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Deutsche Zusammenfassung

Die zunehmende Bedeutung breit angelegter Virtualisierungslösungen in der Cloud
stellt große Herausforderungen an deren Sicherheit. Verschiedene Forschungsar-
beiten haben bereits gezeigt, dass geteilte Hardware-Ressourcen (z. B. Caches)
das Durchbrechen der Isolation zwischen Prozessen und virtuellen Maschinen
ermöglichen. Dabei geriet mit TLBleed [18] der Translation Lookaside Buffer
(TLB) in den Fokus, welcher nicht von modernen Sicherheitsmechanismen wie
Intel’s Cache Allocation Technology (CAT) berücksichtigt wird.

Die grundsätzliche Realisierbarkeit von TLB-basierten Covert Channels ver-
anlasst uns, deren Performanz hinsichtlich Bitrate und Zuverlässigkeit deutlich zu
steigern, um auf die Notwendigkeit ganzheitlicher Isolationskonzepte auf Mikroar-
chitekturebene hinzuweisen. Dazu entwerfen wir ein zweischichtiges Kommunika-
tionsprotokoll zur Lösung des Synchronisationsproblems sowie zur Absicherung
gegenüber Störungen aufgrund nebenläufiger Prozesse. Ferner präsentieren wir
ein neues Verfahren zur Überwachung von TLB Einträgen mittels Auswertung
der Zugriffsbits in Seitentabellen. Wir erreichen fehlerfreie Übertragungen bei
einer Bitrate von bis zu 200 kB/s in einer Linux KVM Umgebung mit aktueller
Intel Hardware.
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Abstract

The ongoing global trend towards large-scale cloud virtualization raises concerns
on how secure these systems are. Previous work has shown how shared hardware
resources (e.g., caches) can be exploited to break isolation between processes and
virtual machines. With TLBleed [18], the Translation Lookaside Buffer (TLB)
was identified as a new attack vector which is immune to state-of-the-art security
mechanisms such as Intel’s Cache Allocation Technology (CAT).

Given the general feasibility of TLB-based covert channels, we aim to con-
siderably increase the performance of TLB-based covert channels in terms of
channel bit rate and reliability, thereby demonstrating that holistic techniques
for microarchitectural resource partitioning are needed. Therefore, we design
a two-layer communication protocol capable of dealing with the issues of syn-
chronization and noise due to concurrently running processes. Furthermore, we
present a novel approach to monitor TLB entries by leveraging the accessed bit in
page table entries. We are able to achieve error-free transmissions at bit rates of
up to 200 kB/s in a Linux KVM environment running on current Intel hardware.
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Chapter 1

Introduction

Most servers nowadays run in cloud data centers. Due to the hosting com-
panies’ interest to keep costs at a minimum, multiple virtual machines (VMs)
are consolidated per physical machine [6]. Consequently, hardware resources
(such as the processor or main memory) are implicitly shared among the VMs.
Although it should be impossible to infer sensitive information from these re-
sources, a wide range of side-channel attacks and covert channels proves other-
wise [18, 41, 57, 60]. In a side-channel attack, the attacker tries to infer secret
data (e.g., keys) from another VM without explicit communication by merely
monitoring execution artifacts rather than exploiting software bugs. A covert
channel consists of a sending and receiving instance which intentionally exfiltrate
information over a channel not meant for communication.

In previous work, especially processor caches have been exploited as communi-
cation channels. However, since state-of-the-art cache isolation techniques such
as Intel’s Cache Allocation Technology (CAT) are able to prevent cache-based
attacks [35], security researchers shifted their focus to other implicitly shared
resources. Gras et al. [18] were the first to mount a side-channel attack via
the Translation Lookaside Buffer (TLB), thus, bypassing state-of-the-art side-
channel protections. Beside their main objective of leaking secret keys, Gras
et al. [18] also showed that covert channels over the TLB are practical by im-
plementing a proof-of-concept covert channel between processes. In this work,
we aim to considerably increase the performance of TLB-based covert channels
in terms of channel bit rate and reliability, thereby demonstrating that holistic
techniques for microarchitectural resource partitioning are needed.

In order to build a reliable covert channel over the TLB, the issues of syn-
chronization and noise due to concurrently running processes have to be handled
by an appropriate communication protocol. Similar to Maurice et al. [41], we
lend ideas from wireless protocols and construct a multi-layer protocol consist-
ing of a physical and data-link layer. These layers include error detection and
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4 CHAPTER 1. INTRODUCTION

correction mechanisms such as the cyclic redundancy check (CRC) or the Reed-
Solomon code. We evaluate the robustness of our covert channel by transmitting
real-world data such as documents and multimedia contents across VMs while
introducing different levels of interference. Our design is able to achieve bit rates
of up to 200 kB/s at an error rate of 0% on an idle system. In addition, we
present a novel technique to accurately monitor TLB entries by leveraging the
accessed bit in page table entries.

In Chapter 2, we provide background information required to understand
TLB-based covert channels and discuss previously published side-channel at-
tacks and covert channels. Chapter 3 introduces the attack scenario we assume
throughout our work and presents techniques to monitor TLB entries. Fur-
thermore, we analyze the challenges we face when building TLB-based covert
channels. The proposed design of our channel is depicted in Chapter 4, followed
by a detailed evaluation in Chapter 5. The thesis concludes with Chapter 6 where
we summarize the most important points and motivate future work.



Chapter 2

Background

In this chapter, we provide background information required to understand TLB-
based covert channels. We recall the concept of virtual memory and look at its
modern implementation with focus on the TLB. Next, we motivate side-channel
attacks and covert channels, along with an examination of real-world examples.
Eventually, we give an overview over error detection and correction mechanisms
which we will use in this thesis.

2.1 Virtual Memory

With the rise of multiprogramming, virtual memory has become a core feature
of every modern operating system [56, p. 181ff]. Each process is assigned its
own address space, so that it cannot access data from another process or crash
the machine by performing invalid memory accesses. To enforce address space
isolation, processes can only operate on memory via virtual addresses. On access,
the memory management unit (MMU) in the CPU transparently translates the
virtual address into a physical address. An invalid access raises a page fault
which has to be handled by the operating system. To implement address spaces,
operating systems use techniques such as base and limit registers, segmentation,
or paging.

The general flow of an address translation on a modern page-based archi-
tecture (e.g., x86) is depicted in Figure 2.1. The address space is divided into
equally-sized pages, typically of 4KiB granularity. All pages of a process are
organized in a page table which is managed by the operating system. Within
the page table, each virtual memory page is represented by a page table entry
(PTE). Typical information in a PTE include [11]:

5



6 CHAPTER 2. BACKGROUND

• Physical Frame Number : Physical base address of the page.

• Present Bit: Indicates whether the page is currently mapped in physical
memory.

• Protection Bits: Specify access permissions such as read, write, and exe-
cute as well as whether the page is accessible from kernel-mode only and
others.

• Accessed and Dirty Bits: Whenever the MMU uses a PTE as part of an
address translation, it sets the accessed bit in that entry (if it is not already
set). Whenever there is a write to an address, the MMU sets the dirty bit
(if it is not already set) in the PTE belonging to the address.1

Since the address space is usually sparsely populated, allocating all PTEs re-
quired to cover the whole address space results in a waste of memory. Therefore,
many architectures employ a multi-level page table, where PTEs of each level

MMU
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CPU main memory

Figure 2.1: Memory address translation on a page-based architecture. The Trans-
lation Lookaside Buffer (TLB) plays a fundamental role in speeding up the process
by caching recent address translations, thereby eliminating page walks.

1Note that the processor may cache these bits internally. This implies that, if software
resets the accessed or dirty bit (1 → 0), the corresponding bit might not be set again on a
subsequent access to the same address unless the cache has been written back [11].
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point to the physical page of a nested-level table. PTEs of the last level point
to the actual physical page. If a specific portion of the memory is not used, the
PTE of a higher level can be invalidated and lower-level tables for that entry do
not need to be allocated. x86 specifies a two-level hierarchy for 32-bit and four
or five levels for 64-bit architectures (regarding 4KiB pages). While a multi-level
page table efficiently diminishes memory consumption, it comes at the cost of
an additional memory access per level during the virtual address resolution. This
brings up the idea to cache translations from virtual to physical memory in order
to skip the page table walk and its associated memory accesses. This cache is
referred to as Translation Lookaside Buffer (TLB).

2.1.1 Translation Lookaside Buffer (TLB)
Caches in general evolved from the tradeoff that low-latency storage is technically
challenging, constraining its capacity due to cost and physical space, whereas
less expensive, larger storage does not meet the bandwidth needed for efficient
processing [55, p. 120ff]. A cache can be thought of as a key-value store with a
fixed number of entries, where the key or tag identifies a cache line containing
the associated data. We speak of a cache hit in the case that the requested data
is found in the cache memory, or of a cache miss, if the data is not cached and
has to be fetched from the backing storage. There are three different methods
to map tags to cache lines [55, p. 133ff]:

• fully associative: A tag can map to any cache line. This makes the cache
most flexible, however, since all entries have to be searched for the tag on
a data request, the hardware implementation is quite expensive.

• direct mapped : A tag can map to one cache line only. Therefore, just one
entry has to be searched for the tag on a data request. The problem is
that an unfortunately chosen set of tags could map to the same cache line,
always evicting each other while the remaining cache lines stay unused.

• n-way set associative: The cache is organized in sets, each spanning n
cache lines (i.e., n ways). A tag can map to any cache line within a specific
set. On a data request, only the entries within this set have to be searched.
The number of sets is chosen to balance hit rate and implementation cost.

Once all cache lines are filled with data, a replacement policy is applied to deter-
mine which entry will be evicted on further insertions. Examples for replacement
policies encompass random eviction, first-in-first-out, or least-recently-used re-
placement. Which cache organization and replacement policy is used for a cache
has to be considered on a case-by-case basis.
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Instruction Decoder and front end ITLB L1 Instruction Cache

Out-of-Order Engine

DTLB STLB

L1 Data Cache
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other core

Figure 2.2: Cache hierarchy of modern Intel CPUs [11]. The L1 caches are
split for instructions and data. The L3 cache is shared among all cores. In
hyperthreaded designs, the caches and TLBs are either competitively shared or
statically partitioned.

Fast caches are expensive to implement in hardware and are therefore inher-
ently small. Larger caches have better hit rates at the cost of higher latency.
That is why chip designers often choose to embed a multi-level cache hierarchy.
In Intel’s current designs, three cache levels (L1-L3) are embedded in the CPU
to cache data or instructions from the main memory [11]. Figure 2.2 summa-
rizes the cache hierarchy of modern Intel CPUs. The first level (L1) closest to
the execution unit is of limited size (few kilobytes) and split into two dedicated
caches for data and instructions. The second level (L2) holds both data and
instructions, but is still exclusive per core. The third level (L3) is the largest
cache level (multiple megabytes) and usually shared between all cores.

The virtual address resolution as described in Section 2.1 issues multiple
memory accesses. Although cache hits in the L1-L3 caches reduce the latency
of a single access, the accumulated latency of multiple accesses still negatively
impacts performance. For this reason, the MMU caches recent address transla-
tions from virtual to physical memory in the TLB to skip the page table walk
and its associated memory accesses altogether2. On each memory access, the
MMU performs a lookup in the TLB.

Depending on the architecture, the TLB is managed either in software (e.g.,
MIPS) or hardware (e.g., x86). When implemented in software, TLB misses raise
an exception that has to be handled by the operating system. The interrupt
handler walks the page table, returns the translated physical address and inserts
it as a new TLB entry. On hardware-managed TLBs, as it is the case on x86,

2In fact, Intel provides additional caches for paging structures to speed up the page walk [7].
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ITLB DTLB STLB
Architecture Year s w m s w m s w m
Haswell 2013 32 4 lin 16 4 lin 128 8 lin
Broadwell 2014 32 4 lin 16 4 lin 256 6 XOR-8
Skylake 2015 16 8 lin 16 4 lin 128 12 XOR-7
Coffee Lake 2017 16 8 lin 16 4 lin 128 12 XOR-7
Ice Lake 2019 16 8 - 16 4 - 128 16 -

Table 2.1: TLB organizations per microarchitecture [10]. All levels use set as-
sociative mapping. s = number of sets, w = number of ways, m = mapping
according to [18]. The total number of entries equals s times w.

the MMU automatically walks the page table on a TLB miss and inserts the
TLB entry. On a TLB hit (i.e., the address translation already exists as a TLB
entry), the MMU directly returns the physical address and does not access the
page table.

Following the concept of multi-level memory caches (L1-L3), the TLB can be
structured in multiple levels as well. For instance, recent Intel microarchitectures
employ a two-level TLB hierarchy [10]. The first-level TLB (sometimes referred
to as L1 TLB, not to be confused with the L1 cache) is split into a dedicated
TLB for address translations belonging to instructions (ITLB) and data address
translations (DTLB). The second-level TLB is shared for both address types
(STLB, sometimes L2 TLB). In Table 2.1, we list actual TLB organizations for
the currently used architectures concerning 4KiB page translations3.

The actual mapping scheme, that is, how virtual addresses are mapped to sets
of the TLB, is implementation-specific and has not been made publicly available
by Intel. Nonetheless, Gras et al. [18] reverse-engineered some TLB properties
on recent Intel microarchitectures. While producing various address access pat-
terns, they gather fine-grained information about TLB misses provided by the
processor’s performance counters (PMCs). The authors identify two mapping
schemes:

• linearly-mapped : The target set is calculated as page modulo s, with page
being the virtual address without the page offset (the 12 least significant
bits for 4KiB pages) and s being the number of sets.

