
Core Specialization for AVX-512 Using
Fault-and-Migrate

Masterarbeit
von

cand. inform. Peter Brantsch
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Mathias Gottschlag, M.Sc.

Bearbeitungszeit: 07. Januar 2019 – 08. Juli 2019

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinscha� www.kit.edu

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des
KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
zu haben.

Karlsruhe, den 08. Juli 2019

Abstract
The Advanced Vector Extensions 512 (AVX-512) are modern Single Instruction Multiple
Data (SIMD) extensions to the x86 instruction set using 512-bit wide registers, enabling
substantial acceleration of numeric workloads, for example processing eight sets of 64-
bit operands in parallel. Because of the high power consumption of the corresponding
functional units, a CPU core executing AVX-512 instructions has to temporarily reduce its
clock frequency to maintain thermal and electrical limits. This clock frequency reduction
can slow down the scalar part of mixed workloads because it persists substantially beyond
the last AVX-512 instruction.
To mitigate this performance impediment, core specialization can be used, which is the

preferred use of certain cores for specific kinds of computation. By running AVX-512 and
scalar code on disjoint sets of CPU cores, throttling of cores executing scalar code can be
avoided.
The Operating Systems Group at the Karlsruhe Institute of Technology has already

demonstrated that core specialization can be effectively employed against the aforemen-
tioned performance reduction by implementing it in Linux. A new system call is introduced
to mark the beginning and end of AVX-512 phases of a task, such that the scheduler can mi-
grate it to a specialized core. However, the existing implementation is neither transparent
nor automatic, but instead requires the application to be modified.
This thesis presents an extension of the existing core specialization implementation,

making it transparent and automatic by efficiently virtualizing AVX-512 to intercept the
instructions and subsequently trigger migration. Our extension determines the necessary
number of AVX-512 cores at runtime based on CPU time consumed. Because there is no
trivial way of detecting the end of an AVX-512 phase, we compare different heuristics for
re-migration.
We evaluate our prototype in a web server scenario with nginx and OpenSSL using

ChaCha20-Poly1305 encryption and brotli compression, using AVX-512 to accelerate the
combination of cipher and message authentication code. The benchmarks show that the
performance degradation caused by AVX-512-induced frequency reductions can be almost
completely mitigated, without having to modify the application.

v

Contents

Abstract v

Contents 1

1 Introduction 3

2 Background and RelatedWork 5
2.1 AVX-512 . 5
2.2 Processor Clock Frequency Behavior . 6
2.3 Research in Mixed AVX-512 Workloads . 7
2.4 Core Specialization . 8
2.5 Scheduling for Heterogeneous Systems . 9
2.6 Staged Computation and Cohort Scheduling 10
2.7 Reconfigurable Systems . 11

3 Analysis 13
3.1 Core Specialization . 13
3.2 Fault and Migrate . 14

4 Design and Implementation 15
4.1 Fault-and-Migrate . 15

4.1.1 Making AVX-512 Trap . 15
4.1.2 Triggering Migration . 17
4.1.3 Handling AVX-512 in The Kernel . 17

4.2 Core Specialization . 17
4.3 Determining the Number of AVX-512 Cores 18
4.4 Re-Migration Heuristics . 19
4.5 Orthogonality of Approaches . 20
4.6 Debugging and Configuration . 20

5 Evaluation 23
5.1 Setup and Methods . 24

5.1.1 Patching CPU Feature Detection . 25
5.1.2 Repeatability . 25
5.1.3 Performance Counters . 25
5.1.4 The “Perf” Tools . 26

5.2 Mitigation of Frequency Reduction Effects . 26
5.2.1 Re-Migration Heuristics . 27

1

Contents

5.2.2 Selection of AVX-512 Cores . 28
5.2.3 Influence of the α Parameter . 31
5.2.4 Isolation of Throttling . 31

5.3 Theoretical Limit of Speedup . 32
5.4 Remaining Overhead . 34

5.4.1 Trap Handling . 34
5.4.2 Fault-and-Migrate . 34

5.5 Latency . 38
5.6 The Multi-Queue Skiplist Scheduler . 39
5.7 Discussion . 40

6 Conclusion 41
6.1 Future Work . 42

Bibliography 45

Glossary 49

2

1 Introduction
Until around 2007, semiconductor scaling worked approximately like Dennard et al. [7]
described it in 1974, with each new technology generation bringing smaller, faster tran-
sistors at a constant power density. Then, Dennard scaling ended [2], as leakage currents
through the ever thinner gate oxide increased, becoming a noticeable part of chip power
consumption. The power density could no longer be kept constant and clock frequencies
stopped increasing, though transistor miniaturization continued, and the number of tran-
sistors per chip increased. To still increase the computing power of chips, even though
single-thread performance scaling is hampered by stagnating clock frequencies, contem-
porary designs employ parallelism of both code1 and data2.
Because of the high power density and parallelism of processors, an increasing share of

die area is under-utilized, either because running all of the chip at its maximum clock rate
would exceed thermal or electrical limits, or because programs do not efficiently exploit
the processor’s parallelism [8]. This share is called dark silicon.
A recent example are the Advanced Vector Extensions 512 (AVX-512) [21, 22], because

their functional units can raise the power consumption of a CPU core up to the point that
it has to reduce its clock frequency, depending on the type3 and rate of Advanced Vec-
tor Extensions 2 (AVX 2) and AVX-512 instructions, and the number of similarly loaded
cores. However, these SIMD additions to the x86 instruction set operating on 512-bit
wide registers can significantly accelerate computation such as cryptography (see the mi-
crobenchmark in Section 5.3), offsetting the otherwise detrimental effect of the frequency
reduction on performance.
If this frequency reduction only affected the SIMD instructions, it would not pose a prob-

lem, but before the core can return to higher clock frequencies, a timer of approximately
2ms first has to expire without any events again necessitating frequency changes [18, sec-
tion 17.26]. Mixed workloads, in which only small parts of computation are accelerated,
can therefore suffer an overall slowdown, because the reduced clock frequency persists
beyond the last AVX-512 instruction, affecting the following scalar instructions. This slow-
down was demonstrated by Krasnov [28] in a web server using AVX-512-accelerated cryp-
tography functions. Chapter 2 will describe the frequency behavior of Intel CPUs in regard
to AVX-512 in more detail.
To avoid any possible frequency reduction because of wide SIMD instructions, vector-

ization could simply be disabled, though only at the cost of all its advantages. No general
decision whether to enable or disable vectorization for all mixed applications can be made,
though, because the net benefit for even a single application depends on the scenario.
1Multiple Instruction streams, Multiple Data streams (MIMD), i.e. multi-core systems
2SIMD
3floating point or integer, multiplication or simpler operation

3

1 Introduction

For the same application, vectorization can be advantageous in some circumstances, and
detrimental in others. Instead, a method of maintaining predictable system performance
and still reaping the benefits of vectorization is needed. Ideally, to save developers from
laboriously instrumenting their applications, and users from unwelcome surprises in the
form of library updates bringing performance regressions, such a method would be trans-
parent and automatic.
Gottschlag and Bellosa [13, 14] have shown that core specialization can successfully be

used to mitigate the performance impediments faced by mixed workloads by restricting
the execution of AVX-512 code to certain cores, such that only these cores are affected by
frequency reductions. This thesis builds upon their previous work, andmakes the following
contributions:

E�icient Virtualization of AVX-512 The CPU is configured to fault on AVX-512 instruc-
tions, hence the name “fault-and-migrate”, such that we can intercept these instruc-
tions and accordingly migrate the task. This is equivalent to efficient virtualization
as per the criteria of Popek and Goldberg [36].

Transparency The existing implementation introduces a new system call to inform the
scheduler about the beginning and end of AVX-512 use, requiring modification of the
application code. Using the efficient virtualization described above, the scheduler
can detect the beginning of AVX-512 use transparently.

Automation To require the least amount of tuning by the user and easily adapt to a
variety of mixed workloads, the system determines the number of AVX-512 cores
automatically.

Evaluation using a web server scenario derived from that of Krasnov [28] shows that core
specialization using fault-and-migrate can mitigate the performance reduction of mixed
workloads caused by AVX-512-induced frequency reductions. Our mechanism for automat-
ically determining the number of AVX-512 cores is not yet optimal, tendentially choosing
too many cores and causing greatly variable performance. However, using a static set of
cores for AVX-512, automatic migration and re-migration are working completely satisfac-
torily. The web server scenario, originally suffering from an 11.6% performance reduction
with AVX-512, reaches 99% of its non-AVX-512 throughput using our prototype.
The remainder of this thesis is structured as follows: Chapter 2 gives detailed back-

ground information and an overview of related work, Chapter 3 analyses the problem and
prerequisites and discusses possible approaches, followed by Chapter 4, which presents a
solution and explains the design and implementation decisions. A comprehensive evalua-
tion is performed in Chapter 5. Concludingly, Chapter 6 summarizes the lessons learned
and outlines possible future work.

4

2 Background and RelatedWork

Heavy use of AVX-512 causes a CPU core to reduce its clock frequency as the core would
otherwise exceed thermal and/or electrical limits. The core maintains the reduced fre-
quency until a 2ms timer expires without any event that would cause a frequency change,
so that some scalar code in mixed workloads is slowed down, degrading overall perfor-
mance.
For a better understanding of this frequency reduction, this chapter first describes AVX-

512 and the clock frequency behavior of Intel CPUs. We then proceed with an overview
of related research into mixed-workload performance. Some related work suggests core
specialization to mitigate the performance degradation, that is the segregation of AVX-512
and scalar code onto disjoint sets of CPU cores. The Operating Systems Group at KIT
has researched and implemented core specialization both as an application-level library
and in the operating system kernel, successfully reducing the impact of AVX-512-induced
throttling on performance. We will review these approaches, especially the kernel-level
implementation, because this thesis extends it to be transparent and automatic. Conclud-
ing this chapter, we look at similar topics of research, namely staged computation and
cohort scheduling, which are related to this thesis because of their concept of a program’s
distinct phases of computation, and reconfigurable systems, which change their function-
ality more substantially than the systems considered by this thesis.

2.1 AVX-512

The Advanced Vector Extensions 512 (AVX-512) [20, Volume 1, Section 5.19, 22] are a
family of 512-bit SIMD extensions for Intel x86, consisting of a large set of foundation
instructions, essentially 512-bit versions of Advanced Vector Extensions (AVX) and AVX 2
instructions using a new instruction encoding, and more specialized classes of instructions,
e.g. for acceleration of AES. AVX-512 provides 32 512-bit ZMM registers, and 8 opmask
registers (for conditional processing).
The defining feature of AVX-512 is its ability to operate on 512-bit wide registers, en-

abling parallel processing of 8 64-bit operations or 16 32-bit operations. Generally, wide
SIMD instructions can be categorized in light and heavy instructions, light instructions be-
ing all those which do not use floating point (FP) or perform any multiplication or fused-
multiply-add (FMA), and heavy instructions being all those which do. Light instructions
do not consume as much power as heavy ones, but even light instructions can cause the
CPU to reduce its clock frequency.
The following section describes the processors clock frequency behaviour in more detail.

5

2 Background and Related Work

Table 2.1: Power licenses and corresponding instruction types [18, Section 17.26]

Level Category Frequency Level Maximum Fre-
quency

Instruction
Types

0 AVX 2 light in-
structions

highest max. scalar, 128-bit
AVX, SSE, AVX 2
without: FP, inte-
ger multiplication
or FMA

1 AVX 2 heavy +
AVX-512 light in-
structions

medium max. AVX 2 AVX 2 FP and
integer multi-
plication/FMA,
AVX-512 with-
out: FP, any
multiplication or
FMA

2 AVX-512 heavy in-
structions

lowest max. AVX-512 AVX-512 with
FP, integer mul-
tiplication and
FMA

2.2 Processor Clock Frequency Behavior

For the rest of this thesis, we need to understand how the processor determines the clock
frequencies of its cores, especially how frequency reductions are handled.

