
Restartable Microkernels using
Persistent RAM, Resilient Heaps,

and Rust

Master’s Thesis
submitted by

cand. inform. Philipp Oppermann
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Prof. Dr. Frank Bellosa

March 07, 2019 – September 06, 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I
did not use any source or auxiliary means other than these referenced. This thesis
was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, September 6, 2019

iv

Abstract

Non-volatile random access memory (NVRAM) is a promising memory technol-
ogy that combines the performance and byte-addressability of DRAM with the
non-volatility of hard disks and SSDs. With the increasing availability of NVRAM
in both server and consumer systems, different approaches to utilize NVRAM in
applications emerge.

In this work, we explore the use of NVRAM to make operating systems re-
startable after power outages and hardware failures. By keeping operating system
state across reboots, the reliability of the system can be improved. For example,
data loss can be prevented by continuing interrupted file operations after a power
outage. The result of our work is a NVRAM framework that allows to safely add
restartability to both the kernel and userspace programs.

Our framework uses a persistent heap to keep selected state across reboots.
Since partial write operations to NVRAM might lead to soft errors, we make the
heap resilient by using error correcting codes that ensure value consistency. To en-
sure a correct usage of our framework and rule out programmer errors at compile
time, we utilize the type system of the Rust programming language. Notably, we
ensure that restored values cannot contain pointers to non-restored values because
they would become dangling after a restart.

Using our framework, we were able to make parts of the state of the Redox op-
erating system restorable. To provide a foundation for restartable file systems and
I/O staging, we implemented support for persistent file descriptors. We were also
able to use the error correcting codes of our framework to considerably improve
the bit-flip resilience of the kernel-internal list of processes and threads.

v

vi ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 5
1.1 Non-Volatile Random Access Memory 7
1.2 Restartable Kernels . 8
1.3 Memory Consistency . 9

1.3.1 Types of Consistency . 9
1.3.2 General Consistency Violations 11
1.3.3 Consistency Violations in Restartable Kernels 14

1.4 Kernel Resilience . 17
1.4.1 Related Work . 18
1.4.2 Error Correcting Codes 19

1.5 NVRAM Frameworks . 20

2 Background 21
2.1 Rust . 21

2.1.1 Ownership and Borrowing 22
2.1.2 Traits . 23
2.1.3 Procedural Macros . 25
2.1.4 Uninitialized Memory 27

2.2 Redox OS . 27
2.2.1 Components . 28
2.2.2 Boot Process . 30

3 Design 31
3.1 Persistent RAM Manager . 32

3.1.1 Named Allocations . 32
3.1.2 Unnamed Allocations . 33
3.1.3 Allocation Example . 33

1

2 CONTENTS

3.2 Ensuring Bit-wise Consistency 34
3.2.1 ECC Design . 35
3.2.2 Explicit and Implicit ECCs 36
3.2.3 Requiring ECCs for Restorable Values 37

3.3 Guaranteeing Pointer Consistency 38
3.4 Summary of Consistency Guarantees 39
3.5 The #[restorable] Attribute 39

3.5.1 Restorable Collection Types 40
3.5.2 Allocator Type Aliases 41

4 Implementation 43
4.1 Kernel Extensions . 44
4.2 The PersistentRamManager 45
4.3 The ConsistencyCheckable Trait 46
4.4 The RestoreSafe Trait . 48

4.4.1 Negative Implementations 48
4.4.2 Positive Implementations 49
4.4.3 Example: Applying RestoreSafe to Redox 52
4.4.4 Stability . 53

4.5 Error Correcting Codes . 54
4.5.1 The Ecc Wrapper Type 54
4.5.2 Implementing the ConsistencyCheckable Trait . . . 56
4.5.3 Nested Consistency Checks 58
4.5.4 Reducing Required Code Modifications 63

4.6 The #[restorable] Attribute 65

5 Evaluation 69
5.1 QEMU . 70

5.1.1 The QEMU Machine Protocol 70
5.1.2 Fault Injection . 71
5.1.3 Simulating NVRAM . 72

5.2 ECC Evaluation . 72
5.2.1 Required Kernel Changes 72
5.2.2 Robustness . 74
5.2.3 Performance Overhead 78

5.3 Persistent File Descriptors . 85
5.3.1 Implementation . 85
5.3.2 Test Program . 85
5.3.3 Test Process . 86
5.3.4 Results . 87
5.3.5 Future Work . 89

CONTENTS 3

6 Conclusion 91

Bibliography 93

4 CONTENTS

Chapter 1

Introduction

Non-volatile random-access memory (NVRAM) has become more available in re-
cent years. Through technologies like Intel Optane [1] and Viking NVDIMM [2],
NVRAM is now available to enterprise and even consumer computers. It is mainly
used for improving I/O performance, for example through I/O staging [3] in high
performance or cloud computing.

Another use case of NVRAM is the optimization of in-memory databases [4].
By keeping the database state in non volatile RAM, downtimes after power out-
ages can be significantly reduced. Compared to DRAM, the higher supported
capacity and the lower cost of NVRAM also enable larger in-memory database
sizes and thus improve performance. To efficiently utilize NVRAM for database
systems, Lersch et al. [5] integrate it into the transactional storage manager of the
database, treating it as main memory and storage at the same time.

In this work, we explore how NVRAM can be used for improving the robust-
ness of microkernel operating systems against random reboots. The goal of such
restartable systems is to reasonably continue execution after a power outage or a
hardware failure. For example, the system could finish important I/O operations
to prevent loss of data. The result of our work is a NVRAM framework that can
be used from both the kernel and userspace programs.

The fundamental idea of our approach is to keep important operating system
state in NVRAM. This way, the state is not lost when the system is suddenly
stopped and can be restored when the system is started again. The difficulty is that
various consistency problems can occur in this process. First, non-atomic writes
to the state can be interrupted in between, so that the state is inconsistent when the
system powers down. Second, bit-flips can occur in the stored data, also leading
to inconsistent state in the restore process. The probability and characteristics
of such bit-flips depend on the used NVRAM technology, but no technology can
completely rule them out. Third, the restored state might contain pointers to non-
restored state, which leads to dangling pointers.

5

6 CHAPTER 1. INTRODUCTION

To prevent the mentioned consistency problems, our solution utilizes resilient
data structures and the type system of the Rust programming language. Resilient
data structures employ error correcting codes to prevent consistency errors caused
by bit-flips. They can also provide a limited form of protection against partial
writes, depending on the used error correcting code. For full protection against
partial writes, software transactional memory can be used (left for future work).
To prevent dangling pointers because of partially restored state, our solution em-
ploys the type system of the Rust programming language to guarantee that restored
values cannot contain pointers to non-restored values.

In order to improve usability, our framework provides a #[restorable] at-
tribute that makes a static variable restorable with minimal boilerplate. The at-
tribute is implemented using the procedural macro feature of Rust and requires
no compiler modifications. Further, we provide types that combine existing wrap-
per types with an error correcting code. By providing the exact same interface
as the original wrapper type, resilience can be added to wrapped types with a
minimal number of code changes.

Using our framework, we were able to make parts of the state of the Redox
operating system restorable after reboots. Namely, we implemented support for
persistent file descriptors that stay valid across reboots. Persistent file descriptors
make it possible to use the NVRAM for implementing resilient staging I/O. For
example, write requests could be staged to NVRAM until they are written to disk
so that they could be restarted after a sudden power outage.

We were also able to use the error correcting codes (ECCs) of our framework
to make the kernel-internal list of processes and threads of Redox resilient against
bit-flips. By combining existing wrapper types with error correcting codes without
changing the public interface, only a minimal amount of code required modifica-
tions for implementing the ECC-protection. Through fault injection, we show that
the error correcting codes considerably improve the resilience against bit-flips.

The rest of this chapter gives an introduction to non-volatile memory, restart-
able kernels, memory consistency, kernel resilience, and NVRAM frameworks.
The following chapters are structured as follows. Chapter 2 provides background
information about the Rust programming language and the Redox operating sys-
tem. Chapter 3 describes the high-level design of our framework and explains
the provided components and their interface. Chapter 4 describes selected imple-
mentation details of the fundamental components and shows how our framework
can provide its safety guarantees. In Chapter 5, we evaluate our framework by
using it on parts of the Redox operating system. Finally, we conclude our work in
Chapter 6.

1.1. NON-VOLATILE RANDOM ACCESS MEMORY 7

1.1 Non-Volatile Random Access Memory
Traditional types of random access memory (RAM) are volatile, which means
that the stored data is lost when the memory is powered off. Dynamic RAM
(DRAM), which is commonly used as main memory, stores data in capacitors
that need to be periodically refreshed to hold the data. In contrast, static RAM
(SRAM) stores each data bit in a flip-flop that has two stable states and needs no
periodic refreshing, but still requires the supply voltage to keep this state. SRAM
is faster than DRAM, but it is more expensive, has a lower cell density, and a
higher operational power consumption. Therefore most modern computers use
SRAM only for CPU caches, where a high performance is most important.

To keep data while the system is powered off, it must be written so some kind
of non-volatile memory that is able to keep the state without power supply. Com-
mon types of non-volatile memory include hard disk drives, solid-state drives, and
CDs/DVDs. Traditional hard disks use rotating, magnetic disks and a moving ac-
tuator to retrieve and change the magnetization of disk areas. Solid state drives
instead use flash memory for storing the information, which is faster and requires
no moving parts. CDs and DVDs use a laser diode to read (and write) microscopic
structures to a plastic disk coated with a thin layer of aluminum.

The disadvantage of all mentioned non-volatile memory types is that they only
support block-wise addressing of memory, while RAM allows to read and write
individual bytes. They are also much slower than DRAM and SRAM and do not
support uniform random access. For example, a sequential read on a hard disk is
considerably faster than reading random data blocks. These restrictions make the
mentioned non-volatile memory types unsuitable as main memory, so that they
are commonly only used as secondary memory.

To combine the advantages of fast, byte-addressable RAM and non-volatile
secondary memory, different kinds of non-volatile RAM are in development [6]:

• Phase Change RAM (PRAM): Phase change RAM [7] changes the re-
sistance of chalcogenide glass, which is a material that is also used for
writable CDs and DVDs. Because of long quench times, PRAM requires
write times of up to 300ns and has a large power consumption on writes [8].
PRAM storage is already available on the market, for example as Intel’s 3D
XPoint [9, 10]. Other companies that use the technology include Samsung,
IBM, and Western Digital.

• Resistive RAM (ReRAM): Resistive RAM [11] works by changing the
resistance of a dielectric material. It is still in early development, but shows
promising results regarding to write performance and power consumption
[8]. Companies researching ReRAM include Viking [12], Panasonic [13]
and HP [14, 15],

8 CHAPTER 1. INTRODUCTION

• Ferroelectric RAM (FeRAM): Ferroelectric RAM [16] has a similar con-
struction as DRAM. The difference is that instead of normal capacitors,
capacitors with a ferroelectric layer are used, which can hold an electric
polarization without power supply. Compared to flash memory, FeRAM
uses less power and has a higher write performance. However, is has lower
storage densities and higher cost. FeRAM was developed by Ramtron In-
ternational and licensed by Texas Instruments and Fujitsu.

• Magnetoresistive RAM (MRAM): Magnetoresistive RAM [17] uses mag-
netic domains for storing data. There are two newer variants of MRAM,
spin-transfer torque (STT-MRAM) [18] and thermal-assisted switching
(TAS-MRAM) [19]. STT-MRAM uses spin-aligned electrons to torque the
magnetic domains. TAS-MRAM uses quick heat-ups of the magnetic tun-
nel junctions. MRAM is used by Samsung, GlobalFoundries, and Everspin
Technologies (already in production).

• Millipede Memory: Millipede Memory [20] works by burning nanoscopic
pits into the surface of a thin polymer layer. Millipede Memory is developed
by IBM, but no commercial products exist yet.

Several of the mentioned technologies are already available on the market and
used in production, for example Intel Optane [1] and Viking NVDIMM [2]. The
unique properties of non-volatile RAM make it a promising technology for a wide
range of applications.

1.2 Restartable Kernels
System crashes and power outages are a serious problem for high-availability sys-
tems since they often result in data loss and long reboot times. For this reason,
ongoing research tries to make systems restartable, either in part or fully. The goal
is to keep critical data across reboots to reduce the impact of a system crash.

With the goal of improving file system performance, Chen et al. [21] propose
caching file modifications in (volatile) RAM across hot reboots instead of using
write-through caching. By adding protection to the data in memory, expensive
periodic write-backs to disk are no longer needed to achieve reliability, which
results in improved performance.

Sundararaman et al. [22] propose an approach to make the file system restart-
able after runtime CPU exceptions in order to avoid inconsistent state and data
loss. The idea of the approach is to create regular checkpoints of the file sys-
tem and keeping logs of all file system operations, heap allocations, and acquired
locks.

1.3. MEMORY CONSISTENCY 9

Depoutovitch et al. [23] propose introducing an additional crash kernel that
allows applications to survive kernel crashes. The idea is that the crash kernel
takes over when the main kernel panics. It reads the state from the main kernel
and launches crash routines that restore a working environment for applications.

Recursive restartability [24] describes the property that a system consists of
individual restartable components. Together these components form a restart tree
that makes restarts of the complete system possible. A system that fulfills the re-
cursive restartability property has the advantage that it can often recover from so-
called Heisenbugs such as race conditions or heap corruptions, which are difficult
to debug and reproduce. Recursive restartability can also considerably improve
the recovery time after crashes [25].

Narayanan et al. [26] propose to make the whole system persistent by using
only non-volatile memory instead of DRAM. Transient state in processor registers
and caches is flushed to NVRAM on a system failure using the residual energy
from the system power supply. While this approach minimizes required code
modifications in applications, it requires adjusting all device drivers to reinitialize
the corresponding devices to their previous state after a reboot.

1.3 Memory Consistency
One of the challenges of creating a restartable kernel is to keep it in a consistent
state across reboots. This section gives an overview of the different types of mem-
ory consistency. It then explains common causes for consistency violations and
discusses additional consistency challenges that are unique to restartable kernels.

1.3.1 Types of Consistency
Consistency here means the integrity of a value. There are three different lev-
els of consistency that build onto each other. The fundamental consistency class
is bit-wise consistency, which ensures that a stored value does not change ran-
domly. Pointer consistency additionally guarantees that pointers to other memory
locations stay valid. Finally, semantic consistency ensures that a value stays com-
patible with other values without violating application specific invariants.

Bit-wise Consistency

Bit-wise consistency ensures the fundamental invariant that a written value retains
its bit representation until it is overwritten with a different value. This property is
essential for a computer system because programs need to trust their own data. For
example, a single Boolean variable that randomly changes its value could result

10 CHAPTER 1. INTRODUCTION

data data data data

head next next next

Figure 1.1: A Linked List Data Structure using Pointers

data data

head next E

Figure 1.2: A Linked List Data Structure with a Dangling Pointer

in vulnerabilities (e.g. a flipped is_admin flag), incorrect behavior (e.g. endless
loops), or complete system crashes (e.g. by misconfiguring a hardware device).
Since the program code itself is stored in memory too, it could also change and
lead to the arbitrary behavior of the program.

Pointer Consistency

Pointers are a common data type that refer to other values by storing their address.
As an example, Figure 1.1 shows how pointers can be used to construct a linked
list data structure. Each node stores a data item and a pointer that points to the
memory location of the next node.

Pointer consistency ensures that all pointers point to valid values at all times.
This is an important property because an invalid pointer can lead to undefined
behavior of the program. For examples, the linked list structure in Figure 1.2
contains a pointer to an unused part of the memory. The content of this memory
location is undefined, so traversing the list can lead to arbitrary results depending
on the memory content.

A bit-wise consistent value can still violate pointer consistency, for example
when the pointed value no longer exists. However, without bit-wise consistency,
pointer consistency is violated too since pointers can change arbitrarily and point
to undefined memory addresses. For this reason, pointer consistency is a subset
of bit-wise consistency.

Pointer consistency is often mentioned as a part of memory safety, which ad-
ditionally rules out other classes of vulnerabilities such as buffer overflows or
reading uninitialized data. While most garbage collected languages such as Java
or Python are memory safe by default, system programming languages such as C

1.3. MEMORY CONSISTENCY 11

or C++ are often not. This leads to a large number of vulnerabilities for systems
software in practice. For example, about 70% of the vulnerabilities that Microsoft
assigns a CVE number are memory safety issues each year [27].

Semantic Consistency

Even when a value is both bit-wise and pointer consistent, it can still violate in-
variants of the program. An example is a linked list node that points to itself
and thereby leads to a loop when traversing the list. We call the property that a
value fulfills all program specific, higher level invariants of the program semantic
consistency.

While a violation of bit-wise or pointer consistency can lead to undefined be-
havior, the consequences of a semantic consistency violation are more delimitable.
They can still cause invalid program behavior, but they do not violate the integrity
of the program itself.

1.3.2 General Consistency Violations

This section describes common types of consistency violations that are not spe-
cific to restartable kernels. At the hardware level, unreliable memory can lead
to flipped bits and thus violations of bit-wise consistency. In software, errors in
manual memory management can lead to dangling pointers that violate pointer
consistency. Concurrency errors in multithreaded programs can cause data races
that lead to consistency violations and undefined behavior.

Unreliable Memory

Even though modern hardware is very reliable, both soft and hard errors can still
happen. Examples for hard errors are the failure of a hard disk or a broken CPU
fan that causes a system shutdown. Soft errors are for example bad RAM blocks
that are no longer able to store data. In contrast to hard errors, soft errors are much
more dangerous because they often remain unnoticed. They can silently corrupt
stored data and violate bit-wise consistency, which in turn can lead to undefined
behavior.

Unfortunately, soft errors cannot be fully prevented in main memory. Even
with fully intact memory hardware, environmental radiation can lead to soft er-
rors in form of flipped bits [28]. While such errors occur infrequently enough
to be ignored by normal applications, they are relevant for large scale server ap-
plications [29]. In contrast to secondary storage, standard RAM typically uses
no checksums to guarantee the consistency of the stored data. While there exists

12 CHAPTER 1. INTRODUCTION

special ECC-RAM that includes such a checksum at hardware level, it is not al-
ways used in server systems due to its high cost and the rareness of soft errors.
Even with ECC-RAM, only a limited number of bit-flips can be detected and/or
repaired, depending on the used checksum.

For non-volatile memory (described in Section 1.1), soft errors become more
relevant. The reason is that many non-volatile memory techniques are susceptible
to bit-flips. For example, Phase Change RAM suffers from resistance drifts, write
noise, and spontaneous crystallization [30, 31]. With resistive RAM, sneak cur-
rents [32] and so-called LRS and HRS retention failures can occur [33–35]. For
this reason, systems that use NVRAM need to protect the stored data from soft
errors.

To harden critical applications and data against unreliable memory, several
approaches exist to make them resilient against flipped bits. A common idea is
to add redundancy to important data at the software level, for example in form
of a checksum. This redundancy makes it possible to detect and recover from a
limited number of bit-flips. While the protection of userspace applications is a
well researched problem, ongoing work explores techniques to also harden the
operating system kernel. We give an overview of this work in Section 1.4.

Dangling Pointers

Dangling pointers are pointers that no longer point to valid memory locations.
Apart from unreliable memory, dangling pointers mostly occur because of use-
after-free vulnerabilities. Such a vulnerability occurs when a heap-allocated value
is freed, but there still exists a pointer to it. On subsequent uses of that pointer,
undefined behavior occurs because pointer consistency is violated.

An attacker can often exploit dangling pointers to cause denial of service, priv-
ilege escalation, or even execute arbitrary code. For example, a recently found
use-after-free vulnerability of the networking subsystem of the Linux kernel al-
lowed a local attacker to take full control of the system [36].

To prevent such vulnerabilities, several approaches exist. For example, Un-
dangle [37] is a runtime system to detect dangling pointers before they are used.
GUEB [38] performs a static analysis of disassembled binary code to detect use-
after-free patterns. Fuzzing [39] is a testing technique that provides randomized
input data to a program and monitors it for crashes. Tools like syzkaller [40] apply
fuzzing to find issues in the system call interface of operating system kernels.

While these approaches allow the detection of vulnerabilities in some cases,
only memory safe programming languages can guarantee the complete absence of
dangling pointers. For this reason, memory safe system programming languages
such as Rust see a growing interest [27, 41, 42]. For example, the Linux kernel
plans to add an optional, experimental framework for writing drivers in Rust [43].

1.3. MEMORY CONSISTENCY 13

Data Races

Multithreading allows programs to run multiple threads of execution concurrently.
Depending on the number of CPU cores, the used operating system policies, and
the number of active threads in the system, the threads can be executed on different
cores in parallel or on the same core using time-slicing and preemption.

Since threads share the same address space, they can access the same vari-
ables concurrently. This can lead to consistency problems if the accesses are not
synchronized properly, which is called a data race. For example, a data race can
occur when two threads concurrently try to write to a large global variable. Each
write is split into multiple CPU instructions, which can interleave with the writes
from the other thread. The result is that parts of the written value are from one
thread and parts from the other, which results in an inconsistent value. This vio-
lates bit-wise consistency, since the stored value is different from the values that
were written.

Many compiled languages such as C++ treat data races as undefined behavior
so that the effects are not limited to a single inconsistent value. Instead, the pro-
gram can crash, loop endlessly, or exhibit any other behavior that was beneficial
to the compiler when optimizing the program [44]. For this reason, data races are
often close to impossible to debug and regularly lead to security vulnerabilities in
practice [45].