• complex-mapped : The TLB set number can be expressed as an XOR of
a subset of bits of the virtual address. For instance, an XOR-8 mapping

3TLBs may contain separate regions for different page sizes, each with their own cache
organization [10]. Though we focus on 4KiB pages in this thesis, TLB-based covert channels
are possible with other page sizes in the same way.



10 CHAPTER 2. BACKGROUND

XORs 8 consecutive virtual address bits. Assuming 4KiB pages (12 bit
page offset), bits 12 to 19 are XORed with bits 20 to 27, with 0 being the
least significant bit of the virtual address.

Table 2.1 includes the mapping schemes of all TLBs used in recent Intel mi-
croarchitectures according to the reverse-engineering results of Gras et al. [18].
Furthermore, they confirm Intel’s statement that since the Nehalem microarchi-
tecture, ITLB (4KiB) page entries are statically allocated between two logical
processors (i.e., between hyperthreads), whereas the DTLB and STLB are a
competitively-shared resource [10]. Still, the underlying replacement policy re-
mains unknown.

On a context switch, the virtual address space changes and cached physical
address translations in the TLB are no longer valid. The simple solution of
flushing the TLB on every context switch comes with a high performance penalty
when switching back and forth between processes. For that reason, TLBs support
additional identifiers in their entries to differentiate between different contexts.
As a result, cached address translations belonging to a different address space
can remain in the TLB and will be ignored during lookups (they are nevertheless
subject to replacement). This technique, also known as tagging, has become
common practice in operating systems [39] and hypervisors [61]. Intel provides
tagging on process level (Process-Context Identifier, PCID) as well as on VM
level (Virtual Processor Identifier, VPID) [11].

2.2 Side-Channel Attacks & Covert Channels

Information security builds upon the principles of confidentiality, integrity, and
availability. In modern cloud systems, lots of critical user, business, or even
governmental data [42] are stored in databases. As virtualization and container-
ization become more prevalent in cloud environments [6], isolation has gained
increasing importance to protect sensitive data from unauthorized access. An
adversary has to overcome this isolation in order to steal data. One common
way to do this is by exploiting software vulnerabilities, which in turn can be
patched with an update. Therefore, attackers came up with more sophisticated
approaches, among which are side-channel attacks. The goal of side-channels
is to infer sensitive data from execution artifacts rather than exploiting software
bugs. In virtualized environments, we assume that whenever multiple VMs or
containers run on a common physical host, some resources (e.g., CPU caches)
are implicitly shared and can be leveraged to infer data.
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Algorithm 2.1: Binary Square-and-Multiply exponentiation
input: base b, exponent e = (en−1 . . . e0)2
output: be

1: r ← 1
2: for i from n− 1 to 0 do
3: r ← r2

4: if ei = 1 then
5: r ← r ∗ b
6: return r
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Figure 2.3: Cache activity during Square-and-Multiply exponentiation [34]. The
time between the highlighted cache accesses depends on the exponent’s bits.
The resulting bit pattern is 00100111...

Although side-channels can also be built on the software level (e.g., by snoop-
ing network packet sizes to get hints about their contents [54]), research mainly
focuses on the hardware level. A common attack is to infer secret keys by
monitoring hardware effects such as power consumption [29], electromagnetic
radiation [1], or memory access latency (related to caches) [34]. The processor’s
caches are of particular interest because of their fine-grained resolution of leaked
information and low latency, thereby allowing channels with high bit rates. Liu
et al. [34] depict an attack on the Square-and-Multiply exponentiation (see Al-
gorithm 2.1) which is used in variations by both RSA and ElGamal encryptions4.
Leaking the exponent e may lead to recovery of the private key. The core idea of
the attack is to monitor whether the multiplication in line 5 occurs or not. Then,
the attack deduces the exponent’s bits from the condition in line 4. Tracing the
cache activity leads to a pattern as depicted in Figure 2.3. While processing a

4In fact, modular exponentiation is used. Though being a simplified example, the attack
idea remains the same.
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binary 1, squaring is followed by a multiply. In contrast, for a binary 0, squar-
ing is the only operation in the loop. Therefore, by observing the time between
subsequent squarings (i.e., cache accesses caused by them), we can recover the
exponent. Another example is AES, where lookup tables are pre-calculated and
stored in main memory in order to improve performance [3]. During encryption,
the CPU loads these tables into the cache and traces of cache accesses disclose
indices into the tables to the attacker.

From Section 2.1.1, we recall that the L1 and L2 caches are shared between
a single core and the L3 cache is shared between all cores. Therefore, attacks
leveraging the L1 or L2 cache can only be mounted with co-resident VMs on one
core, while the prerequisite for L3-attacks lessens to co-residency on the same
CPU. For instance, Inci et al. [24] present a side-channel attack to recover a
2048-bit RSA key from co-resident Amazon EC2 instances using the L3 cache.
On process level, Gullasch et al. [21] demonstrate the recovery of a full AES-128
encryption key in "almost realtime" via the L1 cache.

The primary building block of all cache-based side-channel attacks is to mon-
itor cache lines. To do so, a commonly adapted technique is Prime+Probe [14].
It can be segmented into three steps as depicted in Figure 2.4: During the
priming phase, the attacker manipulates the (shared) cache to be in a known
state, for example by forcing the eviction of certain address ranges. To evict
entries, the process allocates a block of memory and accesses data within it.
After preparing the cache, the attacker waits for a specific time period while the
victim operates on the cache. Shortly after, in the probing phase, the attacker
examines how the victim’s activity has changed the state of the cache. For this,
the attacker measures the time taken for accessing the same addresses as in the
priming phase. A threshold determines whether the access resulted in a cache
hit or miss, and, depending on the timer’s resolution, it is even possible to differ-
entiate between the cache levels. Of course, this presupposes the existence of a
high-precision timer, e.g., the timestamp counter of x86 processors5. However,
Schwarz et al. [51] have shown that even in absence of fine-grained timers, other
sources can be used to measure time with sufficient precision. A drawback of the
Prime+Probe attack is that the attacker has to know the mapping scheme from
virtual to physical addresses in order to target specific cache sets, because cache
sets are usually derived from the physical address. Address space layout random-
ization (ASLR) additionally lowers the chance for a successful attack. Therefore,
Yarom and Falkner [62] propose an alternative monitoring approach for caches,
Flush+Reload, which relies on sharing pages between the attacker and the victim
process rather than knowledge of the actual cache sets. Sharing identical memory

5The timestamp counter is a register which counts the number of clock cycles since re-
set [11]. Its value can be obtained by using the unprivileged RDTSC instruction.
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Figure 2.4: The three phases of the Prime+Probe technique. By accessing the
cache lines during the probing phase, they will be reset to primed state, making
the priming phase unnecessary in subsequent iterations.

pages between processes or virtual machines is common practice to reduce the
memory footprint of a system (memory deduplication). During the flush phase,
the attacker flushes (shared) memory lines from the cache. After a wait phase,
the attacker reloads these memory lines, measuring the time to load them. If the
victim accessed a memory line during the wait phase, the line will be available in
the cache and reloading it will take less time than reloading a memory line that
has not been accessed. As a further advancement of Flush+Reload, Gruss et al.
[19] implement a monitoring mechanism without the need of any attacker-issued
memory accesses.

In contrast to side-channel attacks, covert channels consist of a sending and
receiving instance which intentionally exfiltrate information over a channel not
meant for communication. Covert channels are closely related to side-channel
attacks, since a successful side-channel attack can always be converted to a covert
channel by causing the hardware state changes intentionally via a sender program.
For instance, we can feed the Square-and-Multiply example from Algorithm 2.1
with arbitrary bit strings by interpreting those as exponents. On the receiver
side, we observe the same pattern as during a side-channel attack, but interpret
it as a bit string rather than a numeric exponent. This however assumes that the
adversary is able to execute attacker-controlled code on the victim’s machine.

The United States Department of Defense (DoD) defines a covert channel
as "any communication channel that can be exploited by a process to transfer
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information in a manner that violates the system’s security policy" [32]. The
concept of a covert channel was first introduced by Lampson [30] in 1973. Since
then, lots of different attack vectors have been used in order to bypass software
and hardware barriers. The severity of a covert channel is determined by its bit
rate. A channel bit rate exceeding 100 bit/s is considered "high" by the DoD,
whereas a bit rate of less than 1 bit/s is considered acceptable in most application
environments [32]. Nonetheless, the security risk has to be evaluated on a case-
by-case basis, since sometimes even small amounts of data contain sufficient
sensitive information (e.g., passwords).

Publication Via Setup Bit Rate Error Rate
Schmidt [50] Frequency Native 0.135B/s 0%
Kalmbach [26] Frequency Virtual 1.125B/s 0%
Okamura and Oyama [43] CPU load Virtual 0.061B/s 0%
Percival [45] Cache Native 400 kB/s –
Gruss et al. [19] Cache Native 496 kB/s 0.84%
Ristenpart et al. [49] Cache Cloud 0.025B/s –
Maurice et al. [41] Cache Cloud 45.09 kB/s 0%
Pessl et al. [46] DRAM Virtual 74.5 kB/s 0.4%
Gras et al. [18] TLB Native 0.875B/s 0.002%

Table 2.2: Comparison of state-of-the-art covert channels. The error rate repre-
sents the percentage of bit errors in the final received data, that is, after error
correction methods have been applied (if applicable). Native = Between Pro-
cesses, Virtual = Between VMs, Cloud = Between cloud VM instances.

In the remainder of this section, we focus on hardware-based channels. The
bit and error rates of these channels largely depend on the chosen resource. In
Table 2.2, we offer a comparison of several publications. Kalmbach [26] builds a
channel via CPU frequency scaling provided by Intel’s Turbo Boost technology.
While the current CPU frequency can be easily retrieved from a public interface,
it changes sluggishly with the load, resulting in low bit rates. Similar work has
been done on AMD by Schmidt [50] with even worse bit rates due to "high,
asymmetric latencies". To mitigate these channels, it is sufficient to set the CPU
frequency to a fixed value which incurs a performance loss (unless the CPU is
being overclocked). Still, a covert channel using just the CPU load is possi-
ble as demonstrated by Okamura and Oyama [43]. From side-channel attacks,
we know that caches provide high resolution and low latency, thereby enabling
channels with higher bit rates. The same techniques we described earlier (e.g.,
Prime+Probe) can be applied for covert channels. Percival [45] did a first study
of a covert channel between two processes on the same core leveraging the L1
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cache. They estimate a bit rate of up to 400 kB/s using "an appropriate error cor-
recting code". Moving to cross-core attacks, Gruss et al. [19] achieve a bit rate
of 496 kB/s with an error rate less than one percent with their Flush+Flush mon-
itoring mechanism applied to the L3 cache in a native setting. Most challenging
are attacks between different CPUs on a multi-processor platform. Irazoqui et al.
[25] mounted a cross-CPU side-channel exploiting cache coherency protocols of
AMD, Intel, and ARM processors. They did not extend their approach to a covert
channel, but successfully leaked a full AES and ElGamal key. Another promising
resource for cross-CPU channels is the main memory. Pessl et al. [46] came up
with a main memory covert channel capable of up to 74.5 kB/s across VMs on
different CPUs with an error proability of just 0.4%. They exploit timing differ-
ences caused by row conflicts in the (shared) DRAM row buffer. In contrast to
Prime+Probe and equivalent cache monitoring techniques, their approach does
not rely on shared memory. Within virtualized environments, bit rates are usually
lower due to interference of the hypervisor and other VM instances. Ristenpart
et al. [49] were the first to mount a covert channel between two Amazon EC2
instances via the L1 and L2 cache. However, by using the L1 and L2 cache, it is
necessary to achieve co-residency not only on the same physical host, but on the
same core as well. Maurice et al. [41] reduced this challenge to co-residency on
the same host by using the L3 cache. They construct a covert channel capable
of up to 45.09 kB/s across Amazon EC2 instances while eliminating all errors
through a multi-layer protocol based on retransmissions and forward error cor-
rection. Gras et al. [18] were the first to mount a TLB-based side-channel attack
using the Prime+Probe technique known from cache attacks. Beside their main
objective of leaking secret keys, they also implement a proof-of-concept covert
channel between processes with a bit rate of around 0.875 kB/s in idle state and
0.5 kB/s under heavy interference.

2.3 Error Detection & Correction
Communication over real channels comes with noise which causes errors in trans-
mitted data [23, p. 323ff]. By definition, covert channels are not even meant
for communication and consequently need to cope with interference introduced
by concurrently running processes. The transmission can be made more robust
against errors by appending redundant information (e.g., parity bits) to the data.
For instance, error detection codes are used to detect whether a data transmission
was successful and to request a retransmission from the sender if not [26, 41].
Corrupt or incomplete data may be recovered on the receiver side using (forward)
error correction codes. This is especially important for unidirectional channels
which lack a feedback channel and cannot request retransmissions. Computing
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and adding redundant parity data causes an overhead in terms of the amount
of data to transmit and total transmission time, thereby lowering the effective
bit rate. An optimal error detection (or correction) mechanism is capable of
detecting (or correcting) as many corrupt bits as possible at minimal overhead.
Furthermore, a scalable error detection (or correction) code allows to control the
overhead depending on the expected error probability. In the following sections,
we recapitulate error detection and correction codes relevant for this thesis.