Intel Turbo Boost is a mechanism for opportunistic extraction of additional performance
by means of dynamic frequency changes of individual cores. As long as thermal and elec-
trical constraints allow, it increases the clock frequency of cores on demand up to a certain
limit [20, Volume 3, Section 14.3.3, 23]. For short periods in time, the CPU may even
exceed its thermal design power (TDP). However, that limit may fall below the regular
operating frequency, if required to maintain thermal or electrical constraints. When ex-
ecuting AVX-512 or heavy AVX 2 instructions, CPU cores can not run at their maximum
clock frequency, because the functional units used would otherwise consume too much
power and produce excessive heat. The actual maximum frequency is determined by the
core’s current power license (see Table 2.1), which depends on the type and rate of SIMD
instructions, as well as the number of other cores with similar characteristics [18, Section
17.29]. After being relegated to a lower power license, the core will maintain it until an
approximately 2 ms timer expires without any event again requiring a frequency reduc-
tion, and only then return to a higher license. Also, the power controller unit (PCU) takes
up to 500µs to grant the core a new license. Figure 2.1 shows how different cores have
different frequency ranges depending on their instruction mix.

6

2.3 Research in Mixed AVX-512 Workloads

P1-AVX-512

P1-AVX2

P1

P0n-AVX-512

P0n-AVX2

P0n

AV
X2

AV
X2

AV
X-
51

2

N
on

-A
VX

N
on

-A
VX

Fr
eq

ue
nc

y
Le

ve
l

Cores

Figure 2.1: Frequency levels in mixed workloads [18, Figure 15-17]: P0n is the respective
maximum performance level, and P1 is a reduced level.

2.3 Research in Mixed AVX-512 Workloads

Krasnov [28] examines the impact of AVX-512 on mixed workloads, using the example of
the nginx [39] web server and the OpenSSL [33] and BoringSSL [3] (a fork of OpenSSL)
cryptography libraries. The web server is configured to serve a simple HTML file via HTTPS
using brotli compression. Both different ciphers and implementations of the same cipher
using different instruction set extensions for acceleration are compared. The throughput
is measured under full load. Nginx handles 10% fewer requests per second when using
OpenSSL’s AVX-512 variant of ChaCha20-Poly1305 compared to BoringSSL’s AVX 2 vari-
ant or either library’s AES-128-GCM implementation, even though perf [43, tools/perf]
reveals that the AVX-512 workload only uses 2.5% of CPU time. Throughput is also re-
duced if only a small share (20%/10%) of HTTP requests uses the AVX-512-accelerated
ciphers, though less severely (7%/5.5%), which Krasnov explains with the CPU reducing
its clock frequency irrespectively whenever AVX-512 is used on all cores. This thesis uses
a very similar scenario to analyze the problem and evaluate the proposed solution.

Tiwari et al. [42] improve performance of the open-source x265 video encoder using
AVX-512. They find that only select kernels of the encoder benefit from AVX-512, namely
those in which the lower cycle count outweighs the frequency reduction. Similar to the
approach taken in this thesis, they suggest limiting the throttling to certain cores, but by
modification of the encoder, such that only certain types of worker threads execute AVX-
512. However, modifying the application to only execute AVX-512 on a specific set of cores
creates additional work for application developers, especially without any support from the
operating system. In contrast, the approach presented in this thesis will not require any
action of the application developer, being completely transparent and automatic.

7

2 Background and Related Work

2.4 Core Specialization
This thesis uses the same definition as Saez et al. [37], who define core specialization as
“preferring certain types of cores for certain types of computation”.
Core specialization can be used to isolate AVX-512 code from the remainder of the code

by only executing it on a subset of the available CPU cores, such that all other cores and
the code they run are not affected by frequency reductions.
Chakraborty, Wells, and Sohi [4] present computation spreading, which is core special-

ization for the different user and operating system (OS) parts of threads using hardware-
assisted threadmigration. Two policies are presented, either only separating OS code from
user code, or additionally specializing cores for individual system calls. Both successfully
reduce destructive interference in architectural state such as caches and branch predictors
for server applications.
Our approach will, as a side effect, also spread computation across cores. One of our

re-migration policies migrates tasks away from AVX-512 cores before the actual system call
code runs, thereby separating OS and user code. However, the criteria (type of instruction)
and objective (limiting frequency reduction to AVX-512 code) of core specialization in this
thesis are different from that of Chakraborty, Wells, and Sohi.
Papamanoglou [35] implemented a core specialization library targeted at AVX-512. Us-

ing it, applications can submit work (in the form of closures) to be executed on the spe-
cialized cores. To manage the specialized cores across different processes, they use a
system-global policy server that each library instance communicates with, which decides
which cores should be specialized cores and which closures to offload. As their approach
modifies the application, they have the advantage of precisely determined code regions
to potentially be offloaded. However, the library approach requires access to the appli-
cation source code and potentially laborious modification thereof, whereas the approach
presented in this thesis does not.
Gottschlag and Bellosa [12, 14] implement core specialization for AVX-512 in Linux.

Instead of modifying the Completely Fair Scheduler (CFS), Linux’s default scheduler, which
is refined, though highly complex, a simpler out-of-tree scheduler, the Multi-Queue Skiplist
Scheduler (MuQSS), is used instead, because it is easier to extend. A task wishing to use
core specialization has to mark and unmark itself using a newly introduced system call.
For this purpose, a type attribute is added to the task data structure to discern three kinds
of tasks:

avx Tasks which have marked themselves as executing AVX-512.

scalar Tasks which had previously been marked as executing AVX-512.

default The initial type of tasks. All tasks which never mark themselves will keep this
type.

MuQSS uses per-CPU runqueues sorted by virtual deadline, which are replicated in the
modified scheduler to separate tasks of different types. Core specialization is then imple-
mented by having scalar and AVX-512 cores treat task types differently.

8

2.5 Scheduling for Heterogeneous Systems

Scalar cores run only tasks from the default and scalar runqueues, and AVX cores run
tasks from the default and AVX queues, giving precedence to AVX tasks by adding a large
penalty to the virtual deadlines of default tasks. This way, starvation of default tasks (e.g.
system tasks) pinned to AVX cores is avoided.
MuQSS does not have an explicit load balancing mechanism or migration thread. In-

stead, each core choosing the next task to run checks the earliest deadline of both its own
runqueue and all others, and takes the task with the earliest virtual deadline, even if it
is from another core. A task changing its type is enqueued in the corresponding local
runqueue, and migration happens implicitly, because whichever core is allowed to run the
task will pick it eventually.
Evaluation shows that core specialization for AVX-512 successfully reduces the perfor-

mance degradation caused by AVX-512-induced frequency reduction in a web server sce-
nario similar to that of Krasnov [28].
In Gottschlag and Bellosa’s implementation, the set of specialized cores is fixed, and

applications have to be manually instrumented for core specialization. This thesis will
extend it to choose the set of AVX-512 cores dynamically and detecting AVX-512 usage at
runtime without instrumentation, thereby making it fully automatic and transparent.

2.5 Scheduling for Heterogeneous Systems
Executing AVX-512 code only on a subset of CPU cores means treating the homogeneous
multi-core system, in which all cores have the same performance and instruction set (re-
spectively features), as if it were a heterogeneous system in which all cores share the
largest part of the instruction set, but are not equal in terms of performance and features.
Such performance- and/or feature-asymmetric systems actually exist, and can be advan-

tageous compared to fully symmetric multiprocessor systems in terms of performance and
energy efficiency, achieving greater computational power at the same area and/or using
less power.
Li et al. [32] research scheduling for heterogeneous multi-core systems with overlap-

ping instruction set architectures (ISAs), which exhibit asymmetry of both performance
and functionality. Specifically, these systems are composed of big cores, which have larger
caches and higher clock frequencies, and small cores, which have smaller caches and run
at lower frequencies. All cores share almost the complete ISA, except for instructions set
extensions present only on a subset of cores. This functional asymmetry poses one of the
problems that we also have to solve, namely handling tasks attempting to execute instruc-
tions unsupported on their current core, which Li et al. solve in the same way as this thesis.
Their fault-and-migrate implementation in Linux on Intel is very similar to ours, because
it also uses the invalid opcode trap and performs migration by changing the task’s CPU
affinity and triggering the existing migration mechanism. The problem of determining
the cause of an invalid opcode trap is also solved the same way as in our implementation.
Lacking hardware support for distinguishing whether the trapping instruction is invalid
or part of an instruction set extension that is unavailable on the current core, both imple-
mentations assume the latter on cores without the instruction set extension.

9

2 Background and Related Work

On a fault, they migrate the task, and if the instruction faults again, even though on a
core with the instruction set extension, it must have been actually invalid. Li et al. achieve
promising results, especially demonstrating low overhead of fault-and-migrate.
However, there are important differences, most notably the problem: Li et al. optimize

scheduling to extract more performance from statically heterogeneous systems, whereas
we make homogeneous systems dynamically heterogeneous at runtime to alleviate perfor-
mance impediments. The systems targeted by this thesis have no performance asymmetry
other than reduced clock frequencies on specialized cores executing AVX-512, whereas
those considered by Li et al. are asymmetric from the start. Li et al. handle performance
asymmetry by means of faster-first scheduling and dynamically weighted round-robin
(DWRR) with scaled CPU time. The latter is the product of CPU time and a speed rating
of the respective core, which can be established by a benchmark run at system startup or
later changed at runtime. Faster-first scheduling means that, when the number of threads
does not exceed the number of fast cores, cores with higher speed ratings will be pre-
ferred. When the system is more heavily utilized, DWRR with scaled CPU time maintains
scheduling fairness. Also, on our systems, all functional asymmetry can be changed at
runtime, because we can dynamically activate/deactivate AVX-512 on each core (see Sub-
section 4.1.1). In contrast, Li et al. have to detect the static feature asymmetry of the
system.
Saez et al. [37] present a Comprehensive Scheduler for Asymmetric Multicore Systems

(CAMP), that maximizes performance on asymmetric multiprocessor systems, which con-
sist of specialized cores sharing the same ISA but differing in performance. Comprehensive
Scheduler for Asymmetric Multicore Systems (CAMP) uses metrics or models to allocate
tasks to fast or slow cores to maximize both energy efficiency and thread-level parallelism.
Such metrics-based approaches to scheduling are not applicable to a system using core

specialization for AVX-512, unless it already has performance performance asymmetry be-
forehand, because in an otherwise homogeneous system, all practical heterogeneity stems
from core specialization, and actual performance asymmetry will vary at runtime, depend-
ing on the exact instruction mix executed on the specialized cores, which determines their
maximum clock frequency.

2.6 Staged Computation and Cohort Scheduling

Core specialization for AVX-512 considers two kinds of phases in a task’s execution, those
that use AVX-512, and those that do not. More generally, the execution of any task can be
partitioned in any number of distinct phases. Staged computation [29] is a programming
model designed around this notion, describing a program as a set of stages, in which related
operations and data are grouped. Larus and Parkes [29] describe cohort scheduling, i.e.
scheduling separate invocations of the same stage together. Cache efficiency is improved,
because locality is increased. Schwarz [38] and Gottschlag et al. [15] spread stages over
CPU cores, so that each core repeatedly executes the same set of stages. Again, cache
efficiency is improved, because the working set of each core is now no longer the sum of
the working sets of all stages, overwhelming the cache, but only of a much smaller set.

10

2.7 Reconfigurable Systems

Instead of isolating scalar code from AVX-512 code by running these two types of code
on disjoint sets of cores, they could be separated in time by applying a form of cohort
scheduling, such that longer phases of scalar and AVX-512 execution would alternate.
Section 3.1 explains why a cohort scheduling-like approach was ruled out for this thesis.

2.7 Reconfigurable Systems
Chapter 4 will later show that AVX-512 can actually be disabled and enabled per CPU
core at runtime, in a sense reconfiguring the core. This alone does not make the CPU
an actual reconfigurable system, as that would require changing the implemented func-
tionality, instead of enabling/disabling it. Reconfigurable adaptive systems change their
functionality much more profoundly, e.g. by means of programmable logic. The Rotating
Instruction Set Processing Platform (RISPP) [1] is such a system, implementing a core
ISA using fixed hardware and special instructions using a reconfigurable fabric. In a way
very similar to the fault-and-migrate mechanism implemented for this thesis, RISPP uses
trap-and-emulate for its special instructions to avoid overly frequent reconfiguration and
costly pipeline stalls while waiting for reconfiguration to finish. When an instruction oc-
curs that is not currently available either because it is not (yet) configured or currently
being configured, or because hardware resources are better used for other instructions,
the runtime system emulates the faulting instruction using the core ISA and may trigger
reconfiguration. There are, however, important differences between the RISPP concept
and core specialization for AVX-512 using fault-and-migrate. RISPP implements custom
special instructions using programmable logic, whereas reconfiguration in our implemen-
tation is limited to enabling/disabling existing instruction set extensions. RISPP’s trap
handling uses emulation, whereas fault-and-migrate does not. Also, existing RISPP imple-
mentations target different CPU architectures (SPARCv8 and DLX).
However, the possibility of more powerful reconfiguration of Intel processors is hinted

at in papers written at Intel, which mention the use of proprietary tools to change cache
sizes, clock frequencies, and instruction execution width [32, Section 5]. Moreover, actual
reconfiguration at runtime could be possible using the microcode loading mechanism [20,
Volume 3, Section 9.11], but lacking the documentation, toolchain and encryption keys
necessary to produce microcode updates, this possibility can not be researched, except by
sophisticated reverse engineering as done by Koppe et al. [27].

