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Abstract
Persistent memory (PM) provides advantages such as direct
access from the CPU at low latency, but it turned out that
its performance is sensitive to certain access patterns. Par-
ticularly, the access latency increases when the PM is under
parallel load. This leads not only to degraded PM perfor-
mance, but slows down the entire system and wastes energy
due to busy, but stalling CPUs. We propose an efficiency
metric for measuring the CPU cost of a PM storage system.
We evaluate our metric and the power consumption of ex-
isting file systems and explore PM-optimized memory copy
routines to improve their efficiency. Finally, we propose an
alternative system design where access to PM is mediated by
an FPGA while allowing selective user space access to files.
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1 Introduction
Persistent memory (PM) is a storage-class memory that of-
fers advantages such as low latency and high bandwidth,
but also introduces challenges for efficient storage stacks.
In particular, recent studies have extensively analyzed the
performance of Intel Optane PM [21, 22, 24]. The primary
challenge is the management of concurrent access. Multiple
parallel readers or writers are necessary to achieve maximal
performance [24]. However, the total bandwidth—especially
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for writes—quickly deteriorates if concurrency increases be-
yond that. This issue is pronounced for write accesses, but
can also be observed for read accesses at very high thread
counts [27]. We limit our analysis to PM writes, but we ex-
pect our techniques to transfer to reads as well.
Parallel CPU access is problematic for PM as any delays

lead to CPU stalls. Thus, accessing PM with high concur-
rency can do more than just reducing bandwidth: The overall
system performance can be hurt by wasting CPU time, pre-
venting useful work if available or low core power states.

The operating system commonly provides access to PM
via file systems. For this work, we do not consider direct ac-
cess (DAX) since it does not allowmediation by the operating
system. A wide variety of new PM file systems have been
proposed [8, 13, 14, 16, 23, 25–27]. A common goal is the
reduction of static overhead such as from system calls [14].
However, we find that analysis of the overall CPU and energy
efficiency is lacking. Since CPU utilization changes drasti-
cally with concurrency and storage performance, it is not
obvious how to compare the CPU efficiency of PM file sys-
tems. We propose an easy-to-measure metric for assessing
the CPU cost of a file system: CPU seconds per accessed
GiB. We evaluate this metric as well as power measurements
for several PM file systems, including ext4, NOVA [23], and
OdinFS [27] and show a large potential for improvement.

At the core of every PM file system is a routine for copying
memory between DRAM and PM. Aside from small transfers
of file system metadata, this routine is performance-critical
for every read and write since it copies data between user
space buffers and file system-managed PM. We explore re-
placements for this copy routine that aim to follow PM best
practices to reduce the CPU cost. By working at this level, we
can integrate into existing PM file systems with low effort.
We finally propose an alternate system design where an

FPGA acts as a mediator to PM.With that approach, the CPU
merely submits copy tasks to the FPGA via ring buffers in
system memory and is thereby freed from time-consuming
copy operations. In contrast to traditional NVMe devices, our
design can also support direct user space access to files simi-
lar to DAX. An FPGA-side memory protection unit ensures
that processes can only access blocks over their command
buffers that belong to their mapped files.
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2 Background and Related Work
In this section, we introduce details about Intel Optane,
which is the PM we target in our evaluation. We then ex-
amine PM file systems regarding their implementation of
Optane best practices.

2.1 Intel Optane Performance
Intel Optane DC Persistent Memory is currently the only
widely-available implementation of PM. Its performance
turned out to be complicated and dependent on a lot of
variables, including choice of instructions, random access
size, and parallelism [12]. Further analysis suggested that
a complex buffering scheme within the Optane DIMM is
responsible for its behavior [21, 22]. We observe steadily de-
creasing bandwidth for writer threads accessing an Optane
DIMM with increasing parallelism (see devdax in Figure 1).
In accordance with previous works [24], we thus stress the
importance of managing concurrency and NUMA scheduling
when accessing PM. In the following, we propose mecha-
nisms for file systems to deal with these issues. We focus on
write accesses in this paper, but similar considerations also
apply to read accesses at higher levels of concurrency.

First analysis of CXL memory devices suggests that these
devices are at risk for similar parallelism issues [19].

