
Checkpoint Distribution for
SimuBoost

Master Thesis
of

Andreas Pusch
at the Department of Computer Science

Operating Systems Group
Karlsruhe Institute of Technology

Supervisor: Prof. Dr. Frank Bellosa
Supervising
Research Assistant: Dipl.-Inform. Marc Rittinghaus

Created during: May 10, 2017 – October 26, 2017

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources than
the ones indicated and that due acknowledgment is given where reference is made
to the work of others.

Karlsruhe, October 26, 2017

iv

Abstract

Full system simulation provides means for analyzing systems by allowing repro-
duction of physical hardware events as well as providing access to analytical data
and analysis tools. Benefits of these simulations are the support for malware anal-
ysis, memory studies, and high availability testing as well as operating system
development and debugging. One major downside though is the slowdown of the
simulation of a factor of 31 up to 810 in comparison to hardware-assisted virtual-
ization. This slowdown limits the applicability of full system simulation to short
running workloads. SimuBoost aims to solve this issue by running the workload
in a hardware-assisted virtual machine and splitting it into multiple simulation in-
tervals. At each interval, SimuBoost creates an incremental checkpoint which is
used to bootstrap the simulation of the interval. These checkpoints are distributed
by SimuBoost across a simulation cluster which runs the simulation intervals in
parallel.

The current distribution mechanism leads to high network load which can re-
sult in a network bottleneck and limits the scalability of SimuBoost. This distribu-
tion leads to longer checkpoint loading times and a slowdown of the interval sim-
ulations as well as the overall achievable speedup. We are evaluating distributed
storage and multicast as possible solutions to achieve our goals of reduced check-
point loading times, increased scalability and a reduced network load to make
SimuBoost a viable option for Gigabit Ethernet networks using commodity hard-
ware and therefore increase its applicability.

We have implemented a multicast solution that has satisfied all of our goals.
Our solution does not exhaust a Gigabit Ethernet network using the build-linux-
kernel and SPECjbb benchmarks and results in stable checkpoint loading times.
Our solution scales well and achieves a speedup when doubling the number of
parallel simulations from 12 to 24.

v

vi ABSTRACT

Deutsche Zusammenfassung

Durch Full-System Simulation können Systeme analysiert werden um beispiels-
weise Malware Analysen, Hochverfügbarkeitstests und Speicherstudien durchzu-
führen. Des Weiteren kann Full-System Simulation auch zur Entwicklung und
Fehlerbeseitigung von Betriebssystemen verwendet werden. Die Benutzbarkeit
wird jedoch durch eine Verlangsamung der Ausführung um Faktoren von 31 bis
zu 810, im Vergleich zu hardwarebeschleunigter Virtualisierung, beeinträchtigt.
SimuBoost ist eine Simulationslösung die versucht Full-System Simulation durch
das Aufteilen der Simulation in Simulationsintervalle, sowie der parallelen Aus-
führung dieser Intervalle, zu beschleunigen. Hierzu müssen inkrementelle Check-
points der zu simulierenden virtuellen Maschine erstellt und in einem Simulati-
onscluster verteilt werden. Die erreichbare Beschleunigung ist dabei maßgeblich
von der Anzahl der parallelen Simulationen und der Intervallänge abhängig.

Das aktuelle Verteilungsverfahren führt jedoch zu einer hohen Netzauslastung
und einem Flaschenhals bei der Übertragung der Checkpoint Daten vom Vir-
tualisierungshost zu den Simulationsknoten. Eine längere Übertragungsdauer der
Checkpoints durch hohe Netzauslastung führt zu längeren Checkpoint Ladezeiten,
verringert die erreichbare Beschleunigung der Simulation sowie die Skalierbar-
keit von SimuBoost. Wir evaluieren Distributed Storage und Multicast als mögli-
che Lösungen für die Verteilung der Checkpoints. Unsere Ziele sind verringerte
Checkpoint Ladezeiten, besser Skalierbarkeit und eine reduzierte Netzwerkaus-
lastung, sodass eine Anwendung von SimuBoost in Gigabit Ethernet Netzwerken
ohne Spezialhardware möglich ist.

Wir haven ein neues Verteilungsverfahren auf Basis von Multicast implemen-
tiert, dass unsere gestellten Ziele erreicht. Unsere Lösung lastet ein Gigabit Ether-
net Netzwerk bei Verwendung der Build-Linux-Kernel und SPECjbb Benchmarks
nicht aus und erreicht stabile Checkpoint Ladezeiten. Unsere Lösung skaliert gut
und erreicht eine Beschleunigung bei Verdopplung der parallelen Simulationen
von 12 auf 24.

vii

viii DEUTSCHE ZUSAMMENFASSUNG

Contents

Abstract v

Deutsche Zusammenfassung vii

Contents 1

1 Introduction 3

2 Background 5
2.1 Virtual Machines . 5

2.1.1 Checkpointing . 7
2.1.2 Emulation . 8
2.1.3 Hardware-Assisted Virtualization 8

2.2 Full System Simulation . 9
2.3 SimuBoost . 10

2.3.1 Speedup and Scalability 11
2.3.2 SimuBoost Checkpointing 12

2.4 Ethernet Data Transmission . 14
2.4.1 Network Attached Storage 14
2.4.2 Distributed Storage . 15
2.4.3 Multicast . 21

3 Analysis 23
3.1 Direct Checkpoint Distribution 24
3.2 Bandwidth Requirements . 26
3.3 Pulling vs. Pushing . 28
3.4 Checkpoint Distribution . 30
3.5 Conclusion . 31

4 Design 33
4.1 Distributed Storage . 34

1

2 CONTENTS

4.2 Multicast . 37
4.2.1 Data Integrity . 37
4.2.2 Reliability . 38

4.3 Conclusion . 41

5 Implementation 43
5.1 Packet Loss Reduction . 43
5.2 Packet Loss Handling . 44

6 Evaluation 47
6.1 Job distribution . 47
6.2 Evaluation Setup . 48

6.2.1 Benchmarks . 49
6.3 Distributed File System . 49

6.3.1 Ceph FS . 49
6.3.2 GlusterFS . 52
6.3.3 Conclusion . 54

6.4 Multicast . 55
6.4.1 Packet Loss Reduction Tests 55
6.4.2 Simulation Tests . 59

6.5 Discussion . 65
6.6 Conclusion . 66

7 Conclusion 67
7.1 Future Work . 68

Bibliography 69

Chapter 1

Introduction

Full system simulation is an important tool in areas such as operating systems
debugging and malware analysis. Full system simulators allow reproduction of
physical hardware in combination with additional analysis tools to enable system
analysis on the level of individual instructions. However, common full system
simulators suffer from high slowdowns. Rittinghaus et al. [1] describe an average
slowdown of factor 31 for functional simulation with QEMU [2] as well as a
factor of 810 with Simics [3]. These slowdowns restrict the applicability of full
system simulators for dynamic analysis to short-running workloads. Furthermore,
the slowdowns reduce the interactivity of the simulation due to long delays for
responses to user input.

SimuBoost [1] is a project that utilizes parallelization to achieve fast full
system simulation. For this goal, SimuBoost runs the workload of interest in
a hardware-assisted virtual machine (VM) and periodically creates incremental
checkpoints of the VM. The SimuBoost server distributes these checkpoints across
a cluster of simulation nodes to bootstrap parallel simulations of the intervals. The
execution speed difference between hardware-assisted virtualization and func-
tional simulation drives a parallelization of the simulation. The speedup that can
be achieved by SimuBoost is dependent on the right checkpoint interval length
and the number of parallel simulations. The checkpoint distribution is an im-
portant factor as it delays the actual start of the parallel simulations. This delay
essentially means it takes longer for the simulation of the individual checkpoint
to finish in relation to the moment the producer has created the checkpoint. As
a result, the complete simulation takes longer, and the achievable speedup is re-
duced. Therefore, the checkpoint distribution needs to be reliable and as fast as
possible to reduce any overhead to a minimum. In a direct distribution approach
by Eicher [4], the simulation nodes pull all necessary data for the current simu-
lation interval from SimuBoost. Eicher has shown that using a small number of

3

4 CHAPTER 1. INTRODUCTION

consumers and a Gigabit Ethernet network connection saturates the network and
leads to a network bottleneck.

The goal of this thesis is to provide a distribution solution for the checkpoints
that scales well and is as fast as possible to enable SimuBoost to achieve an opti-
mal speedup of the simulation. This distribution solution should be able to work
on commodity systems using a Gigabit network connection with a theoretical
maximum transmission rate of 125 MB/s. This restriction makes using Simu-
Boost easier because no expensive hardware is required.

To achieve our goals, we utilize SimuBoost’s checkpoint compression to re-
duce the amount of data that needs to be transmitted. Furthermore, we utilize a
pushing mechanism to distribute data across the cluster as a means to distribute
the network load more even across the entire cluster. This approach aims to reduce
the bottleneck on the connection between the virtualization host and the simula-
tion nodes.

The checkpoint distribution mechanism we have introduced achieves a re-
duction of checkpoint loading times using a build-linux-kernel scenario with six
nodes and four parallel jobs per node from an average of about 382 seconds to
about 12 seconds compared to the direct distribution approach. As a result, our
solution reduces the runtime of the complete simulation from about 156 minutes
to about 69 minutes.

In Chapter 2 we talk about backgrounds such as virtualization and simula-
tion, SimuBoost, distributed storage, and multicast. Next in Chapter 3 we analyze
the current status of the checkpoint distribution and propose possible solutions to
resolve the distribution issues. In Chapter 4 we elaborate the designs of our pro-
posed solutions and afterwards in Chapter 5 we show implementation details of
the multicast approach. Finally in Chapter 6 we evaluate our solutions and give a
conclusion and outlook in Chapter 7.

Chapter 2

Background

This chapter provides the necessary background regarding virtual machines, full
system simulation and checkpointing. Furthermore, we will explain the basics of
SimuBoost as well as networking basics for network attached storage, distributed
storage, and multicast. This information is essential to understand our challenges
and the approaches we are taking.

2.1 Virtual Machines
Virtual machines (VMs) [5] provide new capabilities such as software isolation,
and compatibility layers for computer systems. To explain virtual machines, we
will first look at the different layers of abstraction in a regular desktop computer.