11

3 Analysis

When a CPU core executes AVX-512 instructions, it temporarily reduces its clock frequency,
especially for heavy instructions (e.g. multiplication), to avoid exceeding thermal or elec-
trical limits. The overall performance reduction of mixed workloads is caused by scalar
code being subject to the reduced clock frequency of heavy AVX-512, which is maintained
beyond the last AVX-512 instruction, until the expiration of a timer.
Related work has demonstrated that core specialization can mitigate the problem. This

chapter affirms the decision to use core specialization instead of staged computation, and
analyses approaches at making core specialization transparent and automatic.

3.1 Core Specialization
It should be possible to alleviate the aforementioned decrease in performance by sepa-
rating scalar code and AVX-512 in the spatial or temporal domain. Temporal isolation
would alter the scheduling sequence, such that AVX-512 and scalar code blocks of tasks
would not be interspersed as they are now, but executed in bursts/batches, at the cost
of increased worst-case latency, because each of the two classes of code would have to
wait while the other is being executed. Such scheduling methods, which group tasks by
their stage of execution, are also referred to as staged computation [29, 15, 38]. Schwarz
[38] successfully implements stage-aware scheduling without increasing request latency.
Cohort scheduling, as researched by Larus and Parkes [29], successfully uses staged com-
putation to increase locality for better cache efficiency, but causes increased latency under
light load.
Even though request latency is not necessarily impacted by staged computation, man-

ually identifying stages is prohibitively laborious for large applications, and even when
identification of stages is automated instead, the application still has to be recompiled
from instrumented source code. Therefore, we can not use staged computation, because
we want our approach to be transparent and automatic.
Spatial isolation leverages the multiprocessor system to achieve separation by running

scalar and AVX-512 code on disjoint sets of CPU cores. By limiting AVX-512 to certain
cores, possible frequency reductions are also limited to these cores, such that the scalar
code running on other cores is not impacted. Using a symmetric multiprocessor (SMP)
system as if it were heterogeneous/asymmetric, by executing certain classes of instructions
only on a subset of the available CPU cores, matches the definition of core specialization.
Related work (see Chapter 2) has already demonstrated that core specialization is a viable
approach to mitigating the performance impediments of mixed AVX-512 workloads. This
thesis uses core specialization, building on the work of Gottschlag and Bellosa [14] (see
also Section 2.4 for a more detailed description of their implementation).

13

3 Analysis

3.2 Fault and Migrate
To make core specialization automatic, a way of identifying AVX-512 sections in tasks is
needed. The following options were considered:

Static Source Code Analysis As application source codemight not always be available, it
has to work without access to the application source. In addition, SIMD instructions
are impossible to preclude given only the source code, because they can be generated
by automatically vectorizing compilers, or be contained in library functions, or even
generated at runtime by a just-in-Time Compiler (JIT).

Static Binary Analysis Disassembling x86 binaries is difficult and potentially inaccurate
[34], so no (offline) disassembly and analysis shall be performed, ruling out binary
instrumentation. Also, offline analysis is inapplicable to code loaded or generated
at runtime (e.g. JIT).

Emulation Full emulation would trivially allow different handling of AVX-512 instruc-
tions, but also have to solve the problem of decoding x86 instructions, and by its
very nature (and the overheads it incurs) defeat the purpose.

E�icient Virtualization In contrast, efficient virtualization according to the criteria of
Popek and Goldberg [36] would work, as it causes no overhead for the vast majority
of instructions. For an architecture to be efficiently virtualizable, sensitive instruc-
tions1 are required to be privileged instructions2, so that, when executed in the user
mode virtual machine, they trap to the virtual machine monitor (VMM), which in
turn emulates the effect of the instructions. Thus, to efficiently virtualize AVX-512, a
mechanism to transparently intercept AVX-512 instructions is needed. Henceforth,
said mechanism will be referred to as fault and migrate, as this thesis investigates
how to configure an x86 CPU to make AVX-512 instructions trap, so that the respec-
tive task can subsequently be migrated to a specialized core.

Of the above approaches, efficient virtualization appears the most promising, because it
incurs no overhead for the vast majority of instructions, obviates any need for application
source code or cumbersome binary analysis, and is completely transparent.

1A sensitive instruction is “any instruction that would affect the allocation of resources” [36, p. 419]. Accord-
ing to this notion of sensitive instructions, AVX-512 instructions can even be considered sensitive, as a
task executing them can (accidentally) reduce the amount of computing power available to other tasks,
because heavy use of AVX-512 causes the CPU to temporarily decrease its clock frequency.

2A privileged instruction traps when executed in user mode, but not in supervisor mode [36, p. 415].

14

4 Design and Implementation

AVX-512 instructions can cause the CPU core executing them to reduce its clock rate, lest
it should consume too much power or generate excessive heat. The reduced clock rate is
maintained for a short time after the last AVX-512 instruction, slowing down the scalar part
of mixedworkloads, and thereby potentially degrading performance of the application. Re-
lated work (see Chapter 2) has shown that core specialization can be used to mitigate this
effect. This thesis extends the KIT Operating Systems Group’s existing implementation of
core specialization for AVX-512 for Linux, making it transparent and automatic. The analy-
sis shown in the previous chapter affirms the decision to use core specialization rather than
other scheduling strategies, and motivates our decision to implement fault-and-migrate.
Other strategies for identifying a task’s phases of AVX-512 were ruled out because they
either required access to the source code, which is not always available, would fail for
code loaded or generated at runtime, or even defeat the purpose.
This chapter explains the design and implementation of transparent automatic core spe-

cialization for AVX-512 using fault-and-migrate, and motivates the underlying decisions.
We make AVX-512 instructions trap by disabling the corresponding XSTATE components
in the XCR0 control register during FPU context switching, after the old state has been
saved, and before the new one is loaded. Then, AVX-512 instructions raise invalid opcode
traps. The trap handler then triggers migration of the offending task to a specialized core
using the existing CPU affinity mechanism. Multiple heuristics for re-migration are tried:
a timeout after the last detectable use of AVX-512, re-migration on any context switch,
and re-migration on system call. For automatically determining the number of AVX-512
cores, moving averages of consumed total and AVX-512 CPU time are used, assuming that
the ratio of AVX-512 CPU time to total CPU time is equal to the ratio of AVX-512 cores to
total cores.

4.1 Fault-and-Migrate
As Section 3.2 has established, it has to be investigated how to make the CPU raise an
exception for the kernel to handle in case a task attempts to execute AVX-512. In turn, the
exception handler can then trigger migration.

4.1.1 Making AVX-512 Trap
It is possible, using the performance counters, to count the number of cycles a core has
executed in one of the throttled power licenses (see Subsection 5.1.3). Counters can be
set up to overflow instantly on the first event by presetting them to their maximum value.

15

4 Design and Implementation

. . . 1
63 9 76543210

reserved (must be 0)

XCR0.Hi16_ZMM

XCR0.ZMM_Hi256

XCR0.opmask

Figure 4.1: AVX-512-related bits of the XCR0 control register [20, Figure 2-8]

Also, they can be configured to generate an interrupt on overflow [20, Volume 3, Chapter
18], such that the overflow interrupt handler mark the corresponding task. However, using
throttling events to detect AVX-512 usage would have the disadvantage that by the time
AVX-512 usage is detected, the core would already reduce its clock frequency for at least
2 ms. Therefore, another mechanism is necessary, which detects AVX-512 before throttling
occurs.

Current x86 CPUs support the XSAVE/XRSTOR feature set [20, Chapter 13] for saving
and restoring processor state to or from specific data structures in memory. XSAVE is ad-
vantageous for operating systems, because it can save large parts of CPU state, including
the state of SIMD extensions, in an optimized way1, with only a single instruction. The
operating system can select which parts of state to save by setting bits in the CPU-core-
specific XCR0 register, as shown in Figure 4.1. Disabling the state components for AVX-512
in XCR0 not only prevents these parts of CPU state from being saved/restored, but also
renders AVX-512 instructions inoperable on the respective CPU core. [20, Figure 2-8].
While the respective bits in XCR0 are 0 instead of 1, AVX-512 instructions will cause an #UD
(invalid/undefined opcode) trap.

To avoid accidentally destroying userspace floating-point unit (FPU) state by not sav-
ing it, we can only disable AVX-512 during context switches after the old FPU state has
been saved. Switching the userspace FPU context during the task switch is a two-part pro-
cess [43, arch/x86/include/asm/fpu/internal.h]. The switch_fpu_prepare() func-
tion saves the old context, and switch_fpu_finish() restores the new context. Wemodify
switch_fpu_finish() such that AVX-512 is enabled/disabled after saving the old context
and before restoring the new one. Our implementation disables AVX-512 during each
task switch on a scalar core to ensure that AVX-512 is always disabled before returning to
userspace, as in-kernel traps because of unavailable AVX-512 are handled without migra-
tion by enabling AVX-512 on the respective core (see also Subsection 4.1.3).

1Some forms of XSAVE only save parts of CPU state which are either not in their initial configuration or
have been modified since the last execution of XRSTOR [20, Chapter 13.6].

16

4.2 Core Specialization

4.1.2 Triggering Migration

When a task attempts to execute an AVX-512 instruction on a CPU core on which AVX-
512 is disabled as described in the previous subsection, the core raises an invalid opcode
trap (#UD), which we want to use to detect AVX-512 usage to trigger migration. However,
not all such traps are caused by AVX-512 instructions. The #UD handler has to determine
whether the trap was caused by an AVX-512 instruction on a scalar core, or an actual illegal
opcode or the BUG() macro in the kernel [43, arch/x86/include/asm/bug.h], which is
implemented using the special UD2 instruction [20, instruction set reference, m-u], that is
explicitly defined to raise an invalid opcode exception. To simplify the handler and avoid
accessing user memory to inspect the offending instruction, the handler assumes that an
invalid opcode trap (not caused by an invocation of the BUG() macro) on a core without
active AVX-512 is caused by an AVX-512 instruction. Then, it sets the type of the task
accordingly, marks it for re-scheduling so that the migration mechanism of MuQSS can
come into action, and returns without changing the task’s program counter register. On
the interrupt return path, the kernel invokes the scheduler, which then selects another
non-AVX-512 task to run on the scalar CPU and moves the previous task to an AVX-512
core. Because the program counter register is not changed, execution of the previous task
resumes at the previously trapping AVX-512 instruction.

4.1.3 Handling AVX-512 in The Kernel

User space tasks are easy to migrate between CPU cores, whereas migration of kernel code
is more difficult. We do not yet implement fault-and-migrate for kernel code, because
AVX-512 generally is not used in the kernel, apart from rare exceptions such as RAID6 ac-
celeration [43, lib/raid6/avx512.c]. The target scenario for this thesis does not exercise
any kernel code paths making use of AVX-512. Instead, the trap handler enables AVX-512
when an in-kernel invalid opcode trap happens because of AVX-512 code.

4.2 Core Specialization

The existing implementation of core specialization (as described in Section 2.4), which this
thesis extends, modifies the CPU affinity mechanism of MuQSS, which restricts execution
of a task to the set C of cores specified in its CPU affinity bitmap. Wherever the scheduler
would originally have used the CPU affinity attribute of the task data structure, the newly
introduced allowed_cpus() function is called instead. Depending on the task type, it
returns either the task’s original set C of CPUs or C∩CAVX-512, the intersection of C and the
set of AVX-512 cores. When a task’s type is changed to make it an AVX-512 task and it is
rescheduled, the scheduler checks on which CPUs the task is allowed to run, and migrates
it to an AVX-512 core, because allowed_cpus() returns C ∩ CAVX-512.
We modify the existing implementation to make CAVX-512 dynamic. When an AVX-512

instruction traps on a core, and the number of AVX-512 cores is either zero or lower than
an upper limit calculated heuristically, the respective core is added to CAVX-512.

