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Abstract

The increasing prevalence of multi-core processors and distributed systems makes
parallel programming more and more important. But correct synchronization of
concurrent processes is difficult because locks, the most common tool to handle
concurrency, are flawed and error prone. Software transactional memory promises
to revolutionize the development of parallel applications by borrowing the concept
of atomic transactions and applying it to code blocks. But until now most research
in this area focused on the performance on single systems.

In this thesis, we present a new software transactional memory algorithm that
is designed from the ground up with distributed systems in mind, the AmbiComp
distributed Java virtual machine in particular. Another novel feature of our pro-
posed solution is that the old values of modified shared objects are not discarded.
Instead, these old versions are used to reduce the number of transactions that need
to be aborted because of conflicts.

The evaluation of the algorithm with both theoretical—using a script interpreter
we especially developed—and practical tests confirm the potential of our approach.
Under heavy contention the reduction of aborts is only marginal, but with a high
reader to writer ratio more than 50% of the aborts can be avoided as compared to
using only the most recent versions.
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Chapter 1

Introduction

The move to multi-core processors and distributed systems in recent years has in-
creased the demand for parallel computing. Only by employing parallelism is it
possible to utilize the full power of these systems. But developing parallel pro-
grams is more difficult than writing sequential ones because of the need to syn-
chronize the concurrent computations. The most commonly used solution for syn-
chronization are mutual exclusion locks, but they introduce a new class of software
bugs, of which race conditions and deadlocks are the most prevalent.

Transactional memory introduces a new way of synchronization which aims to
avoid the problems of locks while at the same time simplifying the development
of parallel programs. To do this, transactional memory borrows the concept of
atomic transaction known from databases and applies it to memory accesses. This
moves the burden of correct synchronization from the software developer to the
transactional memory system. But so far the research on transactional memory
focuses mainly on improving the performance on multi-core and multi-processor
systems, distributed systems are often disregarded.

The solution we propose in this thesis is a newly developed software transactional
memory algorithm. It was designed from the ground up with distributed systems
in mind, especially the AmbiComp distributed virtual java machine (ACVM). The
ACVM enables Java applications running on different nodes to transparently share
globally accessible objects. The goal of our algorithm is to also transparently syn-
chronize the accesses to those objects by allowing the developer to indicate which
code blocks needs to be executed atomically.

Another novel aspect of our approach is that the old value of a shared object
is not discarded when it is modified. Instead we keep a number of old versions of
each object, which allows us to go back in time when conflicting accesses occur
and enables us to reduce the number of unresolvable conflicts that lead to aborts.

In this theses we describe our algorithm and present an implementation of it.
We also present a solution for the testing of concurrent code which enables us to
execute concurrent code in a specified execution sequence or alternatively in all
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2 1. INTRODUCTION

possible sequences. We then evaluate, using both theoretical and practical tests,
whether the usage of old and potentially outdated versions of shared objects can
indeed reduce the number of aborts while still providing a correct result.

1.1 Structure of the Thesis

The thesis is structured as following:

• Chapter 2 provides background information about the problems caused by
lock-based synchronization and how transactional memory aims to solve
them. We also give an overview of the history of transactional memory and
discuss the latest developments in this area.

• Chapter 3 describes the algorithm we use for our approach to software trans-
actional memory.

• Chapter 4 covers the design and details of our implementation.

• Chapter 5 provides information about stmtest, an application used to test our
solution in a reproducible manner. We also discuss the results obtained by
this theoretical evaluation.

• Chapter 6 presents the practical results we obtained by making our solution
available to Java.

• Chapter 7 is a summary of the thesis and contains directions for further work.



Chapter 2

Background and Related Work

2.1 Background

In recent years there has been a fundamental change in the computer industry.
While Moore’s Law still holds true and the number of transistors that can fit in
the same space is doubled roughly every 18 months, it is no longer possible to
increase their clock speeds without overheating or consuming too much power. In-
stead, many manufacturers are now focusing on multicore architectures to increase
performance: multiple processors—the state-of-the-art are up to eight of those so
called cores—are combined into a single processor and communicate using shared
hardware caches. To take advantage of this architecture it is necessary to exploit
parallelism. A single task needs to be divided into several smaller ones which are
then solved concurrently and in the end their results are combined to solve the
bigger task.

Another change has been the move away from single and big computer systems
to ubiquitous computing. We are more and more surrounded by small computers
embedded in objects of our daily lives: mobile phones are becoming increasingly
versatile and powerful, modern cars and houses are filled with a plethora of com-
puting systems aimed at increasing the security and making the life of their users
easier. Their abilities to support and entertain the user are limited though because
most of those small systems work on their own. Interconnecting those devices is
the obvious next step to increase their productivity and effectiveness by forming a
sensor actuator network.

2.1.1 AmbiComp

To program and use these distributed systems a distributed execution environment
is needed. The AmbiComp project [1] aims at providing such an environment by
using a distributed Java virtual machine, the so called AmbiComp Virtual Machine
(ACVM).

Unlike other distributed virtual machines the ACVM does not target the field
of cluster computing where heavy computing power is the main focus. Instead it
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4 2. BACKGROUND AND RELATED WORK

is meant to run on small embedded devices with 8-bit micro-controllers, equipped
with a network interface and possibly sensor systems. It focuses on allowing easy
and rapid development of software for novel applications of such distributed sensor
networks.

To achieve this the ACVM creates the illusion of a single system image by
using a global shared heap and by allowing threads to migrate between nodes.
This allows the programmer to develop software for the sensor network in the
same ways as for a single multiprocessor system. The distribution of the shared
code and the exchange of data is automatically managed by the interconnected
ACVM instances. Apart from an additional transcoding step of the Java bytecode
the distribution is thus completely transparent to the programmer.

The core component for the automated distribution are Global Accessible Ob-
jects [2]. Each of these GAOs represent a block of memory which can be a Java
object or array, a code block or an execution context. The addresses of the GAOs
are globally unique and independent of the GAO’s actual location in the distributed
system. Local objects are automatically upgraded to GAOs by the ACVM when
references are passed to other instances, allowing other nodes to a access the data
they represent. References to static objects are obtained from an oracle using a
distributed hash table.

When accessing a GAO its address is automatically resolved using scalable
source routing SSR [3], an ad-hoc routing protocol. It arranges all nodes into a
flat virtual ring topology uncoupled from the actual physical network. Due to this
GAOs can be accessed without a change of address or a need to use proxies even
when they are moved to another node.

2.1.2 Synchronization/Concurrent Programming

Both scenarios mentioned above—the multicore architectures and the distributed
systems—make developing applications harder than it used to be on single proces-
sor systems because of the need to synchronize the access to shared data. The most
widely used fundamental primitive for this still are mutual exclusive locks. This
popularity stems from their seemingly easy programming model and the availabil-
ity of efficient and scalable implementations. But for systems containing more than
just a handful of locks those advantages rapidly fade away and a number of serious
problems arises.

To guarantee the correctness of an application the programmer has to ensure
that the necessary locks are acquired on each access to a shared object. Especially
on larger projects where the locking strategy might change over time can this only
be achieved by very careful programming and comprehensive documentation of the
needed locks. Failing to do so can cause data loss and lead to race conditions, mak-
ing the application only work if there happens to be no concurrent access because
of the execution scheduling. Tracking down bugs like this takes a considerable
amount of time and skill.

Another difficulty when using locks is to balance the granularity of the locks
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against the time spent to acquire and release the locks. A very coarse-grained
approach with only one global lock obviously minimizes the locking overhead but
will severely limit parallelism. Fine-grained locking solves this problem at the cost
of more overhead and a more difficult implementation because of the increased
number of locks involved.

When dealing with a bigger number of locks there is also the problem of avoid-
ing deadlocks which can occur when threads attempt to acquire the same locks in
a different order. When many locks must be acquired, and particularly if the set
of locks is not known in advance, the needed deadlock avoidance can be awkward.
Locking can also lead to priority inversion when a thread with a higher priority
is forced to wait for a low-priority thread that is holding exclusive access to a re-
source it needs. On systems with strict priority scheduling where only the thread
with the highest priority is allowed to run this can lead to deadlocks too.

Furthermore, great care has to be taken to ensure that all acquired locks are
released again when they are no longer needed. Otherwise the execution will also
come to a halt.

To avoid those mistakes, this favors the usage of very simple locking strategies
to reduce the number of locks that need to be taken care of. These strategies often
are overly pessimistic and serialize the execution of code that is actually conflict
free. Thus the parallelism of an application is artificially limited by the complexity
caused by locks.

Efficient and scalable implementations also are mainly available on single com-
puter systems where the hardware often provides special atomic instructions (such
as test-and-set or compare-and-swap) to support them. On distributed systems the
implementation of locks is not as simple, especially in a decentralized system with
no central lock manager.