The instruction set architecture (ISA) divides the hardware from the software.
It hides the hardware details from components such as the operating system,
drivers, the memory manager, and the scheduler. The instruction set architec-
ture is dependent on the hardware, examples are the x86 instruction set, which is
the most common for personal computers, and the ARM Cortex instruction set
architecture, which is mainly used for embedded devices such as smartphones.

The application binary interface (ABI) provides abstractions from the oper-
ating system as well as user instructions. The GCC compiler [6], for example,
uses the Itanium C++ ABI [7, 8] to act as an interface between user C++ code
and the operating system and operating system libraries. Responsibilities of the
C++ ABI include memory layouts for C++ data objects as well as function calling
interfaces, exception handling interfaces, global naming, and various object code
conventions.

Finally, there is the application programming interface (API) which provides
an interface for applications and application libraries. The Windows API [9],
for example, provides standardized access for applications and libraries to basic

5

6 CHAPTER 2. BACKGROUND

resources like file systems, devices, and processes as well as other services like
user interfaces, network services, and the Windows registry. Figure 2.1 illustrates
these three layers of abstraction.

Hardware

Libraries

Operating

System

Application Programs
API

ABI

ISA

User ISA

Figure 2.1: An overview of machine abstraction layers. [5]

A virtual machine works on top of these abstractions and maps virtual re-
sources or state to the real resources of the host system and uses the instructions
and system calls of the host system to carry out the virtual instructions. There are
two main types of virtual machines based on the abstractions they work on.

Process virtual machines translate application binaries for the same or differ-
ent API, ABI or user ISA than the host platform. Examples for process virtual
machines are Wine [10, 11] and Cygwin [12, 13]. These virtual machines provide
an operating system compatibility layer to execute binaries which require a dif-
ferent operating system API than the one of the host operating system. Another
type of process virtual machine is a high-level language runtime such as the Java
VM [14,15] and the Common Language Infrastructure (CLI) [16,17]. These solu-
tions provide platform independence for applications by abstracting the operating
system in the form of libraries.

System virtual machines, on the other hand, reside on the ISA level. A Virtual
Machine Manager (VMM) [18] is responsible for virtual instruction handling, re-
source allocation management, and resource access. Depending on the type of
system virtualization, the VMM runs either in privileged mode, as a user applica-
tion, or in dual mode where some parts are privileged, and some are not. Exam-
ples for VMM which run in privileged mode (native system VMs) are Xen [19]
and Hyper-V [20, 21]. Oracle VirtualBox [22] and QEMU [2, 23] are examples

2.1. VIRTUAL MACHINES 7

for VMs with non-privileged VMM in which the VMM runs as a user applica-
tion (hosted system VMs). Additionally, hybrid solutions such as QEMU with
KVM [23, 24] operate in both modes (dual-mode/hybrid system VMs).

System virtual machines have several benefits such as compatibility for for-
eign or deprecated platforms, security by isolation of software between virtualized
systems (guests), and easy replication, and migration of virtual machines between
hosts. The most important benefit for this thesis though is system analysis. A user
can inspect applications and operating system operations at the ISA level and use
this ability for debugging, software analysis and research.

2.1.1 Checkpointing
A key part of the benefits of system virtual machines is the ability to create check-
points [5]. A system virtual machine checkpoint is a snapshot of the complete state
of the machine. It consists of the contents of the RAM, the disk, the CPU state,
and registers, as well as the device data provided by the virtual machine manager.
Virtual machine checkpointing provides benefits in several areas such as virtual
machine migration [25, 26], fault tolerance [27, 28] and debugging [29, 30]. An
important metric of checkpoints is the downtime of the virtual machine, meaning
how long the machine has to be stopped to create the checkpoint. Another impor-
tant metric is the size of the checkpoint. Especially in cases like virtual machine
migration, where checkpoints have to be transmitted via a network, checkpoints
have to be as small as possible to reduce transmission times and network load.

Incremental Checkpoints

Incremental checkpoints [31–33, 36] are an approach to reduce the size of check-
points by only storing differences since the previous checkpoint. The major chal-
lenge of incremental checkpointing is the detection of content modifications. Some
approaches such as proposed by Mehnert-Spahn et al. [33] utilize existing page
table entry bits, namely the dirty bit or the write bit, to detect page modifica-
tions. Argawal et al. [32] propose an approach that uses a secure hash function to
uniquely identify changed blocks in memory.

Copy-On-Write

Copy-on-write (CoW) [34] is a technology which can be used to detect modifica-
tions in memory pages and to decrease the checkpointing downtime. Furthermore,
operating systems such as Mach [35] use this technology as a kernel performance
optimization. CoW memory is shared read-only in a protected mode. As soon

8 CHAPTER 2. BACKGROUND

as a write operation is performed on the protected memory, a copy of the af-
fected memory page is created. Sun et al. [31] describe the implementation of
a CoW-based checkpointing solution for the Xen VMM. When using CoW for
checkpointing, the VM is suspended to put its memory in a protected read-only
state and is started again afterwards. Modifications to parts of the memory cre-
ate copies which can be used while the VM is running. This approach provides
a consistent view of the VM without having to copy any state while the VM is
suspended and therefore without prolonging the downtime of the VM.

2.1.2 Emulation
Emulation [5] allows a virtual machine to implement interface and functionality
of a different system. The VM translates instructions meant for one instruction
set architecture to another emulating the desired hardware. Privileged instruction
handling is done using a technique called Trap’n’Emulate [18]. When a guest
system attempts to execute a privileged instruction, the virtual CPU traps into the
VMM, which in turn emulates the operation on the guest state. Emulation is the
key technology for most virtual machines in both process and system virtualiza-
tion.

Interpretation and Binary Translation

Interpretation and binary translation [5] are important methods used in system em-
ulation. In interpretation, the emulator fetches source instructions, analyses them
and performs the required operation on the host system. Interpretation is simpler
to implement than binary translation but has high execution costs. In binary trans-
lation, the emulator fetches a block of source instructions, generates a block of
associated target instructions and stores these instructions for repeated use. This
approach is more complex and has higher initial costs due to the pre-translation
overhead for entire code blocks. However, binary translation also reduces the exe-
cution costs. In practice, it is best to use a staged operation between both solutions
to achieve optimal results.

2.1.3 Hardware-Assisted Virtualization
As we have seen in the previous subsection, emulation requires translations which
are complex and lead to a slowdown of the execution speed of the virtual machine
compared to a native system. Hardware-assisted virtualization [37, 38] has been
developed to improve the speed of virtual machines. This method is faster than
emulation as the required instructions are directly executed on the host system’s

2.2. FULL SYSTEM SIMULATION 9

hardware. For this approach to work, the guest system must have the same in-
struction set architecture as the host system, and the host must allow operations
such as CPU context switches between virtual machines. Hardware-assisted vir-
tualization is less flexible than emulation due to the requirement of the guest to
have the same instruction set architecture as the host. We look at x86 architec-
ture extensions for hardware-assisted virtualization as an example. Technologies
such as AMD’s SVM [37, 38] and Intel’s VT [38, 39] export new primitives and
provide the capability to store the state of a guest virtual CPU in an in-memory
data structure. Furthermore, the hardware supports an additional execution mode
called guest mode, which enables direct execution of guest code, including privi-
leged code. A new instruction, vmrun, allows the transfer from guest to host mode
and vice versa.

2.2 Full System Simulation
Full system simulation [3, 40] aims to provide means for analyzing a system by
allowing reproduction of physical hardware events as well as providing additional
analysis tools. This functionality is achieved by using system virtual machines
and providing easy access to analytical data, e.g., by registering hooks for memory
accesses. Full system simulators use mechanisms such as deterministic replay [41,
42] to record and replay the execution of a guest system. The entire VM execution,
including the operating system and applications, is recorded and replayed. The
recording includes non-deterministic events for example in the form of data and
timing of device inputs such as virtual disks and virtual network interface cards.

Examples for full system simulators are Simics [3], a commercial full system
simulator that is able to simulate memory access delays and caching effects, and
MARSSx86 [43], an open-source full system simulator for x86 systems based on
QEMU.

One of the benefits of full system simulation is the support for analysis, de-
velopment, and debugging of operating systems. Additionally, applications such
as malware analysis, memory studies, and high-availability testing benefit as well
from full system simulation.

The major downside of full system simulation is the slowdown of the execu-
tion due to overhead resulting from analysis requirements. The main reason for
this slowdown is the emulation of the workload. Emulation is necessary because
hardware-assisted virtualization does not grant the required level of control for
system analysis. Additionally, memory hooks and analysis tools lead to a further
slowdown of the simulation. Rittinghaus et al. [1] describe an average slowdown
of factor 31 for functional simulation with QEMU as well as a factor of 810 with
Simics.

10 CHAPTER 2. BACKGROUND

There are two common kinds of simulators, functional and micro-architectural.
Micro-architectural simulators such as gem5 [44] and MARSSx86 [43] simulate
the internal implementation details of hardware components. These simulators
can be used to model the design and behavior of components such as a CPU’s
ALU, cache memory, and control unit. Functional simulators such as Simics [3]
and Parallel Embra [40] on the other hand do not focus on hardware implemen-
tation details. Instead, they aim to provide the ability to perform analysis on the
level of individual instructions.

2.3 SimuBoost
SimuBoost [1] is a project that utilizes parallelization to achieve fast, functional
full system simulation. Traditional simulators like QEMU [2, 23] and Simics [3]
suffer from slowdowns (see Section 2.2), which limits their applicability to short
running workloads. SimuBoost aims to solve this issue by splitting the simulation
along the time axis into a number of intervals as illustrated by Figure 2.2.

Figure 2.2: The simulation is split into n intervals depending on the required
degree of parallelism. [1]

At each interval, SimuBoost creates an incremental checkpoint which it dis-
tributes across a simulation cluster. These checkpoints serve as starting points for
parallel simulations. The difference in execution speed between the hardware-
assisted virtualization of the workload on the virtualization node and the emu-
lation on the simulation nodes drives a parallelization of the simulation. (see
Figure 2.3).