To ensure consistency in multithreaded programs, all conflicting operations
must be properly synchronized, for example by using locks for mutual exclusion.
Alternatively, hardware support for atomic operations can be used together with
an appropriate memory ordering [46] that specifies how the compiler and the CPU
are allowed to reorder operations. For example, an atomic memory load operation
in C++ with the acquire ordering forbids reordering any load or store operations
before this atomic operation.

For formally modeling consistency in multithreaded programs, several mod-
els exist. The two most relevant models are the happens-before relation and the
communication sequential processes model:

• The happens-before relation [47] is a partial ordering of the system events.
A happens-before relation exist between two operations A and B if either A
is sequentially executed before B in the same thread or A is send operation
of a message and B is the corresponding receive operation for the same
message. Further, the relation is reflexive and transitive. Operations with
no happens-before relation are called concurrent.

With this model, a data race occurs when two concurrent operations ac-
cess the same memory location and one of them is a write operation. The

14 CHAPTER 1. INTRODUCTION

happens-before relation is commonly used for data race detectors such as
Helgrind [48] and ThreadSanitizer [49].

• The communicating sequential processes (CSP) model [50] describes par-
allel programs as processes that exchange messages through channels. The
model influenced the design of programming languages such as occam [51],
Go [52, 53] or Crystal [54, 55].

By modeling programs in CSP (e.g. from a program trace) and generating
all possible interleavings, it is possible to detect data races by searching for
certain patterns in the CSP process [56]. This makes it possible to detect
thread interleavings that lead to data races.

While there exist a large number of data race detectors such as ThreadSan-
itizer [49] or Go’s data race detector [57], only a few solutions that are able to
fully prevent data races exist. Boyapati et al. [58] present a static type system
that prevents data races through an ownership system that requires to specify the
required synchronization for each object. Using this type system, they present a
race-protected Java-variant. Matsakis et al. [59] introduce a type system based on
intervals, which are objects that represent the time in which a block of code will
execute. Each object is assigned a guard object, which can either be an interval or
a lock. By verifying the happens-before relation between intervals, data races can
be prevented. The Rust programming language utilizes similar ideas in its borrow
checker and Send/Sync traits and thus shows that data race prevention at compile
time is feasible in practice.

1.3.3 Consistency Violations in Restartable Kernels
In addition to the general causes for consistency violations described in the previ-
ous section, there are new sources for consistency violations in restartable kernels.
The reason is that the system can be stopped at an arbitrary time, which can lead to
partial writes. Further, if only parts of the kernel state are restored after a reboot,
violations of pointer and semantic consistency can occur even with memory safe
programming languages.

Partial Writes

Most source code instructions are not atomic, which means that they are translated
into multiple smaller operations. For example, Listing 1.1 shows a test function,
which writes to a given array, and the corresponding assembly code generated by
the compiler. The compiler translates the single write operation at the source code
level into multiple assembly instructions, one for each array element.

1.3. MEMORY CONSISTENCY 15

pub fn test(array: &mut [u64; 3]) {

*array = [1,2,3];
}

test:
mov qword ptr [rdi], 1
mov qword ptr [rdi + 8], 2
mov qword ptr [rdi + 16], 3
ret

Listing 1.1: Rust Source Code and Generated x86_64 Assembly Code for an
Example Function that Writes to an Array

Even small write operations can be split into multiple assembly instructions
by the compiler, for example when the value is not properly aligned. As an ex-
ample, Listing 1.2 shows the source code and corresponding ARM assembly code
for a write to a non-aligned number field of type u32. The non-aligned field is
forced by annotating a Test struct with the #[repr(packed)] attribute, which
prevents any padding between the struct fields. This way, the number field only
has an alignment of 1 instead of 4, which is the required alignment for u32 types
on the ARMv6 architecture. As a result, the compiler needs to translate the single
write operation at the source code level into four strb instructions that all write
a single byte of the number field.

Depending on the CPU architecture, even single assembly operations are of-
ten not atomic. For example, the pusha instruction of the x86 architecture, which
pushes all general purpose registers to the stack, is split into multiple memory op-
erations at the CPU level. Even the simple inc instruction of the x86 architecture,
which increments a single memory operand, is non-atomic [60].

Non-atomic operations can be interrupted in between, for example by a CPU
interrupt or a system crash. Such an interruption can lead to a partial write, which
means that the target value is (temporarily) left in an invalid state. Accessing the
invalid value can lead to undefined behavior and cause system crashes.

Partial writes alone are not a problem. In preemptive multi-threading systems,
partial writes happen regularly as each thread can be interrupted at an arbitrary
time by timer interrupts and the scheduler. These partial writes do not lead to
undefined behavior since the write operation is finished when the execution of the
thread is resumed. Namely, no read operation of the value occurs before it is fully
written (assuming no data races exist in the program). For the same reason, partial
writes caused by power outages are not a problem in normal systems either. Even
though the partially written value is not bit-wise consistent, it is never read again
since the whole memory content is reinitialized when the system restarts.

16 CHAPTER 1. INTRODUCTION

#[repr(packed)]
pub struct Test {

_byte: u8,
number: u32,

}

pub fn test(test: &mut Test) {
test.number = 42;

}

test:
mov r1, #42
strb r1, [r0, #1]!
mov r1, #0
strb r1, [r0, #3]
strb r1, [r0, #2]
strb r1, [r0, #1]
bx lr

Listing 1.2: Rust Source Code and Generated ARMv6 Assembly Code for an Ex-
ample Function that Performs a Non-aligned Write

The situation is different for restartable kernels because they try to restore
values from NVRAM after a reboot. Since the CPU state and the stack content
is lost on a power outage, the system cannot complete potential partial writes.
To avoid undefined behavior, the system needs to either prevent partial writes or
ensure that no partially written values are restored.

A common solution to this problem is the use of software transactional mem-
ory (STM) [61]. Similar to database transactions, STM combines multiple read
and write operations into a single atomic transaction. Transactions are always
fully applied so that no intermediate states become visible. In case of conflicts,
for example when two threads try to perform a transaction at the same time, a
transaction can be aborted and retried. Conceptually, STM is similar to atomic
operations provided by the hardware, but it works for an arbitrary number of read
and write operations and for arbitrary data sizes. The disadvantage of STM is a
potentially high performance overhead.

Partial Restores

Restartable systems often only restore a selected subset of their state on a reboot.
There are multiple reasons for this. First, the content of the CPU registers is
lost on a power outage, which includes the current instruction and stack pointers,
so that a restoration of the full state is not possible. While techniques such as

1.4. KERNEL RESILIENCE 17

early power outage detection might allow saving the whole system state, they are
limited by hardware support and do not work for all types of crashes. Second,
there are certain operations that need to be repeated after a reboot even if previous
state is restored, such as reinitializing hardware devices. Third, the amount of
NVRAM is often limited and its usage incurs performance overheads. For these
reasons, restartable systems typically only perform a partial restore, which means
that they restore a selected subset of the state and reinitialize the rest of the state
as in a normal boot.

Since each restored value is restored in its entirety, no violation of bit-wise
consistency occurs through the restore process. However, pointers contained in
the restored value can become invalid if they point to non-restored values and thus
violate pointer consistency. We solve this problem in our framework by permitting
only values without potentially unsafe pointers in NVRAM.

In addition to pointer consistency violations, partially restored state can also
lead to violations of semantic consistency. For example, a value might contain
a process ID that is no longer valid or was assigned to a different process after
reboot. Since semantic consistency is defined by the invariants of the applications
itself, no general solutions to this problem are possible. Instead, the application
itself must check the restored data for violated invariants. To support this, our
framework allows applications to define their own consistency checks through
custom wrapper types.

1.4 Kernel Resilience
As mentioned in Section 1.3.2, unreliable DRAM memory can lead to random
bit-flips due to environmental radiation. Many upcoming NVRAM technologies
also have reliability issues that can lead to flipped bits.

To increase the robustness of applications in the light of unreliable mem-
ory, techniques like checkpoint/restart [62] and replication [63] exist. Check-
point/restart works by regularly creating checkpoints of a running program and
resuming execution from a previous checkpoint when the program crashes (or
becomes inconsistent). The idea of replication is to concurrently run multiple
replicas of the program in separate address spaces and regularly compare their
behavior, for example on each system call and CPU exception. This makes it
possible to detect corrupted program instances using majority voting.

Approaches like checkpoint/restart and replication work well for protecting
userspace programs, but need support from the operating system. For example,
checkpoint/restart requires a disk or network driver to store checkpoints and repli-
cation requires the ability to run multiple processes and communicate with them.
This makes the techniques unsuited for protecting the operating system kernel

18 CHAPTER 1. INTRODUCTION

itself.
Since the kernel is much smaller than the application programs, it is less likely

affected by soft errors. However, a soft error within the kernel can have more
severe consequences because it can affect the whole system instead of only a
single application. For this reason, there is ongoing research to make operating
systems (and embedded programs) resilient too. Section 1.4.1 gives an overview
of this research.

The common building block for achieving kernel resilience are error correct-
ing codes that add redundancy to stored values. Section 1.4.2 introduces error
correcting codes and presents common variants.

1.4.1 Related Work

With the goal of making operating system data structures resilient, Borchert et
al. [64] present a software-based memory error protection approach that uses
aspect-oriented programming to add error correcting codes to objects. In a follow-
up study [65], they combine this approach with static program analysis to harden
the L4/Fiasco.OC Microkernel with minimal runtime overhead.

Apart from resilient data structures, Stumpf [66] discusses additional methods
to harden the kernel. Through asynchronous checks that verify both the check-
sums and semantic properties, memory corruption can be recognized early in or-
der to minimize error-propagation. Other presented approaches include check-
point/restart support for operating system services, replicated device drivers, and
checksum-protected IPC messages.

Shafique et al. [67] present a multi-layer software reliability approach that
combines aspect oriented programming with reliability-driven compilation and
reliable operating systems. Reliability-driven compilation optimizes the gener-
ated code for reliability, for example by reducing the number of critical instruc-
tions such as load, store, or branching instructions or by adding redundancy to
the instructions themselves. The reliable operating system provides a runtime
reliability management mechanism that dynamically activates a redundant multi-
threading system for application tasks depending on their importance and the ob-
served soft-error rates. For hardening the operating system kernel, the authors
propose using pointer-less control flow structures, fine-grained assertions, and
AN-encoding [68].

In more recent work, Santini et al. [69] evaluate the radiation reliability of the
two dependability-oriented real-time operating systems eCos and dOSEK. Velasco
et al. [70] harden the Linux kernel by implementing a triplication technique for
the Mutex semaphores.

1.4. KERNEL RESILIENCE 19

1.4.2 Error Correcting Codes
Error correcting codes work by appending a checksum to all stored values, which
is calculated in a specific way from the individual bits of the value. The checksum
contains redundancy information that enables detection of bit-flips and makes it
possible to recover the original value. Of course, the number of bit-flips that an
error correcting code can detect and repair is limited. Typically, it depends on the
checksum length.

The major disadvantage of error correcting codes is the storage and perfor-
mance overhead. The former occurs because the checksum is appended to the
value, thereby increasing its size. The latter occurs because the checksum needs
to be recalculated whenever the value is modified. Also, the increased value size
can lead to worse cache performance, since fewer values fit into the cache. Of
course, verifying the checksum and recovering from bit-flips has some perfor-
mance overhead too.

There are various variants of error correcting codes with different tradeoffs
between performance overhead and robustness. Some popular examples are:

• Parity Bits: Parity bits are single bits that are added to the end of a binary
sequence so that the total sum of 1-bits is even or odd. They can only
detect an odd number of bit flips because the bit-sum is identical for an
even number of bit flips. Error recovery is not possible since the position of
the flipped bit is unknown. Parity bits are very cheap to compute and often
used in hardware, for example in PCI buses or in CPU instruction caches.

• Hamming Codes: Hamming codes [71] add a multi-bit checksum to val-
ues, with a length that depends on the size of the value. They allow detection
of up to two bit-flips and recovery from single bit-flips. Hamming codes are
commonly used at hardware level in ECC memory. Software implementa-
tions of hamming codes often incur a high performance overhead since the
code is calculated over individual bits, which has a high overhead because
the main memory is only byte-addressable.

• Reed-Solomon Codes: Reed-Solomon codes [72] are very flexible codes
with a wide range of applications. Depending on the chosen checksum size
t, the code can detect up to t bit-flips (without correction) or can correct
up to t/2 bit-flips. Reed-Solomon codes are for example used for CDs, QR
codes, and DSL data transmission.

Error correcting codes cannot guarantee the absence of bit-flips, but they can
improve the robustness against such soft errors and provide a reasonable level of
certainty that a value is bit-wise consistent.

20 CHAPTER 1. INTRODUCTION

1.5 NVRAM Frameworks
With the rise of NVRAM, several frameworks and libraries are developed for
managing NVRAM. There are two primary approaches: One approach is to treat
NVRAM like main memory and directly used like normal DRAM. This is the
approach that our framework uses. The alternative approach is to treat DRAM as
a storage device and introduce it as an additional layer between main memory and
secondary memory. An example is the Intel Optane technology that supplements
an SSD with NVRAM to improve its performance.

The challenge of using NVRAM directly as main memory is the decreased
reliability. While DRAM is highly reliable and only affected by rare radiation-
induced bit-flips, write operations to NVRAM can often lead to inconsistent stored
data because of technical limitations described in Section 1.3.2.

Martens et al. [32] present a library for persistent memory management that
combines software transactional memory with error correcting codes to imple-
ment reliable transactions. It provides a malloc-like interface that can be used
from both userspace and kernel code. To improve performance, they offload write
operations to volatile RAM and use early detection of power failures to achieve
durability on demand.

While our solution takes a similar approach, it differs in many fundamental
aspects. Most notably, we use the type system of the Rust programming language
to provide additional compile time guarantees and rule out programmer errors.
For example, our framework detects missing checksum protections for data stored
in NVRAM and it is able to completely prevent pointer consistency violations be-
cause of partial restores. Further, we provide an attribute to make static variables
persistent, instead of only providing a malloc-like interface.

Another difference is that, instead of using software transactional memory,
we rely on the transactional properties of a sum-and-copy error correcting code.
On one hand, this approach reduces reliability and makes error correcting codes
non-transparent so that they need to be explicitly specified in the source code.
On the other hand, it simplifies the implementation since no STM transactions
are needed and it considerably improves performance since it avoids the poten-
tially high overhead of STM. It also allows the programmer to manually optimize
checksum recalculations.

Chapter 2

Background

In this chapter we provide an introduction to the technologies used in our work.
We use the Rust programming language to implement our NVRAM framework
and make extensive use of its type system in order to provide additional compile-
time guarantees. Section 2.1 gives an overview of the language and presents a
selected set of features that are relevant for our implementation.

For evaluating our solution, we integrate our framework into Redox OS, which
is a microkernel operating system written in Rust. Section 2.2 introduces the
system and gives a short overview of its design and implementation.

2.1 Rust

Rust is a memory-safe system programming language. Like C and C++, it has
only a minimal runtime and no garbage collector, which makes the language us-
able in many environments, including operating system kernels. The main fea-
ture of Rust is its powerful ownership system that guarantees memory and thread
safety at compile time without any runtime overhead. It also features a powerful
type system, a package manager, and C++-like performance.

Our framework heavily relies on Rust to provide its extensive compile time
guarantees. Rust’s ownership and borrowing system, which we describe in Sec-
tion 2.1.1, guarantees memory and thread safety and thus rules out dangling point-
ers and data races at compile time. Through the advanced trait system, we are
able to limit the types that can be placed in NVRAM in order to guarantee pointer
consistency after a restore. We describe the trait system and its interaction with
generic programming and dynamic dispatch in Section 2.1.2.

Section 2.1.3 gives an overview of the procedural macro feature of Rust,
which allows to provide custom attributes and syntactical additions to the lan-
guage. We use this feature to implement a #[restorable] macro that makes a

21

22 CHAPTER 2. BACKGROUND

static variable restorable with minimal boilerplate.
In Section 2.1.4 we show how uninitialized memory can be safely used from

Rust. This is relevant for our framework since corrupted memory and uninitialized
memory are very similar from the compiler’s perspective.

2.1.1 Ownership and Borrowing
The ownership and borrowing system is the central feature of Rust. It guarantees
memory safety without requiring a garbage collector by strictly enforcing funda-
mental invariants on all code, namely:

• Every value has an single owner at all times. When the owner drops the
value, for example by letting it go out of scope at the end of the function,
the value is no longer needed and can be safely deallocated.

• An owner can give other entities temporary access to a value by borrowing
it. A borrow only lasts a limited, statically-known time and a borrowed
value must not be dropped or invalidated. For the duration of the borrow,
the owner cannot access the value.

• There are two types of borrows: shared and exclusive borrows. An ex-
clusive borrow gives write access, but only a single exclusive borrow must
be active at any point in time. The syntax for an exclusive borrow is the
reference operator &mut. Shared borrows only allow read-only access, but
multiple shared borrows can be active at the same time. Shared borrows are
created using the & reference operator.

By enforcing these rules, use-after-free vulnerabilities can be fully prevented.
The reason is that only the single owner can drop a value and that it can only be
dropped when no borrows are active. Additionally, the borrowing rules enforce
that values can be only mutated when they are not shared. This way, shared mu-
table state is prevented at compile time, which rules out common classes of errors
such as data races or iterator invalidations. These safety guarantees make Rust a
good choice for safety-critical software such as operating system kernels.

Listing 2.1 shows an example for Rust’s ownership system. In line 3, a new
growable String instance is allocated on the heap. This instance lives as long as
the surrounding block, which ends in line 5. At this point, the destructor of the
String type runs, which frees the heap memory again. In Rust, blocks are also
expressions that evaluate to last expression if it is not terminated by a semicolon.
In line 4, we let the block evaluate to a reference to x, thereby creating a shared
borrow. The reference is then stored in the binding s. In line 6, we use the
println! macro to output the value of s on the console.

2.1. RUST 23

1 fn main() {
2 let s = {
3 let x = String::from("hello");
4 &x
5 };
6 println!("{}", s);
7 }

Listing 2.1: Rust Ownership Example

error[E0597]: `x` does not live long enough
--> src/main.rs:4:9

|
2 | let s = {

| - borrow later stored here
3 | let x = String::from("hello");
4 | &x

| ^^ borrowed value does not live long enough
5 | };

| - `x` dropped here while still borrowed

Listing 2.2: Compiler Output for Rust Ownership Example

The problem in this code example is that a reference to the String instance
is used after it is deallocated in line 5. If the compiler would permit this code, an
use-after-free error would occur. By keeping track of the lifetime of all values at
compile time, the Rust compiler can detect violations of the borrowing rules. For
the code in Listing 2.1, the compiler correctly detects the mismatch of lifetimes,
which indicates that the string is dropped before the borrow ends. For this reason,
it outputs the error shown in Listing 2.2.

2.1.2 Traits
Rust uses traits to define shared behavior with other types, comparable to in-
terfaces in other languages. Listing 2.3 shown the definition of an example Area
trait that can be implemented by structs representing geometric shapes. Listing 2.4
shows an example implementation of the trait for a Square struct.

pub trait Area {
fn area(&self) -> f32;

}

Listing 2.3: Example Trait Definition

24 CHAPTER 2. BACKGROUND

pub struct Square { width: f32, }

impl Area for Square {
fn area(&self) -> f32 {

self.width * self.width
}

}

Listing 2.4: Trait Implementation for a Square Struct

pub fn print_area<A: Area>(shape: &A) {
println!("{}", shape.area());

}

Listing 2.5: Example Function Generic over the Area Trait

Listing 2.5 shows a example function that is generic over the Area trait. The
function can be invoked with any type that implements the trait, including the
Square struct. Rust monomorphizes generic function, i.e. it creates a separate
copy of the function for each type that it is used with. This avoids the overhead of
dynamic dispatch and allows the compiler to perform more optimizations.

Dynamic Dispatch

When dynamic dispatch is desired, Rust allows to use trait objects to create non-
generic functions. Trait objects are types with a vtable that makes it possible to
invoke methods on the type without knowing its layout. Listing 2.6 shows a non-
generic implementation of the print_area function that takes a reference to a
trait object through the dyn Area syntax. This function is not monomorphized by
the compiler, so it exists only in a single variant. The shape.area() call looks
up the area method in the vtable, like it is done in object oriented languages such
as Java.

pub fn print_area(shape: &dyn Area) {
println!("{}", shape.area());

}

Listing 2.6: A Non-generic Function that uses Dynamic Dispatch

2.1. RUST 25

let sql = sql!(SELECT name FROM users WHERE id=1);

Listing 2.7: A Procedural sql! Macro

Auto Traits

A special kind of traits are auto traits. Auto traits are purely marker traits, which
means that they do not define any methods or associated constants. Instead, they
only convey the Boolean information whether a type fulfills the represented prop-
erty.

Auto traits are automatically implemented for compound types like structs or
enums if all their fields or variants implement the trait. Types can override this
automatic behavior by providing an explicit positive or negative trait implemen-
tation. Negative trait implementations remove a trait implementation for a type
through the impl !Trait for Type {} syntax. They are currently only avail-
able for auto traits, not for normal traits.

An example for an auto trait from Rust’s standard library is the Send trait that
is implemented for all types that can be safely transferred to other threads. This
trait is implemented for most types, but there are important exceptions such as
the Rc wrapper type for reference counted values. Since Rc uses a non-atomic
integer for storing the reference count, there would be data races if the reference
count is modified concurrently in different threads. For this reason, Rc explicitly
opts-out of Send by providing a !Send implementation. This also means that all
compound types that contain a Rc type are transitively not Send either.

