacts of our design on a memory-intensive user-
level application. We therefore implemented the pager hierarchy depicted in Figure
4.4 for our two-node system, i.e. two application pagers running on top of a master
pager. Each application pager thread resides in its own address space, with the
home node set to the node to which the pager belongs. Application pager code
is replicated where possible (i.e. as long as it is not written). Each application
pager uses its own management information, the pager on node 0 was designated
as master pager. The pagers synchronize via shared memory, with a simple spin
lock used to serialize accesses to the master pager’s data structures when neces-
sary. Each of our two application pagers consists only of a single thread, therefore,
no locking was required within the second (i.e. non-master) pager. Additionally,
we implemented a similar, non-NUMA operating system, that also consists of two
application pager threads (one per CPU), but within the same address space. In
contrast to our NUMA system, a single L4 address space was used for a task,
and only memory from node 0 was given out. We implemented a small, memory-
intensive sample application that consists of two threads, one per CPU. Each of
these threads works on a large array within the application’s task address space
by walking it in 4 byte steps. The first thread starts at the bottom of its array
and works upwards, the second starts at the top and works downwards. If the
application is configured to walk the arrays several times, the threads walk back
in the opposite direction once they have reached either the upper or lower end of
their array. As the application’s address spaces are initially empty, walking the
array causes page faults on the first iteration. No unmaps are performed at ap-
plication runtime, so that subsequent iterations cause no additional page faults.
We measured the time until both threads completed the iterations over their ar-
ray. This application was executed on top of both operating systems. We modified
the number of iterations over the arrays as well as the degree at which the arrays
overlap.

We began with the worst case scenario for our design, which is when both ar-
rays occupy the same region of memory, i.e. overlap completely. In that case, our
NUMA OS will suffer twice the number of page faults compared to any solution
that uses only a single address space for a task. Figure 5.8 depicts the duration
to complete against the number of iterations the threads performed, both for the
NUMA and the non-NUMA system. As one can see, the NUMA system performs
worse than the non-NUMA system when the array is walked only a few times. With
an increasing number of iterations however, the NUMA system outperforms the
non-NUMA system. This is the result we expected: With only a few iterations, the
higher startup costs caused by the additional number of page faults are dominant,
with a higher number of iterations, the improved locality in our NUMA system com-
pensates this additional penalty. Figure 5.9 shows the overall number of remote
accesses. Again, the NUMA OS suffers higher startup costs, caused by twice the
number of page faults and thus twice the synchronization overhead (each page fault
requires access to the master pager’s page tables and thus to remote memory), but
then outperforms the non-NUMA OS. However, this figure is representative only
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to a limited degree: During our observations, we ran the same benchmark with
a slightly different test application (which performed the same iterations over the
array and only lacked an additional remote function call after the iterations were
finished), this time, the total number of remote accesses caused by the NUMA OS
was always higher than the number of remote accesses caused by the non-NUMA
OS (at least up to ten iterations). Nevertheless, we got similar results for the overall
runtime: With only a few iterations, the non-NUMA OS was faster, with an in-
creasing number of iterations, the NUMA OS outperformed the non-NUMA OS. To
understand why the NUMA OS can complete faster even when the total number
of remote accesses is higher, one has to have a closer look at our test applica-
tion: Both the NUMA and the non-NUMA OS suffer no additional synchronization
overhead once all mappings are established. The increasing number of remote ac-
cesses with every iteration is caused by accessing the data itself, i.e. by the threads
walking the array. In case of the NUMA OS, approximately one half of the array is
backed by memory from node 0, the other half by memory from node 1. In case of
the non-NUMA OS, the entire array is backed by memory from node 0. Thus, the
sum of remote accesses caused by the two application threads is approximately
the same in both cases. With the NUMA OS however, the remote accesses are dis-
tributed amongst both CPU, while with the non-NUMA OS, the thread on CPU 0
has to perform no remote accesses, and the thread on CPU 1 has to perform only
remote accesses. Our sample application completes when both threads finished
processing the array, i.e. the time to completion is determined by the speed of
the slowest thread. Thus, not only the overall number of remote accesses affects
application performance, but also the distribution of remote accesses amongst the
CPUs. Figure 5.10 shows that the total number of remote accesses in case of the
non-NUMA OS (i.e. the number of remote accesses on CPU 1) is always higher than
the number of remote accesses per CPU in case of the NUMA OS.