17

4 Design and Implementation

Periodically, the scheduler checks for each AVX-512 core whether it can be removed from
the set again. That is the case when there are no AVX-512 tasks running on it anymore, or
there are no AVX-512 tasks in the system anymore.
Core specialization for AVX-512 will cause performance asymmetry in the form of re-

duced clock frequency on the AVX-512 cores, which needs to be addressed when schedul-
ing scalar tasks which can run on either set of cores. Scalar tasks should be scheduled on
scalar cores instead of AVX-512 cores, where they would suffer from reduced performance
because of the lower clock frequency. The implementation we extend accomplishes that
by applying a penalty to the deadlines of scalar tasks on AVX-512 cores, such that MuQSS
preferentially schedules scalar tasks on non-AVX-512 cores.

4.3 Determining the Number of AVX-512 Cores
The previous section described the dynamic set of AVX-512 cores, to which cores can be
added until an upper limit for its size is reached, leaving open the question of how to
calculate this limit. The smaller the number of specialized cores, the fewer cores can be
affected by frequency reductions, and the more CPU time on cores running at their regular
clock frequency is available to the scalar parts of tasks. It is thus important that the number
of specialized cores be minimized, while also minimizing latency introduced by AVX-512
tasks waiting for execution, lest scalar cores would unnecessarily be idle waiting for tasks
to migrate back from specialized cores. In effect, no set of cores must be a bottleneck for
the other.
To require the least amount of tuning by the user, and because workloads differ in their

ratio of scalar and AVX-512 code, the number of specialized cores has to be determined
dynamically. Assuming that the ratio of specialized cores needed to total available cores
corresponds to the ratio of CPU time for AVX-512 to total CPU time, the approximate
number of specialized cores can be directly calculated by maintaining moving averages of
the used total (ttotal) and AVX-512 (tAVX-512) CPU time:

nspecialized =
tAVX-512
ttotal

· ntotal

Moving averages are necessary to react quickly to changing workloads, as the regular CPU
time accounting would look at an overly long period. We maintain exponentially weighted
moving averages (EWMAs) [17] per CPU core, as then they are easy to update in the CPU
time accounting of the scheduler. For calculation of the global target number of AVX-512
cores, the sum of per-CPU averages is used. On every scheduler clock tick, the EWMA t of
CPU time is updated with the time telapsed which has passed since the last tick, such that
for the n-th scheduler tick, tn is calculated as follows:

tn = α · telapsed,n + (1−α) · tn−1 = α ·
n
∑

i=0

(1−α)i · telapsed,n−i

Theα factor determines the rate at which the weights of old values exponentially decrease.
A value telapsed,n−k used in the calculation k iterations ago only has a weight of α · (1−α)k.

18

4.4 Re-Migration Heuristics

If the respective CPU has been idle since the last tick, telapsed is zero, such that the moving
average decays. Similarly, in the calculation of tAVX-512, telapsed is zero in case the CPU has
not been executing an AVX-512 task, such that tAVX-512 decays during execution of scalar
code.

4.4 Re-Migration Heuristics
Determining when to migrate a task to a specialized core is trivial. It has to move as soon
as it attempts to execute AVX-512 instructions on a non-specialized core, lest the scheduler
would risk having the core affected by reduced clock frequency. In contrast, it is not trivial
to decide when to migrate a task back from a specialized core, because unlike the onset of
a task’s AVX-512 use, it’s end is not directly detectable. To determine experimentally which
re-migration heuristic works best, all of the following were implemented. Also, because all
these heuristics make assumptions about the task’s behavior, there might not be one ideal
heuristic for all possible workloads.

Timeout Assuming thatmixedworkloads have alternating phases of AVX-512-accelerated
and non-accelerated computation, a timeout mechanism can be used to detect tran-
sitions from accelerated back to non-accelerated computation. Figure 4.2 illustrates
this re-migration heuristic. As soon as the timeout expires without the task having
used AVX-512, it is migrated away from the specialized core. This approach cre-
ates the problem of detecting whether the task has used AVX-512 since it has last
been scheduled. The previously mentioned XSAVE mechanism tracks which state
components have been used, allowing the scheduler to determine whether the pre-
viously running task has used AVX-512 while switching tasks. This method is based
on proposed kernel patches by Li [31], which add an approximate timestamp of
last AVX-512 to tasks. When switching tasks, the scheduler tests whether the tasks
timestamp of AVX-512 use is sufficiently far in the past, and resets the task type
accordingly.

On Context Switch Again assuming the aforementioned alternating phases of computa-
tion, migrating tasks away upon the first context switch (e.g. caused by timeslice
expiration) is a simpler heuristic than a timeout. The scheduler unconditionally
resets the task type when switching tasks, instead of checking for timeout expiry.
This unconditional heuristic as well as the next are illustrated in Figure 4.5. We
implement a separate configurable timeslice duration for AVX-512 tasks, such that
scheduling on AVX-512 cores may be very fine-grained, avoiding execution of scalar
code on AVX-512 cores at the cost of more migrations.

On System Call System calls cause kernel entries, and kernel code generally does not
use AVX-512. Thus, this heuristic migrates the task away as it attempts to invoke a
system call, such that the system call and subsequent execution of the task itself will
happen on a scalar core. The generic x86 system call wrapper is changed to reset
the task’s type and trigger a re-scheduling, causing the task to be migrated away

19

4 Design and Implementation

from the AVX core before the system call is executed, as shown in Figure 4.3. We
also test a variant which does not re-schedule the task before the actual system call
runs, shown in Figure 4.4.

4.5 Orthogonality of Approaches
The solution presented in this thesis strives for versatility and applicability to diverse work-
loads. To keep it as general as possible, and maintain compatibility with the solution it
extends [14], instrumentation and fault-and-migrate need to be combined. Moreover, that
would create prerequisites for future automatic instrumentation (see Section 6.1).
A mechanism for core specialization requires at least the set of cores to specialize and

information when to execute which task on which set of cores, and works irrespective
of the information source. Therefore, fault-and-migrate can be made orthogonal to the
existing instrumentation-based approach, by implementing it such that it only supplies
information to the underlying mechanism.

4.6 Debugging and Configuration
To evaluate the effect of different policies or parameter values without having to labori-
ously and time-consumingly re-compile the kernel and wait for the system to reboot, we
need a way to configure policies and scheduler parameters such as the set of AVX-512 cores
at runtime. SystemTap [40] is a versatile instrumentation tool that was extensively used
in the development process for fault finding. Even though it can change kernel data, it is
only able to do so in the so-called guru mode, forgoing safety measures otherwise prevent-
ing write access. Moreover, using SystemTap in evaluation scripts (see Chapter 5) would
be more difficult than writing and reading files.
Therefore, the necessary scheduler data and parameters are exposed in Linux’s debugfs

[43, Documentation/filesytems/debugfs.txt] instead, which is a special file system
allowing developers to easily make kernel data available to userspace in the form of a
directory tree. Unlike other virtual filesystems of the Linux kernel such as procfs or sysfs,
the layout and contents of debugfs are not subject to any rules and may be changed at any
time, as it is not meant to be part of the Application Binary Interface (ABI).

20

4.6 Debugging and Configuration

Task

Scheduler

last use of
AVX-512

timeout
expired

Figure 4.2: Timeout-based re-migration

Task
System

Call
Scheduler

Figure 4.3: Re-migration on system call entry

Task
System

Call
Scheduler

Figure 4.4: Re-migration on system call return

Task

Scheduler

Figure 4.5: Re-migration on timeslice expiry or context switch

21

5 Evaluation

AVX-512 can cause a temporary reduction in clock frequency, which persists beyond the
last AVX-512 instruction, degrading the performance of mixed workloads which have only
a small fraction of AVX-512-accelerated code by slowing down the scalar part. Previous
research has shown that isolating AVX-512 code from non-AVX-512 code using core spe-
cialization can mitigate this effect. This thesis extends the KIT Operating Systems Group’s
existing implementation of core specialization for AVX-512, which required applications
to be instrumented. To make it fully transparent and automatic, we augment the existing
implementation with a fault-and-migrate mechanism which makes AVX-512 instructions
trap on non-AVX-512 cores such that the trapping task can subsequently be migrated to
an AVX-512 core, and later migrated back again according to a heuristic.
In this chapter, we evaluate our solution regarding the following questions:

How well does core specialization using fault-and-migrate mitigate the AVX-512-
induced performance reduction of mixed workloads?
We use a web server scenario derived from the one Krasnov [28] described, running nginx
to serve a small static file via HTTPS (ChaCha20-Poly1305 and brotli compression), op-
tionally accelerating encryption and message authentication code (MAC) with AVX-512.
The wrk2 load generator is used for throughput and latency measurements. We compare
different re-migration heuristics against (non-)AVX-512 baselines and each other and in-
vestigate the influence of other parameters, especially the number of AVX-512 cores.
We find that our mechanism for determining the best number of AVX-512 cores does

not yet work well, resulting in variable and unsatisfactory performance. However, using a
static set of AVX-512 cores, the AVX-512-induced performance impediment is almost com-
pletely mitigated and the AVX-512 case achieves 99% of the scalar base case’s throughput.

How does our solution compare to the implementation it extends?
We run the same web server benchmark with the web server instrumented for explicit
migration and compare it to our solution under identical conditions, in particular the same
static set of AVX-512 cores. Our best-performing configurations achieve higher throughput
(99% resp. 97% of non-AVX-512 baseline).

Why does our solution work?
We assume that core specialization can mitigate the effect of AVX-512-induced throttling
on mixed-workload performance by isolating non-AVX-512 code from AVX-512 code. To
verify this assumption, we use hardware performance counters and find that our solution
indeed limits throttling to AVX-512 cores.

23

5 Evaluation

What is the theoretical limit of speedup?
Using an OpenSSL microbenchmark, we measure the speedup of the cipher and MAC in
isolation and calculate a theoretical upper limit (analogous to Amdahl’s Law) for the com-
bination of nginx and OpenSSL. As the AVX-512-accelerated part of our mixed workload
is very small, the speedup because of AVX-512 would likely not be noticeable even if there
was no throttling.

Why does our solution not reach it? What causes the remaining overhead?
We run microbenchmarks to measure the average trap latency (t0 ≈ 370ns), and the
number of kernel instructions a fault and subsequent task migration take on average (ap-
proximately 11000). We compare MuQSS (with and without our modifications) against
CFS and rule out that the scheduler itself causes the overhead. To measure the the over-
head of fault-and-migrate, we configure the BIOS of our test machine to disable throttling
of AVX-512 and run the application scenario again, finding that fault-and-migrate causes
approximately 5% overhead over AVX-512 without migration.

What is the e�ect of fault-and-migrate on latency?
Real-world web servers are not operated at full CPU utilization, so for more realistic latency
measurements, we also run the web server benchmark at much lower CPU utilization. We
find that fault-and-migrate has slightly lower latency than the AVX-512 baseline.
The rest of this chapter is structured as follows: First, Section 5.1 describes the ma-

chine used for our experiments and our methods, i.e. patching feature detection to force
applications to use or not to use AVX-512, ensuring repeatability through automation of
benchmarks, and recording hardware and software performance counters. Then, Sections
5.2, 5.3, 5.4 and 5.5 answer the research questions listed above. Concluding this chapter
is Section 5.7 in which we discuss the evaluation results and assess the overall quality of
our approach.

5.1 Setup and Methods

The experiments run on a machine equipped with an Intel® Core™ i9-7940X CPU [6],
32 GB of DDR4 memory, and 250GB of NVMe SSD storage. See Table 5.1 for more detailed
specifications of the CPU.

Table 5.1: Intel Core i9-7940X specifications [6]

Cores 14
Threads 28

Base Frequency 3.10 GHz
Max. Turbo Frequency 4.30 GHz

Cache 19.25 MiB

24

5.1 Setup and Methods

To prevent the operating system from changing the clock frequency of CPU cores, thereby
interfering in the experiments, all cores use Linux’s performance CPU frequency gover-
nor. Measurements are taken on an otherwise unloaded machine.