The problems of locks can be summarized as follows:

• Software using many locks is hard to develop and maintain.

• Bugs such as race conditions, deadlocks and priority inversion are hard to
track down and solve.

• Their advantages only partly apply to locks in distributed systems.

2.1.3 Transactional Memory

One approach to solve the drawbacks of conventional locking is Transactional
Memory, which can be implemented purely in hardware or software, or as a hybrid
system. In this thesis we will focus on Software Transactional Memory (STM),
an increasingly popular solution to synchronization problems which has been the
focus of researchers for several years.

Instead of putting most of the burden of correct synchronization on the pro-
grammer by just offering a primitive for mutual exclusion like locking does, STM
introduces the concept of transactions. A transaction starts when entering an
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atomic
{

x++;
y++;

}

Transaction A

atomic
{
if (x != y)

while (true) {}
}

Transaction B

Figure 2.1: Example of a transaction that might never complete if eager versioning
is used.

atomic block and ends when leaving it. The STM runtime ensures that shared
data is accessed in a safe manner by guaranteeing that all code inside a transac-
tion either fully executes or not at all. Furthermore, the intermediate states of the
data accessed during the transaction is not visible to concurrently running trans-
actions of other threads. In database systems, where transactions are a common
way to solve conflicts of concurrent operations, those features are referred to as
atomicity and isolation, respectively. If the atomic block is only isolated from all
other atomic blocks the STM provides weak atomicity whereas strong atomicity
guarantees than an atomic block is isolated from all other operations.

Transactions are executed speculatively and all changes to objects due to write
operations during a transaction are only tentative. If no conflicts are detected the
transaction commits and the results of its write operations become permanent. Oth-
erwise the transaction has to be aborted and is re-executed from the beginning until
it succeeds. When aborted a rollback has to be performed and all changes by the
transaction have to be undone. To achieve this the STM runtime can use eager
versioning and perform all changes in-place, logging them to a journal and undo-
ing them during an abort. Using lazy versioning all changes are made on copies
of the actual objects and discarded during abortion. The implication of this is that
isolation can only be guaranteed if no irreversible operations (such as I/O) are al-
lowed inside transactions. This limitation can be overcome by queuing up all those
operations in a buffer and performing them outside of the transaction after it has
committed. If the language supports it the type system can also be used to prevent
the usage of disallowed operations [4].

While eager versioning can provide better performance, especially when the
number of rollbacks is low, it weakens the isolation of the transactions during exe-
cution. Even though isolation will not be violated—the transaction will be aborted
if conflicts are detected when committing—this still can cause problems. Fig-
ure 2.1 shows a contrived example: Initially x and y are equal. If Transaction A
now eagerly increments x and Transaction B executes before y is also incremented
it enters an endless loop.

The optimistic execution of transactions results in an increased concurrency:
it is no longer necessary for a thread to wait for objects that are locked by other
threads. And different threads can concurrently modify disjoint parts of the same
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boolean MoveToFront(int x)
{

atomic
{

Node prev = head;
Node current = head.next;
while (current)
{

if (current.value == x)
{

prev.next = current.next;
current.next = head.next;
head.next = current;
return true;

}
prev = current;
current = current.next;

}
return false;

}
}

Listing 2.1: Example of how to use atomic blocks to modify a linked list.

data structure that normally would be protected by a single lock. In most prac-
tical applications the number of conflicts—and thus the number of re-executed
transactions—is relatively small compared to the number of successful commits
and thus STM should be able to achieve a significant increase of performance over
lock-based synchronization. The overhead caused by logging all write operations
and checking for conflicts can cause an STM synchronization strategy to perform
worse than an optimized fine-grained locking scheme though, but it still maintains
the advantage of being much easier to use.

Listing 2.1 illustrates how easy synchronization can be when using STM. The
code shown is used to check whether a certain value is in a linked list, and if it is
found it gets moved to the head of the list. Trying to make this function thread-safe
using locks would either remove the parallelism (by using a single lock) or make
it overly complicated and error-prone by using fine-grained read and write locks
on each node. With STM all that is needed is the addition of the atomic keyword
to indicate that the function needs to be executed as a transaction and the runtime
ensures correctness.

Besides all those advantages, recent research [5] illustrates that transactional
memory systems might not be ready yet for practical usage. While STM solves
many of the problems created by locking, it does introduce a variety of new issues:

• The abortion and re-execution of transactions after a rollback causes a non-
determinism that complicates the debugging of applications. This mitigates
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the increased productivity when working with STM.

• The handling of exceptions thrown while executing within a transaction and
the propagation of consistent exception information is difficult. Imagine that
an out-of-memory exception is raised within one transaction because an-
other transaction has already claimed all available memory. By the time the
exception is handled the second transaction might have been rolled back and
the reason for the exception is no longer visible. A re-execution of the first
transaction could actually be successful now.

• The interaction with legacy code that is not prepared to be used within a
transaction is difficult. If it includes locks or other synchronization primi-
tives it can even be impossible to be used in conjunction with STM. Making
the locking visible outside of the transactions would violate isolation, but
otherwise correctness can no longer be guaranteed.

• Depending on the implementation, STM can cause a big amount of overhead
severely affecting performance and making STM unusable. Even the best
state-of-the-art STM systems can be over 100 times slower than sequential
execution [5]. Approaches to reduce the overhead include using annotations
to mark private data within transactions, but this also dilutes the ease of use
of STM.

2.2 Related Work

This section provides an overview of already existing STM implementations and
shows the progress in researching transactional memory. The selection of STM
systems is by no means complete, instead it focuses on implementations providing
novel ideas or approaches to solve some of the aforementioned problems.

2.2.1 First STM Systems

While all prior work on transactional memory was built around hardware support
Shavit and Touitou [6] introduced the concept of software transactional memory.
Their implementation only allows static transactions, i.e. transactions that only
access a predetermined set of M locations.

Each transaction contains two vectors: old[i] contains the value of location i
on the first access to that location, new[i] is the value to be written to the respective
location. The data structure containing the M locations also includes a reference
to each transaction that is currently accessing one of the locations. A transaction
performing a commit gradually tries to acquire ownership of all required locations
using a sequence of load-link and store-conditional operations. It then confirms
whether all read locations still contain the value that was read, updates all locations
with the new value and releases ownership again. If any of these steps fail, the
transaction releases all the ownerships it has acquired and helps the transaction
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that caused it to fail by trying to commit that transaction’s new values. As such
this mainly is an implementation of a non-blocking M -word compare-and-swap
operation used together with optimistic execution.

Evaluation shows that even this simple approach can outperform other means
of synchronization, especially on systems with 32 and more processors.

2.2.2 Language Support for Transactions

To overcome the limitations of static transactions Fraser and Harris [7] suggest a
new approach for the Java programming language that allows arbitrary access to
objects within transactions. This is achieved by not storing the meta-data used to
perform the STM operations with their respective objects but instead in a separate
data structure. An ownership function is used to map each memory location to one
or more ownership records in that data structure. This allows transactions to work
with any kind of object and not just a predetermined set of objects, thus greatly
improving the usability.

Since this frees the programmer from having to discriminate between objects
managed by STM and objects that are not, they propose to add an atomic keyword—
similar to synchronized—to Java. This allows all information and implementation
details of the STM system to be hidden, moving the responsibility of correctly us-
ing the STM operations from the programmer to the compiler and the Java virtual
machine. Together with the ability to enter the atomic block only once a con-
dition is true, this basically is an implementation of Hoare’s conditional critical
regions [8].

This approach greatly simplifies the problem of synchronization because the
programmer only has to indicate which group of operations he wants to perform in
isolation of each other, but not how this isolation should be guaranteed.

Harris et al. [4] take this approach one step forward by adding transactions to
Concurrent Haskell. They argue that a purely functional language provides the
perfect setting for STM because the type system explicitly separates computations
which may have side-effects from effect-free ones. Taking advantage of Haskell’s
monadic type system, it is easy to ensure that the code within transactions can-
not perform any irrevocable input/output effects. Another property of functional
languages is that most computation takes place in the purely functional world and
explicit reads from and writes to mutable objects are relatively rare. And since
only these explicit operations need to be covered by STM system, the performance
overhead is negligible. Despite being a powerful and interesting approach this is of
little practical value though as neither the monadic type system nor the functional
execution map naturally to the much more popular imperative languages like Java.

2.2.3 Lock-Based Software Transactional Memory

Instead of trying to make transactions non-blocking to increase concurrency, STM
can also be implemented using locks. The idea behind this is to use STM as a way
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to automatically achieve fine-grained locking without the risk of deadlocks. This
approach promises to improve performance significantly by using much simpler
algorithms and being much more cache friendly.