2.1.3 Procedural Macros
Procedural macros are a powerful feature of Rust that allows arbitrary syntac-
tical modifications. Rust currently supports three different types of procedural
macros [73]:

• Function-like Macros: These macros can be used like functions and are
useful for performing compile time checks and transformations. For exam-
ple, it is possible to define a sql! macro for constructing a SQL query, as
shown in Listing 2.7. The macro parses the query statement, checks it for
syntactical errors, and then converts it to an internal SQL query type. This
all happens at compile time, so that syntax errors at runtime can be avoided.

• Attribute-like Macros: This type of macro allows to create new attributes
that can perform arbitrary modifications on the attributed item. For ex-
ample, a serialization framework could define a #[json(name = "")]

attribute for struct fields to specify the field name after serialization.

26 CHAPTER 2. BACKGROUND

Lexical
Analyis

Syntax
Analyis

Semantic
Analyis

Transformation,
Optimization,

Code GenerationProcedural
Macros

Text Tokens AST

Figure 2.1: Compiler Pipeline with Procedural Macros

• Derive Macros: These macros allow the automatic implementation of a
trait through a #[derive(TraitName)] attribute on struct and enum

definitions. This attribute cannot modify the item definition, but they can
provide additional trait implementations. For example, the Clone trait
could be derived by providing an implementation that clones all fields of
a structure.

Figure 2.1 shows how procedural macros are integrated into the compiler pipe-
line. First, the text of a source file is tokenized in the lexical analysis stage, thereby
turning individual characters into tokens such as <while> or <struct>. Nor-
mally, the tokens are then passed to the syntax analysis stage, which verifies that
the tokens describe a syntactically correct program and builds an abstract syntax
tree (AST). This syntax tree is then passed to the semantic analysis stage, that
performs type checking, object binding, and various other checks. If the program
passes this stage, a semantically attributed syntax tree is then passed to the fol-
lowing stages, which transform the tree into an intermediate language, perform
optimizations, and finally create code for the target platform.

As shown in the figure, procedural macros intercept the token stream between
the lexical and syntax analysis stages. They directly work on the token stream and
can perform arbitrary modifications, which even allows custom syntax extensions.
However, they do not have access to any type or object binding information since
they are invoked before the semantic analysis stage.

Since working directly on a token stream is not practical, Rust provides the
syn library to parse the token stream into struct definitions. To turn the po-
tentially modified parsed values back into tokens, the quote library can be used.
This library also supports creating arbitrary additional Rust code.

2.2. REDOX OS 27

2.1.4 Uninitialized Memory

Like most compiled languages, Rust assumes a well defined memory layout for
values. For example, a Boolean value can either have the binary value 0 (repre-
senting true) or 1 (representing false). Other values (e.g. 3) are prevented by
the type system, which allows the compiler to perform certain optimizations. This
leads to problems when working with corrupted or uninitialized memory because
unexpected bit-representations of types can lead to invalid optimizations and un-
defined behavior.

To support safe usage of undefined memory, the Rust standard library defines
the MaybeUninit wrapper type. The type makes it possible to safely work with
uninitialized memory by preventing the compiler from making any assumptions
about the wrapped value. This is also useful when working with potentially cor-
rupted memory: Only after the consistency of the memory was verified, the actual
value is constructed from it.

MaybeUninit is implemented as a C-style union of the wrapped type and
the empty tuple type (). This way, the compiler cannot make any assumptions
about the wrapped memory because it does not know which variant is stored in
the union.

2.2 Redox OS

To evaluate our work, we apply our framework to the Redox operating system.
Redox OS is an Unix-like microkernel operating system written in Rust. Like
Rust itself, it is dual licensed under the MIT/Apache2 licenses and developed as
an open-source project. While Redox is not self hosting yet, it already runs a
rudimentary web browser and supports many traditional Unix programs.

In contrast to the everything is a file principle of Unix systems, Redox em-
ploys an everything is an URL principle. The idea is to prepend paths with a so-
called scheme specifier such as file:, similar to the protocol specifier in URLs.
Through different schemes, different resources can be accessed, including tradi-
tional files (file:), networking sockets (tcp: and udp:), and graphical output
(display:). As an effect, each resource type has its own namespace, instead of
sharing a single namespace as on Unix systems.

Each scheme has an associated driver, either provided by the kernel or by an
userspace program. Programs can dynamically register a new scheme through the
root scheme, which is denoted by a single colon (:). This makes it possible to use
schemes as the main form of inter-process communication.

28 CHAPTER 2. BACKGROUND

2.2.1 Components
Figure 2.2 gives an overview of the components of Redox OS, including a subset
of the available schemes. Redox is a microkernel operating system, so most func-
tionality and drivers are provided by userspace programs. The kernel provides the
following main components:

• The system call handler allows userspace programs to invoke kernel func-
tionality and communicate with other processes such as drivers. Its main
tasks are the validation of incoming system calls, to ensure that the program
is eligible to perform the specified operation, and the subsequent invocation
of the responsible kernel component. For example, it dispatches the fork
system call to the context manager and the open system call to the scheme
manager.

• The context manager is responsible for managing threads and processes,
which are called contexts in Redox. It provides functionality to create new
contexts, keeps track of the state and resources of all existing contexts, and
provides a scheduler to decide which context is run next.

• The memory manager manages both the physical and virtual memory. It
allocates additional memory to programs if requested and also supports the
allocation of continuous physical memory, for example for direct memory
access (DMA) operations. Further, it provides a kernel-internal heap mem-
ory region and a corresponding allocator.

• The scheme manager keeps track of all available schemes. It dispatches
each scheme operation to the responsible driver, which can either live in
kernel space or userspace.

Additionally, the kernel provides drivers for several kernel-level schemes. The
root scheme (:) allows the creation of additional schemes by (userspace) pro-
grams. The debug: scheme makes it possible to write debug output from inside
the kernel, for example through a serial port. The irq: scheme provides access
to hardware interrupts, which is important for device drivers. There are also some
kernel-internal schemes, for example for implementing the pipe communication
primitive.

The arrows in Figure 2.2 give an overview how system calls are dispatched.
When a userspace process issues a system call, the system call handler is invoked.
After validating the request, it is passed to the responsible kernel component, such
as the context or memory manager. For scheme operations, the request is passed
to the scheme manager, which contains an internal mapping of scheme specifiers
to the corresponding drivers. These drivers can live either in the kernel or in

2.2. REDOX OS 29

Userspace Scheme Drivers

vesad

Screen Multiplexing
display:

orbital

Windowing System
orbital:

ptyd

Pseudo-Terminal
pty:

e1000d

Link Level Network
network:

rtl8168d

Link Level Network
network:

ethernetd

Raw Ethernet
ethernet:

ipd
Raw IP
ip:

tcpd

TCP Sockets
tcp:

udpd

UDP Sockets
udp:

ahcid

Raw Disk Access
disk:

redoxfs

Filesystem
file:

randd

Random Numbers
rand:

Kernel
System Call Handler

Memory Manager (MM)

Physical
MM

Virtual
MM

Kernel
Heap

Context Manager

Context
Creation

Context List

Scheduling

Interrupt
Handlers

Debug
Output etc.

Kernel Scheme Drivers

: debug: sys:

env: irq: pipe:

event: initfs:

Scheme Manager

system calls

Figure 2.2: Userspace and Kernel Components of Redox OS

30 CHAPTER 2. BACKGROUND

userspace. After the driver performed the requested operation, it returns a result
to the scheme manager, which is then passed through the system call handler back
to the process that invoked the system call.

2.2.2 Boot Process
The boot process of Redox OS starts with the bootloader, which performs some
fundamental CPU initializations and loads the kernel. Then control is transferred
to the entry point of the kernel. The kernel first performs platform specific initial-
ization routines to set up components such as the memory management unit and
the interrupt handler. On x86_64, it creates a physical frame allocator, initializes
a 4-level page table, and creates global and interrupt descriptor tables. Then it
creates a kernel heap, sets up graphical debug output, and initializes fundamen-
tal hardware devices such as the interrupt controller and the high precision event
timer. Afterwards, it transfers control to the platform independent start function
of the kernel, which is called kmain.

The kmain function of the kernel first initializes the context manager and cre-
ates an initial root process. The other kernel components initialize themselves
lazily when they are used the first time, so the kmain function can directly initial-
ize the userspace afterwards. For that, it loads an userspace initialization program
from the initialization filesystem through the initfs: scheme. Then, it creates a
new context for the program and transfers control to it.

Instead of hardcoding an initialization sequence, the userspace initialization
program reads and interprets an /etc/init.rc script from the initfs:

scheme. For a normal desktop configuration, this script initializes the display
through the vesad program, calls the pci program for initializing PCI devices,
and then launches redoxfs to create the initial filesystem. Afterwards, it exe-
cutes all second-level initialization scripts in the /etc/init.d directory of the
initfs: scheme. Depending on the configuration, these scripts initialize other
userspace programs such as the login shell, the network daemons, the window
manager, and pseudo-terminals.

By specifying the userspace initialization routines in separate scripts, it is eas-
ily possible to configure the system for different use cases. For example, by sup-
plying different initialization scripts, Redox OS can be configured as a desktop
system with a graphical user interface, as a server system with only a console-
based interface, or even as a minimal embedded system.

Chapter 3

Design

The idea of our NVRAM framework is to map the NVRAM as a second, persis-
tent heap into programs. In contrast to the default heap that is reinitialized on
each reboot, the persistent heap keeps its content across system restarts. Through
a persistent RAM manager, programs can allocate chunks of NVRAM for per-
sisting selected state. The design of the persistent RAM manager is described in
Section 3.1.

Treating the NVRAM as heap memory instead of as a storage device allows
programs to directly operate on it. This makes it possible to persist more state
of the program, instead of only persisting parts of the file system. The drawback
of this approach is that NVRAM has reliability issues, as noted in Section 1.3.2.
Therefore, our framework protects data on the restored heap with error correcting
codes. Section 3.2 describes these error correcting codes and explains how Rust’s
type system can be used to enforce data protection.

In contrast to the whole system consistency approach proposed by Narayanan
et al. [26] that persists the complete heap memory, our framework uses the
NVRAM as a second, separate heap region and requires explicit action from pro-
grams for making use of it. We decided for this approach because it allows the
gradual transformation of a system. For example, it makes it possible to imple-
ment support for file system persistence without requiring any code changes in
other components. In contrast, whole system persistence requires extensive code
modifications, including adjusting all device drivers to correctly reinitialize hard-
ware devices to their previous state after a restart.

The problem with persisting only a part of the heap state is that it leads to
partially restored state after a restart. As noted in Section 1.3.3, partial restores
can lead to violations of both pointer and semantic consistency. For this reason,
our framework utilizes the type system of Rust to limit which types are allowed
to be stored in NVRAM. Section 3.3 shows how our framework can prevent in-
valid partial restores and guarantee pointer consistency using this approach. In

31

32 CHAPTER 3. DESIGN

Section 3.4, we then summarize the consistency guarantees of our framework.
Since global state is often stored in static variables, our framework provides

a #[restorable] attribute that makes a static variable persistent with minimal
code changes. Section 3.5 explains how the attribute persists static variables by
implicitly storing them on the restorable heap instead of keeping them in the mem-
ory of the executable.

By combining these individual components, we get a framework that allows
the safe and ergonomic usage of NVRAM from both operating system kernels and
userspace programs.

3.1 Persistent RAM Manager

The central component of our framework is the PersistentRamManager. It
is responsible for allocating NVRAM to programs and managing existing al-
locations across reboots. Each program instance has an own instance of the
PersistentRamManager to strictly isolate allocated NVRAM from other pro-
cesses. Similar to normal heap allocators that query memory from the kernel us-
ing a system call such as sbrk on Linux, the PersistentRamManager queries
slices of NVRAM from the kernel through a custom system call.

The interface of the manager provides two kinds of allocations: named and
unnamed allocations. Named allocations can be used to recreate program state
after reboots. Section 3.1.1 describes named allocations and outlines the problem
of selecting unique keys. Unnamed allocations are similar to normal heap allo-
cations, with the difference that they are allocated on the persistent heap. They
are described in Section 3.1.2. In Section 3.1.3, we then present an example for
named and unnamed allocations that shows the different use cases for the two
allocation types.

3.1.1 Named Allocations

Named allocations are identified by an unique key. When an allocation with the
same key is queried again (e.g. after a system restart), the persistent RAM man-
ager returns a pointer to the existing allocation instead of creating a new one. This
makes it possible to restore state when a program is launched again.

Special precaution must be taken when choosing a key, as it must be unique per
program instance. If two named allocations inside the same program instance use
the same key, the wrong allocation might be used when the program is resumed
after a reboot. However, the key of each allocation must remain the same across
reboots because otherwise the previous allocation is not found.

3.1. PERSISTENT RAM MANAGER 33

For this reason the manual creation of named allocations is not recommended.
Instead, our framework implements support for persistent static variables through
the #[restorable] attribute (described in Section 3.5). Using this attribute, no
key collisions can occur.

Deallocation of named allocations is supported through a deallocate_

named method. Our framework does not provide abstraction types that automati-
cally handle deallocation yet, so the programmer has to manually invoke the deal-
location function. Future work might add a type similar to Rust’s Box type that
automatically calls the deallocation function when it goes out of scope.

3.1.2 Unnamed Allocations

Unnamed allocations always return a new, unused chunk of NVRAM. While the
persistent RAM manager keeps track of named allocations in order to let programs
find their previous state, it keeps no data about unnamed allocations. To reuse an
unnamed allocation after a system restart, the program needs to keep a pointer to
the allocation. For this reason, unnamed allocations are mostly useful for "inner"
allocations, i.e. allocations that are stored inside another (named) allocation.

Since unnamed allocations always return a new chunk of NVRAM, they
should only be created when initializing other persistent data. Programs that un-
conditionally create new unnamed allocations on every reboot can lead to memory
leaks and out-of-memory errors.

While the manual deallocation of unnamed allocations is possible, we recom-
mend to use unnamed allocations together with the allocation types of the standard
library. By specifying a PersistentRamAllocator provided by our frame-
work as a second generic parameter to allocation types such as Box, the types im-
plicitly perform unnamed allocations from the PersistentRamManager instead
of using the default heap. The types automatically handle their own deallocation
when they go out of scope, thereby preventing programmer errors.

3.1.3 Allocation Example

Listing 3.1 shows an example usage of named and unnamed allocations. The
Process struct contains an ID and a heap allocated pointer (using the Box type)
to a ProcessData struct (not shown). The purpose of the new_persistent_

process function is to create a new process instance on the persistent heap. For
that, it queries a named allocation from the persistent RAM manager. If a previous
allocations exists (i.e. after a reboot), the manager returns a pointer to it. Other-
wise, it creates a new allocation and initializes it with the given closure, which
invokes the new_process function when called.

34 CHAPTER 3. DESIGN

struct Process {
id: u64,
data: Box<ProcessData>,

}

fn new_persistent_process(name: &str) -> Box<Process> {
let key = get_unique_key_for_process(name);
PERSISTENT_RAM_MANAGER.allocate_named(key, || {

new_process(name)
})

}

fn new_process() -> Process {
let data = ProcessData::new();
Process {

id: next_id(),
data: PERSISTENT_RAM_MANAGER.allocate_unnamed(data)

}
}

Listing 3.1: Pseudo-Code Example for Named and Unnamed Allocations

The new_process function first creates a new ProcessData instance and
allocates it on the restored heap as an unnamed allocation. Then, it creates a
Process struct with the data instance and returns it. The reason that the func-
tion uses an unnamed allocation is because the address of the allocation is stored
inside a persistent Process instance. By recovering the previous value of the
Process instance from the persistent RAM manager after a restart, the pointer to
the unnamed allocation is recovered too.

The code for the get_unique_key_for_process function is not shown
here. Its purpose is to create an unique integer key from the given (unique) process
name. As noted in Section 3.1.1, the key must be unique per process instance and
remain the same across restarts. Since a non-unique key can lead to restoration
of the wrong state on a system restart and cause undefined behavior, it is not
recommended to create the key manually. Instead, a static variable annotated with
the #[restorable] attribute should be used to safely create named allocations.

3.2 Ensuring Bit-wise Consistency
Since NVRAM is susceptible to bit-flips (see Section 1.3.2), the memory repre-
senting a value might no longer be valid after a system restart. This can lead to
errors and vulnerabilities because restoring a value with an invalid representation
can cause undefined behavior. For example, the Rust compiler assumes that a

3.2. ENSURING BIT-WISE CONSISTENCY 35

bool can only have the values 0 and 1, representing true and false. If a bool
has a different value (e.g. 3) after a restart, undefined behavior occurs.

To avoid undefined behavior, our framework needs to ensure that no bits are
flipped when restoring a value. Since bit-flips occur randomly at runtime, there is
no way to completely prevent them, therefore it needs to detect and recover from
them. A common way to solve this problem is to employ error correcting codes
(ECCs), as introduced in Section 1.4.2.

Section 3.2.1 discusses the tradeoffs of different ECC variants and presents the
variant that we use for our framework. Section 3.2.2 then explains our reasons for
integrating the chosen ECC variant as an explicit component, instead of adding
it to values implicitly. Finally, Section 3.2.3 shows how our framework employs
Rust’s type system to ensure that all restorable data is protected by an ECC.

3.2.1 ECC Design

As noted in Section 1.4.2, error correcting codes (ECCs) add redundancy to a
value by appending some kind of checksum. Dependent on the used ECC, these
checksums can be used to detect and correct a certain number of bit-flips. Since
the checksums need to be recalculated whenever the value is modified, they de-
crease write performance. Read performance is also decreased because the check-
sum is regularly verified, often on every access. Further, ECCs increase the size
of the value, which can lead to worse cache behavior.

To limit the performance overhead as much as possible, there are various ECC
designs with different use cases and tradeoffs. For example, if only single bit-flips
should be detected, parity bits can be used, which are very cheap to compute.
For our framework, we require an error correcting code that can be efficiently
implemented in software and is able to protect heap variables from (multiple) bit-
flips.

Borchert et al. [64] compared the suitability of different ECC designs for use
in kernel heap data structures. The performance evaluation showed that complex
codes that operate on bit-level such as Hamming codes have a much higher perfor-
mance overhead than simpler codes that rely on copies of the whole value. They
found that an ECC design based on a 32-bit word sum and a copy of the value
is most favorable for protecting heap memory against radiation induced bit-flips.
Since the use case is similar, we also use this sum-and-copy ECC design for our
framework.

Instead of calculating a checksum over individual bit values, the sum-and-copy
ECC uses a sum of the 32-bit words of the value and a complete copy of the value
as checksum, as shown in Figure 3.1. The sum is calculated by splitting the value
into 32-bit chunks and adding these chunks together using wrapping addition. The

36 CHAPTER 3. DESIGN

value sum copy

Figure 3.1: The Memory Layout of a Value with a Sum-And-Copy ECC

copy is just a bit-wise copy of the value. Both operations are very fast because
they operate on native CPU word sizes and linearly traverse memory.

The consistency of a protected value is checked by calculating the sum again
and comparing it with the sum stored in the checksum. If they match, it is likely
that value still has its original value. Else, the copy that is part of the checksum
is checked for consistency by comparing its sum too. If the copy is consistent,
the original value can be restored by overwriting it with the copy. If the copy is
inconsistent too, the restoration fails.

While this approach is inferior to bit-based error correcting codes such as
Hamming [71] or Reed-Solomon [72] codes from a theoretical perspective, it
works better for protecting the heap against random bit-flips because of two rea-
sons. First, it can be computed very efficiently because both the sum and the copy
are very simple operations that are very cheap on the CPU and main memory.
Second, bit-flips occur relatively seldom so that a theoretical inferior approach
suffices in practice. Namely, it is improbable that both the value and the copy are
affected by bit-flips in the same time interval, so that a cheap-to-compute check-
sum is still robust enough.

In addition to protection against soft errors because of unreliable memory (see
Section 1.3.2), the sum-and-copy ECC also provides limited protection against
partial writes (see Section 1.3.3). The reason is that the copy and sum fields
are only updated after the value was fully written. When a partial write occurs
because of a sudden system restart, the violated bit-wise consistency of the value
is correctly detected because the stored sum field no longer matches. Provided that
no bit-flip has occurred, a restoration of the previous value is possible through the
copy field.

3.2.2 Explicit and Implicit ECCs

Error correcting codes (ECCs) can either be applied explicitly or implicitly. Ex-
plicit ECCs are directly specified in the program code and thus give the program-
mer maximal control. Implicit ECCs are transparently added, for example by a
precompiler, and consequently require no code modifications.

Borchert et al. [64] apply implicit ECCs to data by utilizing aspect-oriented
programming [74]. Aspect-oriented programming (AOP) allows to let a program
perform custom actions on specified conditions. The authors use AOP to imple-

3.2. ENSURING BIT-WISE CONSISTENCY 37

ment a generic ECC protection for C++ objects. The idea is that each object
method is augmented with an ECC check at the beginning and an ECC recalcula-
tion at the end. This way, no code modifications are necessary.