2.3.1 Berger Code
Berger [4] proposed a code which is able to detect any number of unidirectional
errors, that is, errors that only flip ones into zeros or zeros into ones. Channels
subject to this error behavior are referred to as asymmetric channels. The Berger
code is often found in hardware circuits due to its simple implementation, e.g.,
to facilitate fault-tolerant computer systems [36].

As depicted in Figure 2.5, the code word is formed by the information word
concatenated with the number of binary zeros in the information word. Therefore,
if any number of unidirectional bit flips occurs, the number of zeros will differ
from the parity word. To a limited extend, the Berger code also detects bit flips
in both directions, as long as the number of zero-to-one-flips does not match the
number of one-to-zero-flips.

0 1 0 1 1 1 0

Information
(3 binary 0's)

0 1 1

Parity
(= 3)

0 0 0 1 0

Information
(5 binary 0's)

0

Parity
(= 1)

0 1 10

0 1 0 1 1 1 0

Information
(3 binary 0's)

0 1 1

Parity
(= 3)

0 0 1

Information
(2 binary 0's)

0

Parity
(= 3)

1 111 1 1

0 1 0 1 1 1 0

Information
(3 binary 0's)

0 1 1

Parity
(= 3)

0 0

Information
(3 binary 0's)

0

Parity
(= 3)

1 111 1 10

Figure 2.5: The Berger code detects errors by counting the number of zeros.
In the first example, only unidirectional bit flips (1 → 0) occur and the error is
detected. The second and third example demonstrate that in some occasions,
bit flips in both directions can be detected, while in other cases, bit flips cancel
out each other.
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Though the length of the Berger code scales with the information word length
and cannot be specified manually, the code is of interest because it can be
calculated efficiently. On Intel platforms with SSE4.2 extensions, the POPCNT
instruction returns the number of bits set to 1. Negating the operand prior to
the execution of POPCNT yields the Berger code of the operand with a throughput
of one instruction per clock cycle [12].

2.3.2 Cyclic Redundancy Check
The cyclic redundancy check (CRC) is an error detection mechanism based on
the mathematical concept of cyclic codes [47]. CRCs consist of a fixed number
of bits computed as the remainder of a polynomial division of the data. The
divisor is referred to as generator polynomial and has to be chosen in a way
to maximize the code’s error detection capabilities. Depending on a channel’s
properties, some generator polynomials perform better than others of the same
degree. On retrieval, the CRC is recalculated from the data and if it matches
the transmitted CRC, the data is assumed to be correct. CRCs are particularly
suited for detecting short burst errors which are characteristic for communication
infrastructure [15].

Name Applications Generator Polynomial6
CRC-1 = parity bit, most hardware 0x1 (x + 1)
CRC-5-USB USB 0x05 (x5 + x2 + 1)
CRC-8-CCITT ISDN 0x07 (x8 + x2 + x + 1)
CRC-16-CCITT Bluetooth, SD cards 0x1021 (x16 + x12 + x5 + 1)
CRC-32 Ethernet, SATA 0x04C11DB7
CRC-32C iSCSI, ext4, SSE4.2 0x1EDC6F41

Table 2.3: Common, standardized CRCs and their applications. The name’s
numeric postfix corresponds to the number of parity bits.

An excerpt of common, standardized CRCs is listed in Table 2.3. The higher
the number of parity bits, the more reliable the error detection. Efficient CRC
computation can be achieved by a series of shift and XOR operations. On Intel
platforms with SSE4.2 extensions, the CRC32 instruction exposes hardware-based
CRC-32C computation. For short CRCs, precalculated lookup tables present a
fast alternative.

6In normal representation: The most significant bit (xn) is left out in the hexadecimal
respresentation (as it is always 1). The hexadecimal polynomial contains only the coefficients
xn−1 . . . x0. Example: 0x1021 = 0001 0000 0010 0001 = x16 + x12 + x5 + x0.
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2.3.3 Hamming Code
The Hamming code is a simple error detection code, capable of detecting and
correcting one-bit errors [23, p. 353ff]. The idea of a single parity bit is extended,
so that multiple parity bits are calculated over specific subsets (expressed as
a generator matrix) of the data bits. After transmission, multiplication of the
received code word with a parity-check matrix yields the bit error position (known
as syndrome). If the position equals zero, no error has been detected. The
notation (n, k) refers to code words of n bits total length and k data bits, implying
n−k parity bits. The number of parity bits depends on the data word length. By
appending an additional parity bit, the Hamming code can be extended to detect
up to two-bit errors. The extended Hamming code differentiates the following
cases:

• syndrome = 0, additional parity = 0 → no error

• syndrome 6= 0, additional parity = 1 → correctable (one-bit) error

• syndrome = 0, additional parity = 1 → error in additional parity

• syndrome 6= 0, additional parity = 0→ non-correctable (two-bit) error

Still, only one-bit errors can be corrected. Due to its simple implementation,
the Hamming code is widely used for hardware with low error rates (e.g., ECC
memory).

2.3.4 Reed-Solomon Code
In 1960, Reed and Solomon [48] proposed an error correction code based on
polynomial interpolation. The key idea is that a polynomial of degree p − 1 is
fixed by p (distinct) data points. By appending an arbitrary amount of points on
the polynomial as redundant information, the receiver is able to reconstruct the
original polynomial even if some data points get lost or corrupted. This makes
the code easily scalable to match the required level of robustness. An example is
given in Figure 2.6. Due to its versatility, the Reed-Solomon code is widely used
in consumer applications such as CDs or digital television, as well as for NASA’s
and ESA’s space exploration missions (e.g., the Voyager expeditions) [59].

The data points are represented by symbols. The Reed-Solomon code encodes
blocks of r-bit symbols whereby the block length n is given as 2r−1 symbols [23,
p. 398ff]. The notation (n, k) refers to a block of n symbols which contains k
data symbols, leaving n− k =: t symbols as redundant information.
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data points +1 redundant point 1 erasure 1 error

data points +2 redundant points 1 error 2 errors

2 errors

3 errors

Figure 2.6: Reed-Solomon polynomial interpolation example. The data polyno-
mial (here of degree 1) is fixed by 2 points. By appending 1 redundant point
on the polynomial, we are able to correct 1 erasure or to detect 1 error. For 1
error, we can derive 3 possible polynomials, preventing us from correcting the
error. 2 errors might remain undetected. By appending 2 redundant points, we
can correct 1 error with a majority decision. 2 errors lead to an ambiguity and
therefore can be detected but not corrected. 3 errors might fool the majority
decision, leading to incorrect results.

In Figure 2.6, we illustrate that t additional symbols allow to:

• compensate for t erasures or

• detect t errors or

• correct b t
2c errors.

The error correction capabilities can be further increased by providing information
about where erroneous symbols are located. By knowing their offsets within an
encoding block, we can treat them as erasures (i.e., discard them) and are able
to correct up to t errors per block.
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Chapter 3

Analysis

In Section 2.2, we looked at several side channels and covert channels that infer
or transfer data across isolation boundaries (e.g., VMs) without having means
for explicit communication. One of the most effective methods is to exploit tim-
ing artifacts in the processor’s cache hierarchy. Caches are of particular interest
because of their fine-grained resolution of leaked information and low latency,
thereby allowing channels with high bit rates. Maurice et al. [41] demonstrated
how an error-free covert channel with a decent bit rate of around 45 kB/s is pos-
sible by leveraging the L3 cache in combination with appropriate error correction
mechanisms.

To mitigate cache-based channels, it is necessary to enforce isolation even
on the microarchitectural level. An obvious solution for cloud providers is to
prohibit co-residency of VM instances belonging to multiple tenants (or restrict
host sharing to "trusted" tenants). In the hypervisor, a radical way to enforce
isolation is by flushing the cache on every guest switch. However, this greatly
lowers the effectiveness of caches and degrades overall performance. Therefore,
hardware vendors implemented mechanisms to close down cache-based channels
right at the microarchitecural level. For instance, modern Intel CPUs implement
Cache Allocation Technology (CAT)1. Designed to guarantee quality-of-service
(QoS) regarding the L3 cache performance [11], CAT can also be used to mitigate
cache-based side and covert channels. CAT partitions the cache by ways, thereby
protecting entries of a set from eviction due to applications assigned to another
partition. However, CAT only offers a limited set of four distinct partitions with-
out the possibility to dynamically balance the cache allocation according to the
needs of applications. This makes CAT unsuited for realistic cloud environments.
Liu et al. [35] overcome these shortcomings by implementing a finer-grained L3
page-level partitioning of two ways (secure and non-secure partition) on top of

1Launched as part of the Intel Xeon E5-2600 v3 product family (2014) [22].
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CAT which dynamically maps sensitive code and data pages to the secure par-
tition instead of assigning whole VMs to each of the four (statically-sized) CAT
partitions. Gruss et al. [20] propose another approach to eliminate cache attacks
by enforcing data cache quiescence during sensitive operations. Cache monitor-
ing mechanisms, e.g., Prime+Probe, are based on the eviction of cache entries.
Using Intel’s Transactional Synchronization Extensions (TSX), sensitive opera-
tions can be encapsulated in a TSX transaction which gets aborted as soon as
concurrent data cache activity occurs.

As techniques such as CAT and TSX are able to prevent cache-level attacks,
security researchers are shifting their focus to other implicitly shared resources.
Gras et al. [18] were the first to mount a TLB-based side-channel attack, thus
bypassing state-of-the-art side-channel protections. In contrast to other implicitly
shared resources (e.g., CPU frequency [26]), the Prime+Probe technique applies
to the TLB as well and allows leaking of fine-grained information similar to cache
attacks. Beside their main objective of leaking secret keys, Gras et al. [18] also
implement a proof-of-concept covert channel between processes with a bit rate of
around 0.875 kB/s in idle state and 0.5 kB/s under heavy interference. Though
they showed that covert channels over the TLB are practical, the bit rate is not
yet able to keep up with cache-based channels.

In this work, we aim to considerably increase the performance of TLB-based
covert channels in terms of channel bit rate and reliability, thereby demonstrating
that holistic techniques for microarchitectural resource partitioning are needed.
The following section leads up to the attack scenario that we assume throughout
our work. Afterwards, we discuss methods to monitor TLB entries and examine
the challenges of synchronization and noise.

3.1 Attack Scenario
Public clouds (such as Amazon AWS, Microsoft Azure, etc.) represent a lucra-
tive target for cyberattacks due to their large-scale use for processing sensitive
data [42, 44]. To increase utilization at lower costs, hosting companies consol-
idate multiple tenants per physical machine by virtualization and containeriza-
tion [6]. This opens up the possibility to build a covert channel between VMs on
the same physical host (co-resident VMs). In a probable scenario, an adversary
uses an exploit to execute attacker-controlled code on the victim’s VM (e.g.,
within a web service). The attacker wants to exfiltrate sensitive data from the
compromised VM and send it to a VM under his control. Direct communication
between the VMs, for example over network, is prevented by the cloud provider.
Similar to L1 or L2 cache-based channels [45, 49], the TLB’s core-exclusivity
requires both VMs to reside on the same core.
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For an attacker operating in public clouds, this means that he has to ensure
co-residency between the VMs on the same physical host. The co-residency
problem has been previously examined by Varadarajan et al. [58] for Amazon
EC2, Google Compute Engine, and Microsoft Azure. They analyze how various
parameters affect the placement of VM instances and develop launch strategies
to exploit these placement policies in order to achieve host co-residency. Among
these parameters are:

• cloud provider, data center, region

• time launched, time of the day, days of the week

• instance type, number of VMs in use

Their proposed launch strategies obtain co-residency faster (10x higher success
rate) and cheaper (up to $114 less) when compared to a secure reference place-
ment policy. They show that not only when targeting smaller data centers, there
is a high chance of co-residency, but also on massive data centers with numerous
physical servers, achieving co-residency is practical.

In Section 2.1.1, we introduced the concept of TLB tagging to preserve TLB
entries during context switches. Without tagging, the TLB has to be flushed
on every context or guest switch. This makes the TLB an isolated resource,
thereby disabling channels based on the competitive eviction of entries between
processes or VMs. However, similar to flushing caches on every context switch,
disabling tagging on process or VM level is undesirable due to performance loss.
In particular, tagging on process level plays an important role in the proposed
mitigation of the Meltdown vulnerability [33]: Where previously a user process
had a single page table with entries for both user- and kernel-space mappings,
it now has two page tables to strictly separate kernel from user memory. On
kernel boundary crossings (e.g., system calls), the operating system has to switch
between these two tables. With tagging, the TLB does not need to be flushed for
every context switch, keeping the negative performance impact low. Therefore,
having tagging on process level enabled is in the interest of the cloud provider
and its tenants for performance reasons. This already allows TLB-based covert
channels between processes (e.g., in a containerized environment).

To mount a covert channel between VMs, we also require tagging on VM
level to preserve entries between guest switches. On Intel platforms, the Virtual
Processor Identifier (VPID) can be used to tag TLB entries belonging to a VM.
According to Intel, the VPID benefit is very dependent on the workload and mem-
ory virtualization mechanism [16]. In process and memory-intensive workloads,
they promise more than 2% performance gain, while worst-case synthetic bench-
marks yield up to 15% better results with VPIDs enabled. We confirm these
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Figure 3.1: Memcached benchmark with VPID tagging being enabled and dis-
abled. Enabling the VPID feature achieves a performance gain of about 10%,
equally for each VM.

results by running a memcached-based benchmark2 within three single-core VMs
on a system with VPID tagging being enabled and disabled. Memcached is a dis-
tributed memory object caching system, thereby representing a memory-intensive
workload typical for servers. From the results in Figure 3.1, we see that enabling
the VPID feature achieves a performance gain of about 10% in this scenario.