An implementation of an encounter time lock acquisition STM algorithm is
given by Ennals [9]. It uses revocable two phase locking for writes: Whenever a
transaction tries to perform a write operation to an object it first has to acquire an
exclusive lock on that object. This lock is held until the transaction either commits
or is aborted. If the lock cannot be acquired because another transaction is already
holding it the transaction either waits for the lock to be released (and aborts if a
timeout is reached) or aborts the other transaction. Deadlocks cannot occur in this
algorithm because all the locks are revocable and thus the hold and wait condition
is not fulfilled.

For reads an optimistic concurrency control is used: For each read object its
version number is also recorded. When committing, those version numbers are
compared to the current versions, and if any newer versions exist the transaction
is aborted. This avoids the cache contention that would occur if multiple readers
were synchronizing their access using read locks.

Alternatively, Dice et al. [10] show that STM can also be implemented us-
ing commit time locking and a global version clock. When a transaction starts, it
records the current value of the version clock as its read time. On each access to
an object, both reads and writes, its version is compared to the read time, and if it
is greater the transaction is aborted. During commit a lock for each written object
is acquired and the version numbers of all read and written objects are re-checked.
Finally the global clock is incremented and all written objects are updated with
their new value and the new time stamp.

Evaluation shows that these lock-based STM algorithms are significantly faster
than the earlier non-blocking approaches and consistently are more than twice as
fast.

2.2.4 Distributed Software Transactional Memory

Most of the aforementioned algorithms rely on blocking instructions or central-
ized components such as version counters or real-time clocks, which makes them
unsuitable for distributed systems.

Manassiev et al. [11] suggest an STM like approach called Distributed Mul-
tiversioning (DMV). In their system each node maintains its own replica of the
shared memory and during execution all operations are only performed on this
local copy. During commit a shared memory consistency protocol is used to dis-
tribute the changes to the other nodes. To avoid conflicts a unique system wide
token needs to be acquired before a commit is performed.

Another approach for a distributed STM system called Distributed Dynamic
Software Transactional Memory System (DDSTM) [12] is provided by Kotselidis
et al. They combine the non-distributed DSTM2 [13] transaction engine with a re-
mote communication framework based on Java RMI. When a transaction attempts
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to commit it first tries to resolve local conflicts using the DSTM2 algorithm, then
validates itself against all distributed transactions on the cluster and finally com-
mits. The distributed validation is performed by acquiring a global serialization
number from a master node and then sending a set containing its accessed objects
to all other nodes. The validation with the lowest number then gets committed
while all the other transactions are aborted. The new values of the committed
transaction are distributed by a master node which forces all other nodes to update
their values too and to abort all running transactions that depend on an overwritten
object.
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Chapter 3

Distributed STM

Building on the AmbiComp platform (cf. sec. 2.1.1) we present a novel approach
that applies the idea of software transactional memory to a fully decentralized dis-
tributed setting. Our Distributed STM algorithm does not require any centralized
components and can—in an advanced version—even entirely avoid locking.

3.1 Overview

In the spirit of AmbiComp to make the development of distributed applications
as easy as possible our STM algorithm will not be accessible by the user directly.
Instead it will only be necessary to mark blocks as atomic and the Java virtual ma-
chine will ensure that all accesses to shared objects are done transactional, aborting
and re-executing the block automatically in case conflicts are detected. Listing 3.1
shows where the STM algorithm hooks into the virtual machine:

• At the start of an atomic block tstart is called to initialize the transaction.

• When reading a shared object tread is called and tries to find a non-conflicting
version of the object.

• On a write to a shared object twrite gets called and the changes are performed
on a local copy.

• At the end of the atomic block the transaction attempts to commit by calling
tend.

atomic // -> Calls tstart
{

int a = A.intField; // -> Calls tread
A.intField = 17; // -> Calls twrite

} // -> Calls tend

Listing 3.1: Transactional access to the shared object A.

13
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By making the STM algorithm transparent to the programmer it becomes much
easier to write correctly synchronized applications. It also enables us to change
the details of the underlying implementation without any modifications to the pro-
grams utilizing the atomic keyword.

3.2 Data Structures

Distributed STM is an object-based STM algorithm. To ensure correctness it relies
heavily on versioning of the shared data and on passing messages between the
concurrent users.

3.2.1 Global Accessible Objects (GAOs)

The shared data managed by Distributed STM are AmbiComp’s Global Accessible
Objects (GAOs). Each GAO has a globally unique GAO identifier (GID) which
can be resolved by the underlying routing system to send messages to the node
managing the GAO. A GAO is a distributed data structure and consists of two parts

• A version history list. This is a linked list of the current and one or more
previous versions of the GAO.

• A pending version tree. It contains new versions of the GAO that have been
created by transactions but which are not yet committed.

These different versions can be distributed across the nodes and are referenced by
their unique GAO version identifier (GVID). Through the predecessor links in the
version history list we also induce an ordering relation of the different versions of
a certain GAO. The first entry of the version history represents the head version,
i.e. the most recently committed version of the GAO. Each version contained in
the version history list or the pending version tree consists of:

• The GVID of the version itself. This is mainly for convenience as a version
can only be accessed if you already know its GVID.

• The stored data, i.e. the data the GAO actually represents. This can for
example be the member fields of a Java class.

• A reference to the version’s predecessor, i.e. to the version of the GAO which
was committed directly before this one.

• The write set containing the GVIDs of all GAOs that were written by the
transaction that created this version.

• The read set which contains the GVIDs of all GAOs the transaction creating
this version read before committing.
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• A reference counter used to determine by how many transactions this version
currently is used.

It is important to notice that the versions are—apart from the reference counter—
immutable objects once they are added to a GAO and thus can easily be replicated,
e.g. for caching purposes. Only the reference counter needs to be updated con-
sistently. This can be done easily because they are only needed for the pruning of
no longer needed versions (cf. 3.5). Thus any delayed updates on the reference
counters do not interfere with the STM mechanism at all and can at worst delay the
release of memory.

3.2.2 Transactions

To manage all the data of an atomic block that currently is executing a transaction
object is used. Since atomic blocks are executed entirely on one node these objects
can be local and do not need to be shared. A transaction contains three entries
which all are updated during execution:

• A container with copies of all objects modified in the atomic block so far.
All write operations are performed on these copies.

• The write set containing new GAO versions for all GAOs which have been
written to in the atomic block so far. While the block is executing these
versions are not yet part of their respective GAO.

• A read set containing the GVIDs of all GAO versions that have been read by
the transaction.

3.3 Operations

For the four main operations of Distributed STM—tstart, tread, twrite and tend—
pseudo-code is given in Listing 3.2 as an overview. In the following we will illus-
trate each operation in detail to show how correctness is guaranteed by ensuring
isolation and atomicity.

3.3.1 Starting a transaction (tstart)

The operation tstart is called at the beginning of an atomic block to start a new
transaction. A new transaction record is created with an empty read and write set
and no local copies. Optionally the execution context of the current thread can be
cloned so that in the case of a rollback all changes to objects on the stack can be
undone. Alternatively, all changes to objects on the stack can be recorded in the
local copies container and written back to the stack after a successful commit.
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tstart:
1 Create a new transaction record
2 Clone the current execution context

tread(GAO):
1 If read_set.Contains(GAO)
2 return local_copies[GAO]
3
4 GVID version = GetHeadVersion(GAO);
5 while (version)
6 if (Check(version))
7 local_copies[GAO] = GetGao(version)
8 read_set[GAO] = version
9 return local_copies[GAO]
10 else
11 version = version.predecessor
12 Abort()

Check(version):
1 check_set = transitive closure of

version’s read and write sets
2 foreach (GAO g, GVID v) in read_set
3 if check_set[g] is newer than v
4 return false
5
6 return true

twrite(GAO, value):
1 If not read_set.Contains(GAO)
2 tread(GAO)
3 If not write_set.Contains(GAO)
4 write_set[GAO] = CreateNewVersion(GAO)
5
6 local_copies[GAO] = Value

tend:
1 acquire(global_lock)
2 foreach (GAO g, GVID v) in the write_set
3 if not v.predecessor == GetHeadVersion(g)
4 Abort()
5 release(global_lock)
6 return
7
8 foreach (GAO g, GVID v) in the write_set
9 v.read_set = read_set
10 v.write_set = write_set
11 v.value = local_copies[g]
12 add v as new head version to the version list of g
13
14 release(global_lock)

Listing 3.2: Pseudocode of the locking STM Algorithm
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atomic // Transaction 1
{

y = A;
x = C;
D = x - y;

}

atomic // Transaction 2
{

A = 1;
}

atomic // Transaction 3
{

B = A + 1;
}

atomic // Transaction 4
{

C = B + 1;
}

A B C D

r = {(A, 0)}
w = {(A, 0)}
id = 0, v = 0

r = {(B, 0)}
w = {(B, 0)}
id = 0, v = 0

r = {(C, 0)}
w = {(C, 0)}
id = 0, v = 0

r = {(D, 0)}
w = {(D, 0)}
id = 0, v = 0

r = {(A, 0)}
w = {(A, 1)}
id = 1, v = 1

r = {(A, 1), (B, 0)}
w = {(B, 1)}
id = 1, v = 2

r = {(B, 1), (C, 0)}
w = {(C, 1)}
id = 1, v = 3

Figure 3.1: Transactions and GAOs used to illustrate the creation of the check set.
Capital letters represent GAOs, x and y are local variables.

