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Abstract

AVX-512 is a recent x86 instruction set extension that aims to accelerate vector-
izable workloads by increasing the vector size further. The on-CPU SIMD units
that make efficient operation on very wide vectors possible, take up a lot of space
on the chip and have high power requirements, as a result they are part of the dark
silicon of a CPU. The dark silicon of a chip is circuitry that has to be turned off
during normal operation, due to high power requirements. To maintain a reason-
able TDP, current CPUs reduce the core frequency when those units are active. A
lot of workloads benefit from vectorization despite the frequency reduction. How-
ever, the high power consumption of wide vector instructions cause additional side
effects. Most workloads do not consist of only vectorizable code. To achieve good
performance for non-vectorized (scalar) code that is run on the same core, the fre-
quency needs to be increased as soon as possible. Increasing the frequency is
inflicted with delays, causing non-vectorized code to run at unnecessarily low fre-
quencies during the changing period. Slowing down the non-vectorized code on a
core can result in worse overall performance, making the feasibility of AVX-512
and alike very unpredictable.

In this thesis we create a framework that supports application developers in
mitigating the overall system performance degradation induced by AVX-512. We
build upon an existing approach that uses core specialization to isolate instructions
leading to performance degradation onto a small set of cores, letting scalar parts of
the system workload run unrestrained. Application developers can use our library
to mark code that potentially executes AVX-512 instructions. We designed a dy-
namic policy that decides during runtime whether to offload marked code regions
onto a set of dedicated cores to prevent them from slowing down subsequent scalar
code. While our framework is focused on AVX-512, our design and theories apply
to general high power instructions that require a frequency reduction.

We show that our framework can reduce the performance degradation in a real-
istic web server benchmark from 17% to 9%. When a scalar version of the bench-
mark is run, our framework does not introduce significant performance penalties,
making the framework a useful tool to reduce the risk of unexpected performance
degradation caused by AVX-512.
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Chapter 1

Introduction

Accelerating workloads with vector instructions can yield large benefits. Numer-
ous workloads benefit from being executed on SIMD capable GPUs, outweighing
the large offloading overhead [KDK+11, KES+09]. Vector instruction set exten-
sions can accelerate many applications for which the GPU offloading overhead
are too high [LKC+10]. Historically, the feasibility of vector extensions for sin-
gle components of applications could be inspected in isolation since it was not
dependent on other workloads in a system. Vectorized code interferes on modern
CPUs with other code on the system, due to power requirements. Dennard scaling
is at its end and with each processor generation more parts of the chip become
part of the dark silicon [EBSA+11]. Big power dense execution units, such as
the vector ALUs that make AVX-512 possible, require a core frequency reduction
during execution to stay within realistic TDP limits [wika]. The power dissipation
of a CPU is directly proportional to the frequency and thus the power dissipa-
tion can be reduced by reducing the frequency [int04]. We refer to instructions
that cause a temporarily reduced core frequency as high power wide vectorized
instructions (HPWVIs). AVX-512 and AVX2 are good examples for HPWVIs
and are the focus of this work. Using HPWVIs can result in low overall system
performance even when the accelerated components are running faster [Kra17].
The performance penalty is due to frequency change delays. Changing back to
a higher frequency as soon as non-HPWVIs are executed takes about 2ms. This
delay causes non-HPWVIs that follow HPWVIs to run at lower frequencies than
normally possible [int18a]. Only in some cases can the acceleration of HPWVIs
outweigh the slowdown they impose on subsequent code. This is mostly depen-
dent on the ratio of HPWVIs and scalar code and how much they are intertwined.
The feasibility of HPWVIs is therefore very dependent on the system workload
and thus unpredictable. Using HPWVIs becomes unfeasible if the slowed down
non-HPWVIs are critical for good system performance.

In this thesis we construct a framework that supports application developers in
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4 CHAPTER 1. INTRODUCTION

mitigating an overall system performance degradation caused by AVX-512. We
extend an existing approach that executes critical AVX-512 parts of a workload on
a small set of CPU cores. This approach is based on core specialization and mit-
igates the slowdown effect by isolating AVX-512 code from scalar code [GB18].
The framework we built lets application developers mark code regions that po-
tentially execute AVX-512. Not all marked code regions will always be worth
offloading, because the feasibility of offloading always is very dependent on the
system and the workload running on there. The dynamic policy we designed
maximizes system performance during runtime by choosing marked code regions
that shall be offloaded. Our framework offloads code onto dedicated cores and
chooses among marked regions of all cooperating applications. If the amount of
scalar code on the cores running AVX-512 is minimized and the offloading mech-
anism is efficient, then the slowdown effect can be nearly completely avoided in
theory. In practice some performance is lost due to insufficient system utilization
caused by dedicating cores.

In the following chapters we elaborate on our design decisions for a dynamic
policy that maximizes overall system performance by choosing code regions with
HPWVIs that are worth offloading. The overall thesis is applicable for any high
power vector instructions that require a frequency reduction. We further describe
our framework supports developers in mitigating the performance degradation ef-
fect caused by the recent HPWVIs AVX-512. We inspect the limits of AVX-512 in
general and investigate the side effects caused by using it and how efficient our ap-
proach is in mitigating them. Our evaluation on a realistic web server setup shows
that using our framework results in less performance variability and mitigates the
slowdown caused by AVX-512 by more than 50%.

The thesis is structured as follows: In Chapter 2 we provide background to
AVX-induced performance degradation, introduce a possible solution to mitigate
it and discuss related work. We present vector instructions in general, talk about
dark silicon and why some vector instruction execution units are part of it. Fur-
ther into the chapter we explain why vector instructions cause unpredictable per-
formance degradation and introduce core specialization as a potential solution.
We analyse of the feasibility and side effects of AVX-512 and core specialization
as a solution in Chapter 3. The design chapter (Chapter 4) explains our frame-
work and policy in detail. We elaborate on our design decisions and challenges to
construct a viable HPWVI-induced performance degradation mitigation mecha-
nism. In Chapter 5 (Implementation) we detail specifics of our platform and show
a concrete example of how applications mark code for our framework. Chapter
6 contains the evaluation of our framework for realistic workloads. Chapter 7
concludes our insights and proposes future work.



Chapter 2

Background and Related Work

A lot of workloads that operate on larger data words can benefit from using vec-
torization. Using on-CPU SIMD instructions can accelerate certain workloads
through vectorization without the huge overhead involved when using GPUs (Sec-
tion 2.1). The most recent vector instruction set extensions can operate on words
so wide that supplying all transistors with enough power becomes difficult. To re-
duce power dissipation, this circuitry is switched off when not needed. Such parts
of the chip are called dark silicon (Section 2.2). To stay within reasonable TDP
boundaries when parts of this circuitry are needed, CPU cores reduce their power
requirements by reducing the frequency they run at. While slowed down vector-
ized instructions outperform most of their scalar counterparts, frequency change
delays slow down subsequent code that does not need to run at lower frequen-
cies. The slowdown of scalar code makes wide vector instructions unfeasible in
systems where the workload is predominantly scalar (Section 2.3). To mitigate
this performance degradation we extend an approach that uses core specialization
for isolating the effect onto a small amount of cores (Section 2.4). We supply the
mechanism with a policy that finds code worth offloading and construct a frame-
work that helps application developers mitigate the effect in their applications.
For generating minimal additional overhead we have to choose an efficient code
offloading solution that uses pool threads and closures. Therefore, we describe
existing means of code offloading in Section 2.5.

2.1 Vectorized Instructions

Certain workloads require the consecutive execution of the same instructions mul-
tiple times on different data. In a classical single instruction single data (SISD)
architecture such as x86, this requires letting instructions traverse the complete
pipeline every time from the beginning. Modern CPUs include single instruction
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6 CHAPTER 2. BACKGROUND AND RELATED WORK

multiple data (SIMD) instruction set extensions to improve the performance of
these kinds of workloads. Those so-called vectorized instructions can be used
transparently in between normal scalar instructions. To execute the vectorized in-
structions, modern CPU cores contain specialized units for vectorized execution
next to normal ALUs in the execution engine. For example, such a unit might
be a vectorized integer ALU that operates on up to 512 bit wide words instead of
only 64 bit words. Those units support interpreting very wide words as a vector
consisting of multiple smaller sized words. For example, instead of using 8 times
the add instruction to add 8 64 bit integers, a 512 bit vector ALU needs only one
instruction to add two 512 bit vectors consisting each of 8 of the integers. There
are other execution units in modern CPU cores next to the int ALU and int vector
ALU. Figure 2.1 shows the ones in the Intel Skylake-SP architecture.

Figure 2.1: Intel Skylake-SP execution units [wikc]

2.2 Dark Silicon

Working with very wide words results in a big chip footprint and many transistors
being active at the same time, which ultimately results in high thermal dissipa-
tion and power requirements. How much space the unit that executes the vector
instruction set extension AVX-512 needs in Intel Skylake-SP chips is shown in
Figure 2.2. Processors are required to stay under a certain TDP (thermal de-
sign power). Making use of the massively parallel, power-hungry vectorized units
would result in exceeding a reasonable TDP. The parts of the circuitry that can
not be used at normal operating constraints without exceeding the given TDP are
referred to as dark silicon [EBSA+11]. A lot of vectorized units are part of the
dark silicon. When parts of the dark silicon are switched on, processors need to
decrease their power draw to stay within TDP limits. For vectorized code this is
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Figure 2.2: On the left side is a 28 core Intel Skylake-SP die. The right side
is a bigger picture of a single core. It is visible that a lot of space is taken by
caches. Those are not massively parallel in use, so their power requirements are
not as high as that of the execution units. The AVX-512 FMA (Fused Multiply
Accumulation) EU (Execution Unit) alone takes already half the space as all other
EUs together. Additional AVX-512 units are part of the EUs. [wikc]

commonly done by reducing the frequency of cores that are executing high-power-
drawing vectorized instructions. For example, Intel added for their Skylake-SP
processors two additional frequency bands for AVX-512 and AVX2 like shown in
Figure 2.3. In the scope of this work we refer to instructions,that require a power
level adaptation as high power wide vectorized instructions (HPWVIs).