2.2 PM File Systems
Concurrency control and NUMA awareness are uncommon
features that are not present in most PM file systems, includ-
ing PMFS [8], NOVA [23], and WineFS [13]. OdinFS [27] and
SPMFS [25] are two more recent file systems that manage
concurrent PM accesses by delegating writes to a thread
pool. Both file systems keep the write bandwidth stable with
increasing parallelism. OdinFS additionally delegates remote
NUMA accesses to a local thread and can delegate reads at
high thread counts. We compare OdinFS delegation to our
copy routines in Section 7.2.
Energy efficiency is still a rare consideration for storage

systems. Sundar et al. investigated energy efficiency of stor-
age interfaces [20]. To our knowledge, there is no such anal-
ysis for PM file systems.

2.3 Hardware Offloading
Intel I/OAT [17] is a DMA device designed for offloading
memory-to-memory copies. With Fastmove [18], Su et al.
analyze and improve the use of Intel I/OAT in PMfile systems.
They focus on reducing latency and do not evaluate CPU or
energy efficiency. We include measurements for a basic DMA
offloading mechanism in our evaluation, but were unable to
run Fastmove on our system due to software bugs.

3 PM File System Efficiency
As we have discussed above, PM is very sensitive regarding
the access strategy. Consequently, PM file systems need to

consider PM best practices to avoid costly CPU stalls. We
find that there is a lack of comparison between file systems
for CPU and energy efficiency. We argue that this is partly
the case because there is no established metric so far for
determining the efficiency of a PM file system.

We aim to close this gap by proposing a novel metric and
measuring methodology for the CPU cost of a file system. It
is independent of the bandwidth, easy to measure, and can
be applied to arbitrary file systems without adjustments. We
define the CPU costs for a write operation as follows:

CPU cost = CPU time
amount of written data

We measure it in seconds per Gibibyte (s/GiB). The CPU
time is the sum of seconds each CPU was active, as reported
by the scheduler (/proc/stat in Linux). We use fio [5] as
benchmarking tool with a random write benchmark.
We use CPU time as the numerator, as compared to, e.g.,

CPU cycles, for two reasons: First, CPU time is independent
of effects like dynamic frequency changes, and effectively
measures actual progress as experienced by an actual applica-
tion. Second, CPU time is more dependent on I/O hardware,
since the I/O performance does not change with the CPU
frequency. Every CPU that can sustain the bandwidth of the
I/O device will experience similar scores in this metric.
By measuring CPU time, our metric gives a good indica-

tion of how a file system affects other CPU-bound processes.
Although CPU activity often dominates the power budget,
the contribution of memory and I/O devices should not be
neglected. We thus measure the average power at the wall
plug during our benchmarks and subtract the idle power
usage of the system. From this value, we derive the energy
cost of the file system, measured in Joules per GiB.
Our measurement methodology is as follows. (1) Choose

fio parameters, including runtime 𝑡 , block size, number of
jobs. (2) Measure idle system load and power during runtime
𝑡 . Verify that the load is low. (3) Set up the file system under
test and allocate the fio test files. (4) While monitoring power,
run the fio benchmark. Measure load by reading /proc/stat
before and after running fio. We do not filter system load
by process to avoid missing activity outside of the process
context, for example in kernel threads.

3.1 File System Analysis
We measure power and CPU cost of four existing PM file
systems with our methodology. We present the results here
to motivate the following sections. We perform additional
evaluation of the metric in Section 7.1.
Figure 1 shows the results. The graph also includes mea-

surements for ext4 on an NVMe drive (Micron 7300 Pro 1 TB)
and for direct user space access to PM (devdax) as a compari-
son. Our bandwidth measurements show that most of the file
systems (ext4, NOVA [23], WineFS [13]) do not implement
best practices for accessing PM. For these file systems, the
total bandwidth decreases as more jobs access the PM, es-
pecially for accesses from a remote NUMA node. This has a
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Figure 1. Evaluation of our metric for several file systems
and for direct PM access (devdax). The write benchmark runs
either from a CPU with the PM attached or from a different
NUMA node.

dramatic effect on the CPU cost as well as energy efficiency:
With each additional job, the CPU spends more time and
energy writing to PM while hurting the overall bandwidth.
For OdinFS [27], we can see that its delegation to writer

threads running on a local NUMA node successfully keeps
the bandwidth at a steady level for both local and remote
accesses. However, this mechanism is not for free. At two
jobs, OdinFS spends more than double the CPU time and
around 30% more energy per GiB for the write operation
than other PM file systems. Moreover, the CPU cost also
rises with more jobs, making OdinFS only cheaper than the
other file systems for parallel remote accesses.
We argue that ext4 on NVMe shows close to optimal be-

havior. The bandwidth stays roughly constant with higher

(a) Semaphore

write(          )

down(sem)
memcpy(…)
up(sem)

FS

write(             ) write(             )

pages

PM

FS

DMA Engine

FS

workqueue

(b) Worker (c) DMA

Figure 2. Variants for writing to PM efficiently.

numbers of jobs for both local and remote accesses. Even
though the SSD performs the memory copy operation with
DMA, the CPU costs from managing these transfers starts
out slightly higher than for the PM file systems. However,
the cost does not rise much with parallel jobs.