3.3.2 Reading a shared object (tread)

When a GAO is read the tread operation is used to find a suitable, that is non-
conflicting, version of the GAO. If the GAO is already in the transaction’s read set
then it has been read before by this transaction. In this case the already existing
local copy which was created by the previous read can be used. Otherwise a version
V from the GAO’s version history list has to be fetched. In general it should pick
the head version because it represents the most up-to-date data of the GAO, but as
we’ll see this is neither necessary nor always possible.

Once a version has been fetched the transaction needs to check if the version
is suitable or if it is conflicting with one of the versions of the other GAOs that
were read before. To do this the check set of V is constructed. It is the transitive
closure of read and write set of V and is created by recursively unifying the read
and write sets of V and the versions in those sets. If there exist dependencies to
different versions in the check set, only the most recent version is used. This check
set represents all read and write dependencies of V .

For an example see figure 3.1. Lets assume that all four GAOs have an initial
version with id = 0, the value v = 0 and their read set r and write set w only
contains themselves. If transaction 1 now reads A, then gets interrupted and the
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other three transactions completely execute and commit we end up with the version
history lists as seen in the figure. When transaction 1 resumes execution it fetches
the head version of C—which is version 1 in this case—and constructs the check
set c1 by unifying the check sets of all GAOs it has in its read or write set. So it is
c1 = c0 ∪ c1 ∪ b1 = {(B, 1), (C, 1)} ∪ a1 = {(A, 1), (B, 1), (C, 1)}.

After the check set of the version to be read is created we can use it to check
for conflicts. If the transaction’s read set contains a version that is older than a
version in the check set, it can not use this version or it would violate atomicity.
Coming back to our example, this means that transaction 1 must not read version 1
of C (called (C, 1)) because it has already read (A, 0) but (C, 1) depends on (A, 1).
Instead of aborting the transaction now and potentially discarding all calculations
the transaction has performed so far, we can try to find another suitable version.
This is done by following the predecessor links in the version history list to find
a non-conflicting version. If no such version can be found, or a limit l for the
allowed number of backstepping steps is reached, the transaction is forced to abort
and re-execute. While using these older versions reduces the number of conflicts
caused by read operations, it can increase the number of commit conflicts, so the
best value for l depends on the characteristics of the transactions. In our example
(C, 0) would be suitable and transaction 1 could commit even though it has read
old and not up-to-date data. This does not cause a conflict though because we
only guarantee that atomic blocks do not influence each other, we do not impose a
sequential order of execution.

A special case can occur when no suitable version can be found because this is
the very first read performed on the GAO and no version at all exists so far. In this
situation, a new version initialized with the default value of its data is created and
added to both the transaction’s read and write set.

Please also note that the version IDs in our example are only for illustration
and in practice are not strictly increasing integers. Instead, we use the partial order
of the versions given by their relative position in the GAO’s version history list to
compare versions. The older version can be reached by following the predecessor
links of the newer version whereas the newer version cannot. If both versions can’t
be reached from the other one then they can not belong to the same GAO.

After a suitable version has been found, it is added to the transaction’s read set
and a local copy of it is created. The data of the local copy is then returned to the
caller of tread so execution can continue.

3.3.3 Writing a shared object (twrite)

With most of the work of avoiding conflicts done when reading GAOs, writing
them becomes comparatively easy. If the GAO is in the transaction’s write set,
it has been written to before within this transaction and we only need to update
its local copy. Otherwise, if the GAO to be written is not in the read set of the
transaction yet, a tread is performed on it to check if a suitable version of it exists.
After checking if the GAO is still not in the write set (this can happen if the tread
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created a new version), a new version of the GAO is created and added to the write
set. Then the value of the local copy is updated and execution of the transaction
resumes.

When creating a new version, we can take advantage of the fact that the GVIDs
do not need to strictly increase but instead can be any unique number. This removes
the need to coordinate the creation of a new GVID with other nodes to ensure
correct ordering. Because of this, the creation of a new version can be made a local
operation and the uniqueness can be ensured by using a reasonable big random
number.

3.3.4 Committing a transaction (tend)

At the end of an atomic block when a transaction attempts to commit its changes
the tend operation is called. If the write set of the transaction is empty then it
can commit immediately as it does not modify the global state and any conflicts
caused by reading GAOs would have been noticed during tread. Otherwise, each
new GAO version in the transaction’s write set is assigned its new value from its
local copy, and it’s read and write set are set to the transaction’s sets.

The locking version of Distributed STM then acquires a global lock to perform
to following operations atomically. At first we need to check if the direct predeces-
sor of every new version in the write set is still the head version of the respective
GAO. If this is not true for any version then the transaction needs to be aborted
to avoid a write conflict, which would overwrite the results of another transaction.
If all versions pass the check, they get added as the new head versions of their
respective GAO and the global lock can be released.

Performing this phase atomically is necessary to deal with concurrent commits
of transactions. Due to the need of acquiring a global lock, the commits thus get
serialized and are processed in a first in, first out order.

3.4 Distributed Consensus Protocol

To avoid the locking and its drawbacks during commits a Distributed Consensus
Protocol can be used instead to handle coincidental commits. The protocol we sug-
gest here is a randomized consensus protocol because this enables us to arbitrarily
prefer some transactions over others. For example, long transactions with many
complex and resource intensive operations could be given a higher weight than
short transactions which can be re-executed much more easily. In the following
explanation we assume equal weights for all transactions for simplicity reasons.

When the consensus protocol is used a committing transaction adds each of its
new versions in the write set to the pending version tree of the respective GAO.
While doing this the transaction checks if the new version’s predecessor is still the
head version. If this is not the case the transaction needs to be aborted.

When such a new pending version is added to a GAO that already has n − 1
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other pending versions, it gets assigned the probability n−1. The probabilities of
the existing pending versions are adjusted accordingly by multiplying them with
n−1

n . Using these probabilities the GAO then selects one pending version. This
positive vote, as well as the n−1 negative votes for the pending versions that were
not chosen, are shared with the other GAOs of their respective write sets.

Therefore a GAO receives mi votes for each of its pending versions i when
its respective write set consists of mi GAOs, mi − 1 from the other GAOs and its
own vote. Using these votes, the new probabilities pi for each pending version are
calculated. Let m+

i be the number of positive votes for the pending version i. Then

it is pi = m+
i

mi
/

∑
0≤j≤n

m+
j

mj
. Using these new probabilities, the next round of the

protocol begins and a new pending version is chosen again.
These iterations continue until one pending version has either received mi pos-

itive or negative votes. If it is m+
i = mi then the winning pending version i is

moved to the version history list as the new head version and all other pending ver-
sions are discarded. Otherwise the losing version is discarded and removed from
the pending version tree, and the probabilities of the remaining pending versions
are scaled accordingly. The voting then continues until no more pending versions
are left. Progress of the protocol is guaranteed because pi can never be zero. This
means that eventually a transaction will successfully commit and no livelock oc-
curs.

Another advantage of the consensus protocol compared to the global lock ap-
proach is that it allows transactions with disjoint write sets to commit concurrently
without interfering with each other. This possible increase in parallelism comes at
the price of the overhead of the protocol though.

3.5 Garbage Collection

With the algorithm explained so far, there is no limit to the number of entries in the
version history list of a GAO. It contains all the versions of the GAO since it was
created. While this means that transactions can avoid read conflicts by just going
back in the history far enough, it poses a number of problems.

Foremost, reading an old version makes the transaction depend on that version.
And the older the version is, the higher the chance that this will lead to a conflict
at commit time. Greatly increasing the chance of commit time conflicts to remove
the chance of read conflicts is not a reasonable thing to do though, because if a
transaction has to be aborted it should do so as early as possible. This way the
least number of superfluous operations are performed before the re-execution of
the transaction.