Most challenging for an attacker is that he has to achieve co-residency on the
same core. Since he cannot control the core’s scheduling, he has to deal with the
risk of his VM being scheduled to another core during a data transmission. Even
if the attacker VM is not scheduled away, concurrent VMs might get scheduled
between the attacker and victim VM, polluting the TLB’s state before the data
is retrieved from it. However, the chance of a successful covert channel attack is
considerably higher if hyperthreading is enabled. Hyperthreading (or Simultane-
ous Multithreading, SMT) allows to run instructions of multiple threads (usually
two) on a single core at the same time [40]. The physical execution resources
are shared and the architectural state3 is duplicated for the two hyperthreads.
As a result, enabling hyperthreading is highly beneficial because the attacker

2Phoronix Test Suite [31], benchmark: pts/mcperf, method: append, 4 connections. Each
configuration ran three times. All three VMs are pinned to the same core of an Intel Xeon
E5-2630 v4. They are provisioned with 1 core and 4GiB main memory each.

3The architectural state is the part of the CPU which holds the execution state of a process
(e.g., control or general-purpose registers).
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Figure 3.2: Linux kernel compilation benchmark with and without hyperthread-
ing. In both configurations, the computing power is split equally between the
VMs. The hyperthreaded system completes the benchmark about 32% faster.

and victim VM can run simultaneously while sharing the same TLB. We argue
that in the cloud providers’ interest to offer maximum performance at minimum
cost, hyperthreading should be enabled. According to Intel, the first Intel Xeon
processors with hyperthreading showed a performance gain of 15-30% during
server-typical workloads [40]. We confirm this by running a Linux kernel compi-
lation benchmark4 within two single-core VMs on a system with hyperthreading
being enabled and disabled. Compiling tasks greatly demonstrate the significance
of hyperthreading due to their large degree of parallelization. From the results
in Figure 3.2, we see that the hyperthreaded system completes the benchmark
about 32% faster.

While we only focus on single-core VMs in this thesis, achieving core co-
residency can further simplified by using VMs with multiple cores (vCPUs). The
higher the number of vCPUs, the higher is the chance of sharing a core with the
victim VM. The attacker detects this by iterating over all vCPUs, listening for
data transmissions.

Based on the preceding considerations, we derive our final attack scenario
in which the attacker and victim VM reside on the same core (or on adjacent
hyperthreads), with VPID tagging and hyperthreading being enabled.

4Phoronix Test Suite [31], benchmark: pts/build-linux-kernel. Each configuration ran
three times. Both VMs are pinned to the same core of an Intel Xeon E5-2630 v4. They are
provisioned with 1 core and 4GiB main memory each.



26 CHAPTER 3. ANALYSIS

3.2 Monitoring TLB Entries
In order to send data over the TLB, we need to intentionally insert entries
and afterwards monitor whether they got evicted or are still cached. In Sec-
tion 2.2, we presented several techniques to observe caches, with Prime+Probe
being the most prevalent. Many cache attacks implement the probing phase of
Prime+Probe by measuring the latency of memory accesses in order to determine
the existence of a cache entry [18, 34, 45]. An exemplary implementation using
the timestamp counter as a high-precision timer is depicted in Algorithm 3.1.
After the first access of a in line 1, the entry is cached. Then, we wait for a
specific time to give other processes the chance to evict the cache entry, either
unintentionally (side-channel attacks) or intentionally by a sender (covert chan-
nels). Finally, we access a again and keep track of the timestamp counter before
and after the access. By taking the difference of the two measurements and
comparing them to a predetermined threshold, we distinguish a cache hit from a
miss.

Algorithm 3.1: Prime+Probe using RDTSC
input: memory address a, threshold thres
output: true if access hit cache, false otherwise
1: access a . priming phase
2: sleep
3: t1 ← RDTSC . probing phase
4: access a
5: t2 ← RDTSC
6: if t2 − t1 < thres then
7: return true
8: else
9: return false

While this technique is straightforward to implement and does not require
elevated permissions, doing time measurements on microarchitectural level is
error-prone. The memory latencies for a cache hit and miss are different on ev-
ery architecture and also underlie small fluctuations within the same platform.
This makes choosing an appropriate threshold a tedious task. Nonetheless, Gras
et al. [18] successfully used Prime+Probe with timestamp monitoring in their
TLB-based side-channel attack and their proof-of-concept covert channel. How-
ever, to mount a high-performance covert channel, we propose a novel approach
to accurately monitor TLB entries using the accessed bit in page table entries
(PTEs).
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Algorithm 3.2: Prime+Probe using accessed bits
input: memory address a
output: true if access hit cache (TLB), false otherwise
1: access a . priming phase
2: accessed bit← 0
3: sleep
4: access a . probing phase
5: if accessed bit = 0 then
6: return true
7: else
8: return false

Algorithm 3.2 outlines our Prime+Probe variant. When a virtual memory
address is accessed for the first time (line 1), the memory management unit
(MMU) walks the page table to translate the virtual into a physical address
(assuming hardware-managed TLBs). If a mapping exists, the MMU caches the
translation in the TLB and sets the accessed bit of the corresponding PTE. If
we reset the accessed bit in the page table (line 2), it will remain unset until
the MMU walks the page table again, that is as long as the translation for the
corresponding address is cached in the TLB. Only after the respective entry got
evicted, an access to the same address (line 4) triggers a page table walk, which
sets the accessed bit again. Therefore, by reading the accessed bit in line 5, we
get a reliable way to distinguish a cache hit from a miss.

Although the novel accessed bit-based Prime+Probe variant is more accurate
compared to timestamp monitoring, it also requires elevated permissions. Ac-
cess to page tables is restricted to the kernel, which, given our attack scenario,
implies that the resulting covert channel is unidirectional (victim → attacker)
because the attacker has kernel privileges in his own VM only. For bidirectional
communication, privilege escalation has to be achieved on the victim’s VM with
further exploits.

3.3 Challenges
By definition, a covert channel denotes the absence of direct communication.
Thus, for a TLB-based covert channel, communication is solely carried out via
insertion and eviction of TLB entries. The receiver has to fetch the data from
the TLB during a certain time window in which the sender actively "writes" the
data to the TLB. In Figure 3.3, we compare different sender and receiver con-
stellations regarding the timing between send and receive operations. For now,
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Figure 3.3: Illustration of different sender and receiver timings. For a successful
data transmission, the receiver window has to fall completely in the sender win-
dow. Successful transmissions in green, redundant (successful) transmissions in
blue, erroneous transmissions in red.

we assume that as long as the receiver window falls completely in the sender
window, a successful transmission can occur. If a common clock exists, we can
synchronize sender and receiver perfectly as shown in (1). However, generally
there exists no common clock between VMs of sufficient resolution. For instance,
for security and compatibility reasons, the timestamp counter is virtualized and
calling RDTSC from within a VM is subject to clock deviation, timestamp-counter
offsetting, and scaling [8]. Without synchronization, successful data transmission
using the same window lengths is no longer possible (2). Therefore, in absence
of a common clock, we define windows during which the sender repeatedly writes
the same data and at the same time the receiver tries to read the data via sam-
pling. From the Nyquist-Shannon sampling theorem, we know that the sampling
frequency has to be more than two times higher than the highest frequency of
the original signal [53]. For us, this means that the sender window length has to
be more than twice the receiver window length. In an out-of-sync scenario, this
guarantees that at least one successful transmission per sender window is possible
(4). On the other hand, we might even encounter redundant successful trans-
missions which can be used for forward error correction (3). On a real system,
the sender and receiver window lengths as well as the gaps between consecutive
transmissions slightly deviate. If we cannot uphold the sampling theorem under
these circumstances, transmission errors will occur (e.g., loss of "E" in Exam-
ple 5). In accordance with the analysis of Maurice et al. [41], we have to deal
with the following types of errors (also see Figure 3.4):
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substitution errors The TLB is a shared resource and competitively used by
concurrent processes. Therefore, the priming entry inserted by the receiver
might get evicted unintentionally, causing a bit flip from 0 → 1. If the
sender unsuccessfully evicts the entry, we encounter a bit flip from 1 → 0.
The interference increases with the overall system load, especially when
running memory-intensive tasks.

insertion errors Without further measures, the receiver will continue retrieving
data from the TLB, even when the sender is interrupted or descheduled.
The received data will either be empty or contain noise caused by concur-
rent processes.

deletion errors Similarly, when the receiver is descheduled, we are unable to
receive data sent during this time.

While substitution errors are individual errors, insertion and deletion errors occur
in bursts due to scheduling. Insertion and deletion errors are particularly chal-
lenging for unidirectional channels because the receiver cannot inform the sender
whether the transmission was successful or to request retransmissions.

1 1 0 1 0 0Sender

1 1 0 1 0 0Receiver

transmission without errors
sent: 110100, received: 110100

1 1 0 1 0 0Sender

1 1 1 1 0 0Receiver

1 1 0 1 0 0Sender

1 1 0 1 0 0Receiver 0 0 0

Sender

1 1 0Receiver

1 1 0 1 0 0

substitution error
sent: 110100, received: 111100

insertion errors
sent: 110100, received: 110000100

deletion errors
sent: 110100, received: 110

Figure 3.4: Different error types occurring during transmission. Dashed lines
represent the time when either the sender or the receiver is not scheduled. As a
simplification, only 1 bit is sent per transmission, while in general, each box can
be seen as a packet containing multiple bits.
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To gain further insight on the noise caused by the TLB usage of concur-
rently running processes, we repeatedly insert one TLB entry per set and count
the number of its evictions while running different tasks for 30 seconds. The
measurement and the benchmark process were each running in their own VM,
pinned to adjacent hyperthreads on the same core. From the results in Fig-
ure 3.5, we summarize that some sets show exceeding utilization (often along
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Figure 3.5: Number of evictions visualized for all 256 TLB sets of an Intel Xeon
E5-2630 v4 while running different tasks for 30 seconds. Tasks generating a high
contrast pattern focus on few sets which show exceeding utilization (often along
with their neighboring sets → principle of locality).
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with their neighboring sets), whereas the overall utilization does not follow a
particular pattern. Sets with a high number of evictions are especially prone to
substitution errors, that is, bit flips from 0 → 1.

3.4 Conclusion
Caches can be used to build high-performance covert channels with decent bit
rates while maintaining a low error rate. However, isolation techniques on mi-
croarchitectural level (e.g., Intel CAT) defeat cache-based side-channel attacks
and covert channels. Therefore, we shift our focus to the TLB, where these tech-
niques do not apply. Based on the findings of Gras et al. [18], we explore whether
high-performance covert channels between VMs, as we know from caches, are
possible over the TLB. We argue that achieving co-residency in modern clouds
is practical and that VPID tagging as well as hyperthreading are enabled for
performance reasons.

To send data over the TLB, we need to intentionally insert entries and af-
terwards monitor whether they got evicted or are still cached. Similar to the
Prime+Probe method from cache attacks, we measure the memory latency with
a high-precision timer and use a threshold to distinguish between TLB hits and
misses. Furthermore, we propose a novel monitoring technique for TLB entries
leveraging the accessed bit in page table entries.

We have to face the challenges of synchronization and noise. To address
the synchronization issue in absence of a common clock, we use windows of dif-
ferent length for the receiver and sender in combination with sampling. Due to
scheduling and interference of concurrent processes, we encounter insertion, dele-
tion, and substitution errors. To build a reliable covert channel, an appropriate
protocol is needed which is able to deal with these challenges.
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Chapter 4

Design & Implementation

From the previous chapter, we recall that in order to build a reliable covert channel
over the TLB, the issues of synchronization and noise have to be handled by an
appropriate communication protocol. Similar to Maurice et al. [41], we lend
ideas from wireless protocols and construct a multi-layer protocol consisting of
a physical and data-link layer. In this chapter, we describe the design we use
to achieve high-performance TLB-based covert channels and outline the overall
transmission process.

4.1 Physical Layer
The physical layer forms the lowest level of our protocol and is responsible for
transmitting raw bits via the TLB. These bits are represented by TLB hits and
misses, whereby misses are generated by intentional set evictions. Evicting a
set through multiple memory accesses incurs a high CPU utilization which in
turn can be detected by monitoring tools or the system admin. We observe that
real-world data contains slightly more zero than one bits (see Section A.1). With
respect to the attacker’s stealth, we define a TLB hit as binary 0 and a miss as 1.

Then, we can send bits over the TLB as follows: The receiver process in the
attacker’s VM applies Prime+Probe to one memory address. In the majority of
cases, we will see a TLB hit because continual memory accesses keep the TLB
entry alive. This is interpreted as binary 0 by the receiver. To send a binary 1,
the sender process running on the compromised VM actively causes evictions in
the shared TLB by accessing a large set of pages. Each new translation will evict
one TLB entry, eventually evicting the one belonging to the receiver process.
The resulting TLB miss is interpreted as binary 1 by the receiver. In some cases,
concurrently running processes or OS-triggered TLB flushes will evict the TLB
entry, causing a substitution error (0 → 1).
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As explored in Section 2.1.1, all modern Intel processors employ set-associative
TLBs. Given the mapping scheme from memory addresses to TLB sets is known,
we are able to flush and monitor each set independently. Therefore, the number
of sets corresponds to the number of bits we can send per iteration. According
to the TLB organizations we saw in Table 2.1, the number of sets is either 128
or 256, allowing us to send up to 16 or 32 bytes (1 byte = 8 bits) per iteration.
We define each group of 16 or 32 bytes as a packet of size n. However, we can-
not use the whole n bytes for actual data only. In order to detect substitution,
insertion, and deletion errors, we need to include additional metadata in each
transmission. Per packet, we reserve h bytes for transmission metadata (header)
and use the remaining n−h bytes for actual data (payload). In practice, we use
h = 2, leaving 14 or 30 bytes for the payload depending on the number of sets
in the TLB (128 or 256).