Figure 2.3: Intel Skylake-SP processors have different (lower) frequency ranges
for the vector instruction set extensions AVX2 and AVX-512 [wika].
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2.3 Performance Degradation
Vectorized code that is run at lower frequencies is in general still faster than a
scalar version of that code. For example running twice as wide instructions might
only require a 25% drop in core frequency while being up to twice as fast. Whether
vectorization is despite the lower frequency beneficial, can be estimated quite well
with benchmarks during development. An example can be found in Section 3.1.
Aside from having to run vectorized code at lower frequencies, there is another
slowdown effect which is more problematic. Most workloads consist of a mix of
vectorized and non-vectorized instructions, or more precisely a mix of HPWVIs
and non-HPWVIs. When changing between those instructions, the core frequency
has to be adjusted. When changing from non-HPWVI to HPWVI code, the fre-
quency is decreased to stay within TDP limits. When changing from HPWVI
to non-HPWVI code, the frequency is increased to achieve optimal performance
for the non-HPWVI code. Increasing the frequency after the execution of HP-
WVI code takes a while. While the frequency is being increased, non-HPWVI
code that could be normally run at higher frequencies is executed at the lower
frequency, slowing it down. The non-HPWVI slowdown problem is illustrated in
Figure 2.4 while Figure 2.5 illustrates how using vector instructions should look
optimally. In practice not all HPWVIs require the same amount of frequency
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Figure 2.4: Running a vectorized version of a scalar code part might accelerate
the vectorized part while slowing down overall performance due to power level
change delays.

reduction. HPWVIs are categorized into how much frequency reduction they re-
quire. Section 5.1 contains an illustration of the slowdown problem when there
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Figure 2.5: Under the right circumstances the benefit of vectorized code can out-
weigh the slowdown problem.

are multiple power levels.
How much performance is lost by slowing down subsequent code can not be

easily inspected during development since it is largely dependent on the system
and the workload. In [Kra17] performance (requests/sec) drops up to 10% were
observed when using AVX-512 to accelerate OpenSSL in NGINX in comparison
to using BoringSSL which does not use AVX-512. This big performance degra-
dation is mainly due to the vectorized portion of the workload being very little.
Having only small bursts of HPWVIs results in regular slowdown of the surround-
ing non-HPWVI code while not providing large enough performance benefits to
counteract the performance degradation caused by this slowdown.

2.4 Core Specialization
We chose an approach to mitigate the performance degradation caused by HP-
WVIs that consists of identifying problematic HPWVI code regions and grouping
them together on CPU cores that we dedicate to execute migrated HPWVI core
regions [GB18]. This approach is able to bring the 13.4% performance drop when
using AVX-512 in the NGINX experiment [Kra17] down to 3.7%. The idea is to
accumulate all slowdown-triggering code onto a small pool of cores, while freeing
other cores from the slowdown (Figure 2.6). We extend the approach by fully ded-
icating cores and designing a policy that analyzes when and which code regions
should be migrated to the dedicated cores. Finally, we implement a framework
that uses those mechanisms to support application developers in mitigating the
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slowdown in their applications.
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Figure 2.6: Specializing cores like described in [GB18] can reduce the impact of
the slowdown caused by vector instructions onto a few cores.

Dedicating cores and effectively remodeling a general purpose multicore sys-
tem as a reconfigurable asymmetric system to deal with heterogeneous work-
loads is an approach that is more widely applicable. On heterogeneous systems,
moving workloads onto cores that better suit the workload can improve perfor-
mance in non-AVX-512-related cases, too [BC06]. Migrating work onto other
cores can also draw other benefits than performance such as better power effi-
ciency [SPFB10]. FlexSC uses core specialization similarly to our approach to
reduce the performance impact of system calls [SS10]. The idea of FlexSC is
to increase spacial and temporal locality by grouping system calls on specialized
cores.

Server applications that use thread and event-driven models often lack data
and instruction locality which results in poor performance due to a lack of proper
hardware utilization. Cohort scheduling identifies similar computations in appli-
cations and executes them consecutively on a processor in an effort to increase
locality [LP02]. To complement cohort scheduling, staged computation is intro-
duced as an alternative programming model to threads and events. In staged com-
putation, applications consist of multiple asynchronously executed stages that are
groups of operations that share logic and state and are perfect candidates for co-
hort scheduling. Our approach to use HPWVI code regions and group them to
make better use of processor resources is similar to the idea of stages.

Aside from frequency reductions, inefficient mixes of parallelizable and se-
quential code lead to pessimal utilization of system parallelism. Compilers can
reorder code sequences and divide unrelated instructions to make better use of
hardware resources by increasing instruction level parallelism. Region scheduling
is an approach that uses data and control dependencies to divide code into regions
that are reordered in a way that enables parallel execution of the instructions to
better utilize hardware parallelism [GS90].
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2.5 Efficient CPU Offloading
Making use of core specialization paired with fine granular offloading requires an
efficient mechanism to offload work from one CPU core to another. Efficiently
offloading work from the CPU onto other specialized units is a recurring prob-
lem. Using GPUs as fast SIMD execution units is common, but is impaired by
large latency and synchronization overhead [LM13]. Due to the large overhead
in GPU offloading, only very specific workloads can profit from GPU offloading.
[AK13] accelerate GPU offloading by using semantically aware caching to min-
imize transactions and [LM13] reduce latency of large transactions by enabling
partial synchronization. Coprocessor accelerator cards such as Intel Xeon Phi can
synchronize faster than GPUs and accelerate certain workloads with the vector in-
struction set extension AVX-512 that GPUs can not accelerate [TKK+13]. Vector
instruction set extensions in a core specialization context share the same problem
as GPU offloading, but on a different scale. On-CPU SIMD is practically slower
than GPU SIMD, but causes less overhead, placing vector instructions somewhere
between scalar execution on general-purpose CPUs and using external GPU ac-
celerators. Just like in GPU offloading, the main single application performance
bottleneck in core specialization is caused by synchronization delays. In terms
of whole system performance, core specialization suffers from lower maximum
system utilization, which is described and rationalized in Section 4.2.1.

There are two methods to move work from one CPU core to another one: Ei-
ther by migrating the thread temporarily onto the other core or by having a thread
on the other core that executes a closure. The Linux thread migration mechanism
is not optimized for fast and frequent migration [SMM+09], requiring either writ-
ing a better performing migration mechanism or introducing the constraint of only
being able to migrate closures. Having to use closures is not necessarily a strong
restriction, since threads running in the same address space share all memory im-
plicitly. Instead of spawning new threads for each closure, [HPS97] showed that
having pool threads amortizes thread creation costs and reduces latency. Execut-
ing a closure on a thread on another core requires an efficient IPC and synchro-
nization mechanism. The mean latency of transferring messages ≤ 1 kB with
semaphores and shared memory is under 3us [VJ15], making them a feasible
mechanism.
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Chapter 3

Analysis

Making use of HPWVIs results not only in a potential performance improvement
in comparison to scalar equivalents, but also in side effects regarding performance.
We constructed a series of microbenchmarks to observe those effects and find out
how to deal with them in isolation. Our exemplary HPWVIs are AVX-512 FMA
instructions. Those are the most power intensive HPWVIs in current CPUs. Our
machine is described in Section 6.1.

In the first benchmark (Section 3.1) we will prove that using HPWVIs can
increase the performance, otherwise all the efforts to mitigate the negative side ef-
fects would lose value. We demonstrate the acceleration of FMAs (fused multiply-
additions) when using HPWVIs. Further we show that HPWVIs result in CPU
frequency reduction.

For the rest of the microbenchmarks we wrote a primesieve calculator that is
periodically injected with other code during execution. The primesieve bench-
mark is described in more detail in Section 3.2. In Section 3.2 we show that using
HPWVIs as injected code can result in a poor primesieve performance, which il-
lustrates the performance degradation effect. That experiment also demonstrates
that the feasibility of using HPWVIs can not be predicted before runtime.

Our work is based on the idea of using core specialization to isolate the perfor-
mance degradation onto one core. Section 3.3 shows that offloading HPWVIs onto
other cores prevents HPWVI-induced performance degradation, doing so achieves
near baseline performance when executing the injected code on another core.

Offloading code onto another core requires a potentially inefficient offloading
mechanism. We compare multiple methods in Section 3.4 and find that using a
thread pool is the most efficient one.

In conclusion, we show with the microbenchmarks that using HPWVIs can be
beneficial but the effect on performance is hard to predict. HPWVIs slow down
subsequent scalar code. The effect can be minimized by using core specialization
to isolate the effect onto a small set of cores. Offloading is best done by having a

13
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thread pool.

3.1 Acceleration Through Vectorization
In this work we try to mitigate the performance degradation that HPWVIs impose
on subsequent scalar code. This benchmark shall show that using vector instruc-
tions can result in performance benefits for the right workloads. We measure the
performance by calculating the fused multiply-add ~a← ~a�~a+~b for two vectors
(~a and~b) consisting each of eight doubles. We compare how many of those opera-
tions can be done per second and per cycle with AVX-512-heavy, AVX-512-light
and scalar code. In AVX-512-heavy code the FMA can be performed with a single
instruction vfmadd132pd on 512 bit registers (zmm) eight times in parallel. For
AVX-512-light we choose the same instruction but on 256 bit registers (ymm).
Since we need to use twice as many registers, we can only execute four FMAs
in parallel. Our scalar implementation uses mulsd and addsd on 64 bit registers
(xmm). Since we need all 16 registers to hold the 2×8×64bit doubles, the scalar
version can not calculate multiple vectors in parallel. We also execute the same
tests with versions that write the results back to memory. The memory addresses
remain static in between FMAs to avoid cache misses.