As said before, it is a worst-case scenario for our operating system when both
arrays overlap completely. On the other hand, it is the best case when both threads
work entirely on their own data, i.e. the arrays do not overlap. Even if the appli-
cation pagers have to treat all mappings as global (and therefore need to perform
synchronization of their page tables), our solution will not suffer more page faults
than a solution with only a single address space. Additionally, due to the first-
touch allocation policy of our system, each thread can work on memory local to
its own node. Figure 5.11 shows the results if the two arrays do not overlap, both
for the NUMA and the non-NUMA system. Figure 5.12 shows the total number of
remote references in that case. The NUMA OS clearly shows better performance
and better locality than the non-NUMA OS.

If the application programmer knows which data is completely local to a thread,
a further optimization is possible by marking the appropriate region(s) within the
application’s address space as node-local. For page faults on node-local addresses,
the application pagers do not have to perform synchronization, thus reducing the
number of accesses to remote memory and improving concurrency. Figure 5.13
compares the local with the global approach. In both cases, the application threads
access only their own array, and the array is backed by memory of the local node.
As one can see, the advantage of local mappings is rather small, i.e. the costs for
synchronization are relatively low in our scenario.
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Figure 5.8: Duration to walk a 50 MB array n times in parallel.
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Figure 5.9: Number of remote accesses when walking a 50 MB array n times in parallel.
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Figure 5.10: Number of remote accesses on both CPUs for the NUMA OS. In case of the non-NUMA
OS, only CPU 1 has to access remote memory.

Now we wanted to analyze the impacts of different degrees of overlapping, i.e.
configurations between the worst-case (complete overlapping) and the best-case (no
overlapping) scenario. For the following benchmarks, we increased the degree of
overlapping from 0 (no overlapping) to 1 (complete overlapping) in steps of 0.1. We
did this with the threads performing only one iteration over their array, and with
the threads performing four iterations over their array. Figure 5.14 and Figure
5.15 show the results. With only one iteration, the NUMA system suffers from the
additional page faults even with a small degree of overlapping, i.e. 30%. With four
iterations, the improved data locality of the NUMA OS is beneficial even when the
arrays overlap to a degree of 90%.

Finally, we measured the effect of page table replication. Therefore, we adapted
our NUMA OS in that only a single address space was used for the test applica-
tion. Thus, the number of page faults on shared data is reduced, i.e. a mapping
is automatically established on all nodes when a fault on one node is handled.
Yet, in-kernel page tables are not replicated (except for the page directory, which
is replicated per CPU to allow for CPU-local in-kernel data). For this test, the two
arrays overlapped completely. Figure 5.16 compares the configuration with only a
single L4 address space for the test application with the configuration with one ad-
dress space per node. The configuration with per-node address spaces has higher
startup costs due to the additional page faults. The improved locality of page tables
is not sufficient to compensate this startup penalty, even with a high number of
iterations. This is because the number of page table accesses is very low compared
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Figure 5.11: Duration to walk two non-overlapping 50 MB arrays in parallel.
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Figure 5.12: Number of remote accesses when walking two non-overlapping 50 MB arrays in parallel.
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Figure 5.13: Local mappings vs. global mappings

to the overall memory accesses performed by the application: In the worst case,
one page table access is required whenever a new page of the array is accessed
(realistically, the TLB is expected to reduce the number of page table accesses even
further), but reading the contents of the page in 4 byte steps requires 1024 mem-
ory accesses (assuming that each memory access fetches only 4 bytes). We did not
implement in-kernel replication of page tables, but expect this solution to perform
similar than the single address space solution shown above. In-kernel replication
will offer better locality of page tables compared to the single address space sce-
nario from above, but will also suffer from additional in-kernel synchronization
overhead. Yet, our investigations have shown that better locality of page tables
does not lead to a performance improvement in our benchmarking scenario.
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Figure 5.15: Dependency of execution time on the degree of overlapping between the two threads’
arrays, four iterations.
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5.4.2 Revocation of Mappings