Our measurements for NVMe also show an important limi-
tation of “wall plug” power measurements. Since wemeasure
the whole system, we capture a complex interaction between
devices with different power management strategies. We can
observe a decrease in power with more fio jobs, suggesting
that the NVMe device needs less energy with higher load.
We assume that this anomaly results from CPU scheduling
in our particular benchmarking scenario, but this is hard to
prove without more fine granular power sensors. We see
similar behavior for “Semaphore” in Figure 4.

In the following, we explore ways to decrease these CPU
costs, bringing them closer to the level of NVMe.

4 Efficient PM Copy
As we have seen, most PM file systems do not handle parallel
write accesses well. Although OdinFS’s delegation [27] keeps
the bandwidth stable, it has a non-trivial CPU and energy
cost. Our goal is to provide a minimal API for efficient PM
access that can be easily fitted onto existing PM file systems.
We analyzed CPU costs of PM file systems with perf’s

stack sampling. A key insight for the design of our API is
that virtually all performance-critical writes in a file system
are simple memory copies from user space buffers to PM. Our
API is thus a single function ep_write_pmem() that copies
memory from a source to a destination buffer—identical to
memcpy(). The function can detect the location of the PM
with the address of the destination buffer and can then take
measures to prevent PM overload. Internally, we provide
three variants for accessing the PM, as illustrated in Figure 2.
Semaphore. First, we protect the existing memcpy()

routine with a semaphore, limiting parallel accesses to the
PM. The semaphore thus prevents a decrease in bandwidth
and allows other tasks to run. However, it cannot improve
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the performance of PM accesses from remote NUMA nodes.
Based on our analysis shown in Figure 1, two parallel PM
writes to a single Optane DIMM is a reasonable compromise
between bandwidth and CPU cost.
Workqueue. Second, we implement a mode similar

to the delegation threads in OdinFS [27]. For each PM
area, we introduce a workqueue with a limited amount of
worker threads pinned to the respective NUMA node. A
call to ep_write_pmem() appends the copy request to the
workqueue and sleeps until the request is completed.

This approach can mitigate both a decrease in bandwidth
as well as inefficient remote PM accesses: Parallel accesses
are limited with the amount of worker threads and the
worker threads always perform local PM accesses.

DMA. Finally, we implement a mode that offloads PM
copies to an Intel I/OAT DMA device (see §2.3). We create
DMAmappings for the pinned source and destination buffers
and enqueue a DMA copy operation. We limit the amount
of DMA channels to avoid parallel PM writes. As we will see
in the evaluation (§7.2), Intel I/OAT cannot satisfy the full
PM bandwidth on our system. Newer Intel CPU generations
include improved offloading hardware [11, 19], which might
make this approach viable in the future.

5 FPGA-Managed PM
As an alternative design for PM-equipped systems, we pro-
pose using periphery hardware to manage PM accesses.
Maintaining low access latency is a key goal in such a sce-
nario, albeit difficult to achieve with off-the-shelf hardware.
With a GPU, for example, all data in DRAM↔PM copy opera-
tions would need to travel the system’s PCIe bus twice: once
for reading and again for writing. We use an FPGA instead
that has the PM directly attached via a DDR-T interface. The
CPU only communicates indirectly with the PM by submit-
ting copy commands to the FPGA via ring buffers in DRAM,
which the FPGA then executes asynchronously. The buffer
size may be configured arbitrarily, allowing tuning to the
application’s burst size to avoid running full. This approach
entirely prevents PM-related stalls and minimizes the CPU
effort for PM operations. Our implementation currently polls
for completion, but could support interrupts in the future.

NVMe generally provides similar functionality, but is inca-
pable of providing DAX-style file access to user applications
as it entirely relies on the operating system to enable access
protection. We solve this challenge by leveraging SR-IOV to
multiplex our hardware and provide a device-side memory
protection unit (MPU). Each SR-IOV virtual function (VF)
provides its own pair of read/write command buffers. The
MPU isolates VFs from each other via range-based access
checks. More precisely, for each VF a number of accessible
address ranges with 2MiB granularity may be defined. We
consider this enough for typical PM file system use cases
with few active processes that work on large files.