5.1.1 Patching CPU Feature Detection
Some software such as OpenSSL, which is used in our evaluation, detects present and
enabled CPU features to select the best code paths for the given machine. To compare
scalar against AVX-512 code paths, we need to influence this selection, for example by
modifying the feature detection logic.
By patching OpenSSL’s CPU feature detection logic, two variants of libcrypto are

created, one of which always takes the AVX-512 code paths, and the other never takes
them. Applications which dynamically link against libcrypto can be made to use either
variant of it by means of the LD_LIBRARY_PATH environment variable [30].

5.1.2 Repeatability
All experiments are automated using scripts, ensuring repeatable setup and execution.
Benchmark results are serialized to disk for subsequent analysis and visualization. Param-
eterized experiments allow exploration of variables, that is determining the influence of a
variable by running a series of benchmarks with different values for it. Before each bench-
mark run, all our modifiable scheduler parameters (see Section 4.6) are either set to their
default value, or the programmed value for the specific benchmark.
We will measure the directly observable application performance, such as throughput or

latency, and also collect hardware and operating system performance counters using perf
[43, tools/perf]. The next subsection describes the hardware counters in more detail.

5.1.3 Performance Counters
To ascertain that we can prevent throttling of non-AVX-512 cores, we need to measure
throttling on each core. Counting the cycles executed under each power license is possible
using the configurable performance counters. Table 5.2 lists the performance monitoring
events corresponding to the aforementioned power licenses. Intel processors feature con-
figurable performance counters for each logical CPU [20, Volume 3, Chapter 18], which
count specific performance monitoring events selected using model-specific registers. A
complete list of the numerous events is available in the Software Developer’s Manual [20,
Volume 3, Chapter 19]. Only a limited number of counters is available (depending on
the processor model), so when wishing to count more events than there are counters,
tools such as perf [43, tools/perf] have to multiplex, trading off accuracy1for a more
comprehensive set of metrics.

1However, the Software Developer’s Manual warns in numerous places [20, Volume 3, Chapter 18] about
the counters being only approximate even if nomultiplexing is used. Also, because of interrupt processing
delays, instruction retirement, and compulsory pipeline flushing on interrupt, events may skid, that is,
be inaccurate relative to the program counter [25].

25

5 Evaluation

Table 5.2: Performance monitoring events for frequency levels: For each of these events,
the cycles the core has spent in the respective power level are counted [18,
Section 17.26].

Level Event Name Description

0 CORE_POWER.LVL0_TURBO_LICENSE core executes at maximum frequency
1 CORE_POWER.LVL1_TURBO_LICENSE core executes at reduced frequency (max-

imum frequency for AVX-2)
2 CORE_POWER.LVL2_TURBO_LICENSE core executes at further reduced fre-

quency (maximum frequency for AVX-
512)

5.1.4 The “Perf” Tools

This thesis uses perf extensively to obtain performance counter values during develop-
ment and for evaluation. Perf [43, tools/perf] is a comprehensive suite of performance
analysis tools for Linux, allowing, among other functions, recording and analysis of both
hardware- and software-based performance counters, such as those mentioned in the pre-
vious subsection. Counter values can be obtained for the whole system or only a select
application, filtered by user or kernel mode. The collection can be restricted to a set of
CPU cores, and values can be reported in an aggregated manner or per CPU core. However,
perf may incur some overhead. Therefore, some parts of the evaluation will additionally
report benchmark results obtained while not collecting perf metrics.

5.2 Mitigation of Frequency Reduction E�ects

To measure how well core specialization actually mitigates the performance degradation,
we use an application scenario modeled after the mixed workloads considered by this the-
sis. Based on the CloudFlare example [28], it uses the nginx web server [39], serving a
small (approximately 72 KiB) static file via HTTPS. Using the LD_LIBRARY_PATH environ-
ment variable, one of the two OpenSSL variants is selected to choose whether to run with
or without AVX-512 (see Subsection 5.1.1). We test web server performance using the
wrk2 benchmark [41], which measures both throughput and latency. To prevent the web
server and benchmark client from interfering with each other’s scheduling, they are pinned
to disjoint sets of CPU cores. Also, the benchmark client uses a non-AVX-512 variant of the
OpenSSL library to prevent it from interfering with the throttling of the AVX-512 cores,
because the maximum turbo boost frequency is also determined by the characteristics of
other cores (see Section 2.2). Additional metrics are collected using perf, if need be.
In contrast to actual datacenter use, CPU utilization in this application benchmark is near

100%. On the test machine, it causes almost complete utilization of the cores nginx runs
on, whereas in the datacenter, CPU utilization will be lower [10]. However, at any constant
utilization, reduced overhead allows for increased throughput, such that mitigating AVX-
512-induced throttling is still worthwhile.

26

5.2 Mitigation of Frequency Reduction Effects

First, we determine which of our re-migration policies work best for the application
scenario, and then we investigate how the number of AVX-512 cores and the α parameter
of the CPU time EWMA influence throughput.

5.2.1 Re-Migration Heuristics
Figure 5.1 shows the heuristics presented in Section 4.4 in comparison for different AVX-
512 task timeslice lengths. To study the effect of the policies in isolation, the mechanism
for dynamically choosing AVX-512 cores was not used, but the set of AVX-512 cores was
statically configured to contain one core. Using the timeout-based re-migration heuristic
(with a timeout of 0 scheduler ticks, so it should re-migrate immediately when schedul-
ing an AVX-512 task which has stopped using AVX-512), only very little throughput is
achieved. Monitoring of CPU utilization and task types during benchmark execution re-
veals that, when using the timeout mechanism, only the AVX-512 core is used, because the
timeout mechanism fails to detect the end of AVX-512 usage, which we assume happens
because of a defect in our implementation. Re-migrating upon system calls, in contrast,
results in throughput close to the non-AVX-512 baseline, almost completely mitigating the
performance impediment. Re-migrating upon context switches achieves almost as much
throughput, but only for very short AVX-512 task timeslice lengths. Therefore, re-migration
upon system call appears to be the best heuristic.

0 1000 2000 3000 4000 5000 6000
timeslice [µs]

0

20

40

60

80

100

120

tr
an
sf
er
/s
ec
[M
B] baseline: no AVX-512

baseline: AVX-512, no migration
reset immediately, use syscall hook
use timeout, use syscall hook
reset immediately
use timeout

Figure 5.1: Web server throughput: Comparison of different re-migration heuristics and
AVX-512 task timeslice length.

27

5 Evaluation

5.2.2 Selection of AVX-512 Cores
Figure 5.2 shows how the throughput of nginx with OpenSSL varies depending on the
re-migration policy and the selection of AVX-512 cores, comparing static selection of in-
creasing numbers of cores against dynamic selection with increasing upper limits on the
number of AVX-512 cores. To maximize performance and establish a meaningful bench-
mark for automatic core selection, the static selection chooses them in a topology-aware
manner, simultaneous multithreading (SMT) siblings2 first, such that in all configurations
with even numbers of AVX-512 cores no logical thread of our two-way SMT system is used
for scalar tasks while the other logical thread causes the shared physical core to reduce its
clock frequency.
For each of these experiments, Table 5.3 shows the mean throughput and parameters

for the best-performing configurations (i.e. number of AVX-512 cores, static/dynamic se-
lection, re-migration heuristic). We make the following observations:

Performance reduction is almost completely mitigated Using a static CAVX-512, the av-
erage throughput is much better, consistently at least as good as the existing solution
this thesis extends (marked in the chart with explicit migration). The best through-
put with fault-and-migrate, reaching 99% of the non-AVX-512 baseline, is achieved
with a static set of two AVX-512 cores which are SMT siblings.

Re-Migration on syscall entry is disadvantageous Wehad assumed that re-scheduling
on syscall entry would improve throughput by running system call code on scalar
cores. However, contrary to our expectations, the measured average throughput
(marked in the chart with re-schedule) was lower than with regular scheduler invo-
cation on the system call return path. Re-scheduling on syscall entry presumably
results in extra scheduler invocations, such that the task is re-scheduled on syscall
entry and return, causing the overhead.

Dynamic selection of AVX-512 cores is inadequate Throughput is unsatisfactory and
extremely variable when using our method for automatically determining CAVX-512.
Monitoring during benchmark execution shows that the method tends to choose too
many cores as well as add and remove cores overly frequently.

2logical threads sharing a physical thread

28

5.2 Mitigation of Frequency Reduction Effects

40

60

80

100

120

tr
an
sf
er
/s
ec
[M
B]

baseline: no AVX-512
baseline: AVX-512, no migration
AVX-512, migration, syscall hook
AVX-512, migration, syscall hook, re-schedule
AVX-512, explicit migration
AVX-512, migration, syscall hook, static cpumask
AVX-512, migration, syscall hook, re-schedule, static cpumask

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(max.) number of AVX-512 cores

110.0

112.5

115.0

117.5

120.0

122.5

125.0

Figure 5.2: Web server throughput: Influence of the number of (maximally allowed or
statically allocated) AVX-512 cores on throughput. The bottom plot shows the
measurements with static CAVX-512 in more detail, as some of their differences
are small.

29

5
Evaluation

Table 5.3: Throughput and benchmark parameters for best-performing configurations in Figure 5.2

baseline: no
AVX-512

AVX-512,
migration,
syscall
hook, static
cpumask

AVX-512, ex-
plicit migra-
tion

AVX-512,
migration,
syscall hook,
re-schedule,
static
cpumask

AVX-512,
migration,
syscall hook

AVX-512,
migration,
syscall hook,
re-schedule

baseline:
AVX-512

Throughput [MB/s]
(mean)

125.82 124.78 122.01 121.61 113.93 113.64 111.17

Throughput [MB/s]
(stddev.)

0.17 0.30 0.12 0.24 1.62 2.32 0.15

AVX-512 no yes yes yes yes yes yes
(maximum allowed)
number of
AVX-512 cores

– 2 2 2 17 8 –

syscall hook no yes no yes yes yes no
reschedul
on syscall entry no no no yes no yes no

30

5.2 Mitigation of Frequency Reduction Effects

5.2.3 Influence of the α Parameter
The previous experiment has shown that automatic selection of AVX-512 cores results in
low and overly variable performance. To explore the influence of the α parameter used
in calculation of the exponentially moving average (see Section 4.3) of AVX-512 and total
CPU time on performance, we re-run the application scenario with AVX-512, automatic
core selection and a wide range of values for α. Figure 5.3 shows the results. Smaller
values, which mean a lesser influence of the most recent CPU time consumption, perform
better, but no α value resulted in throughput on par with static core selection.

0.0 0.2 0.4 0.6 0.8 1.0
α Parameter of Exponentially Moving Average

20

40

60

80

100

tr
an
sf
er
/s
ec
[M
B]

Figure 5.3: Influence of exponentially moving average parameter

5.2.4 Isolation of Throttling
Core specialization using fault-and-migrate successfully mitigates the performance imped-
iment because it concentrates throttling to AVX-512 cores. Table 5.4 shows the per-core
numbers of core_power.lvl2_turbo_license events during three executions of our ap-
plication scenario. Running the variant without AVX-512 produces no throttling events
on any core. The AVX-512 variant, when executed without automatic migration, exhibits
exhibiting throttling on all cores used for the web server. Executing the AVX-512 variant
with automatic migration, throttling events only occur on the single core (CPU04) used for
AVX-512 in this experiment and its SMT sibling (CPU18), demonstrating that our solution
can successfully limit throttling to AVX-512 cores.