Our design not only affects the expected number of page faults, but also influences
the performance of unmapping pages. If a page must be globally unmapped, it
is not sufficient when only one pager calls L4’s unmap system call. Instead, the
other pagers must be notified to perform an unmap by themselves. Therefore, the
costs for unmapping increase with the number of pagers that must be notified. We
measured the time to unmap a single page of memory from the application’s task
address space, both for the non-NUMA and the NUMA OS. In our benchmarking
scenario, an application thread running on node 0 touches a page of memory (to
ensure that it is mapped) and then calls its pager’s unmap function. The pager
translates the virtual address passed by the application to a “physical” address
and then calls L4’s unmap system call. In case of the NUMA OS, it additionally
invokes the unmap function of the other application pager, i.e. the pager on node
1. We measured the time from the application thread calling its pager’s unmap
until the call returns, i.e. the unmap completes. For the NUMA OS, two additional
cross-CPU IPCs are required. It is therefore not surprising that the costs in case
of the NUMA OS are about three times as high as in case of the non-NUMA OS, as
can be seen in Figure 5.17. Due to the synchronous RPC semantics of the remote
invocation, the originating pager will wait for the first remote pager to complete
before calling the next (if any). Therefore, one can expect that the costs for a
global unmap increase linearly with every additional pager that must be called.
This additional overhead might be critical in some scenarios, especially with an
increasing number of nodes and highly parallel applications (i.e. applications that
span across multiple nodes). To optimize performance, it it possible to discard
the synchronous RPC semantics when invoking the other pagers’ unmap and use
asynchronous RPC instead1: Instead of the originator waiting for the completion
of each remote procedure call before calling the next, it can notify all pagers and
then wait for all pagers to call in at a barrier. With that approach, the called pagers
can perform their local unmap in parallel. Yet, the invocation of the other pagers’
unmap would still have to be performed sequentially, as L4’s IPC does not support
any form of broadcast. If this optimization is not sufficient, there remains the
possibility that the root pager of the system is used to perform a global unmap, as
described in Section 3.2.3. Because the root pager owns all physical memory and
passed it to the application pagers at system startup, an unmap performed by the
root pager will revoke the corresponding mapping from all task address spaces and
additionally from all application pagers’ address spaces. The latter is the biggest
disadvantage of this solution, because the application pagers must rerequest the
memory from the root pager (by means of page faults). The condition that the root
pager is only invoked at system startup will thus no longer hold true.

1IDL4 offers oneway functions for that purpose.
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Conclusion

In this work, we designed and implemented an L4-based operating system tailored
towards NUMA hardware. Our design decisions were driven by the requirement
to improve locality of objects (i.e. to place objects on nodes they are accessed
from) and to preserve parallelism (i.e. to design the OS so that it can handle in-
dependent, parallel requests in parallel). Migration and replication are techniques
that can improve locality and parallelism, but the choice which one to choose is
object-depended: Only objects with a high read-to-write ratio are candidates for
replication, and only objects that are mainly accessed from a single node are can-
didates for migration. We therefore revised the most important data structures
of L4, namely thread control blocks, space_t objects (including page tables), the
mapping data base, and the kernel code itself. For TCBs, we favored migration
over replication, as this optimizes for IPC between threads on the same CPU. We
decided to keep the scheme of direct TCB addressing via a virtual linear array and
therefore had to increase the TCB size so that a single TCB occupies a complete
hardware page. We assigned a home node to each address space, set to the node
on which the address space is created. The object describing the address space as
well as all page tables (except those for in-kernel CPU-local data) are allocated on
that home node. Additionally, also the memory backing the UTCB area is allocated
on the home node of the corresponding space. We modified the mapping database
so that memory for a map node is allocated on the home node of the space the
mapnode belongs to. This makes all mapping database accesses node-local as long
as memory is mapped between spaces with the same home node. Additionally,
we replicated the kernel code to physical memory of each node by using L4’s pre-
existing implementation of CPU-local kernel data. For user-level applications, we
developed a novel approach to allow for flexible, node-local data and for replication
of in-kernel page tables. Instead of keeping all threads of a task within the same
address space, we propose to construct one address space per node (or even per
CPU), with the user-level pagers keeping track of which address spaces belong to
the same task. By doing so, in-kernel page tables are synchronized implicitly by
means of page faults. This avoids the introduction of an additional synchronization