The operating system kernel is merely involved for a)
handing out VFs to user space processes which they may
then configure to their needs (e.g., regarding command buffer
size), and b) communicating block range permissions to the
FPGA. We currently require the kernel to establish DMA
address mappings for user space pages in the IOMMU. We
plan to leverage the Shared Virtual Memory (SVM) capabil-
ity [2] in recent Intel processors in the future to allow the
FPGA to access a process’s memory without further kernel
involvement. We achieve lock-free parallelism by employing
one VF per thread that makes use of PM.

To support file system accesses via standard OS interfaces,
we further implemented a Linux kernel block device based on
blk_mq [6]. Using the block device, off-the-shelf file systems
such as ext4 may be used atop our design.
Discussion. Moneta-D [7] is a previous approach that

implemented hardware-based access checks for storage to al-
low direct user space access. However, their implementation
fails to minimize latency as they use complex tree lookups
for access checks with a stated average latency of 96 ns and
a worst-case latency of 180 ns. Our implementation, in con-
trast, allows storing all ranges in on-die SRAMs and is able
to deterministically perform access checks within one single
clock cycle, i.e., 4 ns in our case (250MHz). Further, our SR-
IOV-based design can easily be extended for multi-tenant
virtualization by adding a secondary access protection layer
in the hardware. Then, shares of FPGA-managed PM may be
handed out to virtual machines independently and without
requiring further mediation by the hypervisor.

6 Implementation
We implemented two Linux kernel modules for the file sys-
tem interface and the FPGA driver. Our source code is avail-
able at https://github.com/KIT-OSGroup/efficient-pm.
For the implementation of the file system interface, we

make use of existing kernel interfaces as much as possi-
ble. The Semaphore variant uses a standard Linux struct
semaphore. We implement the Workqueue variant with
an unbound Linux workqueue [10] that is pinned to spe-
cific CPU cores. Finally, the DMA variant is based on the
DMAEngine framework [1]. For each transfer, it selects a
DMA channel and enqueues one DMA operation per page.
The thread then blocks until all transfers are completed. We
adapt NOVA to make use of our file system interface. For
that, we had to modify a single line of code within NOVA.

We implemented the FPGA-managed PM approach using
an Intel Stratix 10 DX FPGA that is connected to the base
system via a PCIe 3.0 x16 interface. The kernel driver and
the corresponding user space library encompass a total of
about 1500 lines of C code. Our implementation supports a
total of 512 VFs.
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7 Evaluation
We have introduced the design and implementation of a
metric for assessing the CPU efficiency of PM file systems,
three variants for improving the CPU efficiency, and FPGA-
mediated PM. In our evaluation, we attempt to answer the
following questions:

• Is our proposed metric for CPU cost bandwidth-
independent? (§7.1)

• Do our variants reduce the CPU cost of PM file sys-
tems? Where does the CPU cost come from? (§7.2)

• What is the performance and CPU cost of our FPGA-
mediated PM? (§7.3)

We perform our evaluation on a dual-socket system with
eight-core Intel Xeon Silver 4215 CPUs and 128GB of DRAM.
We evaluate performance to a single first-generation Intel
Optane DIMM with a capacity of 128GB. We keep SMT
enabled and the CPU power governor (intel_pstate) set to
“powersave” so that our setup is close to a real system.

We use fio [5] as our main benchmarking tool. If not noted
otherwise, we configure fio to do random sync writes to
100MiB large files per job with a block size of 128 KiB. We
let fio run for 30 seconds and observe steady bandwidth and
power measurements with low standard deviation.

7.1 PM Efficiency Metric
A major goal of our CPU cost metric is independence from
the device bandwidth. Plain CPU time is not a good metric
for evaluating I/O-bound software since the CPU utilization
naturally rises with faster I/O. To evaluate our metric’s band-
width independence, we set fio to write to an ext4 file system
on PM with target bandwidths ranging from 32MiB/s to
1GiB/s. Based on our results in Figure 1, we configure two
fio jobs so that we can evaluate the full range of bandwidths.

Figure 3 shows the results. We can see that the CPU cost
decreases slightly from 32MiB/s up to 256MiB/s and stays
relatively constant from there. We assume that static over-
head from fio leads to this result, since such overhead has
more weight on the metric for small bandwidths and conse-
quently a lower amount of written bytes.
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Figure 4. Evaluation of NOVA with our copy mechanisms
as well as our FPGA-managed PM.