To detect missing or redundant transmissions, each packet is assigned an ad-
vancing sequence number. As stated in Section 3.3, the sender window needs to
be more than twice as long as the receiver window. Therefore, without a sequence
number, the receiver might retrieve the same packet multiple times (insertion er-
ror). On the other side, if the sequence numbers of two subsequently received
packets do not follow the ascending order, we lost a packet (deletion error). Re-
orderings cannot occur in our channel because packets are sent sequentially and
the TLB only holds one packet at a time. We assign s bits of the header for the
sequence number, giving us a total of 2s possible numbers. In practice, we allot
one header byte for the sequence number (s = 8). However, we declare only
254 of the 256 possible sequence numbers as valid, reserving 0 (0x00) and 255
(0xFF) to handle two special cases: By ignoring packets with a sequence number
of 0x00, we prevent insertion errors when the sender does not send data (e.g.,
is descheduled). In this case, the receiver’s probing entries do not get evicted,
resulting in 0 bits due to TLB hits (Example 3 in Figure 4.1). While this is true
for idle systems, substitution errors caused by interfering processes might flip a
bit in the sequence number, thereby making the packet "valid". Occasionally, the
operating system triggers TLB flushes which evict all probing entries, resulting
in 1 bits due to TLB misses (Example 4 in Figure 4.1). Therefore, we ignore
packets with a sequence number of 0xFF. Valid sequence numbers range from 1
(0x01) to 254 (0xFE) as depicted in (1) and (2) in Figure 4.1.

Since we build an unidirectional channel, we cannot issue retransmission re-
quests. This is problematic with regard to our scenario where substitution errors
are likely to occur, resulting in corrupt packets. To overcome this issue, we
send each packet a large number of times under the assumption that at least
one transmission succeeds without errors. The actual number of times (i.e., the
sender window length) depends on the level of interference, but will always be
higher than the theoretical minimum of two times the receiver window, thereby
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12 AE 21 FF 03 06 11 62 B2 C0 22 DE FE 23 0001

sqn chkpayload

(1) packet (no chk)

00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000(3) nothing sent (idle)

FF FFFF(4) TLB flush FF FF FF FF FF FF FF FF FF FF FF FF FF

A4 43 21 FF 03 06 11 62B2 C0 22 AA 6A F2 00FE(2) packet (no chk)

Figure 4.1: Packets on the physical layer of 16 bytes length. The payload occupies
14 bytes, sequence number (sqn) and checksum (chk) 1 byte each. TLB states
not intended by the sender are declared invalid by design.

decreasing the maximum bit rate (see Section 3.3). To sort out the packets with
substitution errors, we allot the remaining header byte for a checksum computed
over the payload and the sequence number. Protecting the sequence number
against bit flips is particularly important to reliably detect deletion and insertion
errors as stated above. We implement the following checksum algorithms in or-
der to compare them during our evaluation (see Chapter 5) in respect of their
behavior under noisy conditions:

• Berger code: We use the POPCNT instruction to efficiently calculate the
number of binary zeros as depicted in Section 2.3.1. Assuming a maximum
of 30 bytes for the payload and 1 byte for the sequence number, the
maximum value of the Berger code is 248 (= 31 zero bytes) and therefore
can be represented by one byte.

• CRC-8 : We employ a cyclic redundancy check code (see Section 2.3.2) of
8 bits length. For efficiency reasons, we use a lookup table precalculated
from the generator polynomial 0x311 to compute the one-byte CRC.

• Custom XOR : We use this lightweight checksum to analyze whether stronger
checksums with higher computational overhead provide better error detec-
tion in our application at all. Packets are written iteratively to the TLB,
beginning with the first byte of the payload and ending with the sequence
number and checksum. We presume that if the first and last byte of a
packet are correct, the bytes in between are likely to be correct as well.
Therefore, we XOR the first byte of the payload with the sequence number.

1As found in the Sensirion SHT75 humidity sensor [52].
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In addition, we can approach substitution errors with error correction codes,
such as the Hamming code which is capable of correcting one bit (see Sec-
tion 2.3.3). We experimented with applying an extended (8, 4)-Hamming code
to the physical layer. Every four data bits are accompanied by four parity bits,
allowing the correction of one erroneous bit every eight bits with a total parity
of 50% per packet. However, we observed that whenever substitution errors
occur, they quickly exceeded the Hamming code’s correction capabilities. There-
fore, we decided against using an error correction code on the physical layer, but
rather stick to the redundancy introduced by larger sender windows and use an
additional layer to deal with the remaining errors.

To summarize, the payload, sequence number, and checksum form a packet
on the physical layer. The physical layer we designed is not reliable with regard
to correctness and completeness. Substitution errors can occur in such a way
that the checksum is still correct. On the other side, under heavy interference,
it is unlikely to receive a correct packet during the sender window. If we choose
to dismiss erroneous packets, we cannot recover deletion errors due to the lack
of a feedback channel.

4.2 Data-Link Layer
We introduce a data-link layer on top of the physical layer which provides stronger
error detection capabilities and includes redundancy for forward error correction.
As the required level of robustness differs for different application scenarios, we
use the Reed-Solomon code2 in our data-link layer due to its scalability (see
Section 2.3.4). To keep the computational overhead low, we define the symbol
size r = 8, which also allows us to intuitively interpret bytes as symbols. The
resulting block length is 255 bytes.

Next, we map each block of 255 bytes to packets of the physical layer. While
intuitively, we might fill each packet’s payload with 14 (or 30) bytes from one
block, this approach greatly undermines the scalable error correction capabilities
of the Reed-Solomon code. By doing so, we spread each block over 19 (or 9)
consecutive packets and the loss of a few packets (e.g., due to a burst error)
quickly exceeds the correctable limit as we have to recover 14 (or 30) bytes per
lost packet. Instead, we spread each block over 255 consecutive packets, em-
bedding one block byte in each packet as depicted in Figure 4.2. This way, the
number of parity bytes is directly reflected in the number of packets containing
parity and we can choose their amount depending on the required level of robust-
ness. For instance, if we define 64 of 255 bytes within a block as parity, we send

2Using the libfec implementation by Phil Karn [27].
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11 A2input data 64 53 E62A

191 bytes 191 bytes

11 64 32 21data-link layer 7A FE53 E6 012A

... ...

... ... ... ...

...

FF

191 bytes 64 bytes 191 bytes 64 bytes

...

physical layer 11 3F01 ... 63C0

A2

... 7A ... 5BFFFE

191 packets 64 packets

53

14 / 30 blocks

...

...32 ...21

16 / 32 bytes 16 / 32 bytes

Figure 4.2: Illustration of the multi-layer protocol. On the data-link layer, sub-
sequent segments of the input data are embedded in Reed-Solomon blocks. On
the physical layer, we spread each block over 255 packets, thereby sending 14
(or 30) blocks in parallel. Parity bytes are colored purple. The physical packets
are structured as depicted in Figure 4.1 with the sequence number representing
the offset within a block.

191 packets of data symbols followed by 64 packets containing parity symbols. In
Section 2.3.4, we looked at the error detection and correction capabilities of the
Reed-Solomon code: With 64 bytes parity per block, we are able to correct up to
32 and detect up to 64 erroneous bytes at unknown positions. Furthermore, we
can correct up to 64 errors if we know their offsets within a block (erasures). By
spreading each block over 255 packets, these numbers translate directly to pack-
ets: The 64 packets containing parity allow correction of up to 32 and detection
of up to 64 corrupt packets every 255 packets. Because the block offsets are
implicitly encoded in the sequence number, we treat lost (or discarded) packets
as erasures and are able to recover up to 64 missing packets every 255 packets.

Since we only use one byte of the packet payload per block, we transfer 14
blocks in parallel to take full advantage of the payload size in the case of a 14
bytes payload, respectively 30 blocks for a 30 bytes payload. It is important to
mention that overall, compared to the consecutive mapping we first mentioned,
we still send the same amount of parity with the data. However, by distributing
the blocks over more packets, we increase the robustness and use the Reed-
Solomon code to its full potential.

In Section 4.1, we defined only 254 valid sequence numbers to detect the
special cases of idle state and TLB flushes. With the data-link layer enabled, we
declare 0xFF valid as well to accommodate the need for 255 sequence numbers to
represent all byte offsets within a block. Since we cannot use 0xFF for TLB flush
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detection anymore, we use the result of a bitwise AND operation3 to determine
whether all bits of a packet are one. Though a small chance exists that we
dismiss valid packets (with 0xFF bytes only), we can afford dropping these packets
intentionally because of the Reed-Solomon error correction.

4.3 Transmission Process
The first step to transmit data via the TLB is to allocate memory on the sender
and receiver side (see Figure 4.3). The TLB caches translations from virtual to
physical memory at page-level, that is, each memory address within a single page
points to the same TLB entry. Therefore, we need a pool of pages to generate
TLB entries in specific sets. The base address of a page has to be chosen
according to the mapping scheme (see Section 2.1.1), so that the receiver can
insert one priming entry per set and the sender is able to evict all entries of a
set. To evict a TLB set, the sender has to access at least n pages pointing to
the same set, where n is the number of ways in a set. As a result, for a TLB
organized in 256 sets with 6 ways each, 256 pages are required for the receiver
and at least 1536 pages for the sender. Assuming 4KiB pages, this translates to
1MiB allocated memory on the receiver side, respectively 6MiB on the sender
side. We use the mmap system call to allocate memory at a fixed virtual address.
On Linux, the read-only memory we allocate is mapped to the zero page4 and
therefore does not count to the memory consumption of the process which is
beneficial to remain unnoticed on the victim system.

After allocating memory, we are ready to send packets. Depending on whether
we use the data-link layer or not, we write the data directly in the payload
or wrap it into Reed-Solomon blocks as described in Section 4.2. To send a
packet, we iterate over its bits and for each binary 1, we evict the receiver’s
priming entry by evicting the whole TLB set. The sender window translates
to the number of repetitions of this procedure for each packet. At the same
time, the receiver repeatedly polls and processes packets using Prime+Probe.
We iterate over all TLB sets and set the associated packet bit depending on
whether we encountered a TLB hit or miss. We use the monitoring methods from
Section 3.2. Timestamp-based Prime+Probe monitors TLB entries by measuring
the access latency with RDTSC in combination with a predetermined threshold.
To implement accessed bit-based Prime+Probe, we use a custom Linux kernel
module to read and reset the accessed bit of a page table entry. We discard
packets with an invalid sequence number or a non-matching checksum. When

3For efficiency reasons, the calculation is done on 64-bit words.
4A page filled with zeros. The Linux kernel uses it to save memory by mapping virtual

pages containing only zeros to the same physical frame [56, p. 755].
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Figure 4.3: Simplified transmission process. VAS = virtual address space. The
TLB has 2 sets with 2 ways each and uses a linear mapping (set number = page
number modulo 2). The green and red color can be seen as TLB tagging. First,
the sender and receiver allocate memory so that the sender is able to evict all
TLB sets, whereas the receiver only needs to insert one priming entry per set.
Each set maps to exactly one bit to be sent. To send a binary 1, the sender
evicts all entries of the corresponding set including the receivers’ priming entry.
To send a binary 0, the sender leaves the corresponding set untouched. During
the probing phase, the receiver "reads" the sent bits by interpreting TLB hits
and misses as binary 0’s and 1’s.

receiving a correct packet, we write its payload to the output file. However, the
latency of the I/O system call is critical for the receiver because in our scenario
with single-core VMs, the receiver process cannot receive packets while the file
is being written. Therefore, we buffer the payloads and flush the buffer at a low
frequency to keep receiver preemptions at a minimum. In a scenario with multi-
core VMs, it is possible to write the data asynchronously without interrupting the
receiver at all. To initiate the end of a transmission, the sender sends a particular
data stop packet. To make the data stop signal more robust, we send the packet
for a longer sender window and require the receiver to retrieve multiple data stop
packets before leaving the receiver loop. If the data was sent Reed-Solomon
encoded, we decode it and correct errors after the transmission has ended.
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4.4 Conclusion
In this chapter, we designed a two-level protocol which we implement in our
high-performance TLB-based covert channels. The physical layer is in charge
of transmitting raw packets via the TLB. A TLB hit represents a binary 0, a
TLB miss a binary 1. To overcome the issues of synchronization and noise
(see Section 3.3), we send each packet a large number of times and include a
sequence number and checksum to distinguish between successful and erroneous
transmissions. The data-link layer builds on top of the physical layer and leverages
the Reed-Solomon code to provide stronger error detection and forward error
correction which is essential in our unidirectional channel scenario.