2.3. SIMUBOOST 11

Figure 2.3: Parallel simulation using checkpoints at interval boundaries as starting
points. [1]

The overhead of the checkpoint distribution directly impacts the time until a
checkpoint simulation finishes and the next simulation can be started. The longer
the checkpoint loading process takes, the longer the simulation will take which
reduces the achievable speedup of SimuBoost.

QEMU and KVM SimuBoost uses a modified QEMU [2, 23], a generic and
open source machine emulator. This version of QEMU contains tracing hooks
for the tracing framework Simutrace [45] and support for SimuBoot’s checkpoint-
ing functionality. Additionally, SimuBoost uses Kernel-based Virtual Machine
(KVM) [23, 24], a component of QEMU and a set of Linux kernel modules for
hardware-assisted virtualization. SimuBoost requires a modified Linux kernel
with KVM for the checkpointing.

2.3.1 Speedup and Scalability
Rittinghaus et al. [1] have provided a formula to calculate the possible speedup
of the simulation. Let n := the number of intervals, tc := the constant VM down-
time for a checkpoint and ti := a simulation’s initialization time1. Further, let
slog := the slowdown in the virtualization stage incurred by the logging of non-
deterministic events, Tvm := the workload’s run-time with conventional virtual-
ization, Tsim := the workload’s run-time with conventional functional simulation

1At this time checkpoints can be migrated to a different node and loaded to initialize the
simulated machine’s state on the basis of the checkpointed information.

12 CHAPTER 2. BACKGROUND

and ssim := the effective slowdown between virtualization and functional simula-
tion. The speedup S(L) of the SimuBoost approach compared to serial functional
simulation is described as:

S(L) =
slogTvm∗ssimL

s2logTvm(tc+L)+slogtiL+ssimL2

Figure 2.4 illustrates the importance of checkpoint creation and distribution
on the parallelization of the simulation. As new intervals are submitted, addi-
tional nodes are allocated until the first simulation finishes. After that, simula-
tions can be scheduled onto previously allocated nodes because of the assumption
that simulations complete with approximately the same rate than new intervals are
submitted.

Figure 2.4: Checkpoint creation and distribution delay the checkpoint loading.
Subsequent intervals can be scheduled onto previously allocated nodes. [1]

2.3.2 SimuBoost Checkpointing
In this section, we will explain the SimuBoost checkpointing process [4, 46]. A
checkpoint captures the entire state of the related system including the contents
of the system memory, the disk, the internal state and registers of the CPU, and
the state of the attached devices. SimuBoost creates these checkpoints incremen-
tally, which avoids having to copy the entire state at every checkpoint. Instead,
SimuBoost only stores differences to the last checkpoint which reduces both, the
duration of the checkpointing process, as well as the required storage space. Fur-
thermore, SimuBoost utilizes copy-on-write [31, 34] to reduce the checkpointing
downtime and data deduplication [47], and delta compression [26] to reduce the
amount of data that has to be stored on disk. In data deduplication, two identi-
cal memory pages are combined. Instead of having two copies of a page, both

2.3. SIMUBOOST 13

pages point to the same data. SimuBoost utilizes checkpoint deduplication [4,48]
of RAM pages and disk sectors both within a single checkpoint as well as across
multiple checkpoints. Delta compression as introduced in REMUS [26] on the
other hand does not require identical memory pages to reduce checkpoint data.
Instead, it utilizes similar data with a higher granularity than the memory page
size to compress the required amount of data. When a checkpoint is created, Re-
mus checks the cache of previously transmitted pages. If the cache contains the
same page, only the differences (delta) of the page data will be sent. REMUS
uses a hybrid approach in which by default, XOR is used to detect the differences
which are then run-length encoded. However, REMUS falls back to gzip [49]
compression of the memory page if the XOR compression rate falls below 5:1 or
the previous page is not present in the cache. SimuBoost utilizes a similar ap-
proach but only uses delta compression once on a memory page and then starts
over with a new copy of the page for the next checkpoint. This approach reduces
dependencies over several successive checkpoints.

SimuBoost stores references to memory pages and disk sectors together with
the user data in checkpoint files. The actual memory page and disk sector data are
located in an append-only flat file. SimuBoost uses data compression algorithms
such as lz4 [50–52] and a similar custom compression to reduce the size of the
checkpoint data. Figure 2.5 illustrates the checkpoint processing.

14 CHAPTER 2. BACKGROUND

Figure 2.5: An overview of the SimuBoost checkpoint processing [4].

2.4 Ethernet Data Transmission
As explained in Section 2.3, the creation, and distribution of the checkpoints plays
a critical role in the achievable simulation speedup of SimuBoost. Eicher [4] has
already provided a method for fast and efficient checkpoint creation. Therefore,
this thesis focuses on the distribution of the checkpoint data over an Ethernet net-
work. In the following subsections, we will explain the data transmission options
we have considered for our approach.

2.4.1 Network Attached Storage
Network attached storage (NAS) [53] is a file level storage system that provides
access to storage via a standard Ethernet connection. In this system, a server
provides a file service by accepting network messages from clients to access and

2.4. ETHERNET DATA TRANSMISSION 15

modify the data. The server processes client requests such as open, close, read,
and write and performs the required action and transmits the requested data back
to the client.

Samba

Samba [54] is an Open Source software suite that implements the Server Mes-
sage Block(SMB) protocol, more specifically the Common Internet File System
(CIFS) [55] dialect of the protocol [56]. The CIFS protocol is used for access-
ing file and print services from server systems over a network. A server running
Samba can share local data with multiple nodes via an Ethernet network.

2.4.2 Distributed Storage
In distributed storage [57–59], data is distributed across several machines via a
network connection. Instead of a single server which shares the data like a Samba
NAS, a distributed storage solution consists of multiple servers which provide
parts of the data. Benefits of this kind of storage solution are a distribution of net-
work load across several nodes as well as the possibility to provide redundancies
which are completely transparent to the user accessing the data.

Ceph

Ceph [59] is a popular distributed storage system that provides a broad spectrum
of storage solutions based on object storage [60] as a foundation. Object stor-
age manages data as flexible-sized data containers (objects) rather than blocks of
data on disk. Ceph offers different storage options which are all based on the
distributed object store RADOS. Additionally, there is LIBRADOS, a native in-
terface to the underlying RADOS object storage. Figure 2.6 illustrates the overall
architecture of Ceph and its storage options.

16 CHAPTER 2. BACKGROUND

RADOS
Distributed Object Store

Librados

A library that allows apps to directly access RADOS

RADOSGW

A bucket based

REST gateway

RBD

A distributed
block device

Ceph FS

A POSIX-compliant

distributed

file system

Figure 2.6: An overview of the Ceph architecture [61] showing the four storage
options Ceph provides. All of these options are based on RADOS distributed
object storage.

Ceph FS [62] is a POSIX-compliant distributed file system. Ceph FS uses a
basic RADOS storage cluster to store its data. Figure 2.7 shows all of the compo-
nents required by Ceph FS.

Ceph FS Kernel Object

Ceph FS FUSE

Librados

Ceph FS Library

OSDs MDSs Monitors

Figure 2.7: An overview of the Ceph FS components. [62]

Ceph OSD daemons (Ceph OSDs) [61] interact with the underlying physical
or logical storage units (OSDs). The minimal requirement for a Ceph Storage
Cluster which is configured to make two copies of its data are two Ceph OSD

2.4. ETHERNET DATA TRANSMISSION 17

daemons. Besides interacting with the OSDs to store data, handle data replica-
tion, recovery, backfilling and rebalancing, the Ceph OSD daemons also provide
monitoring information to the Ceph Monitors [63]. Ceph Monitors are another
required component of Ceph FS. They provide health and status information of
the cluster to the users. The Ceph Metadata Server (MDS) [61] is only required
for Ceph FS. Ceph FS utilizes the MDS to store its metadata. The MDS allows
for POSIX file system users to execute basic commands such as ls, find and cd.

RADOS Block Device (RBD) [64] is a block storage solution. The data is
stored striped over multiple OSDs in a Ceph cluster. Figure 2.8 shows the compo-
nents of an RBD. The kernel module and librbd library are used to interact with
the actual OSDs.

RADOS Protocol

Kernel Module Librbd

OSDs Monitors

Figure 2.8: An overview of the RADOS Block Device components. [64]

The third storage option is RADOSGW [65], a bucket-based REST gateway.
It uses a FastCGI module for interacting with a Ceph Storage Cluster. Further-
more, it provides interfaces compatible with OpenStack Swift and Amazon S3.
Figure 2.9

Librados

S3 compatible API Swift compatible API

OSDs Monitors

RADOSGW

Figure 2.9: An overview of the RADOSGW components. [65]

Now that we have seen the basic components, we can look at how Ceph stores
the data and how its distribution mechanism works. Ceph is based on object stor-
age, so data is treated as a set of objects. Ceph stores the data objects in so-called

18 CHAPTER 2. BACKGROUND

placement groups (PGs) [66], which in turn are assigned to OSDs in a storage
pool [66]. The CRUSH algorithm [67, 68] determines how data is stored and re-
trieved. This algorithm maps each object to a placement group and then maps each
placement group to one or more Ceph OSD daemons. The CRUSH map [67,68] is
a map of the Ceph cluster which regulates a uniform distribution of data across the
cluster. This map contains a list of OSDs, a list of buckets for aggregating the de-
vices into physical locations, and a list of data replication rules. Ceph clients can
communicate with OSDs directly using the CRUSH algorithm and the CRUSH
map without requiring a centralized server or broker. The clients calculate the
placement of the individual objects in the placement groups by hashing the object
ID and applying an operation based on the number of PGs in a storage pool and
the ID of the pool [61]. Figure 2.10 illustrates this data placement.

Placement Group #1 Placement Group #2

obj obj obj objobj

OSD #1 OSD #2 OSD #3 OSD #4

Figure 2.10: An overview of the object to placement group to OSD place-
ment. [61] The placement is calcuated using the hash of the object ID and op-
erations based on the number of placement groups.

GlusterFS

GlusterFS [69, 70] is free and open source distributed file system based on file
storage. GlusterFS supports distributed volumes, replicated volumes, striped vol-
umes as well as combinations of the three. Figure 2.11 illustrates a distributed
GlusterFS volume which is the default setting for GlusterFS.