31

5 Evaluation

Table 5.4: Per-CPU counts of core_power.lvl2_turbo_license events during application
scenario: The set of AVX-512 cores is fixed (only one core, CPU04) such that the
effect of core specialization on throttling can be observed. Other parameters
(e.g. the set of CPUs for nginx) are the same as in the rest of this section.

no AVX-512
AVX-512,
no migration

AVX-512, fixed CAVX-512,
automatic migration

CPU04 0 15.33·109 64.80·109

CPU05 0 16.08·109 0
CPU06 0 15.31·109 0
CPU07 0 15.93·109 0
CPU08 0 15.54·109 0
CPU09 0 14.58·109 0
CPU10 0 14.71·109 0
CPU11 0 11.70·109 0
CPU12 0 15.19·109 0
CPU13 0 14.01·109 0
CPU18 0 15.32·109 64.74·109

CPU19 0 16.07·109 0
CPU20 0 15.30·109 0
CPU21 0 15.92·109 0
CPU22 0 15.53·109 0
CPU23 0 14.57·109 0
CPU24 0 14.70·109 0
CPU25 0 11.69·109 0
CPU26 0 15.18·109 0
CPU27 0 14.01·109 0

5.3 Theoretical Limit of Speedup
Benchmarking the cipher and MAC used in the application scenario in isolation shows
an 1.589-times speedup of the AVX-512 variant, suggesting that the application scenario
should (without throttling) run faster with AVX-512 than without it, and leading to the
question of a theoretical upper limit on its speedup.
Analogous to Amdahl’s Law, we can establish an upper limit for the theoretical speedup

of a mixed workload using AVX-512 without any throttling by considering the fraction of
computation that uses AVX-512 and the speedup of that part. In the workloads considered
in this thesis, only a potentially very small part of the workload is accelerated using AVX-
512.
Let q ∈ [0,1] be the part of the computation which is AVX-512-accelerated and a the

factor of acceleration, then s is the overall speedup.

s =
1

(1− q) + q
a

32

5.3 Theoretical Limit of Speedup

Using perf, we establish that ChaCha20-Poly1305 is present in q ≈ 1.5% of call stack
samples in the application scenario. To determine a, we use a microbenchmark that ex-
amines acceleration of computation by AVX-512. It compares scalar and AVX-512 imple-
mentations of operations used in the application scenario, namely the ChaCha20 cipher.
OpenSSL 1.1.1a [33] provides the speed subcommand, which measures the amount of
data that can be encrypted using the given cipher and number of parallel threads in a
set time. Table 5.5 and Figure 5.4 show benchmark results and CPU frequency during
benchmark execution for runs of openssl speed -evp chacha20-poly1305 -multi 28
(28 threads, one for each CPU thread), comparing the variants with/without AVX-512 (see
Subsection 5.1.1). These results show that AVX-512 can accelerate computation despite
the frequency reduction it causes.

Table 5.5: Throughput measured in OpenSSL microbenchmark

Block Size Throughput GiB/s
No AVX-512 AVX-512

16 4.50 4.08
64 10.72 10.04

256 17.09 19.98
1024 18.63 28.29
8192 19.08 30.20

16384 18.89 30.10

The OpenSSL microbenchmark shows that ChaCha20-Poly1305 is accelerated by a ≈
1.589. Applying the above formula, the maximum speedup then is s ≈ 1.0056 = 0.56%.
This means that a speedup of the AVX-512 variant of the application scenario with our
solution would not have been expectable, because even if the AVX-512 part of our applica-
tion scenario were not subject to clock frequency reductions, we would not have observed
a significant speedup.

0 s 2.5 s 5 s 7.5 s 10 s 12.5 s 15 s 17.5 s
time

2.5 GHz

3 GHz

3.5 GHz

CP
U
Fr
eq
ue
nc
y

openssl-AVX-512
openssl-no-AVX-512

Figure 5.4: CPU frequency during OpenSSL microbenchmark (with throttling)

33

5 Evaluation

5.4 Remaining Overhead

Even in the best configurations, the measured throughput falls slightly short of the the-
oretical maximum speedup calculated in the previous section. As the theoretical limit of
performance has not been reached, we have to determine the cause(s). Possibly the per-
formance impediment could not be completely mitigated, and/or new overhead has been
introduced because of direct and indirect costs of trap handling and task migration.

5.4.1 Trap Handling

The hardware and operating system take some time to raise a trap, handle it (even if the
actual handler function does nothing), and return to the task that has caused the trap. To
measure the average trap and handling latency, a simple benchmark is devised. We change
the kernel trap handler to do the bare minimum necessary to allow a dummy workload to
progress, i.e. skip the offending instruction. The dummy workload consists of a tight loop
executing an AVX-512 instruction for a known number n of iterations. To avoid inflating
the execution time of the non-trapping base case, we replace the AVX-512 instruction with
a no-operation (NOP) of equivalent length. To calculate the average overhead of a single
invalid opcode trap to =

t2−t1
n , the difference in execution times is divided by n. The

costs of program startup and the loop, which we assume to be invariant, are included
in both measurements, and therefore cancel each other out by subtracting one execution
time from the other, so that only the overhead remains. For n = 8 · 106 we measure
t1 = 2.13ms in the non-trapping case and t2 = 2958.84ms in the trapping case using
perf stat, so the cost of a single trap is to ≈ 370 ns. That would mean, for example,
only 50000·370ns

1 s = 0.0185= 1.85% direct overhead even at 50000 exceptions per second.
Thismeasurement includes indirect costs of traps (e.g. induced instruction cachemisses).

However, they are not representative for the real trap handler, because the dummy trap
handler has a much smaller cache footprint.

5.4.2 Fault-and-Migrate

Even though the direct cost of traps is moderate, the subsequent migration could be expen-
sive. To measure the cost of fault-and-migrate, we need a scenario in which no frequency
reductions occur, such that the effects of fault-and-migrate can be studied in isolation. Al-
legedly, that should be possible by configuring the UEFI BIOS of our test machine to disable
the frequency reduction.3 Measurements reveal that even if there is no frequency reduc-
tion for AVX-512 configured, the OpenSSL microbenchmark still runs at lower frequencies
when using AVX-512. Figure 5.5 compares the different clock frequency behaviors.

3However, such configurations are unsuitable for production use, and we assume the CPU might become
unstable because we expect it to exceed thermal and/or electrical limits.

34

5.4 Remaining Overhead

0 s 10 s

2.5 GHz

2.75 GHz

3 GHz

3.25 GHz

3.5 GHz

3.75 GHz

CP
U
Fr
eq
ue
nc
y

default BIOS settings,
Turbo Boost active

0 s 10 s
time

changed settings,
Turbo Boost active

0 s 10 s

changed settings,
Turbo Boost deactivated

CPU base frequency
openssl-AVX-512
openssl-no-AVX-512

Figure 5.5: Clock frequency during execution of OpenSSL microbenchmark: The plots
show the average clock frequency of all CPU cores during execution of the
same microbenchmark as in Section 5.3. Note that the standard deviation for
most samples is so small that the error bars lie within the points.

The frequency drop after a few seconds when using AVX-512 is most likely explained by
the CPU exceeding its TDP in the beginning, which it may temporarily do for additional
performance (see Section 2.2), and then adhering to the TDP again, which requires lower
frequencies. When deactivating Turbo Boost4 too, the frequency drop disappears, and the
difference in clock frequencies disappears mostly (though still not completely).
To measure the cost of fault-and-migrate and compare it against the cost of explicit mi-

gration, we run a simple microbenchmark. We divide the number of additional executed
kernel instructions (compared to a base case without migration) by the number of itera-
tions to obtain the average number of kernel instructions per migration, finding that fault-
and-migrate needs approximately 65.25·109−20.48·109

4.08·106−2.16·103 = 11·103 kernel instructions, about the

same as explicit migration, which needs 66.67·109−20.48·109

4.10·106−2.16·103 = 11·103. Table 5.6 shows the
detailed results.
In the microbenchmark, each of n threads executes an AVX-512 instruction and then

relinquishes the CPU using sched_yield() in a tight loop for i iterations, such that (in the
migration cases) each iteration results in two migrations, for 2·n·i migrations in total. The
AVX-512 instruction triggers the fault-and-migrate mechanism. Later, the task is migrated
away from the specialized core again when it yields the CPU. For comparison, we also
run a version of the benchmark which uses Gottschlag and Bellosa’s [12, 14] system call
instead of fault-and-migrate.

4Using Linux’s Intel P-State driver, Turbo Boost can be deactivated by writing 1 to /sys/devices/
system/cpu/intel_pstate/no_turbo.

35

5 Evaluation

In the base case, all cores are configured as AVX-512 cores such that the fault-and-migrate
mechanism will not be triggered. In the migration cases, there is only one AVX-512 core
to force the maximum number of task migrations.
Between “No Migration” and “Fault-and-Migrate”, the number of executed user mode

instructions differs (approximately) by the n · i AVX-512 instructions which are counted
twice because their first execution traps. For n = 256 threads and i = 8000 iterations,
we expect 4.10·106 migrations. Perf counts 4.08·106, only very slightly less, presumably
because some scalar tasks were scheduled on AVX cores where they could not trigger
another migration.
This simple synthetic microbenchmark is not representative of realistic workloads, be-

cause the indirect costs resulting frommigrations will vary. However, it shows qualitatively
what to expect. Fault-and-migrate requires the execution of more kernel code and induces
additional instruction cache misses. Therefore, to obtain an estimate for real-world ap-
plications, we also measure the overhead of fault-and-migrate in our application scenario
below.
Running the same web server scenario as in Section 5.2 with AVX-512 but no throttling

and with/without fault-and-migrate, we find that fault-and-migrate causes a 5% reduction
in throughput. Table 5.7 shows the throughput and metrics measured using perf during
the web server benchmark execution on our test machine. Even though the machine was
configured not to throttle CPU cores executing AVX-512, and turbo boost was deactivated,
the AVX-512 cores still ran at lower frequencies (3.00 GHz instead of 3.10 GHz). This
3.23 % clock frequency reduction coincides with the slightly lower (2.29 %) throughput
reduction of AVX-512 without migration compared to no AVX-512.

36

5.4
Rem

aining
O
verhead

Table 5.6: Metrics for fault-and-migrate microbenchmark: Averages and standard deviations across 100 runs measured using perf

No Migration Fault-and-Migrate Explicit Migration
Metric Avg. Stddev. Avg. Stddev. Avg. Stddev.

migrations 2.16·103 1.24% 4.08·106 0.01% 4.10·106 0.00%
instructions (kernel) 20.48·109 0.01% 65.25·109 0.07% 66.67·109 0.01%
instructions (user) 21.10·106 0.00% 23.13·106 0.00% 72.30·106 0.00%
i-cache misses (kernel) 11.98·106 0.39% 315.77·106 0.29% 313.34·106 0.89%
i-cache misses (user) 1.23·106 0.94% 5.20·106 1.60% 13.07·106 5.18%

Table 5.7: Perf metrics, throughput and latency for fault-and-migrate overhead in the application scenario: Perf metrics are normalized
per HTTP request. The Fault-and-Migrate Overhead column compares fault-and-migrate against AVX-512withoutmigration.
Because perf has some overhead of its own, we also show throughput without perf.

Metric No AVX-512
AVX-512,
No Migration

AVX-512,
Fault-and-Migrate

Fault-and-Migrate
Overhead

i-cache misses 14.91·103 15.30·103 18.02·103 17.78%
last-level cache load misses 990.32 992.88 1.14·103 14.46%
last-level cache store misses 5.12·103 5.07·103 5.96·103 17.46%
migrations 889.39·10−3 906.53·10−3 3.49 285.47%
instructions (kernel) 307.28·103 309.77·103 348.10·103 12.37%
instructions (user) 10.28·106 10.15·106 10.15·106 −0.00%
traps because of AVX-512 0.00 0.00 2.20
reference cycles (kernel) 467.66·103 486.53·103 714.40·103 46.83%
reference cycles (user) 8.93·106 9.09·106 8.67·106 −4.60%
transfer/sec 103.87 101.36 95.03 6.25%
transfer/sec without perf 104.66 102.26 97.02 5.12%37

5 Evaluation

5.5 Latency

In practical applications of network services, request latency influences user experience.
As our evaluation is based primarily on an HTTP server, the effect of fault-and-migrate on
latency is interesting. Figure 5.6 illustrates latency distribution at low numbers of concur-
rent requests per second for the best-performing configurations established in Section 5.2.
The chart shows that our solution achieves a lower maximum latency than the implemen-
tation we extend (shown in the chart as “explicit migration”), and a latency distribution
very similar to the AVX-512 baseline, even though it still exhibits higher latency than the
non-AVX-512 baseline.

To obtain realistic latency measurements, we run the same web server benchmark as
described in Section 5.2 at significantly lower load because web servers in practical use
are not run at full CPU utilization [10]. Throughput (requests per second and data transfer
rate) during benchmark executionwas the same for all measurements, because the number
of concurrent requests the wrk2 load generator should perform was chosen sufficiently low
for the web server not to be limited by CPU utilization.