The disadvantage of implicit ECCs is that they take away control from the
programmer, which might result in suboptimal performance. For example, with
explicit ECCs the programmer could find more optimal places for ECC recalcu-
lations instead of performing them after every, possible very small, method call.
Another disadvantage is that most languages do not have direct support for AOP,
so that a special precompiler is needed. For example, Borchert et al. [64] require
the AspectC++ compiler, which translates aspect oriented source code into stan-
dard C++ code.

For our framework, we decided to use explicit ECCs in order to give the pro-
grammer full control. Another factor that influenced our decision is that no mature
tooling for aspect-oriented programming in Rust exists yet, so we would have to
create our own solution. Furthermore, the Rust programming language generally
favors explicitness, so an explicit ECC implementation fits the language well.

To reduce the effects of the most major drawback of explicit ECCs, our frame-
work provides special wrapper types that can be used with only minimal code
modifications. The idea is to augment common synchronization wrapper types
such as Mutex or RwLock with an ECC, while keeping the original API un-
changed. For example, the EccMutex type keeps an additional ECC for the
wrapped value, which is checked when the value is locked and recalculated when
the lock is released again. This way, no code modifications apart from type re-
names are required.

3.2.3 Requiring ECCs for Restorable Values
To ensure bit-wise consistency of restored state, an error correcting code must be
applied to each restorable value. This can be easily forgotten in complex code
bases, for example in nested compound types that refer to other restorable values
through pointers. To prevent programmer errors, our framework uses Rust’s type
system to guarantee that every restorable value is protected by an error correcting
code.

As mentioned in Section 2.1.2, Rust uses a concept called traits to define
shared behavior of types, similar to interfaces in languages like Java. Our Frame-
work defines a trait called ConsistencyCheckable that describes values that
can check their own consistency, for example by an internal ECC checksum. The
definition of the trait is shown in detail in Section 4.3.

By requiring the ConsistencyCheckable trait for all values that are allo-
cated from the persistent RAM manager, the compiler verifies at compile time that
each value is protected by an error correcting code. Listing 3.2 shows an example

38 CHAPTER 3. DESIGN

struct Item {
data: u64,

}

fn new_persistent_item() -> Box<Item> {
let item = Item { data: 0 };
PERSISTENT_RAM_MANAGER.allocate_unnamed(item)

}

error[E0277]: the trait bound `Item: ConsistencyCheckable` is
not satisfied
--> src/main.rs:7:30
|

7 | PERSISTENT_RAM_MANAGER.allocate_unnamed(item)
| ^^^^^^^^^^^^^^^^ the trait

`ConsistencyCheckable` is not implemented for `Item`

Listing 3.2: Attempt to Allocate an Item without ECC Protection (in Pseudo-
Code) and the Resulting Error Message

function that attempts to perform an unnamed allocation for an Item type that has
no ECC protection. The type does not implement the ConsistencyCheckable
trait, therefore the shown compilation error occurs. To fix this example, the Item
type could be wrapped into the Ecc wrapper type presented in Section 4.5.1.

3.3 Guaranteeing Pointer Consistency
While error correcting codes provide reasonable safety that the bit-representation
of values remains unchanged after a restart, bit-wise consistency does not guaran-
tee that pointers are still valid. For example, a pointer that points to a value on the
normal heap becomes invalid after a restart because the pointed value no longer
exists. Such an use-after-free vulnerability is a common cause of exploits and thus
must be prevented.

Our framework solves this problem by permitting only certain pointer types
in restorable values. Namely, only pointers that are guaranteed to point to the re-
stored heap are permitted. This limitation is ensured by requiring a custom auto
trait called RestoreSafe for all restorable values. Section 2.1.2 described how
auto traits are automatically implemented for compound types such as structs if
all their fields implement the trait. It also explained that it is possible to override
the derived implementations by providing explicit positive or negative implemen-
tations for a type.

The RestoreSafe auto trait works by treating all pointer and reference types

3.4. SUMMARY OF CONSISTENCY GUARANTEES 39

as potentially unsafe through a negative implementation. Since all collection types
use pointers internally, they are not RestoreSafe either because of the transitiv-
ity of the auto trait mechanism. The result is that the trait is implemented exactly
for types without any internal pointer or reference types. Additionally, we provide
positive implementations for collection types that are guaranteed to be stored in
NVRAM. The details of these implementations are described in Section 4.4.

By requiring the RestoreSafe trait for all restorable values, the compiler
guarantees that no violations of pointer consistency can occur when restoring state
after a system restart. Since this check is performed at compile time, no runtime
overhead occurs.

3.4 Summary of Consistency Guarantees

This section summarizes how the design of our framework prevents or at least
considerably reduces most types of consistency violations that were mentioned in
Section 1.3.

Unreliable memory can lead to random bit-flips at runtime. While it is not
possible to fully prevent such soft-errors, our framework employs error correcting
codes for all values stored in the particularly susceptible NVRAM. This way, most
soft errors can be repaired or at least detected.

Partial restores cannot lead to dangling pointers in our framework because it
employs Rust’s type system to only permit types with safe pointers in NVRAM.
Namely, it forbids storing types that contain pointers to non-restored data. While
we do not use software transactional memory, our framework uses a copy-and-
sum ECC that prevents partial writes to a limited degree.

Other causes for dangling pointers are ruled out by Rust’s memory safety or
inhibited by the use of error correcting codes. Data races are also prevented at
compile time by the Rust programming language.

3.5 The #[restorable] Attribute

The purpose of our framework is to make parts of the state of a program restorable.
For heap variables, our framework provides named and unnamed allocation meth-
ods to place the variable in NVRAM. However, global state is often also stored in
static variables. For example, the Redox kernel stores the list of available schemes
(see Section 2.2) in a static variable. As static variables are initialized at compile
time and stored in the executable itself, it needs some tricks and boilerplate code
to make a static variable restorable.

40 CHAPTER 3. DESIGN

#[restorable(restore = true)]
static TEST_VALUE: Mutex<Ecc<u64>> = Mutex::new(Ecc::new(0));

Listing 3.3: Example Use of the #[restorable] Attribute

To make persisting static variables as convenient as possible, our framework
provides a #[restorable] attribute that makes a static variable restorable with
minimal boilerplate. The attribute works by lazily initializing the variable in the
NVRAM on the first use, by creating a named allocation using the persistent RAM
manager.

Listing 3.3 shows an usage example of the #[restorable] attribute. The at-
tribute takes an argument named restore that controls whether the value should
be restored after a reboot or newly initialized. No other code needs to be mod-
ified when the restore argument is switched between true and false. It is
worth noting that the value is wrapped in the Ecc wrapper type (presented in
Section 4.5.1), which provides the required error correcting codes for checking
bit-wise consistency. It is also wrapped in a Mutex to allow safe concurrent mu-
tation.

While the attribute works in a straightforward way for static variables of sim-
ple types such as u64, its usage becomes more complex for types with internal
heap allocations. The reason is that these allocations should be placed either in
NVRAM or on the normal heap depending on the value of the restore argu-
ment. Section 3.5.1 shows how this problem applies to the collection types of the
standard library. Section 3.5.2 then explains how the #[restorable] attribute
solves this problem by creating a special type alias for each static variable.

3.5.1 Restorable Collection Types

As we showed in Section 3.3, restoring types with internal pointers can lead to
violations of pointer consistency if a restored value points to non-restored values.
For that reason, the persistent RAM manager requires the RestoreSafe trait,
which guarantees that type either contains no internal pointers, or only pointers
that are guaranteed to live in the NVRAM.

An example for a pointer type that implements the RestoreSafe trait is
Box<u32, PersistentRamAllocator>, which is a simple heap allocated
value. The first generic parameter is the type of the pointed value, an unsigned
32-bit integer in this case. The second generic parameter is optional and specifies
the heap allocator that should be used for allocating the needed backing memory.
If the parameter is not specified, the normal heap is used by default. By specifying
the PersistentRamAllocator as parameter, which allocates all memory from

3.5. THE #[RESTORABLE] ATTRIBUTE 41

NVRAM, it is guaranteed that the u32 will be still valid after a reboot.
While it is possible to use this type in a static annotated with #[restorable(

restore = true)], it leads to unintended results for restore = false. The
problem is that the value is newly allocated on each reboot, while leaking the
previous value. On each reboot, it would fill the NVRAM further until no more
memory is available. This problem also applies to the Redox OS kernel, since it
makes extensive use of Rust’s standard collection types internally. For example,
it uses a BTreeMap to keep track of available schemes (see Section 2.2.1).

3.5.2 Allocator Type Aliases
To allow specifying types that only use the persistent RAM allocator if restore
= true, the #[restorable] attribute creates a _X_ALLOCATOR type alias for
each annotated static X. This type alias points to the persistent RAM alloca-
tor if restore = true and to the default global heap allocator if restore =

false.
Listing 3.4 shows example code that uses the allocator type alias. The Test

struct defines two fields, value_1 and value_2. The value_1 field is a simple
u32 integer. The value_2 field is a heap allocated u32, which uses the Box type.
Since the purpose of the Test type is to be stored in the static TEST_VALUE vari-
able, it specifies the _TEST_VALUE_ALLOCATOR type alias as the second generic
parameter to the Box type. This way, the allocation is performed in NVRAM
when the restore argument is set to true and on the normal heap otherwise.
Because of the second type parameter, the Box::new_in function must be used
for initializing the value_2 field, instead of the normal Box::new function that
always allocates on the default heap.

The type alias is not a perfect solution since the programmer still needs to
remember to use the type alias to prevent leaks, but it at least makes it possible to
switch the restore argument for a static without requiring code modifications.
Adding runtime or even compile time checks for leak prevention is left for future
work. Note that memory leaks do not violate memory safety (i.e. no undefined
behavior can occur), so this limitation of our framework does not diminish the
safety guarantees summarized in Section 3.4.

42 CHAPTER 3. DESIGN

struct Test {
value_1: u32,
value_2: Box<u32, _TEST_VALUE_ALLOCATOR>,

}

#[restorable(restore = true)]
static TEST_VALUE: Mutex<Ecc<Test>> = Mutex::new(Ecc::new(Test {

value_1: 0,
value_2: Box::new_in(1, _TEST_VALUE_ALLOCATOR),

}));

Listing 3.4: Example Use of the Allocator Type Alias

Chapter 4

Implementation

In this chapter, we outline the implementation of some key components of our
NVRAM framework. Apart from describing the required kernel extensions and
the implementation of the PersistentRamManager, we present the implemen-
tation details of the RestoreSafe and ConsistencyCheckable traits, which
are responsible for some central consistency guarantees. We also describe the im-
plementation of several ECC wrapper types and the #[restorable] attribute.

The chapter is structured as follows: Section 4.1 gives an overview of the
kernel extensions that were required to add support for NVRAM to the system.
Section 4.2 describes how the PersistentRamManager uses a modified sys-
tem call to query a slice of NVRAM from the kernel. It also explains how the
manager detects that previous state exists in NVRAM after a system restart. Sec-
tion 4.3 then presents the definition of the ConsistencyCheckable trait, which
is used by the persistent RAM manager to ensure that all values that are placed in
NVRAM are protected by an error correcting code. In Section 4.4, we explain the
implementation of the RestoreSafe trait, which relies heavily on Rust’s type
system. The trait is used to guarantee pointer consistency by limiting the pointer
types that are allowed in NVRAM.

The implementation of error correcting codes is presented in Section 4.5. Our
framework provides an Ecc wrapper type that adds a sum-and-copy ECC to an
arbitrary type. It also implements a solution for checking the bit-wise consistency
of nested types, i.e. types that contain internal pointers to other types. In order
to reduce required code modifications, we further provide an ECC-augmented
version of the common RwLock synchronization wrapper type.

In Section 4.6, we describe the implementation of the #[restorable] at-
tribute. The attribute is implemented as a procedural macro, which is a feature of
the Rust programming language that allows arbitrary source code transformations.

43

44 CHAPTER 4. IMPLEMENTATION

Kernel

Userspace

System Call Handler

Memory Manager (MM)

Physical
MM

Virtual
MM

Kernel
Heap

Context Manager
Kernel Scheme Drivers

Scheme Manager

Figure 4.1: Modified Components of the Redox Kernel

4.1 Kernel Extensions

In order to add support for NVRAM, we modified two key components of the
Redox kernel: the memory manager and the system call handler. Figure 4.1 gives
an overview of the kernel structure again, with the unmodified components grayed
out.

The memory manager was modified in the following way: First, we extended
the physical memory manager to also manage available NVRAM in addition to
available main memory. As we did not have access to real NVRAM, we simulated
it by reserving a contiguous, physical main memory region (see Section 5.1.3). By
reserving the region right after creating the physical memory map, we ensure that
it remains the same across system restarts. Second, we added additional kernel-
internal allocation methods to retrieve slices of NVRAM. Third, we extended the
virtual memory manager with methods to map slices of NVRAM into the virtual
address space.

In order to give userspace programs access to NVRAM too, we extended the
system call handler. Instead of introducing a new system call type and increasing
the API surface, we extended the existing physmap system call with an addi-
tional PHYSMAP_PERSISTENT_RAM flag. Normally, the call maps a given slice
of physical memory at a free virtual address selected by the kernel. When the
PHYSMAP_PERSISTENT_RAM flag is given, the kernel instead maps a newly allo-
cated slice of NVRAM of the specified size.

4.2. THE PERSISTENTRAMMANAGER 45

Userspace Programs

program 1

PersistentRamManager

program 2

PersistentRamManager

Kernel
System Call Handler

Memory Manager

Context Manager

PersistentRamManager

Kernel Scheme Drivers

Scheme Manager

physmap physmap

Figure 4.2: Integration of the PersistentRamManager into Redox

4.2 The PersistentRamManager
An mentioned in Section 3.1, the PersistentRamManager is the key compo-
nent of our framework. It is responsible for managing NVRAM for processes and
providing allocation methods. Through named allocations, it allows processes to
retrieve existing state after system restarts. This functionality is also implicitly
used by the #[restorable] attribute, which can be used for persisting static
variables.

Figure 4.2 shows how the PersistentRamManager is added to processes.
Each userspace process that uses NVRAM includes their own instance of the
PersistentRamManager, which all operate on separate slices of NVRAM. To
retrieve a slice of NVRAM, each instance invokes the modified physmap sys-
tem call (described in the previous section) on initialization, which then retrieves
a slice of NVRAM from the memory manager of the kernel. As shown in the
figure, the PersistentRamManager can also be used from inside the kernel it-
self. Instead of using the physmap system call, it then queries the NVRAM slice
directly from the memory manager.

To enable safe state restoration after a system restart, the kernel must en-
sure to allocate the same slice of NVRAM as before to each instance of the
PersistentRamManager. One possible solution to this problem is to make pro-

46 CHAPTER 4. IMPLEMENTATION

pub unsafe trait ConsistencyCheckable {
/// Check whether the given `Self` instance is valid,
/// without changing it.
fn is_consistent(self: *const Self) -> bool;

/// Check whether the given `Self` instance is valid,
/// potentially changing it.
///
/// This method is allowed to fix the given `Self`
/// instance, e.g. by applying error correcting codes.
fn is_consistent_restore(self: *mut Self) -> bool;

}

Listing 4.1: Definition of the ConsistencyCheckable Trait

cess IDs persistent across restarts. This makes it possible to use the process ID as
an unique key for retrieving the corresponding slice of NVRAM. Unfortunately,
we did not manage to implement support for persistent process IDs in the Redox
kernel yet.

As a straw man solution, we require a deterministic initialization order for all
processes that use NVRAM for now. This allows the kernel to linearly hand out
NVRAM slices without needing to keep track of the mapping between NVRAM
slices and processes. For example, the filesystem driver is always started before
the userspace test application (see Section 2.2.2), so that the filesystem driver
always receives the first slice of NVRAM across restarts with a linear allocation
strategy.

To detect whether previous state exists, each instance of the Persistent-

RamManager places a marker value such as 0x12121212 at the beginning of
its NVRAM slice on initialization. By checking this value after a restart, the
PersistentRamManager can detect that previous state exists in NVRAM and
attempt a restoration. By overwriting the marker value, it is possible to force a
reinitialization on the next reboot.

4.3 The ConsistencyCheckable Trait

The ConsistencyCheckable trait describes types that can check their own con-
sistency. The trait definition is shown in Listing 4.1. Since the NVRAM frame-
work relies on a correct implementation, the trait is defined as unsafe to signal
that any implementation must satisfy certain invariants.

The trait defines two methods, is_consistent and is_consistent_

restore. Both methods get a raw pointer to the Self instance as an argument

4.3. THE CONSISTENCYCHECKABLE TRAIT 47

struct ParityBitProtected {
value: u32,
parity_bit: u8,

}

unsafe impl ConsistencyCheckable for ParityBitProtected {
fn is_consistent(self: *const Self) -> bool {

// convert the raw pointer into a reference
let s = unsafe {&*self};
// only consider the last bit
let parity_bit = u32::from(s.parity_bit % 2);
// verify parity to detect single flipped bits
(s.value.count_ones() + parity_bit) % 2 == 0

}

fn is_consistent_restore(self: *mut Self) -> bool {
Self::is_consistent(self)

}
}

Listing 4.2: Example Implementation of the ConsistencyCheckable Trait

and return a Boolean value that signals whether the instance is bit-wise consistent.
The difference between the two methods is that the latter is allowed to repair the
Self instance if possible, while the former only has read-only access.

Passing the Self instance behind a raw pointer is an uncommon pattern in
Rust. Normally, methods take either &self or &mut self as arguments, which
desugars to self: &Self and self: &mut Self references. The reason for
using raw pointers instead of references in the method definitions is that Rust has
very strong guarantees about references, namely that they must always point to
valid values. Since the Self value is potentially inconsistent, creating a reference
to it could already invoke undefined behavior.

The simplicity of the method definitions makes it possible to implement the
trait for a variety of error correcting code implementations. Listing 4.2 shows an
example implementation for a ParityBitProtected struct that protects an u32
value with a single parity bit. Instead of using a bool type for the parity_bit
field, the struct uses u8, an unsigned 8-bit integer. The reason is that a corrupted
bool can already lead to undefined behavior (e.g. when it has the value 3), but
an u8 is always valid. This makes it possible to convert the self raw pointer
into a reference at the beginning of the is_consistent implementation without
invoking undefined behavior.

To check for bit-wise consistency, the implementation of is_consistent
first extracts the parity bit from the last bit of the parity_bit field. It then counts

48 CHAPTER 4. IMPLEMENTATION

pub unsafe auto trait RestoreSafe {}

Listing 4.3: Definition of the RestoreSafe Trait

the 1-bits in the binary representation of value, adds the parity bit, and verifies
that the sum is even. This makes it possible to detect all even numbers of bit-flips.
There is no way to restore the original value with a single parity bit, therefore the
is_consistent_restore function just calls into is_consistent.

The ConsistencyCheckable trait also works with other ECC variants, such
as hamming codes or CRC checksums. For our framework, we use a sum-and-
copy ECC variant, whose implementation is described in Section 4.5.

4.4 The RestoreSafe Trait
This section describes the implementation of the RestoreSafe trait presented
in Section 3.3. The purpose of the trait is to mark types that are guaranteed to
be pointer consistent after a reboot. Such types can either be types without any
reference or pointer fields, or types for that it is guaranteed at compile time that
each reference or pointer field points to the NVRAM. The RestoreSafe trait is
implemented as an auto trait (see Section 2.1.2). As all auto traits, it is a marker
trait without any methods.

Listing 4.3 shown the definition of the trait. It is declared as unsafe because
manual implementations have the potential to break memory safety in combina-
tion with our framework. For example, a manual implementation for a type that
contains a pointer to the normal heap can result in an use-after-free vulnerability
if the type is placed in NVRAM and restored after a reboot. By declaring the trait
as unsafe, the programmer has to specify the unsafe keyword for each manual
positive implementation, indicating a potential dangerous operation.

4.4.1 Negative Implementations
Auto traits are implemented for all types by default. Since pointer and reference
types are potentially dangerous because they can point to an arbitrary memory
location, we specify the negative implementations shown in Listing 4.4. Shared
(&T) and exclusive references (&mut T) are separate types in Rust, so we pro-
vide negative implementations for both. The implementations are generic over all
possible lifetimes and pointed types so that they apply to all possible reference
types. Likewise, we add negative implementations for the read-only and mutable
raw pointer types *const T and *mut T. The unsafe keyword is not needed
for these implementations since it is only required for positive implementations.

4.4. THE RESTORESAFE TRAIT 49

impl<'a, T> !RestoreSafe for &'a T {}
impl<'a, T> !RestoreSafe for &'a mut T {}
impl<T> !RestoreSafe for *const T {}
impl<T> !RestoreSafe for *mut T {}

Listing 4.4: Negative RestoreSafe Implementations for Pointer and Reference
Types

Stack Box<T>

Heap value: T

pointer

Figure 4.3: The Memory Layout of a Heap Allocated Value

The result of these negative implementations is that the trait is only imple-
mented for types without any pointer or reference fields. This also rules out any
collection types that can dynamically grow, such as vectors or linked lists. To
make this limitation less severe, positive implementations are provided for se-
lected collection types that are guaranteed to use the NVRAM as backing storage.

4.4.2 Positive Implementations

Ideally, we would like to provide positive implementations for all pointers and
references that point to the NVRAM. Unfortunately, pointers and references con-
tain no type information about the storage location, so that this approach is not
possible. However, there is a class of types that contains this information, albeit
often implicitly: types that perform heap allocations.