Figure 3.1 (c) shows that the scalar version can execute about 1 FMA/cycle.
This accounts to one mulsd and one addsd per cycle. AVX-512-heavy and -light
can execute vector_width ∗ avx_execution_units FMAs/cycle which amounts
to 8 ∗ 2 = 16 for AVX-512-heavy and 4 ∗ 2 for AVX-512-light. In Figure 3.1 (a)
we account for the frequency drop by measuring the throughput (FMA/s) instead.
This experiment shows well that certain workloads can largely benefit even after
the slowdown.

3.2 AVX-512 Induced Performance Degradation
In Section 3.1 we showed that vector instructions can outperform their scalar
counterparts. We mentioned in Section 2.3 that frequency reduction does not im-
pact vectorized code too much, but can have a negative impact on subsequent
scalar code. We will inspect in this subsection that slowing down scalar code
can make it unfeasible to use vector instructions without modifications. We built
an experiment that tries to replicate the effect shown in Figure 2.4. An example
workload that generates this effect consists of a large scalar part and some vector
code that is periodically executed inbetween. In such workloads most of the per-
formance is dependent on the scalar code, but at the same time the vector code
periodically slows the scalar code down. Because the vector code is so small the
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Figure 3.1: Acceleration of FMAs with Vector Instructions: One full 8-element
FMA is counted as 8 FMAs.
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acceleration benefits can not outweigh the caused slowdown. Furthermore, we
want to show that the feasibility of vector instructions becomes unpredictable by
also replicating the effect in Figure 2.5 (performance increase through vectoriza-
tion).

We constructed two experiments, whose results are shown in Figure 3.2. In
the first experiment (a) we made the vector part small (1:100) to illustrate the
peformance degradation effect like in Figure 2.4. In the second (b) we put the
workloads into a 50:50 relation to show, that AVX-512 can improve the system
performance like in Figure 2.5 and is thus strongly dependent on the system’s
workload. Each experiment is run one time with injected code (=mixed), one
time without injected code (=prime) and one time without the scalar workload
(=injected). To prove that vectorization is the cause of the slowdown, we also
run the experiments with scalar code injected. So each of the experiments (a and
b) is run once with vector code injected (left) and once with scalar code injected
(right).

For the scalar workload we chose a scalar primesieve that calculates primes
up to repetitions ∗ 2pri_pow ∗ 64. The injected vector code repeats 2avx_pow−1 16
parallel 512 bit FMAs (=2avx_pow+6 64 bit FMAs) on doubles. The injected scalar
code does 2avx_pow−4 ∗ 16 ∗ 8 = 2avx_pow+3 double additions, which takes about
as long as the 2avx_pow+6 64 bit FMAs (see the injected part in Figure 3.2). We
execute iteration times the scalar workload after the injected code and measure
the total execution time.

We chose for the experiments pri_pow = 9, 4 repetitions and 40000 iterations
which accounts to about 64.54 s runtime. This means each iteration of the scalar
workload needs about 1.61 ms at the highest frequency.

The figures (a) and (b) in Figure 3.2 show the results of the two experiments,
each on the left side with injected AVX-512 and on the right side with scalar
code. The prime workload always takes up the same time in all experiments when
run alone, since it does not differ in the setups. The injected vector code is in
both experiments a bit faster than the injected scalar code, which is realistic as
we have seen in Section 3.1. (a) shows worse results when the experiment is run
with injected AVX-512 code, which proves that using vector code can result in net
performance loss. The (b) experiment however has better results with AVX-512,
showing that the feasibility is very dependent on the mix ratio and in general on
the system workload and thus very hard to predict. A dynamic policy is therefore
required to achieve optimal performance.
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(a) In this experiment is avx_pow = 13 (∼ 15us). It makes up less than 1% of the work-
load. The most important result is, that the mixed workload with AVX-512 is a lot slower
than when it is run sequentially. This confirms the assumption that AVX-512 code slows
down subsequent scalar code.
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(b) In this experiment is avx_pow = 20 (∼ 1ms). It makes up about 50% of the workload.
While the slowdown is still visible when comparing the mixed and sequential column in
the AVX experiment, the performance benefit of vector instructions outweigh the slow-
down. This is shown in the Mixed AVX workload taking less time than the Mixed Scalar
workload.

Figure 3.2: Unmodified primesieve benchmark: Lower is better; Relation injected
code to scalar primesieve: (a) 1:100, (b) 50:50
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3.3 Offloading AVX-512 Code to Mitigate Degrada-
tion

In Section 2.4 core specialization is introduced as a possible solution for mitigat-
ing the performance degradation induced by HPWVIs. To demonstrate that core
specialization is a feasible approach, we adapted our primesieve benchmark to of-
fload the injected workload onto a dedicated core. We set the injected code ratio
to 1:100 like in Figure 3.2 (a). We spawn a pool thread on a dedicated core and
prevent any other threads from on that core. The injected code is modified to be
always executed on that pool thread. This results in all AVX-512 code being ex-
ecuted on a separate core and leaving the scalar primesieve run at the maximum
frequency. Figure 3.3 shows that moving the AVX-512 code away can achieve
a performance close to the baseline. The 0.8% extra time in comparison to the
baseline stems from offloading overhead, which we further inspect in Section 3.4.
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Figure 3.3: Offloading AVX-512 code onto another core nearly completely elimi-
nates the slowdown problem.

3.4 Offloading Performance
In Section 2.5 we enumerate the different possibilities to offload work from one
CPU core to another. Our framework supports offloading with Linux thread mi-
gration, spawning new threads or using threads of a thread pool combined with
lock-free queues to execute the closures on. We use pthreads and migrate or pin
all threads with “sched_setaffinity” out of the Linux “sched.h”. We used the same
primesieve benchmark to measure the difference of the offloading mechanisms.
Figure 3.4 shows the results.
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Our tests yieled following results: Linux thread migration is not suited for fast
frequent migration, even when using the MuQSS scheduler [Kol]. The thread-
pool is the most efficient solution. Pool threads are only marginally better than
spawning new threads because a pool thread needs to do synchronization. New
threads can be spawned and then joined, while a pool thread needs an event loop
that polls events out of a queue. Our queue is lock-free (Section 4.3.2) which re-
sults on nearly no additional delay on the core where the application runs on. This
means in theory that during the synchronization delays other work can run on the
source core.
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Figure 3.4: Comparison of offloading mechanisms, not offloading at all and using
scalar injected code.
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Chapter 4

Design

It has been shown that using high-power-requiring wide vectorized CPU instruc-
tions (HPWVIs) can result in degradation of overall system performance. While
our work and approach are applicable for HPWVIs in general we worked mostly
with the most prominent examples AVX2 and AVX-512, whose specifics are fur-
ther explained in Section 5.1. The HPWVI-induced slowdown is caused by scalar
code running at low CPU frequencies. Running a certain amount of HPWVIs re-
quires reducing the CPU frequencies to stay within power design limits. Increas-
ing the frequency again after returning to scalar code is delayed and thus scalar
code runs for a short while at those lower frequencies. The frequency change de-
lays can be avoided by executing the frequency-reducing HPWVI code on separate
CPU cores where scalar code is only rarely executed. The goal of this work lies in
building a framework that mitigates HPWVI-induced performance degradation by
automatically offloading HPWVI-intensive parts of the corresponding workloads
onto other cores and thus maximizing overall system performance. This is done
with the support of the developer who marks code in his application that might
execute HPWVIs.

4.1 Overview

How the developer marks his code is explained in Section 4.3.1. Not all marked
code is worth being offloaded, thus we constantly need to decide whether to of-
fload a given part of the workload or not. A detailed description of how we do
the offloading decision is in Section 4.2.2. To achieve the best possible global
system performance we need to have a global view and make global decisions.
In general there are multiple applications active on the system that might use our
framework. The applications need to cooperate with each other to attain a global
system view. We do this by managing all decisions globally in a central policy

21
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server that is further described in Section 4.3.3. To enable applications to commu-
nicate with and benefit from our framework we need a bridge between the central
policy server and the applications. For that purpose we constructed a library that
makes up the other part of the framework and is detailed in Section 4.3.2. The li-
brary is linked against the target applications and the instances communicate with
the policy server to share data and communicate decisions.

The policy in the policy server mainly decides on which CPU core to execute
a marked code segment. This can be the CPU core the scheduler originally de-
termined or another CPU core. Offloading HPWVI code onto cores that execute
scalar code might result in recreating the same slowdown problem as on the orig-
inal core and makes measuring slowdown very hard. We circumvent this problem
by dedicating a dynamic set of CPU cores to run only offloaded work. Dedicat-
ing cores naturally results in lower system utilization. We minimize the system
utilization degradation by saturating one core after another and thus keeping the
amount of not fully utilized dedicated cores low. Our dedicated core approach is
described in Section 4.2.1.

Determining which regions are worth offloading means we need to find out
what parts are causing a slowdown. Since we focus mainly on HPWVI-caused
slowdown, we use a heuristic in the policy that estimates the slowdown by mea-
suring HPWVI usage. Adequate parameters for the heuristic differ a lot for dif-
ferent system loads. In order to find good parameters we constantly adapt them
during runtime and observe the overall system performance (see Section 4.2.4) in
a feedback loop (see Section 4.2.3).