Before transmitting data, we allocate pages with regard to the TLB mapping
scheme, so that we are able to generate TLB entries in specific sets. The re-
ceiver needs to insert one entry per set (priming entry), while the sender requires
multiple pages mapping to each set in order to force the eviction of the priming
entry by filling the whole set with its own entries. The sender constructs packets
as specified by our protocol and repeatedly evicts TLB sets accordingly. Mean-
while, the receiver polls packets using Prime+Probe and writes the payloads to
an output file until the sender signals the end of the transmission.

In our theoretical design, we left several decisions open such as the actual
checksum algorithm, the amount of parity symbols for the Reed-Solomon code, or
the TLB monitoring mechanism. In the following, we conduct experiments to as-
sess our protocol design considering the objective of achieving high-performance
TLB-based covert channels, thereby identifying the most reliable configurations
for different scenarios.



Chapter 5

Evaluation

Based on our findings from Chapter 2 and our analysis in Chapter 3, we proposed
a two-layer covert channel design in Chapter 4. Our design involves several pa-
rameters such as the TLB monitoring mechanism (i.e., timestamps vs. accessed
bits), the checksum, and the sender window length. In this chapter, we evaluate
this design with respect to our goal of building a high-performance TLB-based
covert channel. We begin with an explanation of the methodology which we
use throughout this chapter. Next, we study how different configurations of our
design perform when transmitting real-world data such as documents and multi-
media contents. To evaluate the robustness of our channel, we introduce different
levels of interference while monitoring the bit and error rate. We conclude by
discussing our results.

5.1 Methodology
To reproduce a realistic public cloud scenario, our evaluation platform is equipped
with an Intel Xeon E5-2630 v4 processor. This and other Intel processors of
the Broadwell E5 product line are also found in Google’s [17] or Amazon’s [2]
cloud computing portfolio. It features 10 physical cores (20 threads due to
hyperthreading) with a base clock of 2.20GHz and maximum turbo frequency
of 3.10GHz [9]. As stated in Section 2.1.1, processors following the Broadwell
microarchitecture employ a set-associative TLB with multiple levels. The STLB
holds 1536 4KiB page translations, organized in 256 sets with 6 ways each.
Virtual addresses are mapped to sets by XORing a subset of the address bits
(complex-mapped). Our system is equipped with 64GiB DDR4 main memory
with an operating speed of 2133MHz. We use an internal SATA III solid state
disk of 256GB size for secondary memory. All components are mounted on a
Supermicro X10SRi-F server motherboard.
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hyperthread 0 hyperthread 1

physical core

victim VM
(sender)

attacker VM
(receiver)

TLB

third VM
(neutral)

Figure 5.1: The VM setup used in our evaluation. Victim and attacker VM are
pinned to adjacent hyperthreads. A third (neutral) VM is pinned to the same
core, but can be freely scheduled between the hyperthreads.

The host machine and all VMs run Ubuntu Server 20.04 LTS [37] with Linux
kernel 5.4. We choose Linux Kernel-based Virtual Machine (KVM) [28] as vir-
tualization solution. We followed the default install instructions and modified
neither kernel nor KVM. All VMs are allotted 1 vCPU, 4GiB main memory, and
32GB disk space each. Attacker and victim VM are pinned to the adjacent hy-
perthreads of the 5th core. To simulate a multi-tenant environment, we retain a
third VM (pinned to the same core) which we use to introduce additional inter-
ference. Figure 5.1 illustrates the VM setup. We connect to the VMs via SSH
and automate the test scenarios with scripts.

The general flow of a single test run is as follows: If we want to introduce
interference, we start the respective processes on the VMs and wait a fixed
amount of seconds to make sure the processes are up and running. Then, we
start the receiver process on the attacker VM followed by the sender process
on the victim VM. After the transmission completed, we compare the received
file to the sent file and compute the metrics. We also define a timeout to catch
incomplete transmissions. Each test is run 10 times to ensure statistical reliability.

A configuration is uniquely defined by the following set of parameters:

Architecture Specifies the TLB organization we built the channel for. This also
determines the maximum packet size. We implemented support for Intel
Broadwell and Skylake processors.

Packet Size By default, we use all available TLB sets. However, to study the
implications of having less TLB sets available, we allow manual control
of the packet size in multiples of 8 bytes (32/24/16/8). The higher the
packet size, the higher is the maximum bit rate.
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Sender Window This defines how often each packet is (repeatedly) sent. Longer
sender windows offer more redundancy and increase the channel’s reliability,
but also decrease the maximum bit rate.

Number of Evictions Specifies the number of evictions per set during the send
operation. We have to evict at least as many entries as there are ways in
a TLB set to ensure that we evict the receiver’s probing entry. Choosing a
higher value increases the channel’s reliability at the cost of the maximum
bit rate.

TLB Monitoring We monitor TLB entries either via timestamps or accessed
bits (see Section 3.2).

RDTSC Threshold When using timestamp-based TLB monitoring, this defines
the threshold in CPU cycles to be used to distinguish between a TLB hit
and miss.

RDTSC Window To increase the reliability of timestamp-based TLB monitor-
ing, we can probe each entry multiple times. If at least one probe during
the window exceeds the threshold value, we interpret this as a TLB miss
(binary 1).

Checksum The checksum we use for packets on the physical layer. As stated
in Section 4.1, we evaluate Berger Code, CRC-8, and a custom XOR error
detection code.

Amount of Reed-Solomon Parity The number of bytes in each Reed-Solomon
block reserved for parity. According to Section 4.2, this corresponds to the
number of parity packets (i.e., packets containing parity bytes only) per
255 packets.

Except for the sender window, all parameters are implemented as compile-time
constants to leverage effects caused by compiler optimizations such as loop un-
rolling.

We transfer different types of data during our evaluation: To represent tex-
tual data, we use a plain text file holding the German version of the Book of
Genesis [38] with a total size of 202 kB. As image data, we take an (uncom-
pressed) bitmap image file (shown in Figure 5.2) with a total size of 3.2MB. We
also transfer an MP3 audio file of 1.1MB size to examine whether our channel
is robust enough to send compressed data (where data loss is critical). If not
stated otherwise, we transmit the text file.

To introduce different levels of interference, we run benchmarks concurrently
to the covert channel. VM instances are often used as web servers and therefore,
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Figure 5.2: The (original) image used in our evaluation.

we select the nginx-based pts/nginx benchmark of the Phoronix Test Suite [31] to
represent the average scenario. From the same suite, the pts/pmbench bench-
mark is a Linux paging and virtual memory benchmark, making it a memory-
intensive workload. Configured with a single worker thread and a read-write
ratio of 50%, it forms the worst-case scenario we assume. In addition, we wrote
a microbenchmark ("disturb") which exhibits a deterministic memory access pat-
tern. It allocates a 128MiB byte array and iterates repeatedly over its entries
with a 4KiB stride, thereby accessing the underlying pages in ascending order.
If not stated otherwise, we run these benchmarks on the third (neutral) VM.

5.2 Physical Layer
We start by evaluating the physical layer individually with regard to the bit rate
and the error rate. We only consider the effective bit rate, that is, the number
of correct bytes sent over the transfer duration. The transfer duration is defined
as the time in seconds between the first received packet and the end of the
receiving process (including Reed-Solomon decoding if applicable). To calculate
the error rate, we take the percentage of correct packets received regarding the
number of packets sent and subtract it from 100%. Both metrics are calculated
after error correction has been applied. To summarize, the bit rate determines the
transmission speed, whereas the error rate indicates the quality of a transmission.

In the left plots of Figure 5.3, we vary the sender window and the number of
evictions in idle state using accessed bit-based TLB monitoring. CRC-8 is used
as checksum. We see that increasing the sender window from 80 to 100 increases
the bit rate by 88% while reducing the error rate by 66%. From sender window
100 to 120, the error rate is reduced by another 62% while the bit rate stays
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Figure 5.3: Effect of sender window and number of evictions on bit rate and
error rate using accessed bits. The left plots show the idle scenario only. The
points in the right plots are averaged over all eviction counts. An increase of the
sender window leads to less errors which initially increases the bit rate, until a
certain point of redundancy has been reached. Beyond this point, the bit rate
falls without any improvement of the error rate.

about the same. The maximum bit rate of 253.3 kB/s is reached with a sender
window of 100 and 9 evictions per set at an error rate of 12.2%. A further
increase of the sender window causes the bit rate to fall linearly with the sender
window (i.e., 2x sender window → 0.5x bit rate). For sender windows 240 and
above, the error rate is below 1% and does not improve any further. In particular,
we did not achieve an error-free transmission. Increasing the eviction count has
a positive effect for sender windows lower than 120, whereas for sender windows
higher than 120, the bit rate decreases with a higher number of evictions.
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As stated in Section 5.1, longer sender windows offer more redundancy and
increase the channel’s reliability, but also decrease the maximum bit rate. For we
only consider the effective bit rate, the bit rate gain we get from a more reliable
transmission (with less errors) outweighs the cost of more send repetitions per
packet when we increase the sender window from 80 to 100. However, for sender
windows above 240, the amount of redundancy saturates the channel, that is,
we send packets with more repetitions than needed for a stable transmission and
reduce the bit rate without any benefit. A higher number of evictions per set
increases the amount of time needed for each packet bit to be written. Regarding
the receiver’s sampling (see Section 3.3), larger sender window lengths improve
the channel’s performance in unsaturated state. On the other hand, choosing
a higher eviction count introduces additional redundancy which is unnecessary
once the channel is saturated. Therefore, we have to balance the sender window
and the number of evictions to find the optimum.

In the right plots of Figure 5.3, we see the bit rate and error rate averaged over
all eviction counts with interpolating curves for different scenarios. Compared
to idle state, we only get about half the bit rate when running another process
along our covert channel due to the split of processing resources. While the
correlation between sender window and bit rate are equal for all scenarios, we
get a different behavior regarding the error rate. For sender windows 240 and
above, the error rate does not decrease significantly and stays above 25%. We
identify two counteracting reasons for this: Firstly, substitution errors occur in
such a way that the checksum is still correct because the checksum’s detection
capabilities are limited. Secondly, heavy interference causes errors in all packet
repetitions of a sender window. While increasing the sender window leads to a
higher chance of receiving a packet without errors, we also increase the risk of
wrongly accepting corrupt packets (see bump in error rate of the nginx scenario
for a sender window of 480).

In Figure 5.4, we compare the different checksums on the physical layer in
idle state. In all sender windows, we observe that Berger Code yields unreliable
results for an eviction count of 7. If the number of evictions is higher than 7,
the Berger Code provides robustness similar to CRC-8. However, for a sender
window of 120, CRC-8 slightly benefits from an eviction count increase, whereas
the performance of Berger Code already decreases. We measured the calculation
times of each checksum implementation and realized that CRC-8 takes the most
time, followed by Berger, with the fastest being the custom XOR checksum1.
Therefore, we conclude that faster checksums reach channel saturation with a
lower sender window than slower checksums. We do not see this effect for the

1In our implementation, custom XOR is about 2x faster than Berger and Berger is about
3x faster than CRC-8. The numbers might differ for other implementations.
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Figure 5.4: Effect of checksum and number of evictions for different sender
windows using accessed bits. Berger Code reaches channel saturation with a
lower sender window than CRC-8. The custom XOR checksum provides the
weakest detection capabilities and therefore yields a high error rate even for long
sender windows.

custom XOR checksum because its weak detection capabilities lead to a large
amount of wrongly accepted packets.

Moving to timestamp-based TLB monitoring, we examine the effect of the
eviction count and the RDTSC threshold for different sender and receiver windows
in Figure 5.5. The measurements are done in idle state with CRC-8 being used
as checksum. Similar to the accessed bit-based channel, the interplay of eviction
count and sender window defines when the channel is saturated. However, we
empirically found that the kind of redundancy needed for a reliable channel is
different: The eviction count is about twice as high than theoretically needed
(i.e., the number of ways per TLB set), leading to larger sender window lengths.
As a result, we need to introduce less redundancy through packet repetitions
(sender window). On the receiver side, we require a (RDTSC) receiver window
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Figure 5.5: Effect of number of evictions and RDTSC threshold for different
sender windows (SW) and receiver windows (RW) using timestamps.

of at least 2 to achieve a reliable transmission. Reducing the receiver window
to 1 leads to bit rates in the single-digit range. When increasing the receiver
window from 2 to 3, we cannot gain further robustness but rather increase the
error rate due to our implementation: The chance of measuring at least one TLB
miss increases with higher receiver windows, eventually leading to packets with
binary 1’s only. We can counteract this effect by choosing a higher threshold to
lower the sensitivity of each measurement. For instance, increasing the threshold
from 74 to 76 for a receiver window of 3 achieves a better channel performance
on average. However, we also see an increase in the spread of the measurements
due to the lower sensitivity, as TLB misses occasionally remain undetected. On
the other side, a threshold chosen too low leads to an increased number of
substitution errors (0→ 1) caused by oversensitivity to TLB misses. We achieve
a maximum bit rate of 186.9 kB/s with a sender window of 10, a receiver window
of 2, a threshold of 74, and an eviction count of 13 at an error rate of 40.2%.
We achieve a minimal error rate of 1.7% with a sender window of 50, a receiver
window of 2, a threshold of 74, and an eviction count of 13 at a bit rate of
62.3 kB/s. During the rest of our evaluation, we set the receiver window to a
fixed value of 2 and the threshold to 74 for timestamp-based channels.
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Figure 5.6: Effect of checksum for different sender windows and scenarios using
timestamps. CRC-8 is a stronger checksum than Berger, whereas the custom
XOR checksum is the weakest. The weaker a checksum is, the less we benefit
from an increase of the sender window.