The simplest heap allocation type is Box<T>, which represents a heap allo-
cated value of type T. When a Box is created, for example through the Box::new
function, it allocates the required memory from the heap and internally keeps a
pointer to the memory location. Figure 4.3 shows the memory layout for a Box<T>
instance that lives on the stack. We see that the actual value is allocated on the
heap. When the Box goes out of scope, its destructor frees the heap allocated
value again.

The destructor can only safely free the heap-allocated value because it is guar-
anteed that the inner pointer of a Box<T> always points to the heap. This means
that the storage location of the Box<T> pointer is known at compile time. How-
ever, we cannot provide a positive RestoreSafe implementation for Box<T>

50 CHAPTER 4. IMPLEMENTATION

unsafe impl<T, A> RestoreSafe for Box<T, A>
where T: RestoreSafe, A: RestoreSafeAllocator

{}

pub unsafe trait RestoreSafeAllocator: Alloc {}

Listing 4.5: Positive RestoreSafe Implementation for Box

because it points to the volatile heap instead of the NVRAM. Fortunately, it is
possible to let the Box type use the NVRAM instead by using a custom allocator.

Custom Allocators

Currently, the Box type is limited to the global heap allocator, but there is an
accepted proposal [75] and and implementation pull request [76] to make Box

and other heap allocation types work with custom allocator types. The idea is
to add a second type parameter A to the Box type that represents the allocator
that should be used for the allocation and deallocation. This makes it possible
to create a Box<T, A> type that uses a custom allocator that allocates from the
NVRAM instead of the normal heap. For usability and compatibility reasons, this
type parameter defaults to the global allocator, so that Box<T> can be used just as
before.

Since the used allocator is a generic parameter to the Box type, it is statically
known at compile time. This allows us to provide a positive RestoreSafe im-
plementation for Box types that use the NVRAM as backing storage. Listing 4.5
shows this positive implementation. It is generic over all possible allocators, but
uses a where bound to enforce the following constraints:

• First, the stored value type must be RestoreSafe itself, similar to the de-
fault transitive behavior of auto traits. This is important because the value
type could contain inner pointers itself.

• Second, the allocator parameter must implement a special marker trait
called RestoreSafeAllocator, which abstracts over different NVRAM
allocators. The trait extends the Alloc trait of the standard library, which
is the trait that Box requires for the allocator parameter. Since the program-
mer must ensure to only implement the RestoreSafeAllocator trait for
allocators that use the NVRAM as backing storage, the trait is unsafe to
implement.

4.4. THE RESTORESAFE TRAIT 51

Implementing Custom Allocator Support in the Standard Library

While the proposal for custom allocator support for the heap allocation types of
the standard library was already accepted in 2016 [75], it is still not implemented
at the time of writing this thesis. Since this custom allocator support is required for
the positive RestoreSafe implementations for Box and similar types, we created
an modified version of the standard library. Building on top of the current work in
progress pull requests for custom allocator support [76], we implemented custom
allocator support for the Box, Vec (a heap allocated growable array), VecDeque (a
heap allocated growable ring buffer), Arc (a heap allocated value that uses atomic
reference counting), and BTreeMap (a tree-based, heap allocated key-value map)
types.

To use the modified version of the standard library, we utilized that Redox
uses the xargo [77] tool to rebuild the standard library with a modified feature set
(e.g. disabling backtraces on unsupported platforms). This allowed us to build a
custom version of the standard library by making xargo use our modified version
of libstd.

The dependence on a custom standard library version is a strong drawback
of our solution. However, given that there is already an accepted proposal and a
draft pull request for custom allocator support that are very similar to our custom
implementation, we believe that the migration of our framework to the future
official implementation will be manageable.

Positive RestoreSafe implementations for other Allocation Types

In addition to Box, our framework provides positive implementations for the other
allocation types with custom allocator support. The implementations are shown
in Listing 4.6. Like the implementation for Box, the implementations require that
the value type is RestoreSafe and that the allocator parameter implements the
RestoreSafeAllocator trait.

For BTreeMap, the allocator type must additionally implement the Default
trait and its associated error type Err must implement the Debug trait. Both traits
are required only because of our implementation choices when implementing cus-
tom allocator support in the standard library. Namely, the Default trait is used
as a way of creating an allocator instance without needing access to an existing
allocator instance. This made the implementation much easier since it is not nec-
essary to store an additional allocator reference in every tree node this way. The
Debug bound on the error type is required because we decided to panic on alloca-
tion failures, also in order to simplify the implementation. It is worth to note that
the future official implementation likely will not have this limitations.

52 CHAPTER 4. IMPLEMENTATION

unsafe impl<T, A> RestoreSafe for Vec<T, A>
where T: RestoreSafe, A: RestoreSafeAllocator

{}

unsafe impl<T, A> RestoreSafe for Arc<T, A>
where T: RestoreSafe, A: RestoreSafeAllocator

{}

unsafe impl<K, V, A> RestoreSafe for BTreeMap<K, V, A>
where K: RestoreSafe,

V: RestoreSafe,
A: RestoreSafeAllocator + Default,
A::Err: Debug

{}

Listing 4.6: Positive RestoreSafe Implementations for Supported Allocation
Types

pub struct ContextList {
map: BTreeMap<ContextId, Arc<RwLock<Context>>>,
next_id: usize

}

Listing 4.7: Definition of the ContextList Type

4.4.3 Example: Applying RestoreSafe to Redox
The RestoreSafe trait ensures that no violations of pointer consistency can oc-
cur when partially restoring state after a system reboot. By providing positive
implementations for collection types that are guaranteed to be stored in NVRAM,
our framework is applicable to many real-world use cases.

As an example, Listing 4.7 shows the definition of the ContextList struct of
the Redox kernel. This type is responsible for keeping track of all processes and
threads, similar to process and thread control blocks in Linux. The map field is a
BTreeMap that maps a ContextId to an atomically reference counted Context

instance protected by a read-write lock. For this example, we treat ContextId as
a normal integer and ignore the definition of the Context type.

Since the BTreeMap and the Arc wrapper allocate memory from the volatile
heap by default, the ContextList type is not RestoreSafe. The exact rea-
son that the trait is not implemented is that both collection types contain internal
pointers to which the negative implementations apply. Further, no positive im-
plementation applies because the second type parameter defaults to the system
allocator, which allocates from the volatile heap and thus does not implement the
RestoreSafeAllocator trait.

4.4. THE RESTORESAFE TRAIT 53

pub struct ContextList {
map: BTreeMap<ContextId,

Arc<RwLock<Context>, PersistentRamAllocator>,
PersistentRamAllocator>,

next_id: usize
}

Listing 4.8: Definition of the ContextList Type, Adjusted to Implement the
RestoreSafe Trait

To implement the RestoreSafe trait for ContextList, we need to place
the internal allocations in NVRAM instead. This can be done by supplying a
PersistentRamAllocator as a second generic parameter to both the
BTreeMap and the Arc types. This allocator is provided by our NVRAM frame-
work. It is similar to the default allocator, but it allocates memory from the
NVRAM instead of the volatile heap.

Listing 4.8 shows the adjusted definition of the ContextList type. Now both
the BTreeMap and the Arc types allocate their memory from NVRAM so that
their content stays valid across reboots. Since the PersistentRamAllocator
implements the RestoreSafeAllocator trait, the positive implementations of
RestoreSafe apply. As a result, the ContextList is now RestoreSafe too
(under the assumption that Context is RestoreSafe).

4.4.4 Stability

Apart from a custom version of the standard library, the RestoreSafe trait relies
on the auto traits language feature. This feature is still unstable and might change
in the future. For this reason it is only available when using a nightly version of
the Rust compiler together with the #![feature(optin_builtin_traits)]
feature gate.

While this usage of an unstable feature limits the stability of our framework,
we believe that the auto traits will continue to exist and not receive any major
changes in the future because it is the base for the Send and Sync traits, which
are the fundamental building block of Rust’s compile time thread thread safety.
Further, Redox OS already relies on a nightly compiler and unstable features even
without our framework, so that the stability of our framework is not the critical
factor.

54 CHAPTER 4. IMPLEMENTATION

4.5 Error Correcting Codes

As described in Section 3.2, our framework employs error correcting codes
(ECCs) to ensure bit-wise consistency of (restored) values. Instead of using com-
pute intensive ECCs such as Hamming or Reed-Solomon codes, we chose a sum-
and-copy ECC for our framework based on an evaluation from related work [64].

To give the programmer full control of ECCs recalculations and allow the
gradual transformation of systems, we use an explicit approach for adding ECCs
to values, as described in Section 3.2.2. In this section, we describe the imple-
mentation of wrapper types that add an ECC to values in an explicit way.

This section is structured into subsections as follows. Section 4.5.1 describes
the implementation of a general Ecc wrapper type that augments an arbitrary
type with an ECC. In Section 4.5.2 we then describe the implementation of the
ConsistencyCheckable trait for the Ecc wrapper type. To also support con-
sistency checks for types with internal pointers, Section 4.5.3 explains how our
framework supports nested consistency checks. Finally, Section 4.5.4 describes
how required code modifications can be minimized by integrating ECCs into com-
mon wrapper types such as RwLock.

4.5.1 The Ecc Wrapper Type

Instead of individually adding error correcting codes to all types that might be
stored in NVRAM, we implement an Ecc wrapper type that protects an arbitrary
type with an error correcting code. This has the advantage that the types them-
selves require no modification. It also allows to add the checksum only where it
is necessary, thereby limiting overhead.

The definition of the Ecc type is shown in Listing 4.9. The structure is generic
over a value type T to allow wrapping an arbitrary type. Since it is unknown
whether the value and copy instances are bit-wise consistent before checking,
the fields do not store a T instance directly. Instead, they use the MaybeUninit
wrapper type of the standard library, which is an abstraction for possibly unini-
tialized memory that prevents the compiler from making any assumptions about
the wrapped type (see Section 2.1.4). This ensures that no undefined behavior is
invoked when a bit-flip occurs.

Figure 4.4 shows the memory layout of the Ecc<T> type using the
field_name: FieldType syntax. We see that the value more than doubles
in size. On the other hand, it can be computed very efficiently by the CPU, so it
has a lower performance impact than other ECC variants with a lower memory
overhead such as Hamming codes.

4.5. ERROR CORRECTING CODES 55

struct Ecc<T> {
value: MaybeUninit<T>,
sum: u32,
copy: MaybeUninit<T>,

}

Listing 4.9: Definition of the Ecc Wrapper Type

value:

MaybeUninit<T>

sum:

u32

copy:

MaybeUninit<T>

Figure 4.4: Memory Layout of the Ecc<T> Type

Apart from a new constructor function that wraps a given value, the Ecc type
provides a get_ref method that returns a reference to the wrapped value af-
ter checking its consistency. If the consistency check fails, the function panics.
There is also a try_get_ref method, that returns a Result instead of panick-
ing, and an unsafe get_ref_unchecked method that allows to completely skip
the consistency check for improving performance, which should only used when
an inconsistent value is extremely unlikely.

Mutating a protected value is more complicated because the checksum needs
to be updated for each modification. The Ecc type provides a get_mut method
for modifying the wrapped value. Instead of returning a &mut reference to the
value, the method returns an EccGuard struct that recalculates the checksum
when its destructor is called. By implementing the Deref and DerefMut traits,
the struct can be used just like a normal &mut reference in most cases.

Listing 4.10 shows an usage example for the Ecc wrapper type. In line 2, a
new Ecc instance is created, wrapping the value 0 of type u32. In line 3, the
current value of the number variable is printed by using the get_ref method,
which returns a shared reference to the wrapped value after checking for consis-
tency. Line 4 uses the get_mut method for retrieving an EccGuard instance that
allows mutation of the wrapped value. Here, we increase the value by one. Since
it is not assigned to a variable, the EccGuard instance only lives for the single
statement and immediately goes out of scope after the value was increased. At
this point, the destructor of the EccGuard type runs, which recalculates the sum
and copy fields.

In line 6, a new EccGuard instance is created by calling get_mut again.
This time the result is assigned to the variable i, so it lives until the last usage
of i in line 10. Using this pattern, the wrapped value can be repeatedly modified
without recalculating the checksum every time. This way, performance can be

56 CHAPTER 4. IMPLEMENTATION

1 fn test() {
2 let mut number = Ecc::new(0u32);
3 println!("Current value: {}", number.get_ref());
4 number.get_mut() += 1;
5

6 let i = number.get_mut();
7 if *i > 1 {
8 *i = 10;
9 }

10 *i += 1;
11 }

Listing 4.10: Example Usage of the Ecc Wrapper Type

improved at the cost of slightly decreasing reliability. For example, a bit-flip in
line 8 would not be detected. It is up to the programmer to find a good tradeoff
between reliability and performance.

4.5.2 Implementing the ConsistencyCheckable Trait

To make the Ecc type usable together with our NVRAM framework, it needs
to implement the ConsistencyCheckable trait. However, the trait can only
be safely implemented when the wrapped type contains no reference or pointer
fields. The reason is that the checksum only protects the pointer itself, but not the
pointed value. The ConsistencyCheckable trait, however, requires that the
whole value is checked for bit-wise consistency, including values behind pointers.

For this reason, the trait is only implemented for types that implement a
NoInternalPointers marker trait. This trait is very similar to the
RestoreSafe trait, but without any of the positive implementations. Thus, the
trait is implemented for exactly the types without pointer fields. By requiring the
NoInternalPointers trait for the wrapped type, only Ecc instances without
internal pointers can implement the ConsistencyCheckable trait.

Listing 4.11 shows the trait implementation in Rust-like pseudo-code. The
is_consistent method is not allowed to modify the value, so it only checks if
the stored 32-bit sum is still valid for the value without attempting any restoration.
The is_consistent_restore method additionally checks if the sum is valid
for the copy and if value and copy are equal. In the former case, it assumes that
the copy is still consistent and restores the value from it. In the latter case, the
method assumes that the sum itself was corrupted, so it recalculates it. If no check
succeeds, the value is not restorable and false is returned.

4.5. ERROR CORRECTING CODES 57

unsafe impl<T> ConsistencyCheckable for Ecc<T>
where

T: NoInternalPointers,
{

fn is_consistent(self: *const Self) -> bool {
self.sum == calculate_sum(self.value)

}

fn is_consistent_restore(self: *mut Self) -> bool {
if self.sum == calculate_sum(self.value) {

return true;
}
if self.sum == calculate_sum(self.copy) {

self.value = self.copy;
return true;

}
if self.value == self.copy {

self.sum = calculate_sum(self.value);
return true;

}
false

}
}

Listing 4.11: Implementation of the ConsistencyCheckable Trait for the Ecc
Wrapper Type (in Pseudo Code)

58 CHAPTER 4. IMPLEMENTATION

pub unsafe trait NestedConsistencyChecks {
fn check_consistency_nested(self: *const Self) -> bool;

fn check_consistency_nested_restore(self: *mut Self)
-> bool;

}

Listing 4.12: Definition of the NestedConsistencyChecks Trait

4.5.3 Nested Consistency Checks
As explained in the previous section, the Ecc wrapper type does not support types
with internal pointers. The reason is that the ConsistencyCheckable trait re-
quires that the whole type is checked for bit-wise consistency, including values
behind pointers, but the Ecc type only checks the Self instance. This makes
the Ecc type unsuitable in many cases. For example, types with internal pointers
are common in the Redox kernel, for example in form of a BTreeMap inside the
SchemeList type, which keeps track of all available schemes.

To fix this issue, our framework provides an additional NestedEcc type for
types with pointer fields. In combination with a NestedConsistencyChecks

trait, this type recursively checks the consistency of all values behind pointers, in
order to ensure the bit-wise consistency of the complete value.

The NestedConsistencyChecks Trait

The NestedConsistencyChecks trait describes types that contain one or more
internal pointers to checksum-protected values, such as Box<Ecc<T>>. Check-
ing the bit-wise consistency of the outer type does not suffice for these types.
Instead, the consistency of the value behind the pointer must be checked too. The
NestedConsistencyChecks trait makes it possible to do that.

The definition of the trait is shown in Listing 4.12. Is is almost identical to
the ConsistencyCheckable trait (shown in Listing 4.1). The differences be-
tween the two traits are the method names and that they are called in different
contexts: The methods of the NestedConsistencyChecks trait are called with
Self value that was already checked for bit-wise consistency, while the meth-
ods of the ConsistencyCheckable trait are called with a potentially corrupted
Self value.

The purpose of the methods of the NestedConsistencyChecks trait is to
check the bit-wise consistency of values behind pointers. As an example, List-
ing 4.13 shows the implementation of the trait for Box<Ecc<T>>. First, the meth-
ods convert the self raw pointer into a reference type. This is safe in this case
because the bit-wise consistency of the Box wrapper was already checked and the

4.5. ERROR CORRECTING CODES 59

unsafe impl<T> NestedConsistencyChecks for Box<Ecc<T>>
where T: NoInternalPointers

{
fn check_consistency_nested(self: *const Self) -> bool {

let s = unsafe { &*self };
ConsistencyCheckable::is_consistent(s.deref())

}

fn check_consistency_nested_restore(self: *mut Self)
-> bool

{
let s = unsafe { &mut *self };
ConsistencyCheckable::is_consistent_restore(

s.deref_mut())
}

}

Listing 4.13: Implementation of NestedConsistencyChecks for Box

Ecc type behind the pointer uses MaybeUninit, so that the compiler cannot make
any assumptions about its value. In the second step, the methods call the corre-
sponding methods of the ConsistencyCheckable trait on the Ecc instances
behind the pointer.

The NestedEcc Type

Wrapping the Box<Ecc<T>> type into the Ecc wrapper type does not work be-
cause Box has an internal pointer and thus does not implement the required
NoInternalPointers trait. As an alternative, our framework provides a
NestedEcc wrapper type that is identical to the Ecc type, but uses the
NestedConsistencyChecks trait instead of the NoInternalPointers trait
as a bound for the ConsistencyCheckable implementation.

Listing 4.14 shows the implementation of the ConsistencyCheckable trait
for the NestedEcc type. The is_consistent method first checks the consis-
tency of the Self type by comparing the sum, similar to the implementation for
Ecc (see Listing 4.11). If the Self type is consistent, the check_consistency_
nested method of the NestedConsistencyChecks trait is invoked with the
wrapped value as argument. The check_consistency_nested method then
recursively performs ECC checks for values behind inner pointers. The imple-
mentation of the is_consistent_restore method is not shown here for space
reasons. It is very similar, with the difference that it attempts to restore a corrupted
Self value and calls into check_consistency_nested_restore.

By combining the Ecc and NestedEcc wrapper types, it is possible to re-

60 CHAPTER 4. IMPLEMENTATION

unsafe impl<T> ConsistencyCheckable for NestedEcc<T>
where

T: NestedConsistencyChecks,
{

fn is_consistent(self: *const Self) -> bool {
if self.sum == calculate_sum(self.value) {

NestedConsistencyChecks::check_consistency_nested(
self.value.as_ptr())

} else { false }
}

fn is_consistent_restore(self: *mut Self) -> bool { ... }
}

Listing 4.14: ConsistencyCheckable Implementation for NestedEcc

Step Operation on Type Code in
1 is_consistent() outer NestedEcc Listing 4.14
2 check_consistency_nested() outer Box Listing 4.13
3 is_consistent() inner NestedEcc Listing 4.14
4 check_consistency_nested() inner Box Listing 4.13
5 is_consistent() Ecc<T> Listing 4.11

Table 4.1: Steps for Checking Consistency of the Nested Type
NestedEcc<Box<NestedEcc<Box<Ecc<T>>>>>

cursively check the bit-wise consistency of complex nested types. As an ex-
ample, Table 4.1 shows the sequence of consistency checks that occur for the
NestedEcc<Box<NestedEcc<Box<Ecc<T>>>>> type. For each step, the table
shows the method that is being invoked, the type on which it is invoked, and a
reference to the listing that shows the method implementation.

In step 1, an outside caller such as the persistent RAM manager calls the
is_consistent method of the ConsistencyCheckable trait. The implemen-
tation for the outer NestedEcc type then verifies the consistency of the outer Box
instance. If it is consistent, it calls in step 2 the check_consistency_nested
method of the NestedConsistencyChecks trait on the wrapped Box instance.
This method then calls the is_consistent method on the value behind the
pointer (step 3). The wrapped value is a NestedEcc instance again, so it again
calls check_consistency_nested on the wrapped Box instance after check-
ing the consistency of Self (step 4). Finally, the inner Box instance calls
is_consistent on the wrapped Ecc value, which has no further internal point-
ers.

4.5. ERROR CORRECTING CODES 61

pub struct BufferField {
pub source_buf: Box<AmlValue>,
pub index: Box<AmlValue>,
pub length: Box<AmlValue>

}

Listing 4.15: The BufferField Type of the Redox Kernel

pub struct EccBufferField {
pub source_buf: Box<Ecc<AmlValue>>,
pub index: Box<Ecc<AmlValue>>,
pub length: Box<Ecc<AmlValue>>

}

Listing 4.16: ECC-Augmented Version of the BufferField Type

Deriving NestedConsistencyChecks

While our framework provides NestedConsistencyChecks implementations
for supported collection types, these collection types are often not used directly.
Instead, they are commonly wrapped in structs and other compound types. For ex-
ample, the ContextList struct of the Redox kernel (shown in Listing 4.7) inter-
nally uses a BTreeMap collection type for its map field. Since our framework can
only provide NestedConsistencyChecks implementations for known types,
the programmer needs to implement the trait themselves in order to use custom
types such as ContextList together with the NestedEcc type.