2.4. ETHERNET DATA TRANSMISSION 19

Mount Point

Distributed Volume

server1:/exp1 server2:/exp2

Brick Brick

File 1 File 2 File 3

Figure 2.11: A distributed GlusterFS volume. The files are distributed as a whole
between the bricks in the distributed volume. [71]

In a distributed volume, GlusterFS distributes the files across bricks in the
volume. A brick is the basic unit of storage, which is represented by an export
directory on a server. This server has to be part of a trusted storage pool, mean-
ing a trusted network of storage servers. GlutserFS uses a distributed hash table
(DHT) translator to select the placement of each file. In the default behavior, each
brick is assigned a range within a 32-bit hash space. The file is also assigned a
value in this space range by hashing its name and is then placed in the related
brick. Furthermore, after the DHT translation, an automatic file replication (AFR)
translator is used in cases where replication is required. This translator is re-
sponsible for maintaining replication consistency, as well as providing a way of
recovering data and to serve fresh data. Another replication feature of GluterFS
is Geo-Replication. Unlike AFR, Geo-Replication provides asynchronous repli-
cation across geographically distinct locations. It uses a master-slave model to
replicate the data to a remote location.

An alternative to the distributed volume is the striped volume. In a striped
volume, GlusterFS divides files into chunks and distributes these chunks across
the bricks. Figure 2.12 illustrates a striped GlusterFS volume.

20 CHAPTER 2. BACKGROUND

Mount Point

Striped Volume

server1:/exp1 server2:/exp2

Brick Brick

File

Figure 2.12: A striped GlusterFS volume. The files are split up into chunks which
are then distributed between the bricks in a striped volume. [71]

A striped volume is especially useful when working with large files that would
otherwise land on a single brick and effectively lead to an uneven distribution in
relation to the file size. A parameter called stripe size dictates over how many
bricks GlusterFS distributed the file chunks. The chunk size is specified by the
cluster.stripe-block-size parameter which defaults to 128 KiB. The file system dis-
tributes these chunks in order across the bricks. The first chunk is stored on the
first brick, the second chunk on the second brick and so on. For example, if we
store an 800 KiB file in a striped volume with six bricks and a stripe size of six,
GlusterFS splits the file into six 128 KiB and one 32 KiB chunk. The first and
the seventh chunk will be stored on the first brick while the other chunks will be
stored on the other five bricks in order.

Every server node must run a Gluster management daemon (glusterd). This
daemon serves as the volume manager and oversees GlusterFS processes and co-
ordinates dynamic volume operations such as adding and removing volumes non-
disruptively. These daemons need to form a trusted storage pool before a Glus-
terFS volume can be configured. The peer probe command can be used to add
additional storage servers to the trusted storage pool which initially only consists
of the local server.

GlusterFS only runs in userspace and utilizes FUSE [72]. FUSE is a kernel
module that supports interaction between the kernel non-privileged user applica-
tions. Figure 2.13 shows the process of handling a file operation in a GlusterFS
volume.

2.4. ETHERNET DATA TRANSMISSION 21

Application

VFS FUSE

/dev/fuse

File Operation

Fuse translator

.

.

.

DHT translator

AFR-0 AFR-1

PC
0

PC
1

PC
2

PC
3

User Space

Kernel Space

PS-3

.

.

.

POSIX translator

User Space

Kernel Space

Client Translators Server Translators

VFS XFS

Client Server

Figure 2.13: An illustration of a file operation with a GlusterFS setup. The file
operation passes through several client translators, is transmitted via TCP/IP or
Infiniband, then again translated by the server translators, and finally handed to
the underlying file system. [70]

At the beginning of the file operation issued by the client, GlusterFS interacts
with the kernel using the FUSE kernel module. This module calls the FUSE trans-
lator, and further client translations are applied as explained above. The protocol
client translator (PC) at the end directly communicates with the Gluster manage-
ment daemon on each brick. This translator is divided into multiple threads, one
for each brick in the GlusterFS volume. The target server containing the brick
translates the request using several translators starting with the protocol server
(PS) translator and ending with a POSIX translator to perform the requested op-
eration on the file system.

2.4.3 Multicast
Internet Protocol (IP) multicast [73] is a networking technology that enables a
sender to send data to multiple recipients, a host group, at once. For this thesis, we
will focus on Any-Source Multicast (ASM) for IP [74]. This multicast transmis-
sion works by using a dedicated IP address from a reserved range of IP addresses.
The reserved addresses for IPv4 multicast are within the range of 224.0.0.0 to
239.255.255.255. Each IP address of this range specifies a host group. Receivers
may join and leave hosts groups at any time. A single host can be a member of
multiple groups. The sender, however, does not need to be part of a host group.
A generic switch receiving multicast packets will forward them to every port just
like a broadcast packet, flooding all available ports. Routers require support for the

22 CHAPTER 2. BACKGROUND

Internet Group Management Protocol (IGMP) to route multicast packets. Hosts
report their host group memberships to multicast routers using host membership
reports. The multicast routers, on the other hand, can send Host Membership
Query messages to discover which host groups have members on their attached
local networks. Furthermore, switches that support IGMP snooping listen to the
IGMP traffic. These switches learn to which ports hosts of a host group are con-
nected and in turn only forward related messages to the respective ports. As a
result, these switches do not flood all ports when forwarding multicast packets.

User Datagram Protocol

The User Datagram Protocol (UDP) [75, 76] is a minimal, unreliable, best-effort-
message-passing transport protocol which does not guarantee delivery of data.
However, it also does not require a backchannel which makes it an ideal candidate
for data transfers that have bandwidth limitations and do not require mechanisms
for reliable delivery of data. UDP supports multicast transmissions using IP mul-
ticast. The UDP header consists of four fields. The source port field is optional
and indicates the port of the sending process. The destination port specifies the
target port and is required to transmit the data. The length field describes the
length of the user datagram including both the header and the data length. The
fourth header field is the checksum. This checksum is the 16-bit’s complement
of the one’s complement sum of information from the IP header, the UDP header,
and the data.

Chapter 3

Analysis

Full system simulation provides functional emulation of physical hardware in
combination with additional analysis tools to enable system analysis on the level
of individual instructions. It is an important tool in areas such as operating sys-
tems debugging and malware analysis. The biggest issue though is the slowdown
of the simulation. The main reason for this slowdown is the emulation of the work-
load using binary translation. Emulation is necessary because hardware-assisted
virtualization does not grant the required level of control for system analysis (see
Chapter 2). Additionally, memory hooks and analysis tools lead to further slow-
down. Rittinghaus et al. [1] describe an average slowdown of factor 31 for func-
tional simulation with QEMU [2] as well as a factor of 810 with Simics [3]. These
slowdowns restrict the applicability of full system simulators for dynamic analy-
sis to short-running workloads. Furthermore, they reduce the interactivity of the
simulation due to long delays for responses to user input. SimuBoost [1] aims to
solve this issue by distributing the simulation across a cluster of simulation nodes
(consumers). The simulation host (producer) creates periodic checkpoints, for ex-
ample every 5 seconds, and distributes these checkpoints across the simulation
cluster to bootstrap the simulation of individual intervals. The producer utilizes
hardware-assisted virtualization while the consumers use emulation which allows
for better analysis. The difference in execution speed between the hardware-
assisted virtualization and emulation drives a parallelization of the simulation.
The speedup that can be achieved by SimuBoost is dependent on the right interval
length. The checkpoint distribution delays the actual start of the simulation. This
delay essentially means it takes longer for the simulation of the individual check-
point to finish in relation to the moment the producer has created the checkpoint.
As a result, the complete simulation takes longer, and the achievable speedup is
reduced. Therefore, the Checkpoint distribution needs to be reliable and as fast
as possible to reduce any overhead to a minimum. The goal of this thesis is to
provide a distribution solution for the checkpoints that is as fast as possible to

23

24 CHAPTER 3. ANALYSIS

enable SimuBoost to achieve an optimal speedup of the simulation. This distri-
bution solution should be able to work on commodity systems using a Gigabit
network connection with a theoretical maximum transmission rate of 120 MiB/s.
This restriction makes using SimuBoost easier because no expensive hardware is
required.

3.1 Direct Checkpoint Distribution
Eicher [4] has improved on existing checkpointing and deduplication solutions
for SimuBoost, to reduce the VM downtime during checkpoint creation. Further-
more, he has developed a system for distributing simulations in a cluster. Eicher
uses a modified version of the storage server backend of Simutrace [45] version
3.1.4. In his direct distribution approach, Simustore generates a VM image and
distributes the complete VM RAM image, HDD modifications since the begin-
ning of the runtime and device states uncompressed. Eicher has shown that using
a small amount of consumers and a Gigabit network connection already saturates
the network and leads to a network bottleneck. We have decided to reproduce
this experiment using a bigger cluster and SimuBoost version 3.4.0. In this first
direct distribution approach, we request all of the required data for each check-
point from the producer using TCP sockets. When loading a checkpoint, the con-
sumer creates a TCP socket connection to Simustore running on the producer.
The consumer then pulls the required data for the checkpoint from the producer.
We have tested this approach with the Phoronix Timed Linux Kernel Compilation
(build-linux-kernel) [77] workload on a cluster with one producer and six con-
sumer nodes. Furthermore, we are running two simultaneous jobs per consumer
node, for a maximum of twelve parallel interval simulations. The optimal check-
pointing interval for this scenario according to the model by Eicher [4] is around
5 seconds1.

Figure 3.1 shows that loading a checkpoint using the direct method can take
up to about 248 seconds. The mean loading time for a checkpoint in this setup
is about 120 seconds. Assuming a slowdown of the simulation of factor 31 and
the 5-second intervals, a simulation would take 155 seconds. Checkpoint loading
times of an average of 120 seconds would increase the runtime of a simulation
interval by about 77 percent. As a result, an optimal speedup cannot be achieved
using this direct distribution approach. Furthermore, Figure 3.2 shows that the
direct distribution approach completely exhausts the network connection of the
producer when loading checkpoints. We can see a pattern which shows that the
network load accumulates at certain points in time and is not distributed evenly

1Tvm = 960s, ssim = 31, slog = 1, scp = 1024, N = 12, Ti = 3.7

3.1. DIRECT CHECKPOINT DISTRIBUTION 25

across the entire runtime. The reason for this behavior is the pulling mechanism
used in this distribution. Instead of transmitting the checkpoints as soon as the
producer has created them, the consumers pull these checkpoints at loading time.
As a result, the network experiences no load when the consumers are performing
a simulation. This distribution leads to an accumulation of data transfers to the
times when the simulations finish, and new simulations start and therefore results
in high and long transmission bursts which exhaust the network.