7.2 Efficient PM Copy
To evaluate our three copy mechanisms, we have modified
NOVA to use them. The benchmark setup is the same as in
Figure 1. We show the results in Figure 4. We include OdinFS
as comparison to Workqueue, since both delegate copies to
another kernel thread. We can see that all three variants
successfully keep bandwidth, power, and the CPU cost stable
with an increasing amount of jobs.

Semaphore provides good results for accesses from the
local NUMA node. It does not suffer from reduced bandwidth
with a single job as the two delegation-based mechanisms.
However, it cannot prevent low bandwidth that results from
remote PM writes. Additionally, we have observed reduced
performance when there is high contention at the semaphore,
which becomes problematic with smaller block sizes. At
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four or more jobs, we measure lower overall power with
Semaphore. We discuss this anomaly in Section 3.1.

Bandwidth-wise, Workqueue and OdinFS provide similar
performance. However, Workqueue has only a fraction of the
CPU cost of OdinFS and is thus more energy-efficient. We
analyze the CPU usage of these two benchmarks at eight jobs
with perf’s stack sampling. Even though the memory copy
only requires around 10 % of the CPU in both cases, OdinFS
spends 31 % waiting with a spinlock for the delegation thread
to complete, compared to only 0.1 % with Workqueue.
The DMA variant provides a relatively stable bandwidth

of only around 500 to 750MiB/s to the local NUMA node in
our benchmark, less than half of what the PM can provide.
We confirm that there is no bottleneck in our code by run-
ning the same benchmark on an emulated PM device backed
by DRAM, where we observe a bandwidth that exceeds the
PM bandwidth. To get a better understanding of the bottle-
neck with Intel I/OAT, we measure the DMA bandwidth to
DRAM and PM using a GPU. The GPU’s parallelism can be
configured by controlling the number of SIMD lanes, i.e., the
number of ALUs executing the program. We plot the results
in Figure 5. With a rising number of SIMD lanes, we observe
increasing bandwidth for both PM and DRAM. However, the
PM bandwidth peaks at a lower level of parallelism than the
DRAM bandwidth. We assume that the internal parallelism
in I/OAT is tuned to the DRAM peak, at which point the PM
bandwidth matches our observations in Figure 4.

7.3 FPGA-Managed PM
We evaluate the performance of our prototype of FPGA-
managed PM with a custom fio ioengine communicating
directly with the FPGA from user space, as well as with an
ext4 file system on top of our block device driver. The results
of the fio benchmark are shown in Figure 4. We additionally
measure write latency at varying access sizes in Figure 6.
For user space access, we can see a very stable write band-
width of 1.43GiB/s from both NUMA nodes. We achieve
low latency at small block sizes due to efficient buffering on
the FPGA. As the prototype uses polling to wait for request
completion, we see an increase in power and CPU cost with
more writers. Access over our block device driver shows
high latency especially at small access sizes. We attribute
the high latency to bad support for polled block devices in
the Linux kernel. A future implementation of hybrid polling
and interrupts as proposed by Harris et al. [9] could improve
latency and energy efficiency.

8 Future Work
CXL. With Compute Express Link [3], we can implement
direct access to our FPGA-mediated PM. Given that early
measurements of CXL devices show write contention similar
to Optane [19], we propose keeping asynchronous access
as default and only offering DAX to applications that need
it. For devices that offer access only via CXL, we expect
that our techniques for limiting parallelism are generally
applicable. For DMA offloading, Sun et al. show that Intel
Data Streaming Accelerator (DSA) [11], the successor of
I/OAT, has better performance accessing CXL memory [19].
High-level interfaces. With io_uring [4], ring buffer

based communication is starting to replace traditional sys-
tem call interfaces to I/O hardware. However, in the current
implementation, the kernel interprets io_uring commands,
which adds latency and risks security issues [15]. We plan to
adopt io_uring as command language for our FPGA-mediated
PM. After creating mappings for opened files, this approach
allows full kernel bypass for unmodified applications, im-
proving performance and reducing security risks.

9 Conclusion
Managing parallelism is critical for good PM performance.
In this paper, we have introduced a metric for assessing the
CPU efficiency of PM file systems. Evaluating this metric
and measuring energy efficiency of several existing PM file
systems, we could observe that these file systems arewasteful
with CPU time and energy. We explored three PM copy
mechanisms and have shown that they can successfully limit
parallel write accesses to PM, reducing CPU usage.We finally
introduced a system design with an FPGA as mediator for
PM. The FPGA frees the CPU completely from expensive
copy operations and communicates with software over ring
buffers, offering energy-efficient access at low latency.
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