As an example, Listing 4.15 shows the definition of the BufferField struct
of the Redox kernel, which is used as part of the parser for the ACPI machine
language (AML). To allow checking the consistency of the struct, it should be
wrapped in a NestedEcc type. For that, the values stored in the Box types need
to be protected by introducing Ecc wrapper types. The ECC-augmented version
of BufferField is shown in Listing 4.16.

In the second step, the NestedConsistencyChecks trait must be imple-
mented for EccBufferField because it is required by the NestedEcc type.
Our framework cannot provide this implementation because it does not know the
EccBufferField type. Thus, the programmer needs to manually provide an
implementation.

Listing 4.17 shows this manual implementation. First, both methods convert
the raw pointer into a reference. This operation is safe here because of two rea-
sons. First, the Self type is checked for consistency before the methods are
called. Second, all the pointer fields wrap the pointed value in an Ecc type, which
uses MaybeUninit and thus prevents the compiler from making assumptions

62 CHAPTER 4. IMPLEMENTATION

unsafe impl NestedConsistencyChecks for EccBufferField {
fn check_consistency_nested(self: *const Self) -> bool {

let s = unsafe { &*self };
s.source_buf.check_consistency_nested() &&
s.index.check_consistency_nested() &&
s.length.check_consistency_nested()

}

fn check_consistency_nested_restore(self: *mut Self)
-> bool

{
let s = unsafe { &mut *self };
s.source_buf.check_consistency_nested_restore() &&
s.index.check_consistency_nested_restore() &&
s.length.check_consistency_nested_restore()

}
}

Listing 4.17: Manual Implementation of NestedConsistencyChecks for
EccBufferField

about the wrapped value. After converting the raw pointer to a reference, the
methods recursively invoke themselves on each pointer field. The methods only
return true if all fields are consistent.

While such a manual implementation of the NestedConsistencyChecks

trait is possible, it has several drawbacks. First, it is cumbersome for the program-
mer because such an implementation is required for every struct that should be
wrapped in a NestedEcc type. Second, it is prone to programmer mistakes. For
example, copy-and-paste errors and misspellings are common problems in such
boilerplate code. More importantly, code refactorings that change the struct type
could lead to an outdated implementation. For example, the programmer can eas-
ily forget to update the implementation in Listing 4.17 after adding a fourth Box

field to the EccBufferField type. As a result, the newly added field would not
be checked for consistency, which can result in undefined behavior when the field
is accessed after a restart.

For these reasons, our framework provides a way to automatically implement
the NestedConsistencyChecks type for custom structs. The idea is to provide
a procedural derive macro (see Section 2.1.3) that auto-generates the implemen-
tation. Listing 4.18 shows how the macro can be used to replace the manual
NestedConsistencyChecks with a simple #[derive] attribute.

The derive macro works by reading the source code of the annotated struct. It
then generates the source code for the trait implementation by recursively calling
the respective NestedConsistencyChecks method for each pointer field of the

4.5. ERROR CORRECTING CODES 63

#[derive(NestedConsistencyChecks)]
pub struct EccBufferField {

...
}

Listing 4.18: Automatic Implementation of NestedConsistencyChecks

struct. As a result, an automatic implementation equivalent to the implementation
shown in Listing 4.17 is generated. Thus, the mentioned programmer mistakes
are completely prevented.

4.5.4 Reducing Required Code Modifications
As explained in Section 4.5.1, the Ecc wrapper type requires explicit calls to its
get_ref and get_mut methods in order to access the wrapped value. Thus,
extensive code modifications are required when wrapping an existing type into
an Ecc wrapper. For example, replacing the BufferField type shown in List-
ing 4.15 with the EccBufferField type shown in Listing 4.16 would require
adding a get_ref call for every read operation on a field of the struct.

To reduce the required code modifications, our framework provides ECC-
augmented versions of common wrapper types such as RwLock. By keeping the
exact same API as the augmented types, the required code modifications are mini-
mized. In the following, we focus on the RwLock type for simplicity, but the same
approach can be also applied to other wrapper types.

Listing 4.19 shows an example code that uses the RwLock synchronization
primitive, which provides a read-write-lock. The type allows an arbitrary number
of readers or a single writer at any point in time, but not both. Through the read
method, the RwLock is locked in shared access mode. In this mode, other read
calls succeed, but write calls are blocked until the last read operation finishes.
The read method returns a shared reference to the wrapped value, which only
allows reading the value but prevents any modification. In contrast, the write

method locks the RwLock with exclusive write access, which blocks all other
read and write calls as long the lock is held. This way, only a single writer can
be active at any point in time, which makes it safe to modify the wrapped value
through a &mut reference.

The RwLock type is common in multi-threaded programs. For example, the
Redox kernel uses RwLock types for managing access to the global Context
types stored in the ContextList (see Listing 4.7). By creating an EccRwLock

wrapper type that augments the RwLock type with an ECC, we can protect the
items of the ContextList without requiring any modifications to code that ac-
cesses the list.

64 CHAPTER 4. IMPLEMENTATION

let lock = RwLock::new(0);

let value_0 = lock.read();
let value_1 = lock.read();
assert_eq!(value_0, value_1);

let mut value_mutable = lock.write();

*value_mutable = 10;

Listing 4.19: Example Use of RwLock

pub struct EccRwLock<T> {
inner: RwLock<Ecc<T>>

}

impl<T> EccRwLock<T> {
pub fn read(&self) -> EccRwLockReadGuard<T> {

let ecc = self.inner.read();
assert!(ecc.is_consistent());
EccRwLockReadGuard(ecc)

}

pub fn write(&self) -> EccRwLockWriteGuard<T> {
let mut ecc = self.inner.write();
assert!(ecc.is_consistent_restore());
EccRwLockWriteGuard(ecc)

}
}

Listing 4.20: Definition of EccRwLock

Listing 4.20 shows the definition of the EccRwLock type, which is just a wrap-
per around RwLock<Ecc<T>>. Like RwLock, the type supports read and write
operations, but the operations additionally perform consistency checks. Restora-
tion of inconsistent values is only possible for the write method because it re-
quires a mutable reference. Instead of returning bare reference types, both meth-
ods return a guard type. This guard type can used like normal references, but has
a destructor that recalculates the ECC checksum (only for write) and releases
the lock when it is dropped.

In order to add an ECC protection to the code example in Listing 4.19, only
the type name in the first line needs to be changed from RwLock to EccRwLock.
The remaining code can remain unchanged because the EccRwLock type provides
the same API.

4.6. THE #[RESTORABLE] ATTRIBUTE 65

#[restorable(restore = true)]
static S: StaticType = static_init_expression;

Listing 4.21: Original Static Definition

static S: _S_Wrapper = _S_Wrapper {
value: spin::Once::INIT,

}

struct _S_Wrapper {
value: spin::Once<&'static mut StaticType>,

}

Listing 4.22: Generated Static Definition

4.6 The #[restorable] Attribute

By default, static variables are stored in the .data or .bss sections of the ex-
ecutable, which is newly initialized when the executable is loaded again after a
restart. To preserve the value of a static variable across reboots, it must be stored
in the NVRAM instead, which is not reinitialized after a reboot.

One way to solve this problem is to modify the bootloader to directly load
relevant sections into the NVRAM and omit reinitialization of the static value on
a reboot. However, this would make the bootloader much more complex and the
kernel dependent on a specific non-standard bootloader implementation.

As described in Section 3.5, we instead provide a #[restorable] attribute
that lazily initializes the static variable in NVRAM on the first use. Listing 4.21
shows how the attribute can be applied to a static variable. The static_init_
expression can be an expression of any form, ranging from a simple integer
literal to a complex initialization block inside {} braces. Using the attribute, no
bootloader modification is required so that the kernels stays portable. In the fol-
lowing, we describe the functionality of the #[restorable] attribute with an
example.

The #[restorable] attribute is implemented as an attribute-like procedu-
ral macro, as described in Section 2.1.3. It transforms the static declaration
shown in Listing 4.21 to the code shown in Listing 4.22. The static still has the
same name S, but its type was changed to a newly defined _S_Wrapper structure,
which has a single value field. Instead of storing the value of type StaticType
directly, the field contains a reference to it, wrapped by the Once synchronization
primitive. This makes it possible to allocate the value in the NVRAM and only
keeping a pointer to it.

66 CHAPTER 4. IMPLEMENTATION

impl ::core::ops::Deref for _S_Wrapper {
type Target = StaticType;

fn deref(&self) -> &Self::Target {
let allocate_static = || [...];
self.value.call_once(allocate_static)

}
}

Listing 4.23: Generated Deref Implementation

let allocate_static = || {
let init = || static_init_expression;
PERSISTENT_RAM_MANAGER.allocate_named(self as usize, init)

}

Listing 4.24: Generated allocate_static Implementation for restore =

true

To make the generated static variable usable like a static variable of type
StaticType, we provide an implementation of the Deref trait, which imple-
ments the dereferencing operation. Since Rust performs auto-dereferencing on
method calls and field accesses, the Deref implementation makes the generated
S static usable like a static of type StaticType.

Listing 4.23 shows the implementation of the Deref trait. The type alias
Target specifies that the _S_Wrapper dereferences to a StaticType type. The
deref method performs the actual dereferencing and is automatically called by
the compiler. The method is implemented using the call_once method of the
Once synchronization primitive, which allows running an one-time global initial-
ization routine on the first call_once call. On subsequent calls, a reference to
the already initialized value is returned.

The implementation of the allocate_static closure depends on the value
of the restore argument passed to the #[restorable] attribute. The imple-
mentation for restore = true, is shown in Listing 4.24. In this case, the gen-
erated closure calls the allocate_named method of the global PERSISTENT_
RAM_MANAGER instance, which is described in Section 3.1.1. The address of the
static variable is hereby used as the unique key. A closure returning the static_
init_expression is passed as an argument.

Listing 4.25 shows the implementation of the closure for restore = false.
The expression is allocated on the normal heap using the Box type. This way, the
static is newly initialized on every reboot, so that the behavior is similar to
a static without the restorable attribute. The difference is that more com-

4.6. THE #[RESTORABLE] ATTRIBUTE 67

let allocate_static = || {
Box::leak(Box::new(static_init_expression))

}

Listing 4.25: Generated allocate_static Implementation for restore =

false

plex initialization expressions are possible with the attribute since the initialization
happens at runtime instead of compile time.

68 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

To evaluate our NVRAM framework, we applied it to both the kernel and user-
space programs of Redox OS (see Section 2.2). As we did not have access to
real NVRAM, we simulated it using QEMU. By injecting bit flips and forcing
system reboots through QEMU’s QMP interface, we evaluated the robustness of
our solution.

We performed two types of experiments. First, we added an ECC protection
to a kernel-internal data structure and evaluated the robustness by injecting ran-
dom bit-flips. By measuring the progress of a test program we show that our
ECC wrapper types considerably improve the resilience against flipped bits. Sec-
ond, we implemented support for persistent file descriptors and evaluated them by
causing system restarts while running a test program in userspace. By examining
the debug output of the system we show that our framework is able to keep state
across system restarts.

This chapter is structured as follows: First, we introduce the QEMU machine
emulator in Section 5.1. We describe its QMP interface, which allows to control a
guest instance from the host system, and show how it can be used to inject system
restarts. We also present a QMP-based fault injection framework for inducing
bit-flips and explain how NVRAM can be simulated in QEMU.

In Section 5.2, we then evaluate the usability and robustness of the ECC wrap-
per types of our framework by protecting a kernel-internal data structure of the
Redox kernel. We show that the use of the combined wrapper types described in
Section 4.5.4 reduces the required code modifications to a minimum. By induc-
ing random bit-flips through the QMP protocol, we show that the ECC protection
of our wrapper types considerably increases the robustness of the protected data
structure. We also evaluate the performance overhead of the ECC wrapper types
by running microbenchmarks.

Finally, Section 5.3 shows how we applied our NVRAM framework to imple-
ment support for persistent file descriptors in Redox. By injecting system reboots

69

70 CHAPTER 5. EVALUATION

{ "execute": "system_reset" }

Listing 5.1: QMP-Command for Performing a Hard Reset of the Guest System

while running an userspace test program, we show that persistent file descriptors
allow the test program to continue using an opened file across system restarts. We
also perform an analysis of error cases for different restart intervals to show the
robustness of our implementation.

5.1 QEMU

QEMU [78] is an open source machine emulator and virtualizer. It is implemented
as a hosted virtual machine monitor (VMM) that uses binary translation to run
guest systems in a virtual machine. Apart from x86, it supports many other system
architectures such as ARM or RISC-V [79]. By utilizing the kernel-based virtual
machine (KVM) of the Linux kernel, near native performance is possible [80].

Apart from a high performance, QEMU provides useful debugging capabili-
ties. For example, it supports logging of system interrupts and can connect to an
external instance of the GDB or LLDB debuggers. Through the built-in monitor,
full introspection and control of the system state is possible [81].

For our evaluation, we use the QEMU machine protocol, which allows to ac-
cess and modify system state from scripts on the host system. By injecting system
restarts and bit-flips into the guest system, we simulate the characteristic proper-
ties of NVRAM without having access to a real NVRAM device.

5.1.1 The QEMU Machine Protocol

The QEMU machine protocol (QMP) is a JSON-based interface that allows to
control a QEMU instance from the host system [82]. The protocol supports a wide
range of commands, for example for dumping the guest memory or for simulating
a key-press event of the keyboard device.

To evaluate our NVRAM framework, we require two kinds of functionality.
First, we need a way to force a system reset in order to simulate a power outage
or device failure. This is possible using the system_reset command, which
is shown in Listing 5.1. Second, we need to be able to corrupt main memory, to
simulate flipped bits that can occur in NVRAM. Since this functionality is not sup-
ported in the upstream version of QEMU, we used a QEMU fork from Xilinx [83]
instead, which provides a fault injection framework.

5.1. QEMU 71

import fault_injection
import sys
import random

fi = None # fault injector

def main():
global fi
fi = fault_injection.FaultInjectionFramework(sys.argv[1], 0)

fi.notify(1 * 1000 * 1000 * 1000, corrupt) # after 1 second

fi.run()
sys.exit(1)

def corrupt():
byte_number = random.randint(0, 20 * 1024 * 1024)
byte = 0x11
fi.write(byte_number, byte, 1, 0)

fi.notify(1 * 1000 * 1000, corrupt) # every millisecond

if __name__ == '__main__':
main()

Listing 5.2: Python Script that Corrupts a Random Memory Byte Every Millisec-
ond

5.1.2 Fault Injection

The fault injection framework of the QEMU fork by Xilinx modifies the QMP
interface to allow arbitrary memory modifications through Python scripts. For
example, Listing 5.2 shows a script to set a random memory byte to 0x11 every
millisecond. First, the fault injection framework is initialized. Then, the notify
method is used to register the corrupt function as a callback after one second.
By invoking the run method, the fault injection loop is started. When called, the
corrupt function chooses a random byte in the first 20 megabytes of memory
and overwrites it with 0x11 through the write method. Afterwards, it uses the
notify method to run itself again after one millisecond.

It is worth noting that the write method operates on physical addresses. To
also support the targeted corruption of certain virtual memory areas, we imple-
mented a virt_to_phys function that translates a virtual to physical address by
traversing the guest’s page tables.

72 CHAPTER 5. EVALUATION

pub struct ContextList {
map: BTreeMap<ContextId, Arc<RwLock<Context>>>,
next_id: usize

}

Listing 5.3: Definition of the ContextList Type

5.1.3 Simulating NVRAM
Using the fault injection framework and the QEMU machine protocol, we were
able to simulate unreliable memory and cause system restarts at a selected point
in time. In order to simulate the persistence of NVRAM, we utilized the fact that
QEMU leaves the memory content unchanged when a reboot is injected via QMP.
This makes any physical memory region a possible NVRAM region.

5.2 ECC Evaluation
To evaluate the robustness and the usability of our Ecc wrapper type, we used it to
protect the kernel-internal ContextList data structure, which is shown in List-
ing 5.3. The data structure keeps track of the threads of all processes, comparable
to the thread and process control blocks in Linux.

Internally, the ContextList struct uses a BTreeMap collection to keep track
of all Context instances in the system. The Context type is a large struct that
contains several types of IDs (process ID, user ID, group ID, etc.), a list of open
file descriptors, a reference to the thread-local storage, the backed-up CPU state
for paused threads, and many more fields.

The ContextList type is a good candidate for evaluating our ECC wrapper
types in kernel context because it keeps a large portion of kernel-internal state and
is regularly accessed. For example, on each context switch, several fields of the
current Context instance are modified, such as the field that contains the current
CPU state.

Our evaluation consists of the following parts: First, we study the number of
required code changes for introducing an explicit ECC protection and compare
the results for the Ecc and EccRwLock types. Second, we evaluate the robust-
ness of the EccRwLock type by inducing random bit-flips. Finally, we perform a
microbenchmark to evaluate the performance overhead of the Ecc wrapper type.

5.2.1 Required Kernel Changes
As we noted in Section 3.2.2, our framework uses an explicit approach with a
non-transparent ECC. Compared to transparent ECCs, it has the advantage that all

5.2. ECC EVALUATION 73

Modified Lines RwLock<Ecc<Context>> EccRwLock<Context>
type renames 15 15
imports 5 5
value creation 1 0
value usage 100 0
total 123 20

Table 5.1: Number of Modified Lines

performance overhead is explicit to the programmer, which allows potential op-
timizations such as batching checksum recalculations. However, it requires code
modifications whenever a new type should be protected by an ECC. To reduce
these code modifications as much as possible, our framework provides special
types that augment common wrapper type such as RwLock with an ECC, as ex-
plained in Section 4.5.4. The types have the same API as the normal, unprotected
wrapper type, so that the needed code modifications are considerably reduced.

To evaluate how well this approach helps to reduce the number of required
code changes, we used the EccRwLock type presented in Section 4.5.4 to protect
the items of the central ContextList data structure of the Redox kernel. For that,
we changed the item type of the ContextList from Arc<RwLock<Context>>

to Arc<EccRwLock<Context>> and recorded the number of required code
changes in the rest of the code.

For comparison, we also recorded the number of required changes for our
general purpose Eccwrapper type presented in Section 4.5.1. For that we repeated
the same process, but switched the item type from Arc<RwLock<Context>> to
Arc<RwLock<Ecc<Context>>>, which effectively adds the same kind of ECC-
protection.

Table 5.1 compares the resulting number of code changes, both in total and
categorized into different types of code changes. The left column shows the re-
quired number of code modifications for adding an additional Ecc wrapper to the
type, so that the item type becomes Arc<RwLock<Ecc<Context>>>. The right
column shows the number of required modifications when the RwLock is replaced
by an EccRwLock, forming the type Arc<EccRwLock<Context>>.

The table shows that the combined EccRwLock type requires considerably less
modifications than the Ecc type. When comparing the types of modifications, the
table shows that the number of required type renames are the same, which makes
sense since all mentions of the old type name must be replaced by the new type
name, independently of the name of the new type. Also, both approaches require
the same number of new imports, for either the Ecc or the EccRwLock type. For
the RwLock<Ecc<Context>>, the expression for creating a new instance needs

74 CHAPTER 5. EVALUATION

to change from RwLock::new(...) to RwLock::new(Ecc::new(...)) in
the single place where a new value is constructed. For the combined EccRwLock

type the initialization syntax remains the same, apart from renaming the type.
The most notable difference occurs for the lines where the value is used. Intro-

ducing an additional Ecc wrapper requires additional get_ref or get_mut calls
after locking, which requires the modification of 100 lines in our case. For the
EccRwLock type, these modifications are not necessary since the type introduces
the ECC transparently without changing the public API. It still calls the get_ref
and get_mut methods of the ECC type, but it does so automatically when a read-
or write-lock is acquired.

This result shows that our EccRwLock type considerably reduces the required
code modifications compared to using RwLock<Ecc<...>> directly. It still re-
quires a few code adjustments, but mostly mechanical changes that can be easily
applied by following the compiler’s error messages. In the future, these changes
might be even automated using tools such as cargo fix [84] or refactoring sup-
port of integrated development environments (IDEs).

5.2.2 Robustness
To evaluate the robustness of the Ecc wrapper type, we randomly injected bit-
flips into the items of the ContextList collection while running a test program.
We analyzed the progress of the test program both with an original ContextList
type and a modified ContextList type that uses the EccRwLock to add an ECC-
protection to its items and compared the results.

For analyzing a test run, we monitored the debug output to determine how far
the program was able to run before a fatal error occurred. We did multiple test
runs with different intervals between bit-flips. To get statistical relevant results,
we repeated each test run 100 times and report the median values together with
the lower and upper quartiles.

Targeted Fault Injection

The fault injection framework described in Section 5.1.2 allows the injection of
bit-flips at arbitrary memory locations. In order to get meaningful results, we in-
jected bit-flips directly into the ECC-protected items of the ContextList instead
of distributing the bit-flips over the complete memory. This targeted approach has
several advantages. First, it eliminates noise from unrelated system crashes, for
example due to critical bit-flips in page tables. Second, it considerably increases
the probability that a protected item is affected by a random bit-flip. In contrast,
flipping a random bit of the complete memory would affect a protected value only
with a very low probability.

5.2. ECC EVALUATION 75

To be able to perform targeted fault injection, we preallocated a continu-
ous physical memory region as backing storage for the Context items of the
ContextList. We modified the context creation routines to allocate new items
from this memory region instead of using heap allocations. This way, our ker-
nel has a statically known physical memory range that stores exactly the ECC-
protected Context instances that are referenced in the ContextList.