In Figure 5.6, we compare the different checksums on the physical layer in
various scenarios using timestamps. Per interpolation point, we average the bit
rate and error rate over all eviction counts. Similar to our observation for the
accessed bit-based channel, the bit rate drops by half when other processes are
running concurrently. Because doing time measurements on microarchitectural
level is error-prone and incurs a high amount of substitution errors, the reliability
of the timestamp-based channel strongly correlates with the error detection ca-
pabilities of the checksum. The custom XOR provides weakest error detection,
therefore, all packets are accepted as long as their sequence numbers are valid.
Regardless of the scenario, an increase of the sender window does not improve
the channel performance and the error rate stays above 75%. In contrast, the
error rate for CRC-8 decreases when increasing the sender window which implies
that many packets are discarded due to a mismatching checksum at first and
by increasing the send repetitions, we receive more correct packets. Of course,
this effect diminishes when increasing the level of interference introduced by con-
current processes. The Berger Code performs equal to the CRC-8 for a sender
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window of 10. For higher sender windows, more corrupt packets pass through
the Berger Code unnoticed. We conclude that CRC-8 is a stronger checksum
than Berger, whereas the custom XOR checksum is the weakest.

While evaluating accessed bit-based and timestamp-based channels, we ob-
serve that different eviction techniques are required to achieve maximum bit rates
for both channel types. In timestamp-based channels, we use Algorithm 5.1 which
intuitively implements the required sender behavior. We evict each TLB set be-
longing to a packet bit which is set to 1 and repeat the whole procedure as
specified by the sender window. To evict a TLB set, we access as much pages as
specified by the number of evictions. Given an eviction count of 9, we allocate 9
pages per set during the sender initialization and to evict a TLB set, we access
the pages belonging to the set as follows: 1, 2, 3, 4, 5, 6, 7, 8, 9. However, if the
TLB has 6 ways per set, we start evicting our own entries after page 6 has been
accessed. The entries we evicted cause TLB misses during the next send itera-
tion, whereas normally only entries which were replaced by concurrent processes
(e.g., the receiver) cause TLB misses. These ongoing TLB misses significantly
slow down the send operation, leading to a more stable transmission at the cost
of maximum bit rate. Interestingly, for accessed bit-based channels, we achieve
the same stabilizing effect without introducing costly TLB misses. As seen in
Algorithm 5.2, we limit the page number to the number of ways per TLB set
with a modulo operation (line 5). For a TLB with 6 ways per set and an eviction
count of 9, we allocate 6 pages per set during the sender initialization and access
them as follows: 1, 2, 3, 4, 5, 6, 1, 2, 3.

Algorithm 5.1: Send packet in timestamp-based channels
input: packet p = (p0 . . . pn−1)2, where n = number of sets
1: for w from 0 to sender window − 1 do
2: for s from 0 to number of sets− 1 do
3: if ps = 1 then
4: for e from 0 to number of evictions− 1 do
5: access e-th page pointing to set s

Algorithm 5.2: Send packet in accessed bit-based channels
input: packet p = (p0 . . . pn−1)2, where n = number of sets
1: for w from 0 to sender window − 1 do
2: for s from 0 to number of sets− 1 do
3: if ps = 1 then
4: for e from 0 to number of evictions− 1 do
5: access (e mod number of ways)-th page pointing to set s
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Compared to accessed bit-based channels, the amount of outliers is signif-
icantly higher for timestamp-based channels and while for accessed bits, the
outliers were close to the other measurements, they represent drastic perfor-
mance losses in case of timestamps. Apart from the outliers, the required higher
eviction count is another indicator that timestamp-based channels are less reli-
able than their accessed bits counterpart. In our unidirectional scenario where
retransmission requests are not possible, this makes accessed bit-based channels
more suitable to achieve the goal of building a high-performance covert channel.
Nonetheless, the physical layer by itself is not sufficient to accomplish an error-
free transmission as we demonstrate with the following example: We send a plain
text file (Book of Genesis) with a sender window of 120, eviction count of 8,
and CRC-8 checksum using accessed bits in idle state. The resulting bit rate is
232.8 kB/s at an error rate of 6.5%. The most common errors are lost packets,
resulting in lost sentence fragments, and wrongly accepted packets which insert
garbled characters into sentences. Examples are given in Figure 5.7. However,
natural text contains a decent amount of redundancy by itself and therefore, we
are able to recover most of the sentences by looking at their context.

lost packet

[snd] 1. Und es begab sich darnach, daß sich der Schenke des Königs in 
Ägypten und der Bäcker versündigten an ihrem Herrn, dem König von 
Ägypten. 

[rcv] 1. Und es begab sich darnach, daß sich der Schenke des Königs in 
Ägypten und der Bäcker versündigtvon Ägypten. 

corrupt packet

[snd] 2. Und Pharao ward zornig über seine beiden Kämmerer, über den 
Amtmann über die Schenken und über den Amtmann über die Bäcker, 

[rcv] 2. Und Pharao ward zornig über seine beiden a?d,oro{o über 
weonemvminon?Kämmerer, über den Amtmann über die Schenken und über den 
Amtmann über die Bäcker,

Figure 5.7: Effects of lost and wrongly accepted (corrupt) packets on a plain
text file.

This is not possible for all kinds of text (e.g., password files) or other kinds of
data such as images. Using the same covert channel configuration, we send the
sample image with a resulting bit rate of 177.0 kB/s at an error rate of 17.4%.
The resulting output image is shown on the left in Figure 5.8. For the original
image is unrecognizable in the output image, we increase the sender window to
240, resulting in a bit rate of 107.7 kB/s at an error rate of 0.8%. The resulting
output image is shown on the right in Figure 5.8 and even though only about
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(a) Error rate: 17.4%. (b) Error rate: 0.8%.

Figure 5.8: The sample image sent via the physical layer. Deletion errors manifest
themselves in a missing line of pixels, thereby shifting all following pixels. Corrupt
packets (e.g., substitution errors) cause green pixel bursts.

25 kB of the total 3.2MB are corrupted, the image is severely distorted. Due
to the lack of retransmission requests or forward error correction techniques, the
physical layer will never achieve an error rate of 0% on a real (error-prone) system
which underlines the necessity of the data-link layer.

5.3 Data-Link Layer
In Section 5.2, we evaluated the physical layer and concluded that further mea-
sures are necessary to build high-performance TLB covert channels. We already
anticipated these results and proposed a data-link layer in Section 4.2. Next,
we evaluate to what extent the stronger error detection capabilities and forward
error correction increase the channel performance. We continue using the same
metrics of bit rate (speed) and error rate (quality).

In the left plots of Figure 5.9, we varied the amount of Reed-Solomon parity
bytes during the nginx scenario for an accessed bit-based channel. The physical
layer is configured with an eviction count of 8 and CRC-8 as checksum. We notice
a significant drop in the bit rate when enabling the data-link layer, especially
for shorter sender windows. For a sender window of 120, the bit rate reduces
to approximately a quarter at an error rate being twice as high compared to
using the physical layer only. For longer sender windows, the error rate of the
physical layer stays constant at around 30% as determined by the checksum’s
detection capabilities. In contrast, depending on the parity amount, we are able
to gradually lower the error rate with our two-layer approach. The gradient of
the reduction is proportional to the amount of parity. With a parity of 96 and a
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Figure 5.9: The left plots show the effect of the sender window and amount
of parity on the bit rate and error rate during the nginx scenario using accessed
bits. The right plots show the channel with 96 bytes parity for different scenarios.
An increase of the sender window reduces the error rate until too many corrupt
packets are wrongly accepted by the physical layer. Depending on the level of
interference and amount of parity, we might not be able to achieve a lower error
rate than without the data-link layer.

sender window of 1280, we achieve a minimum error rate of 9.5% at a bit rate
of 8.5 kB/s. The minimum error rate for a parity of 64 is 50.7% with a sender
window of 960, respectively 66.3% for a parity of 32 and a sender window of 240.
However, for a parity of 32 or 64, the error rate starts rising again when choosing
a sender window beyond these minima. As a result, even though a parity of 96
provides most redundancy and therefore theoretically offers the lowest bit rate,
the effective bit rate is higher than for a parity of 32 or 64 due to less errors.
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The high increase in the error rate when using the data-link layer is caused
by distributing Reed-Solomon blocks over 255 physical packets, thereby trans-
mitting multiple blocks in parallel (see Section 4.2). While the spreading makes
the channel robust for packet errors within the Reed-Solomon’s correction ca-
pabilities, the downside of this approach is that when exceeding this limit, we
immediately get multiple corrupted blocks. For a packet payload size of 30 bytes
and 64 parity bytes per block (i.e., 191 data bytes), we transmit 30 blocks in
parallel, leaving us with 5730 corrupt data bytes when loosing more than 64 pack-
ets every 255 packets on the physical layer (or in the case of wrongly accepting
more than 32 corrupt packets). When increasing the sender window from 120 to
240, we loose less packets and are able to correct more errors. For these shorter
sender windows, the allowed number of erasures is the relevant factor which de-
termines how many packets we may loose or discard intentionally (e.g., due to
a checksum mismatch). Regarding erasures, we reach the optimum at a similar
sender window independent of the amount of parity (240 in the nginx scenario).
The longer the sender window, the more corrupt packets pass the checksum un-
detected, eventually making Reed-Solomon error correction impossible. In this
case, the tolerated number of errors (at random positions) is the limiting factor
and therefore higher parity amounts allow longer sender windows.

The right plots of Figure 5.9 show the channel with 96 bytes parity for different
scenarios. In idle state, the error rate is 0% regardless of the sender window at
a maximum bit rate of 130.5 kB/s for a sender window of 120. The physical
layer by itself (using the same configuration) achieves a bit rate of 228.6 kB/s
at an error rate of 7.6% for a sender window of 120. While in idle state, the
bit rate gets less degraded compared to the benchmark scenarios, we still incur a
considerable overhead through the Reed-Solomon code. The level of interference
introduced by the various benchmark scenarios affects the overall effectiveness
of the data-link layer. When increasing the sender window from 120 to 1280,
we see a total reduction of 86.1% in the error rate for the nginx benchmark, a
reduction of 76.8% for disturb, and 42.8% in case of the pmbench scenario.

We compare the checksums when using the data-link layer in combination
with accessed bits for idle state and the nginx scenario in Figure 5.10. For
lower amounts of redundancy (short sender windows, low parity amount), we get
a slightly better performance using the custom XOR checksum. As soon as we
introduce more redundancy through longer sender windows or more parity, Berger
and CRC-8 yield a similar or even better error rate. Nonetheless, the results show
wide spreads in the error rate, especially when interference is present. Between
Berger and CRC-8, the only significant difference can be seen for a sender window
of 100 and a parity amount of 64 in idle state. In this case, Berger achieves about
half the error rate compared to CRC-8. However, if we introduce noise or increase
the amount of redundancy, both codes yield similar bit and error rates.
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Figure 5.10: Comparison of the checksums for different parity amounts and
sender windows (SW) in idle state and during the nginx scenario using accessed
bits. For higher amounts of parity (long sender windows, low parity amount),
the Berger code and CRC-8 yield approximately equal results, but outperform
the custom XOR checksum due to the custom XOR’s weak error detection ca-
pabilities.

We repeat the same comparison for timestamps using appropriate sender
windows with an eviction count of 13 in Figure 5.11. For a sender window of 10,
the custom XOR checksum is significantly better than CRC-8 or Berger code.
We achieve a maximum bit rate of up to 197.8 kB/s at an error rate of 0.9% with
a parity amount of 64. In contrast, except for the Berger code in combination
with a parity amount of 96, using CRC-8 or Berger code results in no (correct)
packets being received at all. For a sender window of 100, the CRC-8 yields the
lowest error rates, especially when interference is present. In idle state, the error
rate stays below 1%. During the nginx scenario, we encounter a wide spread
in the error rate, ranging from 2.9% to 100% in the case of a parity amount
of 96. The Berger code performs worst for a sender window of 100, requiring
a higher parity amount to keep up with the other checksums in idle state and
barely receiving correct packets during the nginx scenario.
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Figure 5.11: Comparison of the checksums for different parity amounts and
sender windows (SW) in idle state and during the nginx scenario using time-
stamps. For short sender windows, the amount of total (and therefore also
corrupt) packet repetitions is lower, making a weaker checksum the better choice
due to its faster computation.

We draw the following conclusion regarding the interplay between the check-
sum strength and the Reed-Solomon capabilities: The larger the sender window,
the more corrupt packets are wrongly accepted by the checksum, especially if
many packets are corrupted due to interference. If we choose a large amount
of parity, we are able to tolerate more of these corrupt packets on the data-link
layer. However, a larger amount of parity requires more packets to be sent in
total, which in turn increases the risk of receiving more corrupted packets, lead-
ing to the wide spread we noticed with regard to the error rate. Alternatively,
we can lower the amount of wrongly accepted packets by choosing a stronger
checksum. On the physical layer, we already saw that CRC-8 provides the best
protection against errors, followed by the Berger code, with the custom XOR
checksum being the weakest error detection code. On the other side, for short
sender windows, the amount of total (and therefore also corrupt) packet repeti-
tions is generally lower, making a weaker checksum the better choice due to its
faster computation. The remaining errors (lost or corrupt packets) are handled
by the data-link layer in accordance with the parity amount.
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Based on the previous considerations, we derive the following four configura-
tions as candidates for high-performance TLB channels in Table 5.1. The "-idle"
configurations are meant for idle environments, whereas the "-ix" configurations
tolerate a certain amount of interference. We evaluate these candidates not only
by simultaneously running a benchmark on a third (neutral) VM, but also while
running a benchmark on the sender or receiver VM (see Figure 5.12). Running a
benchmark on the receiver VM in parallel to the covert channel never yielded an
error rate below 99% regardless of the configuration and therefore, we omitted
these results. The reason for this is that the receiver process has to share its
processing time with the benchmark and regularly gets descheduled, incurring
a much higher packet loss than we are able to correct in the data-link layer.
Consequently, the attacker has to ensure that no unnecessary processes run con-
currently on his receiver VM. The same effect does not happen when running a
benchmark on the third VM because it is pinned to the core rather than to a
single hyperthread (see Figure 5.1) and therefore only interrupts the receiver VM
when being scheduled on the same hyperthread.