0 20 40 60 80 100 120 140 160
Checkpoint ID

0

50

100

150

200

250

C
he

ck
po

in
t l

oa
di

ng
 ti

m
e

[s
]

Figure 3.1: Load times for the direct distribution approach using build-linux-
kernel scenario and about 5s intervals. The graph shows mean loading times
of 120 seconds which is almost as high as the simulation time of an individual
interval assuming a slowdown of factor 31.

26 CHAPTER 3. ANALYSIS

0 1000 2000 3000 4000 5000 6000
Time elapsed [s]

0

20

40

60

80

100

120
N

et
w

or
k

lo
ad

 [M
iB

/s
]

Figure 3.2: Send rate for the direct distribution approach using build-linux-kernel
scenario. The network is completely exhausted during transmission bursts, reach-
ing its maximum transmission capability of 120 MiB/s.

3.2 Bandwidth Requirements
We want to know what the minimal amount of checkpoint data is that has to be
transmitted. This way we can analyze different solutions and compare them to a
theoretical optimum. Not only the maximum transmission rates are important, but
also the transmission rates during different times of the simulation. The ultimate
goal is to achieve a solution that does not exhaust the connection between the
producer and the consumers and thus allows the simulation to scale out better by
avoiding a network bottleneck.

SimuBoost utilizes data deduplication and compression to reduce the amount
of data it has to store on the disk. The SimuBoost checkpoints consist of .ckpt
files and an append-only flat file (see Chapter 2). SimuBoost holds state maps for
the virtual machine RAM pages and disk sectors. These state maps only contain
the offset of the related data. The state maps are stored in the .ckpt files along
with additional data that the VMM may require to be able to completely restore
the virtual machine state. Examples of this kind of data are various device states
such as CPU register content and metadata such as RAM size. SimuBoost stores
the actual RAM and disk data in the append-only flat file. An in-memory hash
table is used for data deduplication before SimuBoost appends new data to the flat
file. Additionally, SimuBoost compresses the data in the flat file using lz4 [50–52]
compression as well as using custom compression methods.

3.2. BANDWIDTH REQUIREMENTS 27

We have added the SPECjbb c©2015 benchmark(SPECjbb) [78] to our tests
to provide a broader range of use cases. SPECjbb is a very memory intensive
workload that increases the number of modified memory pages and leads to an
overall increased size of checkpoint data as well as an increased simulation dura-
tion. In the build-linux-kernel scenario, the compression reduces the checkpoint
data from 22 GiB to 4 GiB and achieves a deduplication rate of 23.83%. In the
SPECjbb benchmark, SimuBoost achieves a compression from 84 GiB to 17 GiB
and a deduplication rate of 16.37%. The size of the individual .ckpt files starts
between 250 and 300 KiB and increases up to 1.9 MiB in the build-linux ker-
nel benchmark and up to about 800 KiB in the SPECjbb benchmark. We have
monitored the disk write rate on the producer during the benchmarks to get the
exact amount of data that is written at each point in time. Figure 3.3 shows the
amount of disk writes during the linux-kernel-build scenario as well as a SPECjbb
scenario.

0 500 1000 1500 2000
Time elapsed [s]

0

50

100

150

200

250

300

D
is

k
w

rit
es

 [M
iB

/s
]

SPECjbb
build-linux-kernel

Figure 3.3: Disk write rate for build-linux-kernel and SPECjbb scenarios. These
rates are low enough to allow transmission using a Gigabit Ethernet connection.

Figure 3.3 depicts a disk write spike at the beginning for both, the SPECjbb
and the build-linux-kernel scenarios, due to the initial RAM image being written.
After this initial increase, the write rate consistently stays below 55 MiB/s for the
build-linux-kernel scenario as well as below 100 MiB/s for the SPECjbb bench-
mark with the exception of 15 higher peaks of which six are above 125 MiB/s. We
can neglect these peaks in the SPECjbb benchmark as they are not consecutive
and only last a second each. These results show that a Gigabit network connec-
tion is conceptually fast enough for our scenarios. Our goal, therefore, is to get
the checkpoint data transmission rates as low and as close to the disk write rates

28 CHAPTER 3. ANALYSIS

as possible, so they do not significantly affect the load times of the checkpoints.
We also want to achieve a scalable solution that reduces the relation of network
load to cluster size. The direct distribution approach has shown to be impracti-
cal as it transmits more checkpoint data because it does not utilize the checkpoint
compression. Furthermore, the network load increases with the number of con-
sumers as each consumer needs to receive at least the complete VM RAM image
and other modifications as mentioned above. As a result, the direct distribution
approach exhausts the network and leads to high checkpoint load times.

3.3 Pulling vs. Pushing
By using a network attached storage (NAS) solution such as Samba, we can ben-
efit from the compression. Simutrace compresses the checkpoint data and stores
the compressed data on disk. Using a NAS, we can pull the already compressed
checkpoints from the producer to the consumers instead of loading the uncom-
pressed data from Simutrace as we do in the direct distribution approach. This
new approach reduces the network load and as a result, decreases the checkpoint
loading times because there is less data we need to transmit. Local Simutrace in-
stances on every consumer node handle the decompression and reconstruction of
the VM state. Figure 3.4 shows the resulting checkpoint loading times compared
to the direct distribution approach.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Checkpoint ID

0

50

100

150

200

250

C
he

ck
po

in
t l

oa
di

ng
 ti

m
e

[s
]

Direct
Samba

Figure 3.4: Comparison of load times between the direct distribution and Samba
approach using build-linux-kernel scenario. Samba profits from the data compres-
sion at first while getting closer to the direct distribution approach towards the end
of the simulation.

3.3. PULLING VS. PUSHING 29

Especially the first checkpoints profit from the compression as depicted by the
shorter loading times. We can also observe that the loading times get close to the
direct distribution approach. The reason for this behavior is the distribution of the
network load as can be seen in Figure 3.5. At first, we have a low network load due
to the high compression of the checkpoints. After a while, with the compression
becoming less efficient, the bursts get longer and similar to the direct distribution
approach, which explains the almost equal loading times at the end. The reason
for the worsening compression is the fact that at first, the VM RAM image consists
mainly of zeros, which are easy to deduplicate and compress. Over time though,
the guest system overwrites these zeros with data which makes deduplication and
compression less effective. The highest loading time in the Samba approach is
about 142 seconds and the mean loading time for a checkpoint is about 51 seconds.
These times are a significant improvement over the direct distribution approach
reducing the mean checkpoint loading time by more than a half. However, this is
still about 10 times higher than the optimal interval length. Additionally, the mean
checkpoint loading time will get worse for longer running workloads because the
compression gets less effective the longer the workload is running.

0 1000 2000 3000 4000 5000
Time elapsed [s]

0

20

40

60

80

100

120

N
et

w
or

k
lo

ad
 [M

iB
/s

]

Figure 3.5: Send rate for the Samba approach using build-linux-kernel scenario.
Samba needs to transmit fewer data in the beginning due to a high data com-
pression but gets close to the direct distribution approach towards the end of the
simulation.

The NAS approach still pulls the checkpoint data from the producer leaving
the connection between the producer and the consumer nodes a bottleneck due to
the cumulated transmission bursts over a single connection. Pushing the incre-
mental checkpoint data to the cluster nodes could reduce the load on one single

30 CHAPTER 3. ANALYSIS

connection at every checkpoint load. The amount of data pushed would equal
the disk write rate of SimuBoost. Additionally, pushing could lead to a more
evenly distribution of the data. By avoiding a cumulation of network transmis-
sions, the network load could decrease which would result in better checkpoint
loading times overall. Furthermore, this kind of distribution approach would avoid
the increasing network overhead at the last third of the checkpoints as seen in Fig-
ure 3.5. The slowdown seen in the last third of the Samba approach comes from
a worse compression and not from an increased amount of data. We can conclude
this behavior from Figure 3.3 which shows that the write rate stays constant for
the build-linux-kernel scenario.

3.4 Checkpoint Distribution
We are considering two possible solutions for pushing checkpoints through the
network. We can push the compressed incremental checkpoint data to a single
consumer at a time while changing the target consumer every time to achieve an
even distribution. As an alternative, we can also push the compressed incremental
checkpoint data to multiple consumers at once. There are two possible approaches
we can use.

Distributed File System One solution is a distributed file system [79, 80]. A
distributed file system regulates the simultaneous access to data files from multiple
clients as well as the data distribution between multiple storage hosts. From the
view of a single client, the distributed file system is not distinguishable to a local
file system, however the data the clients are accessing may be distributed across
multiple storage hosts. In a distributed file system, the producer sends the data
of the incremental checkpoints only once. The file system then distributes the
checkpoint data to the consumers. This distribution reduces the network load
on a single connection, in particular between the producer and the consumers,
and distributes the checkpoint data across all of the consumers. However, this
distribution may lead to a lot of redundant data transfers based on the key for the
distribution and the amount of data that is required by a consumer. In the worst
case scenario, a consumer needs to retrieve all of the checkpoint data from other
consumers in the network and possibly even all of the data at a certain point in
time from a single consumer. This case would be similar to the pulling scenario
from the NAS approach in terms of network load distribution. Though instead of
pulling all of the checkpoint data from the producer, the consumer would pull all
data from another consumer node in the simulation cluster. This is still a slightly
better distribution than in the NAS approach because not all of the checkpoint data
lies on a single system.