By retrieving the physical address and size of this memory region through the
debug output of the kernel, we were able to create a fault injection script that
injects random bit-flips directly into the protected items of the ContextList.

The Test Program

The goal of the test program is to frequently modify the ContextList data struc-
ture, both by spawning processes and threads and by sending inter process mes-
sages through pipes, which are stored inside the ContextList too.

A simplified version test program is shown in pseudo-code in Listing 5.4. The
program launches 30 child processes that all echo their standard input back as
standard output. Then the parent process spawns one thread per child that tests
whether the child behaves correctly by sending messages and verifying the re-
sponses. Each thread sends 100 message blocks that each contain 10 messages.
In total over all threads and processes, this results in 3000 message blocks that
are sent and acknowledged. Additionally, each child is stopped with a special exit
message (not shown in the code except), which results in a total of 3030 message
blocks.

While the code except uses only integers as messages, the real program em-
beds these numbers into short strings to increase the message size. The whole
response string is checked for consistency.

Results

Figure 5.1 compares the number of acknowledged message blocks before the test
program crashed for different bit-flip intervals with and without ECC protection.
The results are shown as a box-and-whisker plot that uses the following conven-
tions: The colored boxes represent the range between the lower and upper quartile,
the horizontal line shows the median, and the vertical line (the whiskers) show the
full range of the data without outliers.

For bit-flip intervals of 100ms and above, almost all runs of the test program
finish successfully when the ECC protection of the context list is active. Without
it, the lower quartile of acknowledged messages is up to 39% lower. This shows
that the EccRwLock is able to effectively protect the context list data structure
from bit flips.

76 CHAPTER 5. EVALUATION

fn main() {
if is_child() { child() } else { parent() }

}

// echo messages sent on stdin back on stdout
fn child() {

for message in io::stdin().read() {
io::stdout().write(message)

}
}

fn parent() {
let childs = spawn_childs(); // spaws 30 child processes
for c in childs {

thread::spawn(|| test_child(c));
}

}

fn test_child(c: Child) {
let next_send = 0; let next_ack = 0;
for iteration in 0..100 {

for message_number in 0..10 {
c.stdin.write(next_send);
next_send += 1;

}
for message_number in 0..10 {

assert_eq!(c.stdout.read(), next_ack);
next_ack += 1;

}
}

}

Listing 5.4: Simplified Test Program in Pseudo-Code

5.2. ECC EVALUATION 77

Figure 5.1: Number of Acknowledged Message Blocks Before a Program Crash
for Different Bit-Flip Intervals

78 CHAPTER 5. EVALUATION

For an interval of 500ms, almost all runs of the test program finish success-
fully, even without ECC protection. The reason is that the total number of flipped
bits over the program run time is relatively small, so that the probability that a
critical bit is flipped is very low.

For an bit-flip interval of 1ms, the program (or the kernel) crashes almost
immediately for both enabled and disabled ECC protection. The median and the
lower and upper quartiles are 0 for both cases. The reason that the ECC can not
effectively protect the context list in this case is probably that the bit-flips occurred
after a modified value was written, but before the checksum was recalculated.
Also, the used checksum is only able to recover the original value if the copy is
still consistent.

The ECC-protection is most effective for bit-flip intervals between 20 and
250ms. It often considerably improves the upper quartile, for example from 1579
to 3030 message blocks for an interval of 20ms. For intervals greater than 50ms,
it also improves the lower quartile considerably, for example from 1856 to 3030
message blocks for an interval of 100ms.

Discussion

In summary, the results show that the EccRwLock wrapper type considerably im-
proves the resilience against bit-flips for bit-flip intervals of 5ms or larger. For
intervals of 100ms or larger, the ECC protections allows the program to finish
successfully in almost all cases.

If maximal protection against bit-flips is desired, the EccRwLock might not be
the best choice as the RwLock interface can lead to relatively long periods between
writing a value and updating the checksum. The reason is that the checksum is
only recalculated after the lock is released again, which can be a relatively long
time, for example when a lock is held for the duration of a loop. For improved
protection, the explicit interface of the Ecc wrapper type can be used to update
the checksum immediately after writing a value.

5.2.3 Performance Overhead

To evaluate the performance overhead of our Ecc wrapper type, we performed a
microbenchmark that measures the execution time of read and write operations on
ECC-protected arrays of different sizes. For running the benchmarks, we used the
built-in bench framework [85] of Rust.

5.2. ECC EVALUATION 79

#[bench]
fn test_benchmark(b: &mut Bencher) {

let s = "Hello";
b.iter(|| {

let upper = s.to_uppercase();
test::black_box(upper);

})
}

Listing 5.5: Example Benchmark using the Rust Benchmark Framework

Rust’s Benchmark Framework

The bench framework supports automated running of microbenchmarks. It repeat-
edly invokes specified function and measures the average execution time and the
variance. The bench framework is shipped with Rust, but still limited to nightly
compilers because the exact design is not stabilized yet. The Rust project itself
uses the tool for evaluating the performance of the compiler, so even though the
tool is not officially considered stable yet, it is well tested in practice.

Listing 5.5 shows an example benchmark function that uses the bench frame-
work. The #[bench] attribute marks the function as a benchmark function,
so that it can be run by the benchmark runner. All benchmark functions take a
Bencher instance as argument, which provides an iter method that should be
used to run the actual benchmark. Everything outside the iter method is consid-
ered initialization or deinitialization code that should not be measured.

The example function first creates a "Hello" string as an initialization rou-
tine. Then it calls the iter function with a closure that contains the code that
should be benchmarked. In this case, a closure that calls the to_uppercase

method on the string s is passed. The bench framework runs the given func-
tion multiple times and measures the average time per iteration and the variance.
Instead of running the function a fixed number of times, the bench framework
dynamically repeats the function passed to iter until its runtime converges to a
stable median. It also takes care of removing outliers.

The purpose of the black_box function is to prevent certain compiler op-
timizations. For example, without the black_box function the compiler could
completely remove the to_uppercase call because the result is not used. The
black_box function prevents this by being opaque to the compiler, which means
that the compiler has to treat the upper variable as used and thus needs to actually
execute the to_uppercase function.

To execute the benchmark, the built-in cargo bench command [86] can be
used. This results in the output shown in Listing 5.6. We see that the median
runtime of a to_uppercase call for "Hello" is 109 nanoseconds. The +/- 1

80 CHAPTER 5. EVALUATION

test_benchmark ... bench: 109 ns/iter (+/- 1)

Listing 5.6: Result of Example Benchmark

#[bench]
fn read_array(b: &mut Bencher) {

let array = black_box([0x2222222u64; ARRAY_SIZE]);
b.iter(|| {

for i in 0..ARRAY_SIZE {
black_box(array[i]);

}
})

}

Listing 5.7: Implementation of the Read Benchmark

means that the variance across the test runs was one nanosecond.

Benchmark Functions

To evaluate the performance of the Ecc wrapper type, we implemented 8 bench-
mark functions. All functions follow the same scheme: They create an array,
either with or without ECC protection, and then measure the time for a certain
access operation. We implemented the following benchmark functions:

• Read: To get a baseline for comparison, this benchmark measures the time
needed for reading every element of an unprotected array. The implementa-
tion of the function is shown in Listing 5.7. It uses the black_box function
on the initialized array to prevent constant propagation optimizations. The
black_box function here behaves like the identity function, i.e. it simply
returns the value that was passed as argument. To ensure that no read opera-
tions are optimized out, each array element is also passed to the black_box
function.

• Write: This benchmark provides a baseline for write operations. Listing 5.8
shows the implementation of the function. Similar to the read benchmark,
it creates an unprotected array wrapped in a black_box call. It then over-
writes each element with a new value. To prevent optimizations, both the
new value and the resulting array are passed to the black_box function
again.

5.2. ECC EVALUATION 81

#[bench]
fn write_array(b: &mut Bencher) {

let mut array = black_box([0x2222222u64; ARRAY_SIZE]);
b.iter(|| {

for i in 0..ARRAY_SIZE {
array[i] = black_box(0x11111111);

}
black_box(&array);

})
}

Listing 5.8: Implementation of the Write Benchmark

#[bench]
fn ecc_array_get_ref(b: &mut Bencher) {

let array = black_box(Ecc::new([0x2222222u64; ARRAY_SIZE]));
b.iter(|| {

black_box(array.get_ref());
})

}

Listing 5.9: Implementation of the ECC get_ref Benchmark

• ECC get_ref: This benchmark uses an ECC-protected array and measures
the time for calling the get_ref method of the Ecc wrapper type, which
verifies the ECC checksum. Listing 5.9 shows the implementation. The
Ecc::new function is used outside of the iter function, so it is not mea-
sured.

• ECC get_mut: Similar to the get_ref benchmark, this benchmark measures
the runtime of the get_mut function. Apart from calling get_mut instead
of get_ref, the implementation is identical to the get_ref benchmark.

• ECC Read Batched: This benchmark measures the time to read all ele-
ments of an ECC-protected array. Instead of verifying the ECC checksum
before reading each element, the checksum is only verified once before the
loop. This way, multiple ECC calculations are performed in a single batch.
Listing 5.10 shows the implementation of the benchmark. The get_ref

method is called inside the iter function, so it is included in the measured
time.

• ECC Read Unbatched: In contrast to the batched read benchmark, this
benchmark invokes the get_ref method for each array element instead of
creating an array_ref binding outside of the for loop.

82 CHAPTER 5. EVALUATION

#[bench]
fn read_ecc_array_batched(b: &mut Bencher) {

let array = black_box(Ecc::new([0x2222222u64; ARRAY_SIZE]));
b.iter(|| {

let array_ref = array.get_ref();
for i in 0..ARRAY_SIZE {

black_box(array_ref[i]);
}

})
}

Listing 5.10: Implementation of the ECC Read Batched Benchmark

#[bench]
fn write_ecc_array_batched(b: &mut Bencher) {

let mut array = black_box(Ecc::new(
[0x2222222u64; ARRAY_SIZE]));

b.iter(|| {
let mut array_mut = array.get_mut();
for i in 0..ARRAY_SIZE {

array_mut[i] = black_box(0x11111111);
}
black_box(&array_mut);

})
}

Listing 5.11: Implementation of the ECC Write Batched Benchmark

• ECC Write Batched: This function benchmarks the time required for
writing to an ECC-protected array through the reference returned from the
get_mut method. Similar to the ECC Read Batched benchmark, this func-
tion only invokes get_mut once instead of calling it for each array element.
The implementation of this function is shown in Listing 5.11.

• ECC Write Unbatched: This benchmark is identical to the ECC Write
Batched benchmark, with the difference that it invokes get_mut for every
array element, thereby minimizing the time between writing new values and
recalculating checksums.

Instead of using a fixed array size, we repeated the benchmarks for different
array sizes between 5 and 1000 elements (in steps of 5 elements). The benchmarks
were run using QEMU 3.1.0 on an Ubuntu 19.04 system with an Intel Core i5-
7300U CPU and 8GB main memory.

5.2. ECC EVALUATION 83

Figure 5.2: Time for accessing all Elements of an Array, with and without ECC
Protection

Results

The results of our benchmarks are shown in Figures 5.2 and 5.3. Both graphs plot
the array size on the x-axis and the median execution time in milliseconds on the
y-axis. The reason that we split the results across two figures is that the unbatched
ECC tests have a much higher runtime than the other tests.

Figure 5.2 shows the runtime of all tests except the unbatched ECC tests. The
results show the following:

• The time for a linear read of the unprotected array grows linearly with the
array size, from 0.003ms for an array size of 10 to 0.294ms for an array
size of 1000.

• Linearly writing the unprotected array takes about twice the time than a
linear read. It also grows linearly with the array size, ranging from 0.006ms

for a size of 10 to 0.579ms for a size of 1000.

• Calling get_ref on the array to verify its consistency takes about 19 times
as long as a linear read operation (median: 19.02, lower quartile: 17.57,
upper quartile: 19.32). Like the linear read, it grows linearly with the array
size, which makes sense since it calculates a sum over all array items.

• The get_mut method, which additionally recalculates the ECC checksum,
takes about twice the time than the get_ref method. Compared to an

84 CHAPTER 5. EVALUATION

Figure 5.3: Time for Accessing all Elements of an ECC-Protected Array, with and
without Batching of ECC calculations

unprotected write operation, it is about 20 times slower (median: 20.12,
lower quartile: 19.99, upper quartile: 20.46).

• Batched ECC read operations, which call get_ref once and then read all
array elements through the returned reference, are only marginally slower
than the get_ref call alone (factor 1.0578).

• Similarly, batched ECC write operations are only about 1.0570 times
slower than the get_mut call alone.

The results indicate that the performance overhead comes mainly from the
get_ref and get_mut methods, which is expected since they are performing
the checksum verifications and recalculations. The results from the unbatched
ECC tests shown in Figure 5.3 confirm this theory: Calling get_ref or get_mut
on every array element leads to an exponential performance overhead. The reason
is that the methods always calculate the checksum on the whole array. Thus, a
doubled array size leads to a doubled number of checksum calculations.

The drastically lower runtime of the batched ECC calculation shows a funda-
mental advantage of our non-transparent ECC design: The programmer is able to
manually optimize the performance of ECC calculations through techniques like
batching. The test results show that manual batching can lead to drastic perfor-
mance improvements.

5.3. PERSISTENT FILE DESCRIPTORS 85

While the general overhead of our Ecc wrapper type might seem very high, it
is worth noting that the results only show the worst-case overhead for a synthetical
microbenchmark. In practical scenarios, the overhead is expected to be much
lower. Also, we did not perform any performance profiling or optimization on the
Ecc type, so we expect that the performance can be further improved, for example
through techniques like loop unrolling or utilizing SSE operations (if available).

5.3 Persistent File Descriptors
To evaluate how our framework can be used in a microkernel based operating sys-
tem both at the userspace and kernel level, we implemented support for persistent
file descriptors in Redox OS. In contrast to normal file descriptors, persistent file
descriptors are stored in a separate data structure and stay valid across reboots.

5.3.1 Implementation
To implement persistent file descriptors, we modified the kernel to add a new
O_PERSISTENT flag to the open system call. When this flag is given, the ker-
nel does not use the ContextList data structure for creating the file descrip-
tor, but instead uses a separate list stored in a PERSISTENT_FILES static vari-
able that is annotated with the #[restorable(restore = true)] attribute.
Note that Redox, while being a microkernel, still stores a sort of file descriptor at
kernel level that map a process-specific file descriptor number to a scheme (e.g.
filesystem or network) and a scheme-internal file descriptor number.

In the userspace filesystem driver, we did a similar thing: If the open operation
of the filesystem scheme is invoked with the O_PERSISTENT flag, the file
descriptor is not created in the normal file list, but in a in a PERSISTENT_FILES
static variable that is annotated with the #[restorable(restore = true)]

attribute.

5.3.2 Test Program
To evaluate the persistent file descriptor functionality, we created a small test pro-
gram that uses a persistent static variable to store a file descriptor. A simplified
version of program is shown in pseudo-code in Listing 5.12. On the first run,
the static variable is None, so that a new file descriptor is created through the
open system call. By passing the O_PERSISTENT flag, we tell the kernel and the
filesystem driver that the file descriptor should stay valid across reboots.

On subsequent runs, the static variable already contains the previous file de-
scriptor because of the #[restorable] attribute. In this case, the file is con-

86 CHAPTER 5. EVALUATION

#[restorable(restore = true)]
static FILE_DESCRIPTOR: Mutex<Ecc<Option<RawFd>>> =

Mutex::new(Ecc::new(None));
const FLAGS = O_CREAT | O_TRUNC | O_WRONLY | O_PERSISTENT;

fn main() {
println!("test start"); // for debugging
let mut file_descriptor = FILE_DESCRIPTOR.lock().get_mut();
let mut file = match file_descriptor {

Some(fd) => unsafe { File::from_raw_fd(fd) },
None => {

let fd = open("file-descriptor-test.txt", FLAGS);

*file_descriptor = Some(fd);
unsafe { File::from_raw_fd(fd) }

}
};
file.write_all(random_bytes()).assert("write failed");
println!("test finished"); // for debugging
loop {}

}

Listing 5.12: Test Program for Persistent File Descriptors in Pseudo-Code

structed directly from the stored file descriptor so that no open system call oc-
curs. After constructing the file descriptor, the program verifies that it is valid by
writing some random bytes to it. If the write fails, the program panics.

As the last step, the program enters an infinite loop. The reason is that all
allocated resources of the program are deallocated when it finishes, including the
persistent file descriptor and the NVRAM chunk used as backing storage for the
restorable FILE_DESCRIPTOR variable. By entering an infinite loop we prevent
this and ensure that the file descriptor stays valid across system restarts.

We add the test program to the initialization script of the system so that it is
started automatically on each run. As explained in Section 4.2, our implemen-
tation currently relies on a deterministic process start order to guarantee that the
same slice of NVRAM is allocated to processes across reboots. By starting the
test program at the very end of the system’s initialization script, we ensure that the
FILE_DESCRIPTOR variable uses the same chunk of NVRAM as backing storage
after each system restart.

5.3.3 Test Process
To evaluate the functionality and robustness of our persistent file descriptor im-
plementation, we ran the test program while injecting system restarts through the
QMP protocol. For this, we used the following approach: First, the system is

5.3. PERSISTENT FILE DESCRIPTORS 87

Figure 5.4: Probability That the Test Program Can Reuse the File Descriptors for
Different Restart Intervals

started without any previous state. After a specified amount of time, we injected
a system restart through QEMU’s QMP protocol. Afterwards, we let the system
fully boot and record the debug output, which specifies whether a persistent file
descriptor from the previous run could be restored. We repeat this process for dif-
ferent restart intervals in steps of 10ms. To get reliable results, we also repeated
each run between 10 and 100 times, depending on the variety of the results.

5.3.4 Results

Figure 5.4 shows the probability that the persistent file descriptor can be reused for
different reboot intervals. The reason that the results are not fully deterministic is
that the QEMU virtual machine is dependent on the host system’s scheduling. The
results show that the restoration of the file descriptor always succeeds when the
time between reboots is greater than about 2.6s. This indicates that the program
was always able to run to completion in this time. For shorter reboot intervals, the
restoration of the file fails in a greater number of cases because the program was
not able to finish the initialization of the restorable FILE_DESCRIPTOR variable.
For reboot intervals shorter than 1.5s, the program always fails to create the file
descriptor before the system restarts.

To evaluate the reliability of persistent file descriptors, we also inspected the
debug output for system errors while forcing restarts on the test program. Fig-
ure 5.5 shows all errors that we encountered, categorized into different error types.

88 CHAPTER 5. EVALUATION

Figure 5.5: Probability of Failures for Different Restart Intervals

We only encountered errors in the "critical" interval range from 1600 ms to about
2550 ms, therefore only this range is shown in the graph. The y-axis specifies the
observed probability of the error types over 100 runs.

We observed four different kinds of errors. Most commonly, we saw dead-
locks in the test program itself, indicated by the presence of the test started mes-
sage of the test program (see Listing 5.12) in the debug output and no further
observable progress of the system. A likely cause for these deadlocks is that the
FILE_DESCRIPTOR uses a Mutex, which remains locked until the open system
call returns. If the program is interrupted in between, the Mutex stays locked
so that a deadlock occurs when the program tries to lock it again after the sys-
tem restart. Future work might be able to resolve this by implementing a way to
force-unlock all restorable lock types such as Mutex on a system restart.

Apart from deadlocks in the test program, we also observed deadlocks in the
file system driver, indicated by debug messages of the driver and no observable
system progress afterwards. Interestingly, we only observed file system deadlocks
for the restart intervals 1740ms and 1750ms, with probabilities 0.09 and 0.04 re-
spectively. We assume that this is also caused by the acquisition of a restorable
lock, probably the lock of the file descriptor collection.

Across all runs, we saw a single deadlock while executing an unrelated part
of the system. The deadlock occurred for a restart interval of 1750 ms and caused
a system freeze while or after enumerating PCI devices. We do not have a clear
explanation for this deadlock. However, we assume that it is related to the kernel
routine that initializes a part of the physical address space as NVRAM. This rou-

5.3. PERSISTENT FILE DESCRIPTORS 89

tine currently creates a few restorable static variables for testing purposes, which
might cause this deadlock.

Finally, we observed a single test run where QEMU failed to boot after in-
jecting a restart. Only the first line of the initial status message of the BIOS was
printed to the debug output, afterwards the execution did not continue. We assume
that this might be a bug in QEMU that occurred because the restart command was
sent at an unfortunate time (e.g. due to concurrency bugs).

While we experienced some deadlocks, it is worth noting that no other types
of system crashes occurred for our test. Notably, we did not observe any kernel
panics, system crashes, or other unexpected behavior. Further, no invalid write op-
erations occurred, which indicates that all restored file descriptors were still valid
after a system restart. This shows that our prototype implementation is already
very robust.

5.3.5 Future Work
While persistent file descriptors are not very useful on their own, they enable
other more useful functionality. One example is the use of NVRAM as a file write
buffer. The idea is to save all write requests to a persistent file descriptor in a
persistent buffer until they are successfully written to disk. If a system restart
occurs in between, for example because of a power outage, the requests saved in
the buffer can be reapplied after a reboot to prevent data loss.

90 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

The unique combination of persistence, byte-addressability, and high performance
makes NVRAM a promising memory technique for a variety of use cases. In this
work we explore the use of NVRAM for making microkernel operating systems
restartable. For this, we create a framework that allows the safe usage of NVRAM
from both userspace applications and operating system kernels.