67
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primitive within the kernel, the choice of which would not only depend on access
and sharing patterns of the page table it protects, but also on the latency ratio
between remote and local memory accesses. Having such a primitive in the kernel
would constrain the kernel’s flexibility and contradict the principle of a minimal,
policy-free microkernel. In addition to the fact that our user-level design avoids the
introduction of a new in-kernel synchronization primitive, it also allows migration
of UTCBs without having to change their size or to discard the scheme of direct
addressing.

Our user-level approach requires a tight interaction between application pagers.
Threads migrating to another node must implicitly be migrated into another ad-
dress space. Global mappings must be made visible in all address spaces belonging
to the same task. Unmapping of global pages requires special precaution, as the
mapping must be revoked immediately from all address spaces. We developed an
IPC-based protocol for synchronization between pagers in case of an unmap.

We evaluated the effects of our kernel modifications by running a microbench-
mark to measure IPC performance between two threads on the same CPU, but in
different address spaces. Our evaluation on a small AMD Opteron system with
two nodes showed that the modifications we made to kernel data structures did
not show much of an effect. Only with caches disabled, one can see a clear im-
provement in IPC performance and a reduction of accesses to remote memory with
our NUMA kernel configuration enabled. Obviously, caches, TLBs, and other hard-
ware techniques like instruction prefetching can compensate the additional costs
caused by accessing kernel objects in remote memory. Additionally, the remote-
to-local latency ratio of the Opteron system is relatively low. However, even with
caching enabled, local placement of UTCBs leads to a reduction of the number of
remote accesses per IPC. Finally, we compared our operating system with an im-
plementation not tailored towards NUMA systems by running a memory-intensive
parallel application on top. For data shared amongst multiple threads on multiple
nodes, our NUMA OS suffers more page faults than an OS that uses only a single
address space per task. Yet, our results show that these additional startup costs
are compensated by the improved data locality provided by the NUMA OS when
the number of data accesses (i.e. the number of iterations over the threads’ ar-
rays in our scenario) increases. Our design is most beneficial when each thread
works only on its own data and never accesses data from the other. In that case,
the number of page faults is as high as for the non-NUMA OS, but data locality
is significantly improved: Each thread’s data is placed in local memory. We found
out the the overall performance of our application is not only influenced by the
total number of accesses to remote memory, but also by the distribution of remote
accesses amongst the CPUs.

6.1 Suggestions for Future Work

The system we used for evaluation was a small-scale NUMA machine, consisting of
only two nodes, and with remarkably low access latencies to remote memory. While
these characteristics allow for good performance also for applications and operating
systems that are not tuned towards NUMA machines, they also make it hard to
evaluate any benefits of a better object placement. Therefore, it would be interesting
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to evaluate the effects of our changes on a system with a higher remote-to-local
ratio. Additionally, our system consisted of only two nodes and was thus very small.
In case of larger-scaled systems, the performance of inter-pager synchronization,
especially the performance of a global unmap operation, might lead to more severe
performance penalties. Alternative solutions for globally unmapping a page (like
the proposed use of asynchronous RPC) have to be investigated, if our IPC-based
solution turns out to be too slow. Our application used for benchmarking was fairly
synthetic and only aimed for analyzing the effect of our design on a highly parallel,
memory-intensive application. The impacts of our design on a more “realistic”
workload still need to be investigated. Our modifications might also be useful for
L4-based virtualization solutions. A NUMA-aware virtual machine monitor can hide
the NUMA characteristics of the hardware from a non-NUMA-aware guest operating
system.
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