Figure 5.6: Latency by percentile distribution

0% 90.0% 99.0% 99.9% 99.99%
percentile

0

100

200

300

400

la
te
nc
y
[m
s]

baseline: AVX-512
baseline: no AVX-512
AVX-512, explicit migration
AVX-512, migration, syscall hook, static cpumask

38

5.6 The Multi-Queue Skiplist Scheduler

5.6 The Multi-Queue Skiplist Scheduler

The previous benchmarks all used MuQSS. For completeness and to rule out MuQSS as a
cause of remaining overhead, we compare it against the CFS. Table 5.8 shows throughput
and latency for both schedulers in comparison. We run the same application scenario as
above, without AVX-512, and without tuning any parameters for either scheduler. The
comparison shows that MuQSS alone, both with and without our modifications, does not
cause the remaining overhead.

Technically, the methods presented in this thesis could also be applied to the CFS,
because its thread migration mechanism, even though it works differently from that of
MuQSS, could be used in the same way to implement core specialization by migrating
tasks. Facilitating the porting of the remaining logic necessary for automatic and trans-
parent core specialization is the fact that many functions in MuQSS and CFS have identical
names and purposes.

Table 5.8: Web server throughput and latency using MuQSS and CFS. Extreme latency
values are caused by the high system utilization this benchmark induces.

CFS MuQSS
MuQSS
(modified)

maximum latency [s] 9.99 7.58 7.75
mean latency [s] 4.79 4.14 4.17

latency stddev. [s] 1.55 1.31 1.31
requests [1/s] 7.62·103 7.94·103 7.93·103

transfer [MB/s] 121.03 126.16 125.93

39

5 Evaluation

5.7 Discussion
This chapter has so far shown that our approach can successfullymitigate AVX-512-induced
performance reduction in mixed workloads, achieving 99% of the throughput of the non-
AVX-512 variant. However, our prototype has the following limitations:

• Our mechanism for determining the optimum number of AVX-512 cores does not
perform satisfactorily and chooses too many cores, impairing performance.

• The evaluation presented in this chapter has shown that our approach works, but
it has only demonstrated the viability for one particular workload. Further evalua-
tion using diverse workloads is necessary to validate our solution or reveal further
potential for improvement.

• Generally, intercepting all AVX-512 instructions might be an overly extreme mea-
sure, lacking the insight into the prospective effect of the instruction mix on the
clock frequency that advanced hardware feedback, such as a notification mechanism
for impending frequency reduction, could provide.

• Wedo not achieve complete transparency, because ourmanipulation of the XCR0 con-
trol register in enabling/disabling AVX-512 breaks certain feature detection mech-
anisms which read the aforementioned control register. For this thesis, we simply
patched the feature detection of our evaluation workload, because we needed to do
so anyway to force our evaluation workload to either always or never use its AVX-
512 code paths. Future research might solve this problem, for example through
virtualization of XCR0.

40

6 Conclusion

Increasing fractions of a contemporary CPU’s silicon area can not efficiently be used either
because of insufficient software parallelism, or because the chip has to operate at a reduced
frequency if they are used. This share of silicon area is called dark silicon. A recent example
of dark silicon is AVX-512, a family of modern SIMD extensions for Intel x86, enabling
great acceleration of vectorizable code, but consuming much power, requiring CPU cores
using it to reduce their clock frequency not to violate thermal and electrical constraints.
This frequency reduction is maintained until a timer expires without any event requiring
another frequency change, such that it persists beyond the last AVX-512 instruction. Mixed
workloads can suffer an overall slowdown because of this behavior, as some scalar code
following AVX-512 code runs at the reduced clock frequency.
Related work has shown that core specialization, that is the preferred use of certain cores

for certain types of computation [37], can mitigate this performance reduction by isolating
AVX-512 and scalar code from each other, such that much less scalar code is affected by
the frequency reduction. The Operating Systems Group at the KIT has implemented core
specialization in Linux by modifying the Multi-Queue Skiplist Scheduler (MuQSS) and
introducing a new system call by which programs inform the scheduler about the beginning
or end of their AVX-512 use, such that the scheduler can migrate the task to a subset of
cores or away again.
In this thesis, we extended the KIT Operating Systems Group’s existing implementation

of core specialization for AVX-512 to be fully transparent and automatic. This we achieved
by adding a fault-and-migrate mechanism which automatically triggers migration of tasks
attempting to use AVX-512 on a scalar core, heuristics for re-migration of tasks away from
AVX-512 cores, and a heuristic for calculating the number of necessary AVX-512 cores. Our
fault-and-migrate mechanism efficiently virtualizes AVX-512 instructions to intercept them
on scalar cores such that they raise an invalid opcode trap. The corresponding trap handler
detects the trap’s cause, marks the task as an AVX-512 task, and flags it for rescheduling,
during which it is migrated. Of the heuristics we tested, re-migration upon system call
worked best, which changes the type of an AVX-512 task to scalar as soon as it performs
a system call on an AVX-512 core and marks it for rescheduling, such that it is moved to a
scalar core.
Because the existing implementation uses a newly introduced system call, applications

need to be modified to benefit from it, whereas our solution does not. Also, our solution
aims to require very little tuning for specific workloads, ideally none at all, especially au-
tomatically determining the number of AVX-512 cores to allocate, even though the mech-
anism tends to overestimate the number of cores needed for AVX-512. Future work should
find out why this happens or develop a better mechanism.

41

6 Conclusion

We evaluated our implementation using custom microbenchmarks and a web server
scenario derived from the one publicised by Krasnov [28]. The microbenchmarks affirm
that AVX-512 can substantially accelerate computation on our test system (ChaCha20-
Poly1305 from OpenSSL experiences a speedup of approximately 1.6), and that the aver-
age overall latency of traps (the trap itself, handling it, and returning to user space) is not
prohibitively large, at approximately 370ns. Using the web server scenario, we compared
our different re-migration heuristics against each other, and our solution against the ex-
isting core specialization implementation it extends. We found that using our mechanism
for automatically determining the set of AVX-512 cores CAVX-512 results in low and overly
variable performance, and discovered that the mechanism tends to choose too many cores
and change them too frequently. However, when configuring CAVX-512 statically, we found
that our solution performs better than the previous implementation, almost completely
mitigating the performance reduction in the web server scenario. The system call-based
re-migration heuristic, which migrates tasks away from AVX-512 cores, worked best, con-
firming our assumption that system calls delimit phases of program execution.

6.1 Future Work
In light of the deficiencies the evaluation of our implementation has revealed, we identify
the following opportunities for further research.

Improvement of Self-Tuning Capabilities First and foremost, the evaluation shows
the importance of using the optimum number of cores for AVX-512, and the deficiency of
our approach at determining it. A better method of automatically determining the number
of AVX-512 cores needs to be found.
Also, this thesis has by far not exhausted the possibilities of control theory. For exam-

ple, new feedback variables might be devised to control the parameters of our modified
scheduler, such as a metric from the user application, which thereby informs the scheduler
of its performance.

Fault-and-Migrate for Kernel Code Our prototype does not yet implement fault-and-
migrate for kernel code (see Subsection 4.1.3). However, there is some kernel code which
might use it, for example for filesystem encryption or RAID acceleration.

Correct Handling of Feature Detection We implemented a mechanism for efficient
virtualization of AVX-512 instructions. For the correctness and transparency of the vir-
tualization mechanism, it is necessary that the CPU core appear unchanged, indicating
AVX-512 as present and enabled. However, as the mechanism disables the state compo-
nents of AVX-512 in the XCR0 register, applications which use the xgetbv instruction to
detect supported features will correctly read from the register that AVX-512 is disabled
and subsequently use other code paths, thereby defeating our intention of using AVX-512.
Thus, to make feature detection logic act as if AVX-512 were enabled, it either has to be

42

6.1 Future Work

patched (as for our evaluation), or xgetbv needs to be virtualized. The latter is possi-
ble by disabling XSAVE/XRSTOR (setting the OSXSAVE bit in the CR4 control register to
zero), making all XSTATE-related instructions, including xgetbv, trap with a #UD fault.
which could be handled to virtualize xgetbv and other XSTATE operations. Doing so also
sets the OSXSAVE bit in the output of CPUID to zero, such that feature detection by CPUID
would again perceive features as disabled which we only intend to virtualize. However,
the Linux kernel already has an abstraction [16] for the CPUID faulting mechanism [24,
Section 2.3.2] of modern Intel CPUs which could be used to virtualize CPUID as well.

Hardware Feedback As Papamanoglou [35] writes, the scheduler would benefit from
any more accurate mechanism of establishing the share of AVX-512 in the used CPU time,
such as a performance counter which actually counts AVX-512 instructions, or a hardware
event signalling impending throttling. Future CPUs might exhibit different clock frequency
behavior, e.g. throttle down for a subset of AVX-512 instructions or not reduce their fre-
quency immediately. Also, a hardware feedback mechanism would enable a more generic
implementation of core specialization, as the scheduler would not need to be aware of the
instruction mix a core is running, but only of impending throttling.

ImprovingThreadMigration Our approach causes numerous threadmigrations, which
could benefit from a faster mechanism. Currently, thread migration (as our approach uses
it) in MuQSS works by having the destination CPU inspect the runqueue of the original
CPU, requiring that the thread to be migrated first be inserted in the source runqueue.
A more efficient mechanism might directly insert the thread in the destination runqueue
once it stops running on the source CPU, for example due to a trap.

Other Re-Migration Triggers It might be worthwhile to investigate more possible trig-
gers for re-migration, in search of one that is applicable to the greatest number of possible
workloads. For our web server scenario, re-migration on system call worked well. For
other scenarios, that might not be the case, as their SIMD-accelerated operations might
not be as conveniently followed by system calls.

Porting to Another Scheduler The Multi-Queue Skiplist Scheduler (MuQSS) is not a
very widespread scheduler, and originally targets desktop systems instead of servers. To
ease adoption of the solution presented in this thesis, it could be ported to a more popular
scheduler such as the CFS (Linux’s default scheduler).

Combination with Other Forms of Heterogeneity Machines will exist that combine
AVX-512 with heterogeneity and/or performance asymmetry, such as different base clock
frequencies for CPU cores. The latter has already been implemented by Intel in their
Speed Select Technology [19], which allows the base frequency of certain cores to be in-
creased. Therefore, it would be advantageous to combine core specialization for AVX-512

43

6 Conclusion

with existing scheduling approaches for heterogeneous and/or asymmetric parallel sys-
tems, especially that of Li et al. [32], which extends an SMP-fair scheduling algorithm to
performance-asymmetric systems.

NUMAAwareness To avoid causing unnecessary overhead, a core-specializing scheduler
needs to consider the system’s topology. The system used in this thesis made core special-
ization decisions simple, because it had only one socket, and all processor cores shared a
last-level cache and address space. However, there are machines with non-uniform mem-
ory access (NUMA), consisting of multiple nodes with local memory, each of which can also
access remote memory (memory of other nodes), but at reduced bandwidth and increased
latency. The automatic core specialization mechanism presented in this thesis could be
extended to be NUMA-aware, e.g. spreading specialized cores over non-uniform memory
access (NUMA) nodes to avoid task migration across nodes.

Automatic Instrumentation As Gottschlag and Bellosa [14] and Papamanoglou [35]
have demonstrated, instrumenting the application is also a viable approach to core special-
ization. This thesis has shown that both approaches are orthogonal (see also Section 4.5)
by further extending Gottschlag’s scheduler such that the kernel has both a system call to
mark tasks and the ability to automatically mark and unmark them. We have thus seen
manual instrumentation of application code and transparent automatic migration (com-
pletely agnostic of application code), leaving out the possibility of automatic instrumenta-
tion, that we explicitly decided not to pursue when designing our application. Analogous
to existing work on automatic staged computation [15], which splits applications at points
identified using simulation and executes the parts on separate cores to increase cache lo-
cality, an execution trace from the real system or a simulator could be used to identify
possible migration points in the application. Such an execution trace could be obtained
by extending fault-and-migrate to feed into one of the existing tracing mechanisms of the
Linux kernel. Also, popular open-source compilers [11, 5] support plugins, or could other-
wise be extended to perform instrumentation at translation, possibly additionally guided
by the aforementioned trace information.

44

Bibliography
[1] Lars Bauer. “RISPP: A Run-time Adaptive Reconfigurable Embedded Processor.”

PhD thesis. Universität Fridericiana zu Karlsruhe (TH), 2009.

[2] M. Bohr. “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.” In: IEEE
Solid-State Circuits Society Newsletter 12.1 (Winter 2007), pp. 11–13. issn: 1098-
4232. doi: 10.1109/N-SSC.2007.4785534.