Secondly, a long version history list increases the effort needed to create the
transitive closures to check for conflicts during a read. This is because each version
also depends on its predecessor and thus the dependencies of the predecessor also
have to be included into the closure.

Storing all versions since the creation of a GAO apparently also is a waste of
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resources as these versions and the value they represent needs to be stored some-
where, even if no transaction can ever commit after reading one of those versions.

Because of these reasons the version history list should be kept short. To do this
without removing versions that are still used by an active transaction or that might
be needed in the future to avoid a read conflict, a reference counter is used. Each
time a transaction adds a GAO version to its read set it increments that version’s
reference counter. After a commit or when a transaction is aborted, the counters in
all read versions are decremented.

These reference counters are then used to determine when a version will no
longer be needed because no transaction will ever go back far enough in the version
history list to read it. When all the predecessors of the versions in the check set of
any GAO version v have a reference count of zero then these predecessors can be
deleted. This is because v will never cause a read conflict under these conditions,
so the older versions are no longer needed.
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Chapter 4

Implementation

For an initial evaluation of our STM algorithm we decided to not directly integrate
it into the AmbiComp Java virtual machine. Instead, we developed it as a C/C++
library which can be included into any kind of application, including the ACVM.
To keep the implementation lightweight and versatile, it does not contain any code
dealing with the distribution of objects. The underlying application is expected
to provide the necessary means to transparently read from and write to distributed
objects. This greatly simplifies the implementation since this allows us to focus
on the algorithm without having to deal with communication protocols. For our
purposes all data structures reside in the same address space and can be accessed
directly.

4.1 Design

Our implementations consists of four main classes: cStmManager and cTransac-
tion provide an interface for the user whereas cGaoManager and cGaoVersion are
managing the GAOs and their different versions. Figure 4.1 shows the interaction
between these classes using a very simple transaction that only reads and writes
one GAO and then has to be aborted during commit.

At the beginning of an atomic block the application calls the cStmManager to
create a new cTransaction object. This transaction is then used to access GAOs. On
a read the transaction performs the necessary steps as explained in Section 3.3.2.
It uses the cGaoManager to get a version of the GAO and checks if there are any
conflicts with other GAOs that already have been read before. If conflicts are found,
the next older version in the version history is used until there either are no conflicts
and the GAO can be returned, or there are no versions left and the transaction has
to be aborted. When a GAO is written to the transaction uses the cGaoManager to
create a new cGaoVersion for it. At the end of the atomic block the cStmManager
is used to finish the transaction by trying to perform a commit. In our example
we assume that the commit fails because of another concurrent commit and the
application is notified about this by the return value.

23
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:cApplication :cTransaction :cGaoManager :cStmManager

StartTransaction()

transaction

ReadField(ID)

GetVersion(ID)

version

IndependentFrom(version)

looploop

value

WriteField(ID)

CreateVersion(ID)

new version

EndTransaction(transaction)

Commit()

GetHead(ID)

Abort()

failed

Figure 4.1: Interaction between objects during a simple transaction.
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In the following each of the classes will be explained in more detail with a focus
on its main features and characteristics.

4.1.1 cGaoVersion

The cGaoVersion class does not contain any logic and is only used as data storage.
Each instance of it represents one version of a GAO as described int Section 3.2.1.

struct cGaoVersion
{

cMap<GaoId, GaoVersionId> mReadSet;
cMap<GaoId, GaoVersionId> mWriteSet;
cLocalVariable mValue;
GaoVersionId mOlderVersion;
GaoVersionId mThisVersion;
unsigned int mRefCounter;

};

Listing 4.1: Fields of cGaoVersion.

The read and write sets contain the respective dependencies of a version. They
are implemented as associative containers which use the identifier of the GAO
(GID) as key and the identifier of its version as value. Since the ACVM is running
on embedded hardware where the C++ Standard Template Library (STL) is not
available or causes to much overhead, we created the class cMap which provides
a map similar to the one found in the STL. It is implemented using a red-black
tree to provide fast O(log(n)) look up because this is the most used operation.
The slower insert operation compared to a primitive implementation based on an
unsorted linked list is insignificant since the contents of the read and write set do
not change over time.

The value of a GAO version is of type cLocalVariable which is a typedef that
allows our implementation to work with any kind of data. The only requirement is
that cLocalVariable must provide a copy constructor which performs a deep copy
of all references that do not point to objects managed by STM. This is necessary
since our STM algorithm needs to make copies of the objects it manages in several
situations. These copies need to be independent, i.e. a change to a copy may not
modify any other copy of the same object or the original object, to guarantee the
isolation between different transactions.

The link to the version’s predecessor which is used to form the version history
list is stored as the GVID of the next older version. For convenience reasons the
version also contains its own GVID, but it does not include the GID of the GAO
it belongs to. This is not needed because a version is characterized to belong to a
certain GAO by being part of its version history list.
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4.1.2 cStmManager

The class cStmManager is provided as an interface to the application for creating
and finishing transactions. It is implemented as a singleton and coordinates the
allocation and creation of cTransaction objects.

class cGaoVersion
{
public:

cTransaction* StartTransaction();
bool EndTransaction(cTransaction** rTransaction);

};

Listing 4.2: Interface of cStmVersion.

The StartTransaction()method returns a pointer to a newly created cTrans-
action instance which subsequently can be used to read and write GAOs. The re-
turned object is valid until any of its operations fail and cause the transaction to
abort—in which case the transaction frees itself—or until EndTransaction()
is called. When EndTransaction() is called by the application the cStmMan-
ager calls the Commit() method of the transaction to attempt a commit. If the
commit fails because of a conflict the transaction frees itself, otherwise the cStm-
Manager deallocates the transaction. In either case the pointer to the transaction
object is set to NULL to ensure that the application does not attempt to work with a
transaction that is no longer valid.

4.1.3 cTransaction

As mentioned above, the class cTransaction manages the read and write accesses
to GAOs. To ensure that all transactions are created through the cStmManager
singleton the class has a private constructor to prevent the user from allocating new
transactions on his own. The ReadField() and WriteField() methods are
used to read and write GAOs identified by their GID by implementing the tread and
twrite operations, respectively. If these methods fail because of an unresolvable
conflict, they call Abort() to free all objects allocated by the transaction so far
and indicate the failure to the application with their return value.

ReadField() differs from tread though when it comes to checking for con-
flicts using the transitive closure. Whereas tread first constructs the complete tran-
sitive closure and then checks it for conflicts, ReadField() already detects con-
flicts during the recursive creation of the closure by calling IndependentFrom()
for each version added to it. This allows us to find potential conflicts early on and
prevents us from wasting time and resources on creating a possibly huge transitive
closure that already causes a conflict with its first versions. To further speed up
this operation the results of IndependentFrom() are cached in a map so each
version has only to be checked once during a ReadField() call. The cache also
allows us to avoid infinite recursion caused by circular dependencies by setting the
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cached entry of the version to be checked to independent. This causes the recursion
to end as soon as a mutual dependency of two versions is detected.

class cTransaction
{
public:

bool ReadField(const GaoId& rGaoId,
cLocalVariable& rValue);

bool WriteField(const GaoId& rGaoId,
cLocalVariable& rValue);

private:
void Abort();
bool Commit();
bool IndependentFrom(const GaoVersionId& rNewVersion);

cMap<GaoId, cGaoVersion*> mReadSet;
cMap<GaoId, cGaoVersion*> mWriteSet;
cMap<GaoVersionId, bool> mCheckedVersions;

};

Listing 4.3: Interface and fields of cTransaction.

As mentioned in Section 3.3.2 it can happen that ReadField() is used to access
a GAO which does not exist yet, for example the very first access to a static field
of a class. In those cases the value passed to ReadField() is used as the initial
value of the GAO.

Contrary to the read and write sets in a cGaoVersion the sets here do not map
a GID to its respective GVID but instead directly point to the cGaoVersion object.
For the read set this is done for performance reasons to avoid the additional over-
head caused by resolving the indirection. When the GAOs are actually distributed,
this overhead can be significant as it could involve network communication on each
read to a GAO that is already in the read set. In those cases the read set actually
functions as a GAO cache. While these performance reasons apply to the entries
of the write set too there is another reason the GVID is not used in them: The
versions in the write set contain newly created versions by the transaction which
are not yet made visible to other transactions as they have not been committed yet.
This means that for purposes of the STM system those versions do not exist yet
and thus there also is no mapping yet which resolves their GVID. We can also take
advantage of this when a transaction is aborted using the Abort() method. Since
all the versions in the write set are only visible to the transaction which created
them these versions can easily be discarded without having to perform reference
counting.