3.5. CONCLUSION 31

Multicast Another possible solution which avoids the distribution problem of
a distributed file system and possibly also some of its overhead is multicast.
Schmidt et al. [81] have shown that multicast offers the best performance for ef-
ficient distribution of virtual machine images in a cloud computing environment.
While it is not the same scenario, it is similar regarding the amount of data that
is transmitted and the distribution using a single sender and multiple receivers. In
a multicast approach, the producer sends all of the checkpoint data once. Every
node receives all checkpoints, and ideally, there is no additional transmission nec-
essary. This distribution would make it an optimal solution with the only down-
side of an increased storage capacity requirement for every consumer node. In
practice, however, multicast connections suffer from issues such as out of order
delivery and packet loss which may impact the approaches efficiency and requires
a mechanism to handle these issues.

3.5 Conclusion
As we have seen in our first benchmarks, the direct distribution approach not only
exhausts the network connection but as a result leads to very long checkpoint
loading times, which makes the goal of an optimal simulation speedup unachiev-
able. Utilizing checkpoint compression, for example by using a network attached
storage solution such as Samba, reduces the amount of checkpoint data that has
to be transmitted. However, because of the pulling mechanism, this distribution
still leads to a bottleneck at the connection between the producer and the con-
sumer nodes due to cumulated network transmission bursts. Using pushing could
help distributing the network load more evenly across the simulation time. A
distributed file system could help with reducing the amount of checkpoint data
that has to be transmitted at every checkpoint load by initially pushing the check-
point data evenly across all of the consumers. The consumers then exchange the
required data between each other thus distributing the network load across the
simulation cluster. Multicast can decrease the amount of transmitted checkpoint
data even more to the point where, in the best case scenario, every checkpoint is
only transmitted once. In this case, the producer pushes out the checkpoints once
Simustore has written them to the disk and the consumers receive the data of the
created checkpoints all at once.

32 CHAPTER 3. ANALYSIS

Chapter 4

Design

We have seen in our analysis in Chapter 3 that we need to reduce the network
load on the connection between the producer and the consumer nodes. Figure 4.1
illustrates the bottleneck between the producer and the consumer nodes in our
setup. We use this scheme as a baseline for our data distribution solutions. The
producer runs the virtualized system and creates the incremental checkpoints. The
consumers are the simulation nodes which pull the checkpoints from the producer.
Because the consumers pull all of the data from the producer, the connection be-
tween the producer and the consumers becomes a bottleneck.

Producer

Consumer 1

Consumer 2
Consumer 3

Consumer 4
Consumer 5

Consumer 6
Bottleneck

Data pulled from producer

Figure 4.1: Illustration of the data distribution using the direct distribution and
Samba approaches. All data gets pulled from the producer leading to a bottleneck.

Our analysis has shown that pushing the checkpoint data to the consumer
nodes is more desirable than pulling the data from the producer. The pushing
mechanism allows for a more evenly distribution of the network load instead of
the accumulated bursts we have observed when pulling the data using the direct
distribution and Samba approaches. Our ultimate goal is to reduce the transmis-
sion overhead of the parallel simulations to a minimum, so the checkpoint loading

33

34 CHAPTER 4. DESIGN

time does not limit the achievable speedup of SimuBoost. Utilizing SimuBoost’s
compression does significantly reduce the amount of data that has to be transmit-
ted and therefore needs to be included in our solution. The compression reduces
the amount of data to allow transmission via a Gigabit Ethernet network, which
allows us to use commodity hardware and therefore increase SimuBoost’s applica-
bility. Additionally, we want to reduce the relation of the bandwidth requirements
to the cluster size to increase SimuBoost’s scalability. In the direct distribution
and Samba approaches the network load increases with the number of consumers
as each consumer needs to receive at least the complete VM RAM image and other
modifications, which limits the scalability of SimuBoost. Based on our analysis,
we have decided to evaluate distributed storage as well as multicast transmission
as solutions to the checkpoint distribution problem.

4.1 Distributed Storage
In the distributed storage approach, the producer pushes the data of a checkpoint
across all consumer nodes as soon as the checkpoint is written to disk. Each node
then reconstructs the checkpoints by accessing the local storage and pulling all
missing data from the other consumers. This approach is similar to the Samba
solution shown in Chapter 3. However, the network load is distributed between
the consumer nodes and instead of pulling all data from the producer, we pull
some of the data from the other consumers. As a result, we try to reduce the
bottleneck on the connection between the producer and the consumers and achieve
a more even distribution of transmissions across all consumer nodes. The actual
distribution however is based on the algorithm for the data distribution used by
the storage solution and the data accesses required for the checkpoints whose
uniformity is based on the level of data deduplication. A further benefit over
the direct distribution solution is the utilization of the file system cache, which
should reduce the amount of data that has to be pulled from other consumer nodes.
Figure 4.2 illustrates the data distribution concept using a distributed file system.
It shows that initially, the producer pushes the checkpoint data to the cluster. When
the consumers load checkpoints, they pull any data that is not already available
locally from the other consumers.

4.1. DISTRIBUTED STORAGE 35

Producer

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Consumer 5

Consumer 6

Producer pushing to distributed FS

Consumer pulling from distributed FS

Figure 4.2: The producer distributes the checkpoint data across the distributed FS.
A file system algorithm selects one consumer for every chunk of data and sends
the data to the respective consumer node. The consumers exchange required data
when necessary.

Replication is an important factor in distributed file systems. With an increas-
ing amount of physical storage hardware, the chance of a failure increases as well.
For our use case, however, replication is not required and would lead to an in-
creased amount of network load due to redundant data being transmitted. The loss
of data, and therefore the loss of an entire consumer node, would break a simula-
tion interval. Even though the other simulation intervals could continue to run in
case replication is enabled, we have still decided to disable replication for our use
case. The reason behind this decision is that the main use case of SimuBoost is
research and development. We argue that an experiment can be repeated in case
of hardware failure and want to focus on a fast data distribution with a reduced
likelihood of a network bottleneck. Replication can still be enabled if required,
for example, because of experiments which are difficult to repeat or production
load that needs to be simulated. These cases, however, are out of the scope of this
thesis.

Giacinto Donvito et al. [82] have compared HDFs [83], GluterFS [69], and
Ceph [59]. They have concluded that GlusterFS is the fastest of the three solu-
tions. Furthermore, they have concluded that Ceph seems promising though it has
stability and performance issues. We have decided to evaluate Ceph and Glus-
terFS for our solution. We are considering Ceph in the hope that the stability and
performance issues have since then been resolved.

36 CHAPTER 4. DESIGN

Ceph Ceph is a popular distributed storage system which offers three different
storage options. These storage options are all based on the distributed object store
RADOS. Object storage manages data as flexible-sized data containers (objects)
rather than blocks of data on disk. Ceph FS [62], a distributed file system, is one of
the storage options Ceph provides and the easiest to use in our approach. Ceph FS,
like the other storage options, uses a basic RADOS storage cluster to store its data.
However, it also potentially has the highest overhead. For example, it requires at
least one Ceph metadata server to provide basic POSIX functionality such as the
ls, find, and cd file system commands. RADOS Block Device (RBD) [64] is a
block storage solution. RBD is supposed to be faster than Ceph FS, but accessing
it from different nodes is more challenging due to the requirement to have a stor-
age solution that allows simultaneous data accesses from different consumers. If
multiple clients mount a RBD using a regular file system instead of a distributed
file system on top, several problems can occur. One of these problems is the lack
of notification about file system changes to other consumers. If consumer A writes
new data to the RBD, consumer B does not know about these changes. Without
a notification mechanism, consumer B would have to actively check the file sys-
tem for changes repeatedly. Another problem comes from simultaneous reads and
writes. Without a proper file locking mechanism, simultaneous reads and writes
from multiple consumers to the same file could lead to corrupt data. Consumer A
might be modifying a file while consumer B reads the file and therefore receives
intermediate data that does not equal the file before or after the modification. Sim-
ilarly, two consumers writing to the same file might lead to corrupt or lost data.
The third option is RADOSGW [65], a bucket-based REST gateway. It uses a
FastCGI module for interacting with a Ceph storage cluster. Furthermore, RA-
DOSGW provides interfaces compatible with OpenStack Swift and Amazon S3.
For use with SimuBoost though, it would be necessary to integrate RADOSGW
manually. SimuBoost stores data on a regular file system and expects the interface
to be designed that way. For example, SimuBoost utilizes memory mapped files
and benefits from the file cache, both of which would not be applicable to a REST
gateway. As a result, the REST gateway is the most complex solution for our use
case. Therefore, we have selected Ceph FS for our approach.

GlusterFS Other than Ceph, which is based on object storage, GlusterFS is
based on file storage and is, therefore, simpler to set up and configure for our use
case. It utilizes the file system already set up on the storage cluster nodes to cre-
ate a distributed volume. A GlusterFS distributed volume consists of bricks. A
brick is an exported folder on a storage cluster node. GlusterFS distributes the
data across the bricks based on the selected distribution mechanism. GlusterFS
supports a file-based distribution, which is the default, as well as striping [84].

4.2. MULTICAST 37

Both the file-based distribution, as well as the striping distribution, can be com-
bined with replication. The default file-based distribution uses a distributed hash
table to select the placement of each file within the distributed volume. The strip-
ing distribution splits the files into chunks and distributes them across the cluster.
Because the complete simulation data consists of a single large flat file and mul-
tiple small .ckpt files, the file-based distribution does not fit our scenario well as
it would put the large flat file into a single brick. As a result the connection be-
tween the consumer containing this brick and the other consumers would become
a bottleneck. Therefore, we test the striping distribution for our approach.

4.2 Multicast
Multicast is another possible solution to solve the checkpoint distribution prob-
lem. In this approach, the producer pushes the data of the incremental checkpoints
to every node as soon as the data has been written to disk using a single multicast
transmission for each checkpoint. As a result, there is a fixed amount of network
traffic that does not depend on the number of consumer nodes, but only on the
disk writes of SimuBoost, which in turn is determined by the modification rate
of the workload and the compressibility of the data. Furthermore, in contrast to
the approach using a distributed file system, there is no additional communica-
tion between the consumers. The main downside of the multicast solution is the
increased storage capacity that is required on every node. However, there are a
few further challenges that have to be taken into consideration regarding the data
integrity and reliability of multicast.