4.2 Policy
The goal of the framework is to maximize overall system performance by coun-
teracting the performance degradation caused by using HPWVIs (with a focus
on AVX-512). Maximizing overall performance means that it does not matter if
single applications get slowed down as long as the overall system performance im-
proves. Our approach to minimize performance degradation is to offload HPWVI-
intensive work onto other cores. There are three core decisions that have to be
made by the policy.

1. The policy has to decide whether to offload the part of the workload given
to the framework onto another core.

2. The policy has to decide how many cores to consider for offloading work
onto.

3. If the policy decides to offload, it has to decide which core to offload onto.
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4.2.1 Dedicated Cores

When offloading code onto other cores that are running scalar code, the slowdown
problem is recreated on the cores we offload the work to. Also, choosing cores
for offloading becomes very hard because the policy would have to account for
the effect on those cores. We avoid both those problems by introducing the notion
of HPWVI cores. HPWVI cores are CPU cores which the framework considers
offloading work onto. We forbid the scheduler to run any other work which is not
explicitly demanded by the framework on these cores. Hence we establish dedi-
cated CPU cores that serve the framework for running (primarily) HPWVI parts
of the workloads that trigger slowdown. This approach stems from heterogeneous
computing and implements the principle of core specialization. Through core
specialization decision 3 becomes effectively synonymous with “How many CPU
cores are dedicated HPWVI cores?”. Dedicating cores that are not fully saturated
reduces the maximum achievable system utilization. Hence, we need to keep the
amount of dedicated cores as low as possible and maximize their individual sat-
uration. This requirement directly results in very simple policies for decisions 2
and 3. We minimize the amount of HPWVI cores by fully saturating them and
only after that dedicating more HPWVI cores. By fully saturating all cores before
spawning a new one we can achieve a maximum utilization of core_count−1

core_count in the
worst case. The current trend of increasing amounts of cores in CPUs suggests
that this effect will be negligible in the future. For example, the coming AMD
Rome CPUs will have up to 64 cores [wikb].

Dedicating cores not only simplifies the last two decisions and avoids creating
unavoidable slowdown effects on cores that run HPWVI, it also results in more
homogeneous workloads (in terms of vectorization) on a single core. Having
homogeneous workloads on cores plays a major role in the detection of HPWVI
heavy parts of workloads (see Section 5.2).

4.2.2 Offloading Decision

The dedicated HPWVI cores are our target for offloading work onto. We have to
decide what exactly we want to offload onto those cores. We only want to offload
something if offloading increases the overall system performance. The framework
focuses on performance degradation caused by HPWVI usage and gets informed
of candidate code regions by the application developer, only such code regions are
elligible to offloading.

Some marked code regions might not execute any HPWVIs at all. This might
be due to developer errors or compilers not vectorizing certain code regions.
Scalar code will not slow down other scalar code by frequency reductions, so
offloading it results generally in no performance gains and in practice in perfor-
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mance losses. The performance losses are created by offloading overhead and the
offloaded scalar code being slowed down. There are also parts of workloads that
use HPWVIs and cause frequency reductions but are still not worth offloading,
for example because of oversaturated HPWVI cores. Thus, offloading all marked
regions is in general not a very good policy.

The main part of the policy (decision 1) is deciding whether marked code is
worth being offloaded. We achieve better system performance by avoiding scalar
code to be executed at lower frequencies. This means we are looking for code
regions that execute enough HPVWIs to trigger a slowdown and are followed by
scalar code that gets slowed down. HPWVIs trigger slowdown when they exceed
a certain instruction mix density. Thus, we estimate the amount of slowdown by
measuring how many HPWVIs were executed on average in a time window. We
use a heuristic that assumes that offloading becomes feasible as soon as the rate
of HPWVIs exceeds a certain threshold. This threshold is not the same for every
type of system load. To perform well for all types of loads we need to adjust
the threshold dynamically during runtime. Since our goal is to maximize overall
system performance, we observe the correlation between the threshold and system
performance during runtime. That correlation is used to adjust the threshold in a
way that the system achieves maximum performance. This process of measuring
performance and adjusting the threshold creates a feedback loop.

4.2.3 Feedback Loop

y(thrsh) Measure 
System 

Performance 

y'(thrsh)

Offload 
using 

Thresholds 
System* 

Base Thresholds 
+

Exciter

Figure 4.1: A feedback loop is used to find a correlation between thresholds of
the heuristic, which decides whether a part of a workload is offloaded, and overall
system performance. y is a function mapping thresholds to performance. The
exciter keeps the feedback loop moving by preventing static thesholds.

Depending on the current system workload offloading the same part might be
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sometimes beneficial and sometimes detrimental to the system performance. Our
framework needs to be able to dynamically decide whether it should offload or
not. We make our policy flexible and dynamic by introducing a feedback loop in
our offloading decision that aids in maximizing system performance.

In the offloading decision, the heuristic for determining whether a part of a
workload is worth offloading uses a threshold on a HPWVI density metric. The
threshold gives us control over the amount of offloading and a selection of which
types of routines to offload. The goal of the feedback loop is to find adequate
values for the threshold parameter of our heuristic during runtime.

The feedback loop depicted in Figure 4.1 is split into three logical parts: Using
a threshold to control offloading is explained in Section 4.2.2. Measuring system
performance is explained in Section 4.2.4. In the following paragraphs we focus
on the threshold adjustment part of the loop.

We get a performance metric from the “measure system performance” block
and need to supply a threshold to the “offload using thresholds” block. Since we
know the threshold that was used, we can correlate the threshold to the metric
creating the function y : threshold→ performance. This function is only valid
as long as the system load does not change dramatically, thus only within a certain
time window (yt : threshold× timewindow → performance). This means we
have to regularly reset our function y. We derive dy

dthreshold
=: y′ : threshold →

performance_trend. Using our current threshold thrcur in y′ yields the current
performance trend y′(thrcur) =: trendcur. This value trendcur is then put into the
sigmoid function to get thresh_factor ∈ [0, bound], bound ∈ [1,∞). Depending
on the performance trend we get different cases:

• trendcur → −∞ =⇒ thresh_factor → 0
Performance improves with lowering the threshold.

• trendcur →∞ =⇒ thresh_factor → bound
Performance improves with raising the threshold.

• trendcur ∈ [−ε, ε] =⇒ thresh_factor →∼ 1
2
bound

Performance is close to a local minimum.

We use thresh_factor to direct our threshold by multiplying it to the base thresh-
old. If the threshold to performance correlation function y is accurate, then per-
formance should increase in the next step. This approach is similar to a gra-
dient descent. Gradient descent is a first-order iterative optimization algorithm
that finds local minima of a function [Wik19]. This means that the global mini-
mum is potentially not reached when using an unmodified gradient descent. Even
worse, the factor will converge to a certain number. Having a meaningful y′ re-
quires an y that is valid for big parts of the input domain (many recent different
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thresholds → performance statistics). When the factor converges because of
gradient descent, large parts of y become invalid with time. To circumvent this
problem we introduce an exciter. The exciter adds a distortion value to the thresh-
old before it is passed to the offloading heuristic. Hence we keep the threshold
value moving and avoid the problems that are caused by gradient descent.

Implementing the feedback loop exactly the way it is designed introduces
some complications such as the need for an explicit update of the correlation
function y. Instead, the feedback loop is implemented by having a direction
growth_direction in which we grow the thresholds and a rate growth_rate by
how much it is grown as additional context. By combining those with a timewin-
dow over the performance metric and observing the performance trend, we achieve
a similar effect, but have the advantage of having an implicitly up-to-date func-
tion. We use the previously defined function yt : threshold → performance
and derive it over time instead of threshold dyt

dt
=: trend′cur to get a performance

trend over time in our window. We still need a correlation between threshold and
performance trend. Thus, the windows are cut as soon as the threshold growth
direction changes, making the threshold growth direction static within a window.
With this assertion trend′cur correlates to trendcur, and we get following cases:

• trend′cur < 0 =⇒ growth_direction := −growth_direction
∧ growth_rate := growth_rate ∗ 1

factor
, factor > 1

• trend′cur > 0 =⇒ growth_rate := growth_rate ∗ factor, factor > 1

The exciter is implemented by timing how long the amount of offloaded clients has
not changed and increasing the growth rate if the timer exceeds a certain threshold.

Implementing a feedbackloop on such a system is linked to some key chal-
lenges. The system contains a lot of delay and we can only use sampling to model
the system.

4.2.4 Measuring System Performance
Implementing a feedback loop requires us to measure the overall system perfor-
mance that we want to maximize. Before we can measure the system performance
we need to define the scope of the system and construct a metric. Regarding ap-
plications that are not part of our framework or not on the same machine would
complicate meaningful measurement. Thus, we define the system as the collection
of all applications that use our framework on the same machine.

Measuring the performance of the applications can be done with two methods:
Either heuristics have to estimate the performance implicitly or the application
itself has to explicitly and regularly provide a performance metric. The explicit
metric needs to be normalized to work seamlessly with other applications. The
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implicit metric is calculated for every application with the same method and thus
does not have to be normalized. We decided to only use implicit metrics in our
prototype to require minimal information from application developers. Explicit
metrics are promising candidates for better performance heuristics and should be
further investigated (see Section 7.1).

Implicit performance detection is difficult. We implemented and evaluated
(Section 6) two approaches. Our first approach measures only marked code re-
gions. We can assume some marked code regions executing mainly scalar code.
If this was not the case the thresholds would converge against 0 because of the
feedback loop. The performance of HPWVIs is assumed to be invariant under of-
floading. Hence we can resort to only measure performance of marked code, since
it correlates to overall scalar code performance in the application. We use average
time of execution of the marked code regions as a heuristic for the implicit metric.
Our other approach tries to estimate the performance of the whole application by
measuring the call frequency. For applications that have only a small percentage
of code marked this heuristic better matches the application performance.