The Commit() method only assigns each version in the write set the trans-
action’s read and write set converted to the right format. It then passes a commit
message containing its write set to the cGaoManager by calling its Commit()
method which then performs the actual commit as described further below.
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4.1.4 cGaoManager

The cGaoManager is a singleton class that manages access to the GAOs and per-
forms commits of transactions. It provides the GetHeadversion() method
which is used by cTransaction’s read to obtain the GVID of the most recent ver-
sion of the specified GAO. Additionally it can also resolve a GVID to its associated
cGaoVersion instance using GetVersion(). This is done by maintaining two
maps which map a GID to a GVID and a GVID to a cGaoVersion, respectively.

class cGaoManager
{
public:

GaoVersionId GetHeadVersion(const GaoId& rGaoId);
cGaoVersion* GetVersion(const GaoVersionId& rVersionId);
GaoRelation GetGaoRelation(const GaoVersionId& a,

const GaoVersionId& b);
void Commit(cCpMessage& rMsg);

};

Listing 4.4: Interface of cGaoManager.

The cGaoManager also offers a method to determine the relation between two GAO
versions. The four possible relations—equal, newer, older and undetermined—are
characterized by the position of each version in the other’s version history list. If
version a can be reached by following the predecessor links of version b then b is
newer than a and vice versa. If neither version can be reached by following the
predecessor links of the other version the relation is undetermined. This can only
happen when the two versions do not belong to the same GAO. Finally the versions
are equal if they both have the same GVID.

The second part of the cGaoManager handles the commit of transactions and
implements the consensus protocol. To allow concurrent commits the protocol is
running in a separate thread which waits for commit messages to arrive. Once a
message is received the thread adds the new versions as pending versions as de-
scribed in section 3.4. It then performs the steps of the consensus protocol while
handling new commit messages after every step. When a transaction successfully
commits or needs to be aborted it gets notified by this thread and takes the appro-
priate action.
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Testing

When using the Distributed STM algorithm in a multithreaded application, the non-
determinism inherent in these applications makes it impossible to test and evaluate
the algorithm and its implementation in a reproducible manner. With only the
scheduler deciding about which threads are executing at a given time there is the
possibility that many aspects of the implementation do not get executed at all. It is
also difficult to see how adjustments to the implementation affect the characteristics
of the algorithm when the execution order of the operations can change with every
test pass.

5.1 STM Test

To overcome these problems we developed a single-threaded application called
stmtest which allows us to execute simple transactions in a given execution se-
quence. During execution it collects a number of statistics which allow us to evalu-
ate the algorithm. It also checks if all conflicts are detected and resolved and thus if
the correct and expected results are obtained. Because the execution order is given
we can easily test cases which are very unlikely—but not impossible—to occur in a
real multithreaded application, for example that there is a thread switch after every
operation.

With the algorithm implemented in C++, stmtest was developed in that lan-
guage too. At its core, stmtest is an interpreter for stm scripts (see section 5.2)
written using the Boost Spirit Parser Framework [14]. With its heavy use of C++
templates and operator overloading it enabled us to directly inline a slightly modi-
fied Extended Backus Normal Form [15] (EBNF) description of stm script’s gram-
mar into the source code. The resulting parser gets generated by the C++ compiler
during compilation which removes the need for external tools and grammar de-
scription files that other parser generators for C/C++ require. This allowed for
rapid development as it permitted us to mix the code freely with the interpreter of
the parsed script and the creation of the statistics.

29
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5.2 STM Scripts

An example of an stm script can be seen in Listing 5.1. It includes six atomic
blocks which represent six different transactions. They are named implicitly by the
order they occur in the script file, the first atomic block being transaction one. The
transactions one to three are used to create a read conflict on the variable A, the
last two cause a commit conflict on C. As shown in the listing it is possible to use
C++ style comments to document the script.

In stm scripts all variable identifiers consist only of a single letter. Capital
letters stand for GAOs which are shared between all transactions and which are
accessed using the Distributed STM algorithm. The variable name used in the
script is also used as the unique identifier for the GAO. Small case letters represent
variables which are local to the atomic block, that is they are not accessible in
another block. These local variables are initialized with the value 0 at the start of an
atomic block. All variables are signed integers and the operations allowed on them
are assignments and the four basic arithmetic operations (addition, subtraction,
multiplication and division).

Each non-empty line in an stm script represents one atomic instruction. The
numbers given at the start of a line with an operation and at the end of an atomic
block are sequence numbers. They indicate in which execution order each of the
operations should be performed. For the given example this means that the first
atomic block is completely executed (operations one to four), then the first instruc-
tion of the third atomic block (operation five) and so on. Note that the start of an
atomic block does not have a sequence number because it does not matter when the
transaction is started as long as it is started before any other operation is performed.

When an stm script is interpreted, all its instructions are put in an execution
queue ordered by their sequence number, starting with the lowest. Then the first
instruction in the queue is removed and executed till there are no more instructions
left in the queue. If an instruction causes the transaction it belongs to to be aborted
because of an unresolvable conflict then all other remaining operations of the re-
spective transaction are also removed from the queue. For the re-execution of the
aborted transaction all its operations then are appended to the end of the execution
queue. The implication of this is that each transaction will be aborted one time
at most, because the execution of all aborted transactions is serialized since their
instructions are not interleaved.

5.3 Schedule Generator

While the ability to execute interleaved transactions in a specified execution order
makes testing the algorithm less difficult, the effort needed to actually come up with
the right scheduling sequences remains. There also is the aforementioned problem
that aborted transactions are always re-executed without interleaving them with the
remaining other transactions. Theoretically the stm script format could be extended
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/* Create initial versions

* This is needed so we get a read conflict on A

* and not a commit conflict */
atomic{

1: A = 0;
2: B = 0;
3: D = 0;

}:4

/* The next 2 transactions are interleaved
to get a read conflict on A */

atomic{
6: A = 1;
7: B = 1;

}:8

atomic{
5: x = A;
9: y = B;

10: C = x + y;
}:11

// Interleaved increment
atomic{

12: D = D + 1;
}:14

atomic{
13: D = D + 1;

}:15

Listing 5.1: stm script with transactions causing a read and a commit conflict.

to also include sequence numbers for the re-executed operations. But this would
make writing stm scripts overly complicated—especially when transactions need
to be aborted several times—and thus contradicts the idea of having a tool that
eases testing.

To cope with these problems we enhanced stmtest with a schedule generator
which can execute a given script in all possible execution sequences. This full cov-
erage allows us to confirm that the algorithm always provides the correct results,
independent of how the transactions are interleaved. Additionally this can be used
to see whether adjustments to the algorithm only affect specific sequences or have
a more general effect.

The generation of the schedules is done by performing a modified depth search
over the tree of operation sequences (see figure 5.1 for an example). The opera-
tions of each transaction in a script are added to separate operation queues and the
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atomic // Transaction 1
{

1: A = 0;
2: B = 0;

}:3

atomic // Transaction 2
{
4: A = 1;
5: B = 1;

}:6
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Figure 5.1: Illustration of the schedule generator.

children for each node are determined by taking the first operation of each queue.
When a transaction is aborted all its operations simply are added to its queue again
and thus get interleaved with the other remaining transactions. Instead of making
a copy of the state of the STM algorithm and script interpreter at every node of
the tree though we execute each path from the root of the tree to a leaf separately.
This allows for a much simpler implementation because making a copy of the state
would result in the need to copy a big number of memory locations and to update
all the references to them. Thanks to avoiding the copying and because of the usu-
ally short length of an execution path this also does not result in a performance
disadvantage.

Executing each path separately also keeps memory consumption low as we
only need a list to store the path that was taken during the last execution and for
each node in the path its next sibling. After execution the first path of the example
in figure 5.1 this list would be ((1, 2), (1, 2), (1, 2), (2,−), (2,−), (2,−)) indicat-
ing that the first three operations were taken from transaction one and that the next
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option was transaction two. The last three operations were taken from transaction
two and there were no other transactions left that could have been executed instead.
To generate the next execution path all entries at the end of the list with no next
sibling are removed and the last entry is changed to the sibling. In our example this
would be ((1, 2), (1, 2), (2, 1). The transactions are then executed according to this
new path and the end of the path execution continues by taking an operation from
the transaction with the lowest number that still has operations remaining. This is
repeated till all nodes in the execution path list have no next sibling and thus when
all paths in the tree have been covered.

5.4 Optimizations

One problem that can be seen in figure 5.1 is that even a very trivial stm script has
a relatively big execution tree and 20 different execution paths. This is because
the number of possible execution paths grows exponentially even when the addi-
tional execution path caused by aborts are not factored in. A script with 4 trivial
transactions (see Listing 5.2) already has over one million different execution paths
and executing them all takes over one minute on an up-to-date system. To make
stmtest usable on less trivial scripts we thus needed to reduce its run time with
several optimizations.