4.2.1 Data Integrity
To guarantee accurate simulation intervals, we have to make sure that the data we
receive is valid and not changed in any way. Through the use of UDP and the
UDP checksum, we can assume that all of the packets we receive are valid. The
UDP checksum is 16 bits long which means that there is a 1 out of 65536 chance
that a corrupt packet is not detected as such by the checksum. We deem this
sufficiently low to justify not providing any further checks. Furthermore, due to
the compression of the checkpoint data, there is also a chance that any corruption
not detected by the UDP checksum will lead to a failure during decompression of
the data and thus not remain undetected.

38 CHAPTER 4. DESIGN

4.2.2 Reliability
IP multicast as we use for our setup is unreliable. In IP multicast, we send our data
packets to a specific IP address from a range of addresses reserved for multicast.
In case of IPv4, this range is from 224.0.0.0 to 239.255.255.255. The multicast
receivers listen for packets sent to the selected IP address from the multicast range.
Unlike TCP, there is no backchannel to the sender. As a result, the sender does not
know whether the receiver can keep up with the transmission, packets got lost, or
packets arrive out of order.

Many reliable multicast protocols, which work on top of IP multicast, have
been proposed to deal with these issues. ACK-based protocols [85, 86] introduce
a TCP-like backchannel and require the sender to maintain the state of all re-
ceivers. These protocols use unicast ACKs or non-acknowledgments (NAKs) to
inform the sender about their state. NAK-based protocols such as LBRM [87],
RAMP [88] and NORM [89] only send NAKs to the sender when a retransmis-
sion is required. Due to the missing ACKs, the sender has no state information
and cannot determine what data has been received and can be safely released from
memory. Therefore, additional mechanisms like polling need to be implemented
in these protocols. Ring-based protocols [90, 91] combine the throughput advan-
tage of NAK-based protocols with the reliability of ACK-based protocols with the
addition of tokens and timers. Tree-based protocols [86, 92] aim to increase the
scalability of reliable multicast by processing only aggregated acknowledgments.
These protocols are characterized by dividing the receivers into groups forming a
tree structure. Ryan G. Lane et al. [93] have evaluated several of these protocols
in the context of grid computing.

However, we have decided to implement our own, specialized solution. One
of the reasons for this decision is that we want to reduce any overhead as much
as possible and we want to keep the complexity of any additions to SimuBoost as
low as possible. A major benefit of our specialized solution over a generic reliable
UDP protocol is the fact that we do not need to retransmit every lost packet on ev-
ery consumer node. While we do send all checkpoint data to every consumer,
each consumer only requires the data necessary for the checkpoints it is assigned.
Therefore, it is unnecessary to retransmit every lost packet, which means that we
can reduce the retransmissions to a minimum. Another benefit of our design is
the distribution of the retransmissions along the time axis. Most data loss occurs
during times of high network load and therefore during the runtime of the bench-
mark. A generic reliable multicast solution would retransmit data as soon as the
loss is detected and therefore further increase the network load during, or shortly
after the workload runtime. However, due to the slowdown of the simulation in-
tervals, the overall simulation runtime is longer than the benchmark time, and the
lost data may be required after the workload has finished. Figure 4.3 illustrates

4.2. MULTICAST 39

this behavior. Our approach retransmits the data at the time it is required by the
consumer. As a result, the retransmissions are spread more evenly across the over-
all simulation runtime. In the following subsections, we will look in more detail
into the specific variables regarding multicast reliability.

Virtualization

#160#80

#160#80

Checkpoint loads after end of
transmission

Simulation

Figure 4.3: Most checkpoints are loaded after the benchmark has finished and
therefore after the initial transmission of the checkpoint data.

Out-of-Order Delivery

Due to buffers on the sender side, the switch, and the consumer side, packets can
change their order. Furthermore, different paths individual packets take through
the network, as well as middleware like firewalls that inspect packets, can also lead
to a changed order of packets at the receiver. Protocols such as TCP handle this
issue by re-ordering packets on the receiver side or requesting retransmissions. We
do not fix ordering in our approach. Instead, we deal with this problem by using
sparse files and by transmitting the data offset with every packet. As a result, we
can write every packet of data to its designated offset without having to care about
the order these packets arrive in.

Packet Loss

Packet loss can happen on different stages of the transmission and for several
reasons. One of the reasons are buffer overflows. When the data arrives at the
receiver it is first loaded into the buffer of the network interface, from there, the
network stack loads the data into an operating system buffer (receive buffer). Both
buffers are limited and can overflow which results in packet loss. The overflows
of the receive buffer happen when the receiving application cannot keep up with
the rate at which the data arrives. Another reason for packet loss are errors on

40 CHAPTER 4. DESIGN

the transmission path due to physical problems like broken cables or switches that
modify data and produce malformed packets. The receiving network interface
drops all of these malformed packets.

Packet Loss Reduction To avoid excessive packet loss, we increase the receive
buffer size of the consumer nodes. We can reduce the impact of short transmis-
sion bursts using the increased buffer. Furthermore, we implement a rate limiting
algorithm on the producer to control the average transmission rate as well as burst
rates for the data transfer. Using rate limiting, we pause the sender if a certain
threshold of transmitted bytes per second is reached. We try to achieve a reason-
able rate limit to reduce the amount of data that reaches the consumer nodes at
a time. This rate limit should allow the consumer to catch up, while not slowing
down the transmission to the point where we reduce the achievable speedup of
SimuBoost. The rate limiting does rely on gaps in between the transmissions in
order to distribute the network load using a lower transmission rate across these
gaps. If there are insufficient transmission gaps, the overall transmission time
will increase and therefore lead to delays which might impact checkpoint loading
times.

Packet Loss Handling In a typical reliable environment, sender and receiver
communicate with each other and the sender re-transmits any lost packets to
the receiver. This retransmission works because the receiver reports back to the
sender. This backchannel, however, significantly increases the network load and
overall processing overhead for both the sender and the receiver. Therefore, we
do not set up a backchannel for our multicast approach. Instead, we detect lost
packets on the receiver by counting the amount of data received and comparing
it to the overall file size which we receive as part of the information sent with
each data packet. Should all data packets of a file get lost, the receiver would
not have a local copy of the file which also indicates packet loss. In both cases,
we switch to a fallback solution in which the receiver retrieves the missing data
through a reliable Samba NAS. This way we can still profit from the checkpoint
data compression. As a result, we have two possible data flows in the multicast
approach: the multicast transmission for which the producer pushes the data to
the consumers and the Samba repair transmissions for which the consumers pull
the data from the producer. Figure 4.4 illustrates these data flows.

4.3. CONCLUSION 41

Producer

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Consumer 5

Consumer 6

Producer pushing to consumers
Multicast

Repair data pulled from producer
Samba fallback

Figure 4.4: The producer pushes the data via multicast to the consumers. The
consumers pull lost data from the producer using Samba.

4.3 Conclusion
Both, the distributed storage approach, as well as the multicast approach, are
promising solutions which are posing different challenges. The distributed storage
solution poses the risk of too much additional overhead due to metadata handling,
data distribution, and simultaneous file system access from different nodes. While
the producer pushes the data to the distributed storage, the individual consumer
nodes still need to pull at least some parts of the checkpoint data from the other
nodes. We cannot predict what data a consumer requires before it loads its as-
signed checkpoints. Therefore we aim to achieve an even data distribution in the
distributed storage cluster. In the worst case scenario, we pull all data for multi-
ple simulation intervals from a single node, which is still better than pulling all
data for all simulation intervals from the producer. We have selected the object-
storage-based Ceph FS and the file-based GlusterFS for our distributed storage
design. We will disable any data replication if possible to avoid duplicate data
transmissions. We do not need to be able to handle the loss of a consumer node.
Multicast, on the other hand, makes sure that every node has all of the data, so
conceptually, there are no additional data transfers necessary. In practice, how-
ever, multicast poses risks and overhead regarding packet reliability. Packets can
get lost, and as a result, we have to repair the checkpoints by pulling the lost
data from the producer. While we cannot completely prevent packet loss, we can
reduce it by modifying receive buffers as well as by limiting transmission rates.

42 CHAPTER 4. DESIGN

Chapter 5

Implementation

In this chapter, we explain the implementation of our multicast solution. In our
multicast implementation, we create a UDP socket to transmit all of the data that
is created during the checkpointing as soon as the related checkpoint has been
written to disk. As a result, every node receives the complete checkpoint data
from the producer without requiring to request it when loading the actual check-
point. However, reliability is an important factor considering that IP multicast is
by default unreliable. Therefore, we have to deal with the out-of-order delivery
of packets as well as packet loss. As mentioned in Chapter 4, we have designed
a custom reliable multicast solution using increased buffer sizes and rate limiting
for packet loss reduction. Furthermore, we use a reliable Samba NAS as a fallback
solution to retransmit lost data.

5.1 Packet Loss Reduction
The pushing mechanism we use results in a high network load at the beginning of
the simulation because of the initial VM RAM image and device data we transmit.
As a result, we push more data out than the consumers can read, which leads to
packet loss due to overflowing receive buffers. We have implemented two meth-
ods to reduce packet loss. We have increased the socket buffers on the consumers,
and we have implemented a rate limiting algorithm on the producer to reduce the
amount of data the producer sends at once. It is important to reduce the amount
of packet loss because every set of data that has to be repaired requires a retrans-
mission which leads to more network load.

Receive Buffer We have decided to increase the socket receive buffer on the
consumer nodes to reduce the impact of short, high transmission bursts as we
have observed during the beginning of the workload runtime in Chapter 3. We

43

44 CHAPTER 5. IMPLEMENTATION

have expanded SimuBoost with a parameter to set the buffer size of the receive
socket. Additionally, it may be necessary to increase the system-wide maximum
receive buffer size of the operating system. On Ubuntu 16.10 for example, we
use the command sysctl -w net.core.rmem_max=209715200 to set the maximum
receive buffer size to 200 MiB.