4.3 Framework

Transparent detection of problematic HPWVI executing code regions is difficult.
We went with a slightly intransparent approach which cooperates with application
developers to mitigate the performance degradation caused by HPWVIs. The ap-
plication developer marks certain code regions that might execute HPWVIs. Our
framework then only has to decide for those code regions as a whole what to do.
The framework should be as transparent as possible and provide an easy-to-use in-
terface. Sections might be wrongly marked, this means marked sections are only
candidates for actions.

Which candidates get offloaded has to be decided by a central policy that has
a global system view. The framework is split into a policy server that contains
the policy and a library that applications interact with directly. The policy server
manages all library instances on the same host. It further contains the complete
offloading policy and makes decisions for all clients. The library instances com-
municate with the policy server for exchange of monitoring data and decisions.
Every instance contains a decision cache that gets regularly updated by the server.
This cache is used for determining whether to offload at all and where to offload
to. During offloading or direct execution of the given code, the library collects
data about the code execution. The server contains a statistics storage for each
client where the monitoring data is stored after the corresponding library instance
sends them to the server.
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Figure 4.2: The framework architecture defines two components: The policy
server contains the policy and coordinates all library instances. The library is
the interface between applications and our framework. Black arrows symbolize
communication and blue arrows the passing of parts of workloads to execute. Ev-
erything runs on normal CPU cores, just the pool threads that execute the closures
run on the dedicated HPWVI cores.

4.3.1 Marking Code

Marked code has to be able to be moved onto other cores. The library moves
marked sections as a whole. Therefore, it would be optimal if sections each have
a common entry and exit point. Moving whole sections facilitates moving code
between cores. The most intuitive candidates for this type of code sections are
closures. Application developers have to convert code sections that need to be
marked into closures. Marking closures is best done by passing them to the frame-
work to be executed. Hence our framework can easily analyze them and move
them around. The process of passing our framework a closure for analysis and
execution must be as performant as possible to avoid slowdown. Minimal over-
head is achievable by separating our framework into a part that contains the global
policy and a part that sits close to the application for maximum performance. We
created a dynamically linked shared library that applications link against and then
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Figure 4.3: Overview of the implementation of the framework. Blue arrows sym-
bolize data flow and black ones control flow. The policy server and library are
split. The library executes closures on pool threads that run on HPWVI cores.
The library uses performance counters to gather statistics and sends the compacti-
fied results to the policy server. The policy server runs the policy for all clients and
regularly communicates the decision back to the library instances. Those store the
decision until the next update.

can pass marked code in form of closures to. With a linked library our code is ex-
ecuted in the same address space as the code we want to potentially offload. This
approach not only results in good performance but also makes the mechanism of
passing functions and converting code into closures easy. The following listing
demonstrates in pseudo code how marking a closure is done:

//closure to be marked
Calculate(param1, param2) {

//do calculations, potentially using HPWVIs
}

//without library
Calculate(param1, param2)

//passing to library
AVXPERF_EXEC(Calculate, {param1, param2})

//optional: passing explicit performance metric
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AVXPERF_METRIC(performanceOfLastCall)

The function “Calculate” is the closure we want to mark. Normally it would just
be executed, but to mark it, it is passed to our library for execution. If explicit
performance metrics would be implemented, this is how they could be passed
to the framework (more details in Section 4.2.4). The rest happens within our
framework. For a concrete language specific code marking implementation see
Section 5.3.

4.3.2 Library
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Figure 4.4: The library consists of following components: execution, monitoring
and policy. The monitoring component reads performance counters and gives the
statistics to the policy where the statistics are compactified into a sum over a time
window before they are sent out. The policy component also contains the decision
cache that is filled by the server. This cache is used by the execution component
to decide onto which pool thread to offload.

The dynamically linked library is the frontend of the framework. Applications
that shall make use of our framework need to link against this library.

Frontend To let the library consider a part of an application for offloading,
the code region has to be put into a closure and passed to the function AVX-
PERF_EXEC. The library then does the rest of the work without further inter-
acting with the application. A possible exception is passing a metric to the library
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in addition to the closure to yield better results in terms of performance. How
code marking works is explained in Section 4.3.1 and Section 5.3.

Offloading Mechanism Internally the library first has to decide for a given clo-
sure where to execute it on. The decision whether a library instance shall offload
is done by the policy server and stored locally in a decision cache. The library
itself only has to execute the closure on the correct core. We mentioned different
offloading mechanisms in Section 2.5. Pool threads cause the lowest offloading
overhead as measured in Section 3.4. Since we have dedicated cores for execut-
ing parts of workloads we can prepare pool threads on those cores. A pool thread
for each core is spawned as soon as it transitions into a dedicated HPWVI core.
The pool thread is part of the library and thus also part of the application address
space. Offloading a closure is thus as simple as passing it to the pool thread via the
implicit shared memory for execution. The pool thread contains a lock-free single
consumer queue into which closures are put. The queue resides in the implicitly
shared memory between threads.

Since each application has their own pool threads the pool threads compete
amongst each other for time on the HPWVI cores and thus should not use spinning
for synchronization. Instead, a futex is used to wake a pool thread as soon as work
exists in its queue.

Monitoring The library is responsible for executing marked code, thus it is also
responsible for monitoring. Performance counters are read before and after ex-
ecuting the closure. The amount of active performance counters is limited and
the selection of them is thus part of the policy. Further the choice of perfor-
mance counters needs to be done globally. For those two reasons, the performance
counter choice is done in the policy server. Besides performance counters, time
is also measured. Only the events caused by the closure are interesting thus for
each counter the difference between the values before and after execution has to
be calculated.

Communicating too often to the policy server is detrimental to performance
(Section 6.2.3). Thus the values are summed up into running sums and sent reg-
ularly to the policy server. Those values are used for determining performance
(Section 4.2.4) and detecting HPWVIs (Section 5.2).

Server Communication The library communicates statistics after every deci-
sion cache update period to the server and requests a decision cache update.
Each library instance owns a local decision cache that contains information about
whether and where to offload and which HPWVI cores are active. The decision
cache is updated every x executions of closures. Each library instance is the client
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in a client-server-relationship with the policy server. The communication between
the clients and the server has to be reasonably fast, but does not need to be as fast
as the queue in the pool threads. We use explicitly shared memory wherein a lock-
ing multi producer queue resides for clients contacting the server, each client has
its own single producer queue for responses.

4.3.3 Policy Server
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Figure 4.5: The policy server has a statistics storage for each client that is used
to calculate the local window metric. This local window metric is then used to
calculate the global metric which then is compared against the other global metrics
to determine adequate thresholds. Those thresholds get used to determine for each
client whether it should offload.

We implemented a central policy server which contains the whole offloading
decision policy. The idea behind a central server is motivated by the need to have
a complete system view. Doing that with a central server is in this case simpler
and more efficient than letting the clients interact directly with each other.

Feedback Loop The policy server implements the feedback loop depicted in
Figure 4.1 and described in Section 4.2.3. From the clients, the server gets a
sum for each configured performance counter and a time counter over a certain
time window. Those values are used in the “measure system performance” block
shown in Figure 4.1 and also for calculating values that are compared against the
thresholds (Section 5.2).
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We need to process the raw per-client values spread over time into a single
value trend′cur. The value trend′cur is just the derivative of our global performance
metric over time. So we first need to determine a per-client performance metric as
described in Section 4.2.4, which is done in “calc window metric” (in Figure 4.5).
This yields yct := threshold × timewindow × client → performance which
is a collection of yt, one for each client. We determine yt from yct by setting
yt :=

∑
c∈Clients y

c
t . With yt we can get trend′cur and thus determine the values

for growth_direction and growth_rate. Note that, as described in Section 4.2.3,
if we notice performance growth over the last windows, we keep the direction and
increase the growthrate. If the performance gets worse, we invert the direction
and decrease the growth rate. Determining the growth rate and direction is done
in “calc global metric” (Figure 4.5). To obtain the threshold for offloading we use
the growth rate, growth direction and potentially apply the exciter. Finally, the
threshold is stored and used until recalculation.

As soon as a client then requests a decision update, the threshold is applied to
the client’s heuristic and the resulting decision is sent to the client to be written
into its local decision cache. This decision whether a client should offload or
not is static for a whole decision cache update period. The update period can be
configured. We found in Section 6.2.3 that updating the decision cache every 100
executed closures provides enough resolution while not causing any significant
overhead.

The exciter becomes active when the amount of offloaded clients has not
changed within a certain period. Determining the amount of offloaded clients
is trivial in the policy server.

HPWVI cores The amount of active HPWVI cores is also determined by the
policy server. The policy server is responsible for setting the cores up. This in-
cludes enabling monitoring, migrating all tasks away and preventing the scheduler
from putting there any tasks by using cpusets. A list of active HPWVI cores is
put into the decision cache of the clients, so they know where to spawn the pool
threads on.

Having too many HPWVI cores reduces the system utilization and thus the
overall system performance. To profit from an additional core being put into HP-
WVI mode, all other HPWVI cores should already be utilized to a high degree.
If the average HPWVI core utilization falls under a certain threshold, HPWVI
cores are removed. However, if the average HPWVI core utilization reaches a
certain threshold another HPWVI core can be added. To avoid thrashing those
two thresholds should be different. Due to time constraints our prototype does not
automatically add more than one HPWVI core.
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Chapter 5

Implementation

Executing high power wide vectorized instructions (HPWVIs) on the same cores
as scalar parts of a workload results in unwanted slowdown of the scalar code. HP-
WVIs can not run at the same CPU frequencies as scalar code because it would
exceed the designed power limitations. Increasing the CPU frequency after ex-
ecuting HPWVIs takes time and thus subsequent scalar code runs at lower fre-
quencies than normally possible. We designed a framework that cooperates with
HPWVI application developers to mitigate this effect by offloading HPWVI parts
of workloads onto cores dedicated for this type of workload.