Parameter AB-idle TSC-idle AB-ix TSC-ix
TLB Monitoring accessed bits timestamps accessed bits timestamps
Sender Window 120 10 960 100
Eviction Count 8 13 8 13
RDTSC Threshold – 74 – 74
RDTSC Window – 2 – 2
Checksum Berger Custom CRC-8 CRC-8
RS Parity 32 96 96 96

Table 5.1: Candidates for high-performance TLB channels.

In idle state, we get best results using the idle configurations. AB-idle achieves
about 200 kB/s at an error rate of 0% and TSC-idle a bit rate of 155 kB/s at
an error rate of less than 1%. The configurations meant for interference can
be used in idle state as well, but offer much lower bit rates (around 20 kB/s)
without further decreasing the error rate. Of course, as soon as interference is
present, the idle configurations lack the amount of redundancy required to deal
with the errors. Although the interference configurations achieve an error rate of
0% in some cases, we cannot guarantee an upper limit. Especially when running
a benchmark on the sender VM, we notice a wide spread regarding the error rate.
At first, descheduling the sender process is uncritical since we do not continue
receiving until the sequence number and checksum are correct. To a limited
extent, even idle configurations are able to handle this kind of interference as seen
at AB-idle during the nginx scenario. However, TLB activity of the benchmark
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Figure 5.12: Performance of the high-performance TLB channel candidates in
idle state and while running a benchmark on the sender VM or a third (neutral)
VM. The idle configurations perform better in idle state, whereas the interfer-
ence configurations are better suited for the benchmark scenarios. Running the
benchmark on the sender VM is similar to idle state with regular send interrup-
tions.

might accidentally create "valid" packets and for the receiver and sender VM are
pinned to adjacent hyperthreads, there is no chance of loosing these packets as it
would have been the case if the third VM gets scheduled in place of the receiver
VM. We see this in an increased error rate when running the pmbench on the
sender VM rather than on the third VM. A possible solution to this is using a
stronger checksum to validate packets (e.g., CRC-32).

In Figure 5.13, we transfer different types of data in idle state and under
interference. The plain text file is the smallest file with a size of 202 kB, followed
by the MP3 audio file (1.1MB), and the bitmap image file being the largest
(3.2MB). Bigger files have a higher transfer duration, thereby being longer ex-
posed to errors. For this reason, the higher amount of parity in TSC-idle com-
pared to AB-idle is required for an error-free transmission of the bitmap file. The
MP3 file represents an atypical case in this plot. Especially for timestamp-based
channels, the error rate is significantly higher (and widely spread) than for the
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Figure 5.13: Sending different files in idle state and under interference.

(a) AB-idle (idle), error rate: 68.4%. (b) AB-ix (nginx), error rate: 4.3%.

Figure 5.14: Output image files with data-link layer enabled. Errors mainly occur
as noise, whereas the overall structure is largely preserved.

other two files. We notice that the binary representation of the MP3 file contains
regular blocks of zeros, leading to quick send iterations in those file segments
because no evictions have to be made. We suspect that either the shorter send
iterations or the checksum calculated over a payload of zeros cause this behavior.
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Nonetheless, when listening to the MP3 file, we were able to identify the original
composition even at an error rate as high as 90%. The audio contains artificial
glitches and tempo deviation, but the data-link layer helps preserving the overall
file structure. We illustrate this in Figure 5.14 for the bitmap file. Whereas an
error rate of 0.8% already led to a heavily distorted image when using the phys-
ical layer only (see Figure 5.8), the Reed-Solomon code considerable improves
the results, even when interference is present.

Though the STLB of our evaluation platform is organized in 256 sets, al-
lowing us to send packets of 32 bytes size (30 bytes payload), other processors
come with different TLB organizations. For instance, the STLB of Intel Skylake
processors is organized in 128 sets which reduces the maximum packet size to
16 bytes (14 bytes payload). Furthermore, we might arbitrarily choose a smaller
packet size to act more like a permissible program in order to circumvent mon-
itoring tools. We compare different packet sizes for the idle configurations in
Figure 5.15. There is a linear correlation between the packet size and maximum
bit rate. Therefore, TLBs with fewer sets are disadvantageous from an attacker’s
perspective. However, in case of the Intel Skylake or Ice Lake platform, the ac-
tual amount of total TLB entries has not been reduced, but rather the sets were

AB−idle TSC−idle

8 16 24 32 8 16 24 32
0

50

100

150

200

Packet size (bytes)

B
it 

ra
te

 (
kB

/s
)

AB−idle TSC−idle

8 16 24 32 8 16 24 32
0

25

50

75

100

Paket size (bytes)

E
rr

or
 r

at
e 

(%
)

Figure 5.15: Effect of the packet size on the bit and error rate in idle state. The
bit rate is linearly correlated to the packet size.
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equipped with more ways. If it is possible to gain fine-grained control over the
entries in each set, we could send multiple bits per set, possibly achieving similar
or even higher bit rates. This has to be studied in future research. We observe
that a packet size of 8 bytes yields unreliable results using TSC-idle. Since smaller
packets mean that less bits have to be written to the TLB sets in each iteration,
thereby shrinking the sender window, this might indicate that we send too fast
to uphold the sampling theorem.

5.4 Discussion
In this chapter, we evaluated how the parameters of our two-level protocol affect
the transmission speed and quality of the covert channel. Most importantly, the
question rises whether the data-link layer is worth its performance reduction. If
speed is more important than keeping the file structure, using the physical layer
by itself is a viable choice since we achieve bit rates of around 250 kB/s under
optimal conditions. However, lost packets cannot be recovered and this is critical
for some kinds of data such as images. Even in idle state, minor errors make
error rates of 0% extremely unlikely without any form of forward error correction.
Therefore, we drew the idea of introducing a second layer from the covert channel
design proposed by Maurice et al. [41]. They use Reed-Solomon to correct minor
errors for their physical layer transmits data with a fairly low error, but still is not
error-free. This is comparable to our situation in idle state. When interference is
present, they handle corrupt packets by issuing retransmission requests which is
unfeasible in an unidirectional channel setting. In our case, the errors propagated
by the physical layer quickly exceed the capabilities of the Reed-Solomon code,
making guarantees for a certain error level impossible. Nonetheless, the data-
link layer provides much stronger error detection capabilities compared to the
checksum on the physical layer. If a data block is regarded as correct by the
Reed-Solomon code, we have a high certainty that this data is equal to the
original. In our design, we decided to keep corrupt fragments as well since
correct information might be found between corrupt bytes. The main advantage
of using the data-link layer is that the file structure is preserved to a large extent,
even in noisy environments. Due to the Reed-Solomon code’s block structure
and our way of distributing blocks over many packets, errors mainly occur as
noise which is tolerable for some kinds of data such as images.

Furthermore, it has to considered whether accessed bits or timestamps are
used to monitor TLB entries. Without the data-link layer, the noise introduced
by measurement inaccuracies on microarchitectural level cause channels based on
timestamps to be less reliable. This drawback diminishes with additional error
correction via the data-link layer, but still, error rates tend to be higher if the
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bit rates ought to be in the range of accessed bit-based channels. Nonetheless,
timestamp-based monitoring allows bidirectional channels since they do not de-
pendent on manipulating the page table entries. This way, we could implement
retransmission requests similar to Maurice et al. [41] and significantly improve
robustness under interference. For each received packet, the receiver writes an
acknowledgment in a reserved subset of the TLB sets (ACK packet). Manually
choosing a sender window becomes no longer necessary as the sender only con-
tinues with the next packet after receiving an acknowledgment. In combination
with the Reed-Solomon code, this should guarantee an error-free transmission.
Ideally, we choose a hybrid approach leveraging accessed bit-based monitoring
on the receiver side (more reliable, controlled by us) and timestamp-based mon-
itoring on the sender side (lower requirements regarding reliability).

Whether or not we achieved our goal of building a high-performance TLB-
based covert channel depends on the application scenario. In contrast to the
proof-of-concept TLB covert channel of Gras et al. [18], we significantly increased
the bit rate and, in idle state, outperform most of the covert channels listed in
Table 2.2. Even though the cache-based covert channels of Percival [45] or Gruss
et al. [19] allow higher bit rates, they were not designed to send data across VMs
and can be mitigated with state-of-the-art cache isolation techniques such as
Intel CAT or TSX. On the other hand, when concurrently running processes cause
interference, the weaknesses of our unidirectional approach become visible. While
in some cases, almost no errors are contained in the received data, we cannot
speak of a high-performance channel in general.



Chapter 6

Conclusion

The main objective of this thesis was to study whether high-performance covert
channels in terms of channel bit rate and reliability are possible over the TLB.
Therefore, we designed a two-layer protocol to deal with the challenges of syn-
chronization and interference caused by concurrently running processes. We
presented a novel TLB monitoring method using accessed bits and in combina-
tion with the error detection and correction techniques in the two layers propose
several candidates for fast and robust channels. The prerequisites to establish
a channel across VMs are that the VMs reside on the same core (or adjacent
hyperthreads) and VPID tagging is enabled.

Our evaluation has shown that in idle state, the criteria of high-performance
covert channels is met for we achieve a bit rate of up to 200 kB/s at an error rate
of 0%. However, as we increase the level of interference, error-free transmissions
are less likely and the bit rate drops under 20 kB/s. The unidirectional design
we chose does not allow retransmission requests which might solve this problem.
Even though this disqualifies our candidates from being high-performance covert
channels in noisy environments, we still are able to exfiltrate data in presence of
state-of-the-art cache isolation techniques. As little as 1 kB of leaked passwords
is enough to cause immense damage and therefore, we urge vendors to carefully
consider all (implicitly) shared resources when designing isolation techniques.

The source code for the covert channels described in this thesis is available
at https://github.com/deermichel/tlbchannels.

6.1 Future Work
In Section 3.1, we briefly mentioned that achieving core co-residency can be
further simplified by using VMs with multiple cores (vCPUs). The higher the
number of vCPUs, the higher is the chance of sharing a core with the victim
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VM. This is crucial if the victim VM also has multiple vCPUs for we might not
be able to pin the sender process to a specific vCPU. The protocol needs to
address regular core changes, and, if we want to extent this scenario to allow
multiple sender VMs at the same time, requires support for sender identification.

At the end of Section 5.3, we saw that using our current design, TLBs with
fewer sets are disadvantageous from an attacker’s perspective for the bit rate
correlates linearly with the number of sets. However, TLBs with less sets tend
to have more ways per set. If we are able to reliably evict a specific number
of entries in each set and monitor this number on the receiver side, we could
encode multiple states per set, possibly increasing the bit rate or providing more
robustness.

The key drawback of our design was the lack of retransmission requests due to
the unidirectional requirement posed by the accessed bit-based TLB monitoring
technique. However, timestamp-based monitoring is feasible on the sender side
as well and should be sufficiently reliable for receiving acknowledgments by the
receiver. Ideally, we pair both monitoring techniques in a hybrid approach to
benefit from the robust and fast transmission using accessed bits on the receiver
side. In combination with the Reed-Solomon code, this should guarantee an error-
free transmission and forms the foundation for high-performance TLB covert
channels under noisy conditions.

While we focused on Intel processors in this thesis, the covert channel should
technically work on AMD processors as well. For instance, the Zen 2 architecture
employs a two-level TLB hierarchy, of which the L2 data TLB is organized in
128 sets with 16 ways each [13]. The Address Space ID (ASID) represents the
equivalent to the VPID on Intel platforms and can be used to tag TLB entries
on VM level [5].

Rather than implementing the sender program in a low-level language such as
C, we thought about the possibility to write the sender using JavaScript. Being
able to mount a successful attack from within a browser would greatly lower the
bar for an adversary, though without direct memory access, the channel is more
complicated to implement. Specific pages can be accessed by allocating a large
consecutive raw binary buffer (ArrayBuffer) and accessing entries with a 4KiB
stride. Since the base address of the array cannot be manually specified, the
receiver has to somehow detect the TLB set representing the first bit of each
packet.



Appendix

A.1 Binary Data Analysis
From a statistical perspective, the number of one and zero bits in a sufficiently
large amount of binary data is about the same, making up around 50% of the
total bits each. We study this distribution on a commodity macOS system with
123.8 GB of data. For this real-world data, we observe that the total number of
binary 1’s is slightly lower (44.9%) than the number of zero bits (55.1%). We
list the results for the most common file extensions in Figure A.1.
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Figure A.1: Amount of binary 1’s by file extension. While data with predomi-
nantly textual content tends to contain more zero than one bits, non-textual data,
such as multimedia data or disk images, tends towards an equal distribution.
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