5.4.1 Equivalence Classes

To reduce the number of execution paths we can take advantage of the fact that a
commit is the only operation that actually changes the state of the STM system. All
other operations—starting a transaction or reading and writing a shared object—
only change the state of the transaction performing the operation. This means that
the order of the same read and write operations of different transactions between
two consecutive commits (or a commit and the root of the tree) has no impact on
the algorithm at all. All these permutations form an equivalence class and we only
need to execute one path of each class to still obtain a full coverage of all paths.

The dashed execution paths in figure 5.1 all belong to the same equivalence
class and illustrate the idea: For the rest of the execution path it does not matter in
which order the operations 1, 2 and 4 are executed between the start and operation
3. The class also gets assigned a weight based on the number of permutations and
thus the number of paths the class contains, so in our example it would be 3. This
weight is used to correctly calculate the collected statistics.

Because of the way the schedules are generated only minor adjustments are
needed to only execute one path per equivalence class. We order the children of
a node by the number of the transaction they belong to by always taking the next
operation from the first transaction that still has operations available. This way
we always execute the first element—the one where the relevant operations are
in ascending order—of each class before any other path of the same class . All
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other paths then can be skipped by never executing a read or write operation of a
transaction with a lower number after one of a transaction with a higher number
because we know that this execution path has already been covered.

Figure 5.2 shows the first path of each of the six equivalence classes and the
remaining execution tree for our example. Also shown is the weight of each class.

Especially for scripts with many transactions can this optimization greatly im-
prove performance. For the script in Listing 5.2 the number of executed paths is
reduced to 33120 which is less than 3% of the total number of execution paths.
Thanks to this the runtime is down to 1.7 seconds which is a significant improve-
ment over the 1 minute it took when executing all paths. This makes stmtest usable
for the evaluation of less trivial scripts.
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Figure 5.2: Remaining execution tree after taking advantage of the equivalence
classes.

5.4.2 Memory Pools

Further inspection of the performance of stmtest revealed that the main bottleneck
besides the number of execution paths is not the algorithm itself. It actually is the
huge number of dynamic memory allocations and deallocations that are performed
by the many data structures used to implement the algorithm. Introducing mem-
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// Create initial version of D
atomic{

1: D = 0;
}: 2

/* Interleaved increment */
atomic{

3: D = D + 1;
}: 6

atomic{
4: D = D + 1;

}: 7

atomic{
5: D = D + 1;

}: 8

Listing 5.2: stm script with 1033272 different execution paths.

ory pools for the most frequently used containers allowed us to further improve
performance by almost 500%.

5.5 Evaluation and Discussion

One of the main concepts of our STM algorithm is that it should theoretically be
able to avoid conflicts and the resulting aborts by using older versions. Using
stmtest we evaluated if this goal is actually achieved. Our first test was the simple
script shown in Listing 5.3. For this test the GAOs A and B were initialized with
the value 0 before execution started. This assured that there are only read conflicts
during execution and no write or commit conflicts.

The results of executing all possible execution paths of this script are shown

atomic{
5: A = 1;
6: B = 1;

}:7

atomic{
4: x = A;
8: y = B;
9: C = x + y;

}:10

Listing 5.3: stm script with two transactions causing a read conflict on A.
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old versions failed (A, B,C) =
limit used reads commits aborts (1,1,0) (1,1,2)
∞ 1 0 0 0 97.14% 2.86%
none 0 3 0 3 88.57% 11.43%

Table 5.1: Statistics of script 5.3 when executed with different version history list
lengths. The last two columns describe the distribution of the values of (A, B,C)
after execution.

in Table 5.1. When there is no limit on the length of the version history list the
script is executed without any conflicts. This is achieved by going at most one
version back to avoid an abort. If we remove the ability to access older versions by
setting the version history list’s length to zero—and thus only store the most recent
version—we obtain different results. In this case we get three unavoidable failed
reads which lead to aborts. This confirms that our approach to reduce the number
of aborts by keeping old versions available indeed works.

There is a price to pay for this advantage though: Using old versions also
influences the resulting values of the GAOs after execution. Both C = 0 and
C = 2 are valid results since we do not make any guarantees of the execution
sequence of transactions. But it is indisputable that C = 2 is the more natural and
desirable result as it is based on the most recent data. C = 1, however, is the result
of using outdated data. The cost of avoiding aborts thus is the increased probability
of obtaining values that are not up-to-date.

This test also shows that our STM algorithm alone is not enough to fulfill all
synchronization needs. If a transaction wants to ensure that it only works with the
most recent versions it also needs other synchronization objects like barriers. It is

atomic{
1: A = 0;
2: B = 0;

}:3

atomic{
5: A = 1;
6: B = 1;

}:7

atomic{
4: x = A;
8: y = B;
9: C = x + y;

}:10

Listing 5.4: stm script with three transactions causing both read and write conflicts.
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old versions failed
limit used reads writes commits aborts
∞ 2 10920 (1.88%) 42644 (3.24%) 280046 (37.09%) 333610
one 1 10920 (1.88%) 42644 (3.24%) 280046 (37.09%) 333610
none 0 22314 (3.70%) 49930 (3.79%) 272760 (36.48%) 345004

Table 5.2: Statistics of script 5.4 when executed with different version history list
lengths.

possible to build a barrier using Distributed STM though, for example by using a
GAO as counter and busy waiting until it has reached the right value.

For our second test we used a more complicated script (see Listing 5.4) with
read, write and commit conflicts. We also did not initialize the GAOs this time,
so they are created on the first access. As can be seen in Table 5.2 we once again
manage to reduce the number of aborts by using older versions. The table also
shows two other interesting results though. First, it is clearly visible that the usage
of old versions reduces the number of failed reads and writes at the cost of more
failed commits. When the transactions are long or computationally demanding
these delayed aborts can actually result in a decreased performance even though the
total number of aborts is reduced. Second, more older versions do not necessarily
result in less aborts as can be seen by the equal results for version history list
lengths of one and two. These older versions do get used, but they do not further
help to avoid conflicts.
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Chapter 6

Java Integration

One drawback of the evaluation using stmtest is that the grammar of the stm scripts
only allows us to write very simple transactions. This means the results of the
tests in the previous chapter are of a rather synthetical nature. To determine if the
found characteristics of Distributed STM also hold true in more practical situations
we decided to make the implementation available to Java code. We did this by
exposing the functionality of our C++ library in a Java package using Java Native
Interface (JNI).

6.1 DistributedSTM Package

The DistributedSTM package contains the interfaces and classes that are required
to allow a Java application to perform transactions. At its core is the wrapper class
Transaction (see Listing 6.1) which provides the interface from Java Code to our
library. Each Transaction instance is linked to a cTransaction object by storing the
address of the native instance. The wrapper itself is lightweight since each of its
methods just needs to call the respective method of the underlying cTransaction
object.

Contrary to stm scripts where GAOs are simply integers, the DistributedSTM
package works with references. This allows us to manage the access to any kind
of Java object. The only requirement is that the object needs to have a public
clone() method because we need to be able to make deep copies as explained
in section 4.1.1. This is ensured by requiring that each object read or written by
a transaction implements the Clone interface. Writing this implementation is easy
by using the implementation of the Object base class, which makes preparing any
class to be used as GAO a matter of seconds.

To further simplify the usage of Distributed STM and the integration into exist-
ing code, the user also does not have to deal with GIDs. We automatically generate
the identifier for each object by using the hashCode() method provided by Ob-
ject. Since the Java virtual machine uses the memory address of an object as its
hash, the hash is unique while the application executes and therefore fulfills our

39
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public class Transaction
{

public Transaction()
{

nativeCreate();
}

public <T extends Clone> T readGao(T gao)
throws StmException

{
return (T) nativeRead(gao, gao.hashCode());

}

public <T extends Clone> T writeGao(T gao)
throws StmException

{
return (T) nativeWrite(gao, gao.hashCode());

}

public void commit() throws StmException
{

nativeCommit();
}

private long nativePointer;
}

Listing 6.1: The wrapper class Transaction used to access the STM implementation
from Java.

requirements for a GID. Sharing an object with another thread to access it concur-
rently thus is done by simply passing its reference, just like it would be done if the
object was no GAO. It is just necessary that all read and write operations on the
fields of the object are performed using the methods of Transaction. This ensures
that the operations do not alter the original object but instead work on the versions
managed by our STM algorithm. The fields of the initial GAO object actually never
get written to, this object is only used to provide the hash and as initial value for
the first GAO version.