Our framework focuses on current generation Intel processors (Intel Skylake-
SP) running GNU/Linux and is written in C. The main concepts of this work
should apply to any HPWVIs on any platform. In this chapter we break down
specifics of our approach for the platform we focused on.

Our policy relies heavily on the detection of HPWVIs in between scalar code.
One of the main problems of this platform regarding our solution is the lack of in-
strumentation to count executed HPWVIs. This means we need to rely on heuris-
tics and some form of feedback mechanism to detect HPWVIs. Our framework
cooperates with the application developers to find candidates and thus reduce the
searching scope drastically.

5.1 HPVWIs in Current Generation Intel Proces-
sors

Intel Skylake-SP processors support several instruction set extensions that support
vectorized execution. Only AVX2 and AVX-512 are HPWVIs. Each core has 3
power levels with different frequency bands. Level 0 corresponds to the normal
state, while level 1 and 2 are frequency-reduced states. If the instruction mix
within a small window has too many level-1-triggering instructions, the core will
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switch into level 1 power mode. The same applies for level 2 instructions and
the level 2 power mode. Level 1 instructions are AVX2 instructions that use FP
or INT MUL/FMA and AVX-512 instructions that do not use INT MUL/FMA or
FP. Level 2 instructions are AVX-512 FP and AVX-512 instructions that use INT
MUL/FMA. [int18a]

L0 @ f_0Level 0 Code @ f_0 

Level 0 Code @ f_0Level 0 Code @ f_1 

Level 0 Code @ f_0 

L0

L1

Level 0 Type

Level 1 Type

Level 2 Type

same vectorizable
part of code 

with different types
of instructions 

f_0

f_1

f_2

Time

Core Frequency
Power Level Change Delay

Power Level Change Delay

Level 0 Code @ f_2L2

(Theoretical) Power Level Change Delay

Slowdown

Slowdown

Figure 5.1: This example illustrates how HPWVI caused slowdown is created in
systems with multiple power levels. Each bar represents the execution of the same
workload, with different types of power level triggering code.

Power Levels The power levels directly correlate with the maximum frequency
the core can run at. Switching from the power level back to level 0 will result
in the most slowdown for the level 0 code. Thus, the highest power down level
code is in general the best candidate to offload in a multi power level architecture.
As part of our offloading mechanism we use dedicated HPWVI cores that execute
offloaded code. The HPWVI cores will generally run predominantly in the highest
power down level while the rest of our cores will run preferably at lower levels.

This splits our cpu cores into two sets and raises the question of where code
that triggers intermediate levels should run on. Running level 1 code on a level
2 dominated core slows down the level 1 code, while running the level 1 code
on our level 0 core slows down the rest of our workload. This is illustrated in
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Executing Level 1 Code on HPWVI Cores Executing Level 1 Code on Normal Cores

L0

Time Time

Figure 5.2: Intermediate-level-code slows down lower-level-code (right side) but
gets slowed down by higher-level-code (left side).

Figure 5.2. Having two or more different power down levels means we have
to differentiate those within our framework. Introducing separate level 1 dedi-
cated cores would reduce maximum system utilization further from core_count−1

core_count to
core_count−2
core_count in the worst case. In general multi power level architectures this would

be core_count−power_level_count+1
core_count . Instead of using multiple types of dedicated cores,

we chose another approach. Our hybrid approach uses a threshold for each level
of instructions and is illustrated in Figure 5.3. Without further adjustment our
feedback loop automatically determines whether level 1 code should be offloaded
or not by adjusting the level 1 threshold. Hence the framework decides whether it
is better for the overall system performance to slow down the level 1 code to level
2 or to slow down some level 0 code to level 1. This approach also works for more
than 3 power levels and does not impose scaling issues such as multiple types of
dedicated cores.

Measure Different Types of AVX Instructions The feedback loop requires
knowledge about which power level triggering instructions are executed. This
information is used to compare against the thresholds per power level. Following
performance counters exist on our platform that measure HPWVI-related instruc-
tions [int18b]:

• Retired Scalar/Packed SIMD instructions counter

• Retired 512B FP AVX-512 instructions counter

• Cycle counter for each power level



38 CHAPTER 5. IMPLEMENTATION

Hybrid Approach

L2L2 L2 L2L1L1 @ f_2
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L0

application with  
AVX2 metric < threshold2

HPWVI Core

Normal Core

application with  
AVX2 metric > threshold2

Time

Figure 5.3: The hybrid CPU choosing approach for intermediate-level-code de-
cides for each client separately whether to offload or not, just like with the highest
level.

Apart from SIMD instruction sets which reduce frequency such as AVX-512 and
AVX2 there are also SSE and AVX which do not trigger higher power down levels.
Counting SSE and AVX instructions separately and then subtracting them is not
possible. Measuring AVX-512 FP instructions is also not enough for determining
all level 2 instructions. It misses for example AVX-512 INT MUL and FMA. The
only metric that can be used in our framework are cycles spent in the correspond-
ing power levels. Those cycle counters do not provide a precise measurement
of how many instructions were executed that triggered certain power levels, but
rather how many cycles were spent in the respective power level. Those two met-
rics differ because the power level change delay makes lower power down level
code run at higher levels for some time. How to use this metric to heuristically de-
tect level 1 and level 2 instructions is further detailed in Section 5.2. The existence
of intermediate levels does not further complicate our design and implementation.

Power Level Change Delays Whether offloading can improve performance is
strongly dependent on how long the acquisition of a higher frequency power level
takes. Offloading onto another core is effectively dodging this delay time and
paying instead with offloading overhead. Going into a lower power down level
requires up to 500us for power license acquisition and waiting at least another
2ms till a conditional timer ends. The 2ms timer is reset every time a condition
is fulfilled that would have requested a new license. Effectively this means that
level 0 code can be executed for about 2,5ms at a frequency lower than necessary.
This makes the range in which offloading helps quite broad, making the approach
of our framework feasible.
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5.2 Measuring HPWVI Instruction Density
The ratio of HPWVI to Non-HPWVIs within a small window determines whether
a switch of power down level occurs [int18a]. Our design (more specific the
heuristic in the policy of the feedback loop) requires a metric of how dense the
HPWVIs are in the instruction mix to predict slowdown.

On our platform we have no direct access to the HPWVI density. We can only
use a heuristic to guess it by using the power level cycle counters mentioned in
Section 5.1. As a sufficiently HWPVI-dense code triggers a switch to a higher
level, the cycle counters correlate strongly to the HPWVI density being over the
threshold. The higher those counters are averaged over time, the longer was the
instruction mix dominated by the corresponding instructions. The main problem
with the cycle counters is that due to power level change delays, code that comes
after a certain instruction mix also counts into those counters. Since we split the
regarded code into multiple independent candidates, this results in a lot of false
positives.

Aggressive offloading We should avoid having too many of those false positives
running on the dedicated cores. The original problem why we have false positives
is that Non-HPWVI-dense code (NHDC) following HPWVI-dense code (HDC)
will spend some cycles in a higher power down level caused by the HDC. This
results in NHDC following HDC to have on average a higher metric than other
NHDC. In general however, HDC will have an even higher metric than NHDC
independently of whether it follows HDC or NHDC. This means there is a thresh-
old which separates NHDC and HDC. The task of the feedback loop is to find
this threshold. The dedicated cores are useful for supporting the feedback loop
in this task. Offloading NHDC onto a HPWVI core will slow the NHDC down,
which is illustrated in Figure 5.4. This will result in a lower global performance,
making the feedback loop counteract this decision by increasing the threshold.
This results in the NHDC not being offloaded anymore. (Side note: In the case
of very lowly saturated HPWVI cores, offloading NHDC might increase global
performance by increasing system utilization, but in this case it does not matter
that we wrongly offloaded something).

5.3 Marking Code in C Applications
In Section 4.3.1 we outlined the code marking process for general languages. To
let the library consider a workload for offloading, the workload has to be put into
a closure and passed to the function AVXPERF_EXEC, which then potentially
offloads the closure onto a dedicated HPWVI core. In our prototype the library is
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Figure 5.4: When NHDC code is wrongly offloaded, the performance decreases
on average. This effect makes it feasible to offload aggressively and then correct
detected mistakes.

written in C which does not contain explicit closures. We implemented a closure
in the form of a struct with a pointer pointing to the function to execute and an
argument struct. An argument struct contains all the arguments and has to be
created for each unique function signature. If adapting the target function is not
possible or desired, it is possible to pass an unwrapper function to the library.
This unwrapper needs to get the arguments from the argument struct and call the
target function with them. Listing 5.5 shows a code example that illustrates how
unwrapper and wrapper can be implemented and how a closure is passed to the
library without modifying the target function. Wrapper and unwrapper code can
be theoretically auto-generated using preprocessor macros.
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//closure to be marked
int calculate(int param1, char param2) {

//do calculations, potentially using HPWVIs
}

//without library ----------------------------
result = calculate(param1, param2)

//with library -------------------------------
struct calculateArg {

int param1;
char param2;
int *returnVal;

};

void calculateUnwrapper(void *arg) {
struct calculateArg *unpacked = arg;

*unpacked.returnVal = calculate(
unpacked.param1, unpacked.param2);

}

int calculateWrapper(int param1, char param2) {
int returnVal;
//passing to library
AVXPERF_EXEC(calculateUnwrapper,

{param1, pararm2, &returnVal});
return returnVal;

}

result = calculateWrapper(param1, param2);

Figure 5.5: Code example of how to pass a closure to our library
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Chapter 6

Evaluation

Using vector instructions with high power requirements results in temporary CPU
core frequency reductions. Increasing the frequency is inflicted with delays and
this subsequent scalar code often runs unnecessarily at low frequencies. A lot
of workloads benefit from vectorization disregarding the frequency reduction,
but when combined with other scalar workloads, the overall system performance
might be worse than without vectorization. We constructed a framework that miti-
gates the performance degradation caused by high power vector instructions (HP-
WVIs), without prior knowledge of the application. Application developers use
our framework by marking code in their applications that potentially executes HP-
WVIs. We designed a policy which decides for the marked code regions whether
they should be offloaded onto a small set of dedicated cores to isolate frequency
reducing code from scalar code. In this chapter we are gonna evaluate our ap-
proach and the policy we designed. We focus on testing our policy on realistic
workloads and finding reasonable parameters for our policy.