[3] BoringSSL. Google.url: https://boringssl.googlesource.com/boringssl/.

[4] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. “Computation Spread-
ing: Employing Hardware Migration to Specialize CMP Cores On-the-fly.” In: Pro-
ceedings of the 12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS XII. San Jose, California, USA:
ACM, 2006, pp. 283–292. isbn: 1-59593-451-0.doi: 10.1145/1168857.1168893.
url: http://doi.acm.org/10.1145/1168857.1168893.

[5] Clang Plugins – Clang 9 documentation. url: https://clang.llvm.org/docs/
ClangPlugins.html.

[6] Intel Corporation. Intel® Core™ i9-7940X X-series Processor. 2017. url: https:
//ark.intel.com/products/126695/.

[7] R. H. Dennard et al. “Design of Ion-Implanted MOSFET’s with Very Small Physical
Dimensions.” In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974), pp. 256–268.
issn: 0018-9200. doi: 10.1109/JSSC.1974.1050511.

[8] H. Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling.” In: 2011
38th Annual International Symposium on Computer Architecture (ISCA). June 2011,
pp. 365–376.

[9] M. J. Flynn. “Some Computer Organizations and Their Effectiveness.” In: IEEE
Transactions on Computers C-21.9 (Sept. 1972), pp. 948–960. issn: 0018-9340.
doi: 10.1109/TC.1972.5009071.

[10] P. Garraghan, P. Townend, and J. Xu. “An Analysis of the Server Characteristics and
Resource Utilization in Google Cloud.” In: 2013 IEEE International Conference on
Cloud Engineering (IC2E). Mar. 2013, pp. 124–131. doi: 10.1109/IC2E.2013.40.

[11] GNU Compiler Collection (GCC) Internals: Plugins. url: https://gcc.gnu.org/
onlinedocs/gccint/Plugins.html.

[12] Mathias Gottschlag and Frank Bellosa. Mechanism to Mitigate AVX-Induced Fre-
quency Reduction. Tech. rep. 2018. arXiv: 1901.04982 [cs.DC].

45

https://doi.org/10.1109/N-SSC.2007.4785534
https://boringssl.googlesource.com/boringssl/
https://doi.org/10.1145/1168857.1168893
http://doi.acm.org/10.1145/1168857.1168893
https://clang.llvm.org/docs/ClangPlugins.html
https://clang.llvm.org/docs/ClangPlugins.html
https://ark.intel.com/products/126695/
https://ark.intel.com/products/126695/
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/IC2E.2013.40
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
https://arxiv.org/abs/1901.04982

Bibliography

[13] Mathias Gottschlag and Frank Bellosa. “Mitigating AVX-Induced Performance Vari-
ability with Core Specialization.” In: Operating Systems Group, Karlsruhe Institute
of Technology (KIT). 2018.

[14] Mathias Gottschlag and Frank Bellosa. “Reducing AVX-Induced Frequency Varia-
tion With Core Specialization.” In: The 9th Workshop on Systems for Multi-core and
Heterogeneous Architectures. Dresden, Germany, Mar. 2019.

[15] Mathias Gottschlag et al. “Towards Fully Automatic Staged Computation.” In: The
8th Workshop on Systems for Multi-core and Heterogeneous Architectures. Porto, Por-
togal, Apr. 2018.

[16] Kyle Huey. [PATCH v16 08/10] x86/arch_prctl: Add ARCH_[GET|SET]_CPUID. Mar.
2017. url: https://lore.kernel.org/kvm/20170320081628.18952-9-
khuey@kylehuey.com/.

[17] J. Stuart Hunter. “The Exponentially Weighted Moving Average.” In: Journal of
Quality Technology 18.4 (1986), pp. 203–210.

[18] Intel Corporation. Intel™ 64 and IA-32 Architectures Optimization Reference Manual.
Apr. 2019. url: https://software.intel.com/sites/default/files/
managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf.

[19] Intel Corporation. Intel® Speed Select Technology – Base Frequency - Enhancing Per-
formance. Apr. 2019.

[20] Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes:
1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Intel Corporation. May 2018. url: https:
//software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf.

[21] Intel® Advanced Vector Extensions 512 (Intel® AVX-512). Intel Corporation. url:
https : / / www . intel . com / content / www / us / en / architecture - and -
technology/avx-512-overview.html.

[22] Intel® Architecture Instruction Set Extensions and Future Features Programming Ref-
erence. Programming Reference. May 2018. url: https://software.intel.
com/sites/default/files/managed/c5/15/architecture-instruction-
set-extensions-programming-reference.pdf.

[23] Intel® Turbo Boost Technology 2.0. Intel Corporation. url: https://www.intel.
com/content/www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html.

[24] Intel® Virtualization Technology FlexMigration Application Note. Intel Corporation.
Oct. 2012. url: https : / / www . intel . com / content / dam / www / public /
us/en/documents/application- notes/virtualization- technology-
flexmigration-application-note.pdf.

[25] Intel® VTune™ Amplifier 2019 User Guide – Hardware Event Skid. Intel Corporation.
Feb. 2018. url: https://software.intel.com/en-us/vtune-amplifier-
help-hardware-event-skid.

46

https://lore.kernel.org/kvm/20170320081628.18952-9-khuey@kylehuey.com/
https://lore.kernel.org/kvm/20170320081628.18952-9-khuey@kylehuey.com/
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/virtualization-technology-flexmigration-application-note.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/virtualization-technology-flexmigration-application-note.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/virtualization-technology-flexmigration-application-note.pdf
https://software.intel.com/en-us/vtune-amplifier-help-hardware-event-skid
https://software.intel.com/en-us/vtune-amplifier-help-hardware-event-skid

Bibliography

[26] Con Kolivas. MuQSS – The Multiple Queue Skiplist Scheduler. url: http://ck.
kolivas.org/patches/muqss/sched-MuQSS.txt.

[27] Philipp Koppe et al. “Reverse Engineering x86 ProcessorMicrocode.” In: 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
2017, pp. 1163–1180. isbn: 978-1-931971-40-9. url: https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/
koppe.

[28] Vlad Krasnov. On the dangers of Intel’s frequency scaling. Cloudflare, Inc. Nov. 2017.
url: https : / / blog . cloudflare . com / on - the - dangers - of - intels -
frequency-scaling/.

[29] James R Larus and Michael Parkes. “Using cohort scheduling to enhance server
performance.” In: LCTES/OM. 2001, pp. 182–187.

[30] LD.SO(8). Mar. 2017.

[31] Aubrey Li. [PATCH v9 2/3] x86,/proc/pid/status: Add AVX-512 usage elapsed
time. Feb. 2019. url: https://lore.kernel.org/lkml/20190211185931.
4386-2-aubrey.li@intel.com/.

[32] Tong Li et al. Operating System Support for Overlapping-ISA Heterogeneous Multi-
core Architectures. Tech. rep. Intel Corporation, 2009.

[33] OpenSSL Cryptography and SSL/TLS Toolkit. Nov. 2018. url: https : / / www .
openssl.org/.

[34] Roberto Paleari et al. “N-version disassembly: differential testing of x86 disassem-
blers.” In: Proceedings of the 19th international symposium on Software testing and
analysis. ACM. 2010, pp. 265–274.

[35] Ioannis Papamanoglou. “Constructing a Library for Mitigating AVX-Induced Perfor-
mance Degradation.” MA thesis. Karlsruhe Institute of Technology, 2019.

[36] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable
Third Generation Architectures.” In: Commun. ACM 17.7 (July 1974), pp. 412–
421. issn: 0001-0782. doi: 10.1145/361011.361073. url: http://doi.acm.
org/10.1145/361011.361073.

[37] Juan Carlos Saez et al. “Leveraging Core Specialization via OS Scheduling to Im-
prove Performance on Asymmetric Multicore Systems.” In: ACM Trans. Comput.
Syst. 30.2 (Apr. 2012), 6:1–6:38. issn: 0734-2071. doi: 10 . 1145 / 2166879 .
2166880. url: http://doi.acm.org/10.1145/2166879.2166880.

[38] Christian Schwarz. “Stage-Aware Scheduling in a Library OS.” Bachelor Thesis.
Operating Systems Group, Karlsruhe Institute of Technology (KIT), Germany, Mar.
2018.

[39] Igor Sysoev. nginx. url: https://nginx.org.

[40] SystemTap. url: https://sourceware.org/systemtap/.

47

http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://lore.kernel.org/lkml/20190211185931.4386-2-aubrey.li@intel.com/
https://lore.kernel.org/lkml/20190211185931.4386-2-aubrey.li@intel.com/
https://www.openssl.org/
https://www.openssl.org/
https://doi.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
https://doi.org/10.1145/2166879.2166880
https://doi.org/10.1145/2166879.2166880
http://doi.acm.org/10.1145/2166879.2166880
https://nginx.org
https://sourceware.org/systemtap/

Bibliography

[41] Gil Tene. wrk2 – a HTTP benchmarking tool based mostly on wrk. Mar. 2018. url:
https://github.com/giltene/wrk2.

[42] Praveen Kumar Tiwari et al. Accelerating x265 with Intel® Advanced Vector Exten-
sions 512. May 2018. url: https://software.intel.com/sites/default/
files/managed/d5/f6/mcw-intel-x265-avx512.pdf.

[43] Linus Torvalds, ed. Linux 4.17. url: https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/.

48

https://github.com/giltene/wrk2
https://software.intel.com/sites/default/files/managed/d5/f6/mcw-intel-x265-avx512.pdf
https://software.intel.com/sites/default/files/managed/d5/f6/mcw-intel-x265-avx512.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

Glossary
ABI Application Binary Interface. 20

AVX Advanced Vector Extensions. 5, 20, 36

AVX-512 Advanced Vector Extensions 512. v, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16,
17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 49

AVX 2 Advanced Vector Extensions 2, 256-bit predecessor to AVX-512. 3, 5, 6, 7

CAMP Comprehensive Scheduler for Asymmetric Multicore Systems. 10

CFS Completely Fair Scheduler. 8, 24, 39, 43

DWRR dynamically weighted round-robin. 10

EWMA exponentially weighted moving average. 18, 27

FMA fused-multiply-add. 5, 6

FP floating point. 5, 6

FPU floating-point unit. 16

ISA instruction set architecture. 9, 10, 11

JIT just-in-Time Compiler. 14

MAC message authentication code. 23, 24, 32

MIMD Multiple Instruction streams, Multiple Data streams: classical multi-processors [9].
3

MuQSS Multi-Queue Skiplist Scheduler by Kolivas [26]. 8, 9, 17, 18, 24, 39, 41, 43

NOP no-operation. 34

NUMA non-uniform memory access. 44

OS operating system. 8

49

Glossary

PCU power controller unit. 6

RISPP Rotating Instruction Set Processing Platform. 11

SIMD Single Instruction stream, Multiple Data streams: each instruction processes more
than one set of operands, for example whole arrays [9]. v, 3, 5, 6, 14, 16, 41

SMP symmetric multiprocessor. 13, 44

SMT simultaneous multithreading. 28, 31

SSE Streaming SIMD Extensions, 128-bit SIMD Extension to x86. 6

TDP thermal design power. 6, 35

VMM virtual machine monitor. 14

50

	Abstract
	Contents
	Introduction
	Background and Related Work
	AVX-512
	Processor Clock Frequency Behavior
	Research in Mixed AVX-512 Workloads
	Core Specialization
	Scheduling for Heterogeneous Systems
	Staged Computation and Cohort Scheduling
	Reconfigurable Systems

	Analysis
	Core Specialization
	Fault and Migrate

	Design and Implementation
	Fault-and-Migrate
	Making avx512 Trap
	Triggering Migration
	Handling avx512 in The Kernel

	Core Specialization
	Determining the Number of AVX-512 Cores
	Re-Migration Heuristics
	Orthogonality of Approaches
	Debugging and Configuration

	Evaluation
	Setup and Methods
	Patching CPU Feature Detection
	Repeatability
	Performance Counters
	The “Perf” Tools

	Mitigation of Frequency Reduction Effects
	Re-Migration Heuristics
	Selection of AVX-512 Cores
	Influence of the Parameter
	Isolation of Throttling

	Theoretical Limit of Speedup
	Remaining Overhead
	Trap Handling
	Fault-and-Migrate

	Latency
	The Multi-Queue Skiplist Scheduler
	Discussion

	Conclusion
	Future Work

	Bibliography
	Glossary