To work around the limitation that Java does not provide a way to roll back
already executed code we use exceptions. Whenever a method of a transaction
fails because of an unresolvable conflict an exception is thrown to abort the trans-
action. The application is responsible for catching the exception and re-executing
the transaction. Also care has to be taken that no objects which are not GAOs are
modified within a transaction as there is no way to undo the changes to them. An
example of how this can be done is shown in listing 6.2. The transactional code is
simply put into a loop which is repeated until no exception is thrown and thus the
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Foo gao = new Foo();

boolean done = true;
do
{

done = true;
try
{

Transaction t = new Transaction();
t.writeGao(gao).x = 1;
t.commit();

}
catch(StmException e)
{

done = false;
}

}while(!done);

Listing 6.2: Exemplary usage of the DistributedSTM package to write to a GAO.

transaction was committed successfully. As this loop is the same for every trans-
action it would be possible to automatically create it. For example the user could
mark all his transactions with the atomic keyword and a simple text replacement
before compilation could add the required code.

6.2 Evaluation and Discussion

Synchronizing the operations of a red-black tree has become one of the standard
tests for STM. The reason for this is that the rebalancing of the tree after elements
get inserted or removed causes many other elements to be modified as well. This
results in many conflicts between concurrent accesses to the tree and puts a lot
of stress on the STM system. Red-black trees also serve as a good example to
show how much easier synchronization becomes when using STM. Making the
operations atomic can be done in a very short time, but implementing fine-grained
locking for such a complicated data structure is a big challenge.

For our evaluation we used the Java implementation of a left-leaning red-black
tree [16]. Making it thread-safe using Distributed STM was straightforward and
only involved three simple steps. First we wrapped all public methods in the loop
mentioned above to enable the abort of transactions. Second, we transformed all
read and write operations of objects within the tree to use the respective transac-
tional method. And finally we implemented the Clone interface for the objects
managed by STM. So even with this manual usage of STM—as compared to STM
that is integrated into the language—it was an uncomplicated task to prepare the
tree for concurrent usage by multiple threads. This is mainly because we did not
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Figure 6.1: Number of failed commits in relation to number of threads and version
history length for scenario one.

have to worry about all the problems, in particular deadlocks, which usually make
correct synchronization so difficult.

To simulate realistic scenarios for a practical usage of Distributed STM we
performed two tests. Scenario one represents a worst-case consisting of 50% read
and 50% write operations, which causes a lot of contention. The more practical
scenario two changes this distribution to 90% readers and only 10% writers. In both
cases there is a total of 600 operations which are performed by a different number
of threads. The write operations are evenly split into insertions and deletions. The
tree initially contains 100 entries. We also performed the tests on differently sized
trees and with a bigger number of operations, but this did not lead to different
results.

All our measurements were done under Ubuntu 8.10 running on a 3.6 GHz Intel
Core 2 E8400 dual-core processor. Since a dual-core processor obviously does
not scale well beyond two concurrent threads, we did not examine the absolute
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Figure 6.2: Number of failed reads in relation to number of threads and version
history length for scenario one.

performance. Instead we looked at the number and the cause of the aborts to see
how well our algorithm scales with the number of threads. Additionally, we wanted
to see if the results about the version history length that we obtained in section 5.5
also apply to these scenarios.

All results presented in this chapter are the mean average of 50 measurements,
and in the figures we also included the standard derivation. This is necessary be-
cause the results are highly dependent on three indeterministic factors: the schedul-
ing of the threads by the operating system’s scheduler, the type of operation a thread
performs and the randomized consensus protocol. Because of the way the LLRB
tree is implemented each GAO is read at least once before it is written to. This
means that the write operations can never fail and thus do not need to be taken into
account here.

Figures 6.1 shows the number of failed commits for scenario one. As expected
from the results so far the usage of old versions considerably increases the chance
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Figure 6.3: Number of rollbacks in relation to number of threads and version his-
tory length for scenario one.

that a commit fails. With ten threads and when only using the most recent versions,
around 55% of the commits are not successful. When old versions are available
this increases to over 75%. This means that less than one quarter of the com-
pleted transaction manages to commit. The advantages of using old versions can
be seen in figure 6.2 though. Independent from the number of threads can we al-
most completely avoid failed reads. If old versions are not used around 45% of
the transactions needs to be aborted because of a failed read. What really matters
though is the total number of rollbacks, which in this case is the sum of the failed
reads and failed commits. This number is shown in figure 6.3. As expected, Dis-
tributed STM can reduce the number of rollbacks by using the old versions in the
version history list. But the margin compared to not using old versions at all is very
small. Considering that failed reads are preferred to failed commits, because they
result in an earlier abort, the best result in this scenario actually is achieved by only
using the most recent version. Not using old versions also removes the overhead
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Figure 6.4: Number of failed commits in relation to number of threads and version
history length for scenario two.

that would otherwise be necessary to maintain them.
It is also worth noting that there is almost no difference in the results between

an unlimited version history list length and only keeping one older version. The
additional overhead from keeping a big number of old versions certainly does not
outweigh the minor reduction of rollbacks.

All three figures clearly show that Distributed STM scales linearly with the
number of threads. Even though this scenario causes many conflicts because of the
big number of concurrent writers, the number of transactions per threads increases
slower than the number of threads. This means that we are actually improving
performance, although with ten threads we only achieve a speedup of around 2.5
compared to one thread when looking at the number of transactions each thread
needs to execute.

This changes when we look at scenario two. Thanks to the lower number of
writers the speedup here is almost nine. Now we can also take big advantage of
using the old versions: When only using the most recent versions, more than twice
the number of transactions needs to be aborted. In this scenario the best result
is actually achieved by keeping exactly one old version, but the difference to an
unlimited version history list is small. This difference most likely is caused by
the big variance of the results caused by the nondeterminism of the test. When
considering the overhead caused by keeping more then one old version available
though, it is clear that it is best to limit the version history to just one old version,
at least for the synchronization of red-black trees.
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Figure 6.5: Number of failed reads in relation to number of threads and version
history length for scenario two.
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Chapter 7

Conclusion

Writing concurrent code is becoming more and more important to fully utilize the
power of both modern multi-core processors and distributed systems. Correct syn-
chronization of the concurrent accesses to shared objects by using locks is difficult
and error-prone though. Software transactional memory is an attempt to solve this
problem, but most STM implementations so far focus on non-distributed systems.

In this thesis, we have developed and presented a novel approach with two
key features that separate it from other STM systems. From the beginning, the
design of our algorithm and implementation was done with distributed systems,
in particular the AmbiComp virtual machine, in mind. Additionally, we keep old
versions of shared objects available in a version history list to reduce the number
of read conflicts between transactions.

Writing a simple script language and interpreter, which removed the nondeter-
minism caused by a normal scheduler, allowed us to evaluate Distributed STM in
a reproducible manner. We were able to confirm that the old versions can indeed
reduce the number of unresolvable conflicts between concurrent transactions in
these theoretical tests. The price for this improvement is that the obtained values of
the shared objects are in fact correct, but more likely to be not up-to-date. Thanks
to the ability to run all possible execution paths of these scripts, we also validated
that the algorithm indeed does provide correct results, even in situations that are
very unlikely—but not impossible—to occur when using a real scheduler.

To see how our approach performs in a more practical scenario we made it
accessible to Java applications and used it to synchronize a red-black tree. Our
tests revealed that the usage of old versions provides the best results when there
is only little contention. In those cases the number of aborts can be reduced to
less than 45%. However, when there are many concurrent writers the effect is
less visible and only around 5% of the rollbacks can be avoided. In both cases
the number of transactions per thread increases slower than the number of threads
though, showing that Distributed STM scales well. One unexpected result was that
there is almost no difference in the results between an unlimited version history list
and using only one old version. The reason for this probably is that the internal
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data structures of a red-black tree are modified after almost every operation, which
rapidly makes old versions so outdated that they cannot be used to resolve conflicts.

7.1 Future Work

To investigate if the number of old versions available really has more influence
on the results than shown here, further tests, especially practical ones, are needed.
It would be best to replace the look-based synchronization in an existing multi-
threaded application to see how the algorithm performs in a real environment.

There also is a possible modification to the algorithm which might further re-
duce the number of rollbacks by allowing a transaction to read pending versions.
This modification greatly increases the complexity though because it requires a
transaction to check if the pending versions it has read have yet become valid ver-
sions. If a transaction commits before it is decided whether those pending versions
become new head versions or not, it would also be necessary to block the trans-
action and notify it later. Still, this change could possibly further improve the
performance of Distributed STM.

The last task that remains is to actually integrate our solution into the Ambi-
Comp virtual machine. This would make it available to a bigger number of appli-
cations and enable the evaluation of the characteristics of the algorithm on a dis-
tributed system. Especially the influence of the communication latency between
the nodes needs to be investigated.
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