6.1 Setup

All benchmarks are executed on an Intel Core i9-7940X, which underlies the In-
tel Skylake-SP architecture, has two AVX-512 units and 14 physical cores with 2
threads per core. We disabled C-states and configured the cores to run always at
the maximum possible frequency to reduce the variability of results. The maxi-
mum frequencies differ for each power level as shown in Table 6.1.

The CPU frequency governor of all cores is set to “performance” mode. We
use the Linux-CK kernel in version 4.18.17 to make use of the MuQSS sched-
uler [Kol]. MuQSS is set to maximize throughput instead of latency (/proc/sys/k-
ernel/interactive = 0). We use cpuset [cpu] which is a wrapper around linux
cpusets, to isolate our benchmarks on cores 4-13 and their hyperthreads. Hence
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Power Level Frequency
0 (Scalar) 3.8 GHz
1 (AVX2) 3.3 GHz
2 (AVX-512) 2.5 GHz

Figure 6.1: Intel i9-7940X frequencies

we avoid any external disturbances in form of power level triggers from other ap-
plications running on the system. Additionally, all applications that are not linked
against our framework are compiled without AVX2 and AVX-512 support.

For the benchmarks in Section 6.2 we make use of the avocado test framework
[avo]. Avocado allows us to easily and automatically reconfigure our benchmark
and framework to test with multiple parameters that are centralized in a single
configuration file.

6.2 Framework Performance

In this section we will show that our framework provides value by mitigating the
performance degradation caused by AVX-512. We want to show the following for
realistic workloads:

• Using HPWVIs can have a net performance penalty.

• Our framework can mitigate the performance penalty.

• The heuristical performance metric we use is able to accurately estimate
performance.

• Our policy detects for which workloads it is worth offloading and is thus
better than a policy that always offloads.

• Our framework does not slow down applications that do not benefit from
offloading.

One of our workloads is a recreated NGINX [ngi] web server benchmark [Kra17]
that uses OpenSSL [opea] for encrypting ChaCha20-Poly1305. We use wrk [wrk]
for traffic generation and brotli [bro] with zlib [zli] for compression. Another
application we use is the x264 video encoder [x26].
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6.2.1 Homogeneous Marked Code
In this section we evaluate our framework with workloads where the marked code
is homogeneous in terms of execution time and vector instruction usage. Hav-
ing homogeneous marked code makes it easier for the policy to decide whether
it is worth to offload. Each application is configured to either use full vectoriza-
tion (AVX-512), vectorization except AVX-512 (AVX2) or only vectorization that
does not cause frequency reductions (SSE). Every test is executed once without
our framework, once with our full framework and once with our framework but a
policy that always offloads marked code.

We recreated the NGINX benchmark from [Kra17]. Upon inspection, we
found that most AVX-512 instructions are executed in the ChaCha20-Poly1305
encryption routine of OpenSSL. We modified OpenSSL to pass the vectorized
encryption routine to our framework.

Our experiment uses four wrk threads with 1000 connections to generate five
minutes long traffic for the NGINX server described in Section 6.1. Wrk is run-
ning on separate cores. The NGINX server and our framework share 8 physical
cores and the corresponding hyperthreads. To generate scalar workload, the NG-
INX server is configured with gzip and brotli compression on. We turned AVX-
512 and AVX2 in zlib and brotli completely off. We configured OpenSSL to only
use for the ChaCha20-Poly1305 routine vectorization.

Performance Comparison We define the performance of the NGINX server to
be the amount of requests the server can finish per second. Figure 6.2 shows the re-
sults of the described experiment. Subfigure (a) are the results grouped by amount
of vectorization. The SSE experiment did not benefit from offloading and our pol-
icy was able to impose only minimal overhead indicating it detected the type of
vectorization correctly. The AVX-512 setup greatly profited from offloading and
our policy was able to detect that. In this setup offloading did not make a big
difference when using AVX2. Subfigure (b) shows the same results grouped by
whether our framework was used or not. This representation illustrates well that
the variability of performance is less when using our framework. It also shows
that offloading can not completely eliminate the performance degradation for this
experiment.

Policy Activity We exported the course of the key policy variables out of our
server during the experiments to validate what the policy is doing. Figure 6.3
(a),(b) and (c) show the course for the three experiments (AVX-512, AVX2, SSE)
that used our policy and (d) summarizes the performance of those experiments
with and without our framework. We mapped the internal heuristical metric, the
threshold and the percentage of offloaded clients.



46 CHAPTER 6. EVALUATION

 0

 5

 10

 15

 20

 25

 30

 35

SSE AVX2 AVX512

T
hr

ou
gh

pu
t (

x 
10

00
 R

eq
ue

st
s/

s)

Unmodified
Framework

Static

(a) The SSE test does not profit from offload-
ing. For the AVX2 test offloading makes no
difference. The AVX-512 test greatly im-
proves when offloaded. Our framework can
make use of offloading or decide against us-
ing it when not appropriate.

 0

 5

 10

 15

 20

 25

 30

 35

Unmodified Framework

T
hr

ou
gh

pu
t (

x 
10

00
 R

eq
ue

st
s/

s)

AVX512
AVX2
SSE

(b) Using our framework reduces perfor-
mance variability. Offloaded AVX-512 is not
as fast as not using it at all in this setup.

Figure 6.2: Performance degradation and mitigation thereof in NGINX server.
Higher is better.

Subfigure (a) shows the AVX-512 experiment. The initial threshold of our
policy is very low, thus all clients offload immediately. It takes a few seconds
before offloading reaches the maximum performance gain. After 100 seconds the
exciter triggers a rise in the threshold, resulting in nearly all clients stopping to
offload. The internal metric sinks after the threshold rises, so the policy readjusts.
This happens again after another 100 seconds.

Subfigure (b) shows the AVX2 experiment. Since offloading does not impact
the performance at all, the metric is quite steady. The policy keeps offloading
until the exciter suggests changing the threshold. Since the performance penalty
of offloading is not large enough to trigger reducing the threshold again, all clients
stop offloading till the next exciter cycle. Subfigure (c) remains completely static
because there are no AVX-512 or AVX2 cycles at all, so each client stays under
the threshold no matter how low it is.

Figure 6.4 shows the policy behavior when the video encoder x264 is used.
We marked the routine “x264_macroblock_analyse” which uses the most vector
instructions, but x264 uses a lot of other routines that are vectorized. The metric is
a lot more jittery than for NGINX, since encoding a video is not as homogeneous
as serving the same webpage every time. Our policy realized that the performance
is better when not offloaded and decides up to the next exciter trigger to not of-
fload. Most of the scalar code in x264 is strongly intertwined with the vector
code. Therefore, offloading is not beneficial for x264 since most scalar code will
be slowed down anyway.
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(a) Policy development AVX-512: Offload-
ing is beneficial. Increasing the thresholds
results in worse performance. The metric es-
timates the system performance and the feed-
backloop counteracts the metric reductions
caused by increasing the thresholds.

Time passed (s)

O
ff

lo
ad

ed
 c

lie
nt

s 
/ T

hr
es

ho
ld

 / 
M

et
ric

0

100

200

300

0.000 60.000 120.000 180.000 240.000

Metric Threshold % Offloaded Clients

(b) Policy development AVX2: Offloading
makes no difference. Thresholds are purely
determined by exciter.
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(c) Policy development SSE: Nothing hap-
pens because there are no AVX2 or AVX-512
cycles.
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Figure 6.3: Policy behavior during NGINX benchmark: Each value is normalized
to a range from 0 to 100 and offset to separate the lines. Metric: Higher is better.
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Figure 6.4: Policy behavior during one thread of x264 video encoding: x264
is nearly completely vectorized, thus offloading parts of it is not beneficial to
performance.

6.2.2 Mixed Workloads
In the last experiment we evaluated our policy with a homogeneous workload.
Our framework was built with the purpose to let multiple applications in a system
benefit from offloading. Also, not all applications have very homogeneous marked
code section such as NGINX. Therefore, we investigate in this section how well
our framework performs in mixed workloads. To model a heterogeneous system
we mix our NGINX benchmark with other benchmarks.

Figure 6.5 shows the results of NGINX being combined with the x264 video
encoder. Similar to Figure 6.3, subfigures (a), (b), (c) show the course of the policy
and (d) shows the performance. Subfigure (b) is the same as Figure 6.4 and shows
how the policy behaves when x264 is run alone. Subfigure (a) is x264 combined
with AVX-512 NGINX and (c) with SSE NGINX. AVX-512 NGINX and x264
both use AVX-512, so offloading does not result in enough non-frequency-reduced
time for the scalar part of NGINX. Thus, (a) shows that while x264 is running no
offloading occurs. As soon as x264 is done, the policy returns to the same curve
as when NGINX is run alone. Interestingly, subfigure (c) shows that when run
with a scalar NGINX, offloading becomes beneficial. Subfigure (c) shows that
most clients get offloaded during the execution of x264 which suggests that our
heuristic for detecting AVX-512 cycles is not very precise. The performance of
the NGINX benchmark benefited from our framework when run with AVX-512
or was not changed when run with only SSE (see (d)).