The framework utilizes the NVRAM as a second, restorable heap area. This
way, support for restartability can be gradually added to existing systems by mov-
ing selected state from the normal heap to the restorable heap. Apart from explicit
allocation functions for persisting heap variables, our framework also provides a
#[restorable] attribute for persisting static variables with minimal boilerplate.

Since NVRAM is susceptible to bit-flips, we utilize error correcting codes
(ECCs) to ensure the bit-wise consistency of values that live on the restorable
heap. Instead of adding ECCs implicitly to values, we give the programmer full
control over the use of ECCs through explicit wrapper types. To minimize the re-
quired code modifications when introducing an explicit ECC-protection to exist-
ing types, we provide ECC-augmented versions of common wrapper types such as
RwLock. We also provide support for nested consistency checks that recursively
verify the checksums of ECC-protected values behind pointers.

By utilizing the type system of the Rust programming language, our frame-
work is able to provide extensive compile-time guarantees. Apart from preventing
memory safety errors, which is already ensured by Rust’s ownership system, our
framework also enforces an ECC-protection for all values stored on the restorable
heap. Further, our framework limits the types allowed in NVRAM to guarantee
that no dangling pointers can occur due to partially restored state after a system
restart.

To evaluate the effectiveness of the ECC-wrapper types provided by our frame-
work, we protected parts of the kernel state of Redox OS, which is an experimen-
tal microkernel operating system written in Rust. By selectively injecting bit-

91

92 CHAPTER 6. CONCLUSION

flips into the protected values through the QMP protocol of the emulator QEMU,
we verify that the ECC-protection considerably improves the resilience against
bit-flips. Through microbenchmarks, we show that the ECC wrapper types can
potentially lead to a high performance overhead. However, it is possible to drasti-
cally decrease this overhead by strategically batching checksum verifications and
recalculations.

In the second part of our evaluation, we used the NVRAM framework to
implement support for persistent file descriptors in Redox. By injecting system
restarts through the QMP interface, we show that a test program is able to con-
tinue using an opened file across system restarts. By analyzing the errors that
occurred over all runs of the test program, we demonstrate the robustness of our
implementation.

In summary, we are able to show that our framework enables the safe usage
of NVRAM. Through custom attributes and wrapper types, it provides high us-
ability with minimal boilerplate. By persisting only a selected subset of system
state, the gradual transformation of existing systems is possible. The prototype
implementation of persistent file descriptors, which only provide limited utility
on their own, shows that our framework makes it possible to persistent complex
system state that involves multiple operating system layers.

Bibliography

[1] Intel. Intel® Optane™ Technology, Aug 2019. [Online; accessed 5. Aug.
2019].

[2] Adrian Proctor. NV-DIMM: Fastest tier in your storage strategy. Viking
Technology whitepaper, pages 1–7, 2012.

[3] Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan, Dejan Milojicic, and
Vanish Talwar. Using active NVRAM for I/O staging. In Proceedings of
the 2nd international workshop on Petascal data analytics: challenges and
opportunities, pages 15–22. ACM, 2011.

[4] Tim Allen. Optimizing in-memory databases for advanced analytics. Intel
IT Peer Network, Aug 2018. [Online; accessed 22. Aug. 2019].

[5] Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. Persistent buffer man-
agement with optimistic consistency. In Proceedings of the 15th Inter-
national Workshop on Data Management on New Hardware, DaMoN’19,
pages 14:1–14:3, New York, NY, USA, 2019. ACM.

[6] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen
Tseng. Overview of emerging nonvolatile memory technologies. Nanoscale
research letters, 9(1):526, 2014.

[7] Manzur Gill, Tyler Lowrey, and John Park. Ovonic unified memory-a high-
performance nonvolatile memory technology for stand-alone memory and
embedded applications. In 2002 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (Cat. No. 02CH37315), volume 1,
pages 202–459. IEEE, 2002.

[8] Shyh-Shyuan Sheu, Kuo-Hsing Cheng, Meng-Fan Chang, Pei-Chia Chiang,
Wen-Pin Lin, Heng-Yuan Lee, Pang-Shiu Chen, Yu-Sheng Chen, Tai-Yuan
Wu, Frederick T Chen, et al. Fast-write resistive RAM (RRAM) for embed-
ded applications. IEEE Design & Test of Computers, 28(1):64–71, 2010.

93

94 BIBLIOGRAPHY

[9] Katherine Bourzac. Has Intel created a universal memory technology?
[news]. IEEE Spectrum, 54(5):9–10, 2017.

[10] Jason Mick. If Intel and Micron’s "Xpoint" is 3D Phase Change Memory,
boy did they patent it, Jul 2015. [Online; accessed 7. Aug. 2019].

[11] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh, JC Park, SO Park,
HS Kim, IK Yoo, et al. Highly scalable nonvolatile resistive memory
using simple binary oxide driven by asymmetric unipolar voltage pulses.
In IEDM Technical Digest. IEEE International Electron Devices Meeting,
2004., pages 587–590. IEEE, 2004.

[12] Sanmina Corporation. Viking Technology collaborates with Sony Corpo-
ration to bring ReRAM storage class memory to NVDIMM markets, Aug
2015. [Online; accessed 23. Aug. 2019].

[13] Zhiqiang Wei, Y Kanzawa, K Arita, Y Katoh, K Kawai, S Muraoka, S Mi-
tani, S Fujii, K Katayama, M Iijima, et al. Highly reliable TaOx ReRAM and
direct evidence of redox reaction mechanism. In 2008 IEEE International
Electron Devices Meeting, pages 1–4. IEEE, 2008.

[14] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley
Williams. The missing memristor found. Nature, 453(7191):80, 2008.

[15] John Paul Strachan, Antonio C Torrezan, Feng Miao, Matthew D Pickett,
J Joshua Yang, Wei Yi, Gilberto Medeiros-Ribeiro, and R Stanley Williams.
State dynamics and modeling of tantalum oxide memristors. IEEE Transac-
tions on Electron Devices, 60(7):2194–2202, 2013.

[16] Ramtron International Corporation. F-RAM technology brief, 2007.

[17] Takayuki Kawahara, Riichiro Takemura, Katsuya Miura, Jun Hayakawa,
Shoji Ikeda, Young Min Lee, Ryutaro Sasaki, Yasushi Goto, Kenchi Ito,
Toshiyasu Meguro, et al. 2 Mb SPRAM (SPin-transfer torque RAM)
with bit-by-bit bi-directional current write and parallelizing-direction cur-
rent read. IEEE Journal of Solid-State Circuits, 43(1):109–120, 2008.

[18] Yiming Huai et al. Spin-transfer torque MRAM (STT-MRAM): Challenges
and prospects. AAPPS bulletin, 18(6):33–40, 2008.

[19] David W Abraham and Philip L Trouilloud. Thermally-assisted magnetic
random access memory (MRAM), May 7 2002. US Patent 6,385,082.

BIBLIOGRAPHY 95

[20] Peter Vettiger, G Cross, M Despont, U Drechsler, U Durig, B Gotsmann,
W Haberle, MA Lantz, HE Rothuizen, R Stutz, et al. The" millipede"-
nanotechnology entering data storage. IEEE Transactions on nanotechnol-
ogy, 1(1):39–55, 2002.

[21] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock,
Gurushankar Rajamani, and David Lowell. The rio file cache: Surviving op-
erating system crashes. In Proceedings of the Seventh International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VII, pages 74–83, New York, NY, USA, 1996. Associa-
tion for Computing Machinery.

[22] Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,
Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Michael M Swift.
Membrane: Operating system support for restartable file systems. ACM
Transactions on Storage (TOS), 6(3):11, 2010.

[23] Alex Depoutovitch and Michael Stumm. Otherworld: giving applications
a chance to survive os kernel crashes. In Proceedings of the 5th European
conference on Computer systems, pages 181–194. ACM, 2010.

[24] George Candea and Armando Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In Proceedings Eighth Workshop on
Hot Topics in Operating Systems, pages 125–130. IEEE, 2001.

[25] George Candea, James Cutler, Armando Fox, Rushabh Doshi, Priyank
Garg, and Rakesh Gowda. Reducing recovery time in a small recursively
restartable system. In Proceedings international conference on dependable
systems and networks, pages 605–614. IEEE, 2002.

[26] Dushyanth Narayanan and Orion Hodson. Whole-system persistence. ACM
SIGARCH Computer Architecture News, 40(1):401–410, 2012.

[27] Microsoft Security Response Center. A proactive approach to more secure
code, July 2019. [Online; accessed 20. Aug. 2019].

[28] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Ferreira,
Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory errors in mod-
ern systems: The good, the bad, and the ugly. ACM SIGPLAN Notices,
50(4):297–310, 2015.

[29] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM er-
rors in the wild: A large-scale field study. Commun. ACM, 54(2):100–107,
February 2011.

96 BIBLIOGRAPHY

[30] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy
Ranganathan, Norman P Jouppi, and Mattan Erez. FREE-p: Protecting non-
volatile memory against both hard and soft errors. In 2011 IEEE 17th In-
ternational Symposium on High Performance Computer Architecture, pages
466–477. IEEE, 2011.

[31] Jing Li, Binquan Luan, and Chung Lam. Resistance drift in phase change
memory. In 2012 IEEE International Reliability Physics Symposium (IRPS),
pages 6C–1. IEEE, 2012.

[32] Arthur Martens, Rouven Scholz, Phil Lindow, Niklas Lehnfeld, Marc A.
Kastner, and Rüdiger Kapitza. Dependable non-volatile memory. In Pro-
ceedings of the 11th ACM International Systems and Storage Conference,
SYSTOR ’18, pages 1–12, New York, NY, USA, 2018. ACM Press.

[33] Bin Gao, Haowei Zhang, Bing Chen, Lifeng Liu, Xiaoyan Liu, Ruqi Han,
Jinfeng Kang, Zheng Fang, Hongyu Yu, Bin Yu, et al. Modeling of retention
failure behavior in bipolar oxide-based resistive switching memory. IEEE
Electron Device Letters, 32(3):276–278, 2011.

[34] Jubong Park, Minseok Jo, El Mostafa Bourim, Jaesik Yoon, Dong-Jun
Seong, Joonmyoung Lee, Wootae Lee, and Hyunsang Hwang. Investigation
of state stability of low-resistance state in resistive memory. IEEE Electron
Device Letters, 31(5):485–487, 2010.

[35] Shimeng Yu, Yang Yin Chen, Ximeng Guan, H-S Philip Wong, and Jorge A
Kittl. A Monte Carlo study of the low resistance state retention of HfOx
based resistive switching memory. Applied Physics Letters, 100(4):043507,
2012.

[36] CVE-2019-8912. Available from MITRE, 2019. [Online; accessed 20. Aug.
2019].

[37] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Un-
dangle: early detection of dangling pointers in use-after-free and double-
free vulnerabilities. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 133–143. ACM, 2012.

[38] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Statically detecting
use after free on binary code. Journal of Computer Virology and Hacking
Techniques, 10(3):211–217, 2014.

[39] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force
vulnerability discovery. Pearson Education, 2007.

BIBLIOGRAPHY 97

[40] Dmitry Vyukov. Syzkaller, 2015. Available at https://github.com/
google/syzkaller.

[41] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Kee-
gan McAllister, Jack Moffitt, and Simon Sapin. Engineering the servo web
browser engine using rust. In Proceedings of the 38th International Con-
ference on Software Engineering Companion, ICSE ’16, pages 81–89, New
York, NY, USA, 2016. ACM.

[42] Samantha Miller, Kaiyuan Zhang, Danyang Zhuo, Shibin Xu, Arvind Krish-
namurthy, and Thomas Anderson. Practical safe linux kernel extensibility.
In Proceedings of the Workshop on Hot Topics in Operating Systems, pages
170–176. ACM, 2019.

[43] LWN.net. Discussion: Rust is the future of systems programming, C is the
new Assembly (Packt), Aug 2019. [https://lwn.net/Articles/
797828 ; accessed 30. Aug. 2019].

[44] Hans-J Boehm. Position paper: nondeterminism is unavoidable, but data
races are pure evil. In Proceedings of the 2012 ACM workshop on Relaxing
synchronization for multicore and manycore scalability, pages 9–14. ACM,
2012.

[45] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: A comprehensive study on real world concurrency bug charac-
teristics. In Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, AS-
PLOS XIII, pages 329–339, New York, NY, USA, 2008. Association for
Computing Machinery.

[46] ISO. ISO/IEC 14882:2017: Programming languages - - C++, 2017.

[47] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[48] Valgrind Developers. Helgrind: a thread error detector, Aug 2019. [Online;
accessed 12. Aug. 2019].

[49] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: data race
detection in practice. In Proceedings of the workshop on binary instrumen-
tation and applications, pages 62–71. ACM, 2009.

[50] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, August 1978.

https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://lwn.net/Articles/797828
https://lwn.net/Articles/797828

98 BIBLIOGRAPHY

[51] Bill Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[52] Google. The Go programming language, Aug 2019. [Online; accessed 12.
Aug. 2019].

[53] Google. Frequently asked questions (FAQ) - the Go programming language,
Aug 2019. [Online; accessed 12. Aug. 2019].

[54] Manas Technology Solutions. Crystal programming language, Aug 2019.
[Online; accessed 12. Aug. 2019].

[55] Manas Technology Solutions. Crystal: Concurrency, Aug 2019. [Online;
accessed 12. Aug. 2019].

[56] Luis M Carril and Walter F Tichy. Predicting and witnessing data races using
CSP. In NASA Formal Methods Symposium, pages 400–407. Springer, 2015.

[57] Google. Data race detector - the Go programming language, Aug 2019.
[Online; accessed 12. Aug. 2019].

[58] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types
for safe programming: Preventing data races and deadlocks. In Proceedings
of the 17th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’02, pages 211–230, New
York, NY, USA, 2002. Association for Computing Machinery.

[59] Nicholas D Matsakis and Thomas R Gross. A time-aware type system for
data-race protection and guaranteed initialization. In OOPSLA, volume 10,
pages 634–651, 2010.

[60] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom
Ridge, Thomas Braibant, Magnus O Myreen, and Jade Alglave. The se-
mantics of x86-CC multiprocessor machine code. ACM SIGPLAN Notices,
44(1):379–391, 2009.

[61] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[62] James S Plank. An overview of checkpointing in uniprocessor and dis-
tributed systems, focusing on implementation and performance. Technical
report, Technical Report UTCS-97-372, 1997.

[63] Björn Döbel, Hermann Härtig, and Michael Engel. Operating system sup-
port for redundant multithreading. In Proceedings of the tenth ACM interna-
tional conference on Embedded software, pages 83–92. ACM, 2012.

BIBLIOGRAPHY 99

[64] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative
software-based memory error detection and correction for operating system
data structures. In Proceedings of the 43rd IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN ’13), Piscataway, NJ,
USA, June 2013. IEEE Press.

[65] Christoph Borchert and Olaf Spinczyk. Hardening an L4 microkernel against
soft errors by aspect-oriented programming and whole-program analysis. In
Proceedings of the 8th Workshop on Programming Languages and Operat-
ing Systems (PLOS ’15), pages 1–7, New York, NY, USA, October 2015.
ACM Press.

[66] Tobias Stumpf. How to protect the protector. In Proceedings of The 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2015) - Student Forum, Rio de Janeiro, June 2015.

[67] Muhammad Shafique, Philip Axer, Christoph Borchert, Jian-Jia Chen, Kuan-
Hsun Chen, Björn Döbel, Rolf Ernst, Hermann Härtig, Andreas Heinig,
Rüdiger Kapitza, et al. Multi-layer software reliability for unreliable hard-
ware. it-Information Technology, 57(3):170–180, 2015.

[68] Philippe Forin. Vital coded microprocessor principles and application for
various transit systems. IFAC Proceedings Volumes, 23(2):79–84, 1990.

[69] Thiago Santini, Christoph Borchert, Christian Dietrich, Horst Schirmeier,
Martin Hoffmann, Olaf Spinczyk, Daniel Lohmann, Flávio Rech Wagner,
and Paolo Rech. Effectiveness of software-based hardening for radiation-
induced soft errors in real-time operating systems. In International Confer-
ence on Architecture of Computing Systems, pages 3–15. Springer, 2017.

[70] Alejandro David Velasco, Bartolomeo Montrucchio, and Maurizio Rebau-
dengo. TMR technique for mutex kernel data structures. In 2017 18th IEEE
Latin American Test Symposium (LATS), pages 1–6. IEEE, 2017.

[71] Richard W Hamming. Error detecting and error correcting codes. The Bell
system technical journal, 29(2):147–160, 1950.

[72] Irving S Reed and Gustave Solomon. Polynomial codes over certain fi-
nite fields. Journal of the society for industrial and applied mathematics,
8(2):300–304, 1960.

[73] Steve Klabnik and Carol Nichols. The Rust programming language.
No Starch Press, San Francisco, 2018. Available at https://doc.
rust-lang.org/book/.

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

100 BIBLIOGRAPHY

[74] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In European conference on object-oriented programming, pages 220–242.
Springer, 1997.

[75] Felix S Klock II. RFC: Kinds of allocators, Apr 6. [Available at
https://github.com/rust-lang/rfcs/blob/master/
text/1398-kinds-of-allocators.md ; accessed 29. Aug. 2019].

[76] John Ericson. Pull request: Allocator- and fallibility-polymorphic collec-
tions, May 2019. [Available at https://github.com/rust-lang/
rust/pull/60703 ; accessed 29. Aug. 2019].

[77] Jorge Aparicio. xargo: The sysroot manager that lets you build and cus-
tomize std, Aug 2019. [Online; accessed 29. Aug. 2019].

[78] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[79] Andrew Waterman. Design of the RISC-V Instruction Set Architecture. PhD
thesis, EECS Department, University of California, Berkeley, Jan 2016.

[80] QEMU Wiki, Feb 2019. [Available at https://wiki.qemu.org/
Main_Page ; accessed 1. Sep. 2019].

[81] QEMU version 4.1.0 User Documentation, Aug 2019. [Online; accessed 1.
Sep. 2019].

[82] QEMU Wiki: Documentation/QMP, Aug 2019. [Online; accessed 1. Sep.
2019].

[83] Xilinx Wiki: QEMU, Sep 2019. [Available at https://xilinx-wiki.
atlassian.net/wiki/spaces/A/pages/18842060/QEMU ; ac-
cessed 1. Sep. 2019].

[84] The Cargo Book: fix, Aug 2019. [Available at https://doc.
rust-lang.org/cargo/commands/cargo-fix.html ; accessed
2. Sep. 2019].

[85] The Rust Book: Benchmark tests, Mar 2017. [Available at https://doc.
rust-lang.org/1.16.0/book/benchmark-tests.html ; ac-
cessed 3. Sep. 2019].

https://github.com/rust-lang/rfcs/blob/master/text/1398-kinds-of-allocators.md
https://github.com/rust-lang/rfcs/blob/master/text/1398-kinds-of-allocators.md
https://github.com/rust-lang/rust/pull/60703
https://github.com/rust-lang/rust/pull/60703
https://wiki.qemu.org/Main_Page
https://wiki.qemu.org/Main_Page
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842060/QEMU
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842060/QEMU
https://doc.rust-lang.org/cargo/commands/cargo-fix.html
https://doc.rust-lang.org/cargo/commands/cargo-fix.html
https://doc.rust-lang.org/1.16.0/book/benchmark-tests.html
https://doc.rust-lang.org/1.16.0/book/benchmark-tests.html

BIBLIOGRAPHY 101

[86] The Cargo Book: bench, Aug 2019. [Available at https://
doc.rust-lang.org/cargo/commands/cargo-bench.html ;
accessed 3. Sep. 2019].

https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://doc.rust-lang.org/cargo/commands/cargo-bench.html

	Abstract
	Contents
	Introduction
	Non-Volatile Random Access Memory
	Restartable Kernels
	Memory Consistency
	Types of Consistency
	General Consistency Violations
	Consistency Violations in Restartable Kernels

	Kernel Resilience
	Related Work
	Error Correcting Codes

	NVRAM Frameworks

	Background
	Rust
	Ownership and Borrowing
	Traits
	Procedural Macros
	Uninitialized Memory

	Redox OS
	Components
	Boot Process

	Design
	Persistent RAM Manager
	Named Allocations
	Unnamed Allocations
	Allocation Example

	Ensuring Bit-wise Consistency
	ECC Design
	Explicit and Implicit ECCs
	Requiring ECCs for Restorable Values

	Guaranteeing Pointer Consistency
	Summary of Consistency Guarantees
	The #[restorable] Attribute
	Restorable Collection Types
	Allocator Type Aliases

	Implementation
	Kernel Extensions
	The PersistentRamManager
	The ConsistencyCheckable Trait
	The RestoreSafe Trait
	Negative Implementations
	Positive Implementations
	Example: Applying RestoreSafe to Redox
	Stability

	Error Correcting Codes
	The Ecc Wrapper Type
	Implementing the ConsistencyCheckable Trait
	Nested Consistency Checks
	Reducing Required Code Modifications

	The #[restorable] Attribute

	Evaluation
	QEMU
	The QEMU Machine Protocol
	Fault Injection
	Simulating NVRAM

	ECC Evaluation
	Required Kernel Changes
	Robustness
	Performance Overhead

	Persistent File Descriptors
	Implementation
	Test Program
	Test Process
	Results
	Future Work

	Conclusion
	Bibliography