6.2.3 Parameter Tuning
Parametrization of a policy is sometimes as important as the policy itself. In this
section we investigate the effect of varying certain parameters and try to under-
stand which scenarios benefit from certain parametrizations.
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(a) NGINX AVX-512 with x264
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(b) x264 solo
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(c) NGINX SSE with x264
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Figure 6.5: Combined benchmark: NGINX with x264
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Core Count We mentioned that increasing core counts can counteract the im-
pact of the lower system utilization when using dedicated cores. To get an idea of
how the core count affects the performance of our framework we varied the core
count in our AVX-512 NGINX benchmark. We run the benchmark either without
the framework, with the framework or with the framework with an additional vir-
tual offloading core. The virtual core shall represent a manycore system where an
additional core does not have any impact on utilization.

Figure 6.6 shows the results. Subfigure (b) shows that increasing the core
count when not having a virtual core increases the performance until the dedi-
cated core is fully utilized. The experiment with a virtual extra core slightly loses
performance benefits with increasing utilization due to latencies becoming higher
for offloading.

Window Size and Exciter Frequency The window size of the policy deter-
mines over how long the metric is averaged and how quickly changes are made.
Having big windows results in less fluctuation but slower adaptation. The exciter
frequency determines how often random threshold adjustments are made to avoid
spending too much time in a local minimum. A small frequency can result in long
times spent in minima, but a long frequency can result in a lot of fluctuations.

We varied window size and exciter frequency in our AVX-512 NGINX bench-
mark to investigate the effect on offload detection quality. Figure 6.7 shows for
both exciter period and window size a positive performance trend when increased.
When increasing the exciter period, the policy will less often stop offloading, re-
sulting for this benchmark in better results. The same applies to increasing the
window size, but increasing the window size also results in less high frequency
fluctuations. The fluctuation effects are clearly visible when inspecting the policy
diagrams in Figure 6.8.

Decision Cache Update Frequency How often the library updates the decision
cache is determined by the parameter “server update period”. A server update
period of n means that a decision cache is valid for n calls. Thus, the decision
cache gets updated with a frequency of 1

n
times per call. Since the library has to

communicate to the policy server via queues and IPC across processes we need to
inspect how big the overhead is. When repeating the primesieve from Section 3.2
with and without the server activated there is no statistical significant overhead
measurable. To find the imposed overhead we created an application that can
be finely configured on how much work it does. The work amount is directly
proportional to the execution time without our server, hence measuring the ratio
of time spent in the workload to overall time yields us the efficiency. We set the
application to communicate with the framework by requesting a decision cache
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count. Stock = unmodified, FW/Mixed = framework, FW/Separate = framework
with virtual core
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Figure 6.7: Variation of window size and exciter period in AVX-512 NGINX
benchmark: Performance
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(a) Exciter Period: 100, Window Size: 100
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(b) Exciter Period: 200, Window Size 400
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Figure 6.8: Variation of window size and exciter period in AVX-512 NGINX
benchmark: Policy diagram. A higher exciter frequency and lower window size
result in more fluctuations.
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update with a certain frequency. The results in Figure 6.9 show that when using
an update period of 100 for a workload that is at least 100ns long, the efficiency is
about 99.94%. The shortest workload that still triggers a power level change, has
with an update period of 100 less than 1% overhead.
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Figure 6.9: Measurement of efficiency under variation of server update frequency
and workload size: Each line represents a configuration with a different update
period. An update period of 100 results in less than 0.05% overhead caused by
library-to-server communication in applications with workload sizes above 100ns.

6.3 Discussion
Our benchmarks showed that using HPWVIs can result in a performance penalty.
The NGINX + OpenSSL benchmark is a perfect example for the problems aris-
ing when having unpredictable effects on unrelated code. AVX-512 accelerates
OpenSSL encrypting a lot, but the proportion of the encrypting code is very small
and NGINX is completely scalar. Thus, the frequency reduction has a big nega-
tive impact and can not be outweighed by the small acceleration. This combina-
tion of applications and the negative impact could not have been foreseen by the
OpenSSL developers.

We showed that our framework is able to reduce the performance variability
between using AVX-512, AVX2 and none of the two. It can accelerate AVX-
512 applications by partially mitigating the performance degradation and does not
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slow down scalar applications by detecting when offloading is beneficial. Some
applications benefit from running only SSE instead of AVX2 and AVX-512 even
when offloading AVX-512. Low system utilization plays a role in making AVX-
512 combined with offloading not outperform SSE, but has less impact when more
cores are available on the CPU. That is also the reason why [GB18] achieved re-
ducing the degradation to 3.7% while we could only get it down to 8%. They
could achieve a better degradation reduction by not dedicating their core to exe-
cuting only AVX-512 and thus had a higher system utilization. We dedicated our
cores mainly for having a better detection policy.

Our policy performs well for homogeneous marked code. This is on one hand
due to the performance heuristic performing well for homogeneous loads and
on the other hand because we decide for all applications equally how high their
thresholds are. Experimentally we adapted our policy to have per client thresh-
olds, but found in a series of smaller tests with homogeneous loads that this policy
does not work well on a per client basis. Most of the times the policy was stuck
with only half of the clients offloaded which is the worst-case-scenario. An ex-
plicit performance metric given by the application paired with an identification of
different marked code regions might help to make per-client thresholds feasible.

Mixed heterogeneous workloads suffer a lot from the implicit performance
metric. For example, running x264 with a scalar NGINX resulted in complete
offloading. This accelerated NGINX, probably because of scheduler advantages.
Since the metric of NGINX had more weight, the policy decided that trading x264
performance for NGINX performance is worth it.
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Chapter 7

Conclusion

It has been proven that using AVX-512 instructions can degrade the overall per-
formance of a system. AVX-512 execution units are part of the dark silicon on a
chip and require too much power to be run at normal core frequencies. Increas-
ing the core frequencies after a burst of AVX-512 instructions takes time which
results in subsequent code being run at low frequencies. Depending on the sys-
tem workload, this often results in worse overall performance when using AVX-
512. AVX-512 instructions are not the first and will not be the last high power
instructions that require a frequency reduction that might result in poor system
performance. The risk of slowdown causes application developers to deactivate
AVX-512 in their applications [opeb].

We provide a framework that uses core specialization to allow application
developers to mitigate unexpected slowdown caused by AVX-512. Application
developers only have to mark code that potentially executes AVX-512 in their
application. The policy we designed can then dynamically decide during run-
time whether an application should execute marked code regions on dedicated
AVX-512 cores or not. By isolating AVX-512 onto dedicated cores we reduce
the impact of frequency adjustment delays. Our framework focuses on AVX-512,
but the principles we discuss in this work and our policy apply to any high power
instructions that require frequency reductions to run.

We recreated a real world web server example that demonstrates that using
AVX-512 results in poor performance. To prove the value of our framework we
modified the experiment to make use of our framework and showed that we can
significantly reduce the performance variability. We were able to reduce the per-
formance degradation from 17% to 8%, even though we dedicated a full core to
running offloaded work. One of our experiments showed that more available cores
improve the mitigation of the performance degradation. Therefore, the feasibility
of our approach will improve on future CPUs with more cores.
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7.1 Future Work
We tested our policy only on a single CPU while the impact of AVX-512 and the
feasibility of our framework largely depend on the amount of cores on a system
and its frequency reduction behavior. Thus, we suggest more evaluation on sys-
tems with more CPU cores and different frequency reduction behaviors and more
power down levels.

We have no prior knowledge of marked code regions and no method to iden-
tify them. Our framework thus assumes that all marked code regions within a
single application are homogeneous in terms of execution time and vectorization.
We suggest implementing a mechanism that can identify different code regions
and then passing them separately to the policy. Furthermore, we expect a better
performance of the policy when more information about the marked code regions
is available. For example, explicit performance metrics could be passed to the
policy to eliminate the additional heuristic. The implicit performance heuristic
that uses the call frequency worked well in our tests, but an explicit metric given
by the application might perform even better.

A fully transparent solution that does not require any modification to appli-
cations would also be interesting. Detecting HPWVIs can be done by letting the
CPU trap into the kernel when such instructions are executed. Such a fully trans-
parent solution has no information about how long HPWVI bursts are, thus the
policy needs to additionally decide how much to offload. Trapping also imposes
more overhead than our solution.

Our aggressive offloading showed promising results and could be extended
by using upper and lower thresholds for offloading. Having an upper threshold
for the decision to stop offloading a client is reasonable, because on a dedicated
core more cycles spent in higher power down levels are caused by other AVX-
512 applications running on that core. Maybe a more fine measurement combined
with analysis of scheduling sequences might help to better determine which code
regions cause frequency reduction. The heuristic could be completely removed if
there were performance counters that measure directly how many instructions are
executed which can cause frequency reductions.

Our design mentions automatic HPWVI core adding and removing. Most of
our tested workloads did not profit from more dedicated cores, because the sys-
tem utilization got too low. Thus, we did not create a validated mechanism that
automatically adds and removes more than one dedicated core. We expect having
more than one dedicated core to benefit mixed workloads where AVX-512 in-
structions take up about half of the cpu time and are strictly separated from scalar
code. Ideally the policy would separate scalar and non-scalar work onto the two
sets (dedicated and not dedicated) of cores.
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