Rate Limiting We have implemented a token bucket [94] algorithm to control
the rate at which data is sent by the producer. The algorithm helps us to reduce
the network load across the entire workload runtime. Given a target transmission
rate r, a refresh rate 1 S and a burst rate 2 b we fill the bucket of size b with
(r ∗ S)/1000 tokens every S milliseconds. If the bucket is full, we discard any
additional tokens. A thread increments this counter after S milliseconds. Every
time the producer tries to send new data, it checks if the size of the data to be
transmitted is less than or equal to the counter size and if so it reduces the counter
by this value and transmits the data. SimuBoost will try to send data until there are
not enough tokens available. The checkpointing process is blocked until there are
enough tokens for the current transmission. We have decided to implement this
behavior instead of putting the checkpoints in a queue and continuing to create
further checkpoints. When queuing data for transmission, we would expect the
bandwidth to free up soon so the queued data can be transmitted and does not
built up any more. However, we have decided to instead throttle the producer so
data does not pile up in case the network bottleneck lasts longer. The sending
rate influences the optimal value of the socket receive buffer on the consumers. If
data is sent at a too high rate over a prolonged time, it can lead to receive buffer
overflows as more data reaches the target. A data loss and therefore required repair
is more expensive due to additional transmissions and therefore should be avoided
as much as possible.

We have expanded SimuBoost with parameters for the token bucket algorithm.
These parameters allow users to configure the rate limiting based on their require-
ments.

5.2 Packet Loss Handling
While an increased receive buffer size and rate limiting help in reducing the num-
ber of lost packets, they do not completely eradicate these losses. Therefore, we
have implemented several ways of packet loss detection and repair. To detect the

1The rate at which we fill the bucket in milliseconds.
2The maximum amount of data that can be sent in addition to the transmission rate.

5.2. PACKET LOSS HANDLING 45

loss of .ckpt file data, we keep track of every .ckpt file we have received by stor-
ing it in a hash table with the checkpoint id as the key. Every .ckpt file packet
contains the checkpoint ID, the offset of the data to handle out-of-order delivery,
and the size of the complete .ckpt file. We count the amount of data that has been
received for every checkpoint and store it in the .ckpt hash table. When loading a
checkpoint, we compare the amount of data that has been received with the total
.ckpt file size. In case the received amount of data is less than the .ckpt file size
or the file is not present at all, we copy the data from a reliable Samba NAS as a
fallback solution. However, the Simustore needs to run for the entire simulation
runtime, else we loose the data in the hash table and load every checkpoint from
the fallback.

When SimuBoost tries to load data from the flat file, we first check the length
and validity of the content we try to read. Each memory segment contains infor-
mation about the size of the data in this segment. It is stored in a structure called
SimuBoost1DbEntryHead. If the size we read from this structure is zero, we first
copy the complete entry head from the Samba fallback. Next, we check if the new
size is valid and then copy the remaining content of the memory segment size from
the fallback as well. SimuBoost also checks whether the requested offset is within
the range of the flat file. If it is not, SimuBoost updates the internal representation
of the database file once to check if new data is available. If the offset is still not
within the current range of the file, we copy the the SimuBoost1DbEntryHead at
the requested offset from the Samba fallback. Next we read the uncompressedSize
from the head structure and copy this amount of data as well. Afterwards, Simu-
Boost updates the internal representation again and throws an exception if the
requested offset is still not within the range. However, other errors in the Simu-
Boost1DbEntryHead, the content after the head, as well as in pages referenced
by delta pages can still slip through this check. Fortunately, the decompression
method is very likely to fail if the data is still invalid and throws an exception
int hat case. SimuBoost uses two kinds of compression, lz4 [50–52] as well as a
custom compression method. Both compression methods utilize inter-block com-
pression. Instead of compressing blocks of data independently, the algorithms
compress each block based on information of the previous blocks. As a result,
an invalid block affects other blocks as well. We catch the exception thrown by
the decompression method once and copy the data at the requested offset and of
the provided buffer size from the Samba fallback. Additionally, we check if the
content at the offset contains a delta page and if so, we repair the page referenced
by this delta page as well.

46 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

We use the same methods already introduced in our analysis (see Chapter 3) to
evaluate our solutions. We look at the checkpoint loading time as well as the
network load during the simulation. We will compare our results with the values
of the direct distribution approach.

6.1 Job distribution
This section explains how we distribute the simulation jobs in our simulation clus-
ter. The job distribution is an important factor. Even though it is not the purpose
of this thesis to evaluate job distribution, it is a vital part of the checkpoint dis-
tribution. Using the same checkpoint distribution mechanism with a different job
distribution mechanism might lead to different results.

iWatch iWatch [95] is a realtime filesystem monitoring program based on the
Linux kernel subsystem inode notify (inotify) [96]. We use iWatch to monitor the
Simustore working path to detect newly created checkpoints.

SLURM Simple Linux Utility for Resource Management (SLURM) [97] is an
open source cluster workload manager. SLURM allocates resources, provides a
framework for job management and manages a queue of pending work to arbi-
trate conflicting requests. We use SLURM to distribute the simulation jobs in our
simulation cluster. We use a SLURM configuration with the serial select type, the
CR_CPU select parameter and a backfill scheduling. This means that all available
resources on a simulation node will be filled first before the next node receives
new jobs.

47

48 CHAPTER 6. EVALUATION

Job Creation and Distribution Approach iWatch launches a SLURM job for
each newly created checkpoint. SLURM then assigns this job to a simulation
node in the cluster which in turn executes a checkpoint loading script. This script
launches a QEMU instance which connects to the already running Simustore. The
script then loads the checkpoint in that QEMU instance and then sleeps for a pre-
calculated amount of time, based on the model by Eicher [4]. We use the pre-
calculated value to estimate the runtime of the interval, because our SimuBoost
prototype does not support deterministic replay (see Section 2.2), yet. Figure 6.1
illustrates this approach. After the simulation has finished, the script shuts down
the QEMU instance and exits. The SLURM daemon on the consumer notifies the
SLURM control daemon (SLURMCTLD) about the exit status of the script, and
the SLURMCTLD removes the job from the job queue.

Producer

Simustore working path

0.ckpt

db file 1.ckpt

2.ckpt

SimustoreQEMU

Consumer

SLURMCTLD

IWATCH

add job load-cp 2

SLURMD

QEMU

Simustore

QEMU

load_checkpoint.sh

Launch QEMU
load-cp 2

Simustore working path
0.ckpt

db file 1.ckpt

2.ckpt

Figure 6.1: Job creation and distribution. iWatch detects new checkpoints and
creates slurm jobs. Each job executes a checkpoint loading script.

System Monitoring We are running an instance of Nigel’s performance Moni-
tor for Linux (nmon) [98] on every node to collect data such as network load and
disk write rates. Furthermore, we use netstat to measure the amounts of packets
sent as well as packet loss and buffer errors.

6.2 Evaluation Setup
Our setup consists of one producer and six consumer nodes. Table 6.1 lists the
specifications of the individual nodes. The producer and consumer nodes are
connected via a consumer Gigabit Ethernet switch that does not support IGMP
snooping.

6.3. DISTRIBUTED FILE SYSTEM 49

CPU RAM Disk
Producer Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 64 GiB 256 GB SSD, 1024 GB SSD
VM Guest Virtual single-core CPU 2 GiB 10 GB virtual HDD
Consumer 1 Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 16 GiB 120 GB SSD, 1024 GB SSD
Consumer 2 Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 16 GiB 120 GB SSD, 1024 GB SSD
Consumer 3 Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 16 GiB 120 GB SSD, 1024 GB SSD
Consumer 4 Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 16 GiB 120 GB SSD, 1024 GB SSD
Consumer 5 Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 16 GiB 120 GB SSD, 1024 GB SSD
Consumer 6 Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 16 GiB 120 GB SSD, 1024 GB SSD

Table 6.1: The server is connected to the consumers via a 1 GBit Ethernet con-
nection.

We use Ubuntu 16.10 x64 as an operating system on the producer and con-
sumer nodes with a custom Linux kernel of version 4.3.0. The custom Linux
kernel is required by SimuBoost because of a modified KVM version which is
required for the checkpointing mechanism.

6.2.1 Benchmarks
We use the the Phoronix Timed Linux Kernel Compilation (build-linux-kernel)
[77] and SPECjbb c©2015 (SPECjbb) [78] benchmarks. SPECjbb is a very mem-
ory intensive workload that increases the number of modified memory pages and
leads to an overall increased size of checkpoint data as well as an increased simu-
lation duration.

6.3 Distributed File System
Distributed storage is the first solution we are testing that uses a pushing mecha-
nism. In this approach, the producer pushes the data across the simulation cluster.
Every data transmission is sent to a single node which is selected based on file
system criteria. We have selected Ceph FS as well as GlusterFS for our evalua-
tion. When loading a checkpoint, a simulation node pulls any missing data from
the other nodes in the cluster.

6.3.1 Ceph FS
Ceph FS is a popular distributed file system based on object storage as a foun-
dation. In our Ceph FS approach, we have set up the metadata server and the
monitor server on the producer node. The Ceph monitor provides health and sta-
tus information for the cluster while the metadata server allows the execution of

50 CHAPTER 6. EVALUATION

basic POSIX file system commands such as ls, find, and cd. The Ceph OSD dae-
mons are running on the consumers. These daemons interact with the underlying
physical or logical storage units. We use a dedicated partition for every OSD dae-
mon and one partition per consumer node. Our Ceph FS setup uses a configuration
without authentication to reduce any unnecessary overhead. Figure 6.2 illustrates
the setup.

Producer

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Consumer 5

Consumer 6

Ceph OSD

Producer pushing to Ceph FS

Consumer pulling from Ceph FS

Mon MDS

Figure 6.2: Ceph FS cluster setup. The producer distributes the checkpoint data
between the Ceph OSDs. The consumers exchange the required data between
each other when necessary.

We have configured a replication size of one, which means there will be no
additional copy of the data [99], to reduce the amount of data that is transmitted.
This is acceptable for us as we do not need to be able to compensate for the loss
of consumer nodes as elaborated in Chapter 4. Furthermore, we have configured a
Ceph FS for the actual checkpoint data with 512 placement groups and a Ceph FS
for the metadata with 8 placement groups. These placement groups contain the
actual checkpoint data in the form of data objects. We have calculated the optimal
placement group values using the Ceph PGs per Pool Calculator [100] tool.

Additionally, we have modified the Ceph CRUSH map [101] for our OSD
daemons to use a different algorithm for the data distribution. The CRUSH map
determines how Ceph stores and retrieves data in the storage cluster. The default
algorithm used for the distribution is the Straw algorithm. We have selected the
List algorithm for our use case as it is the best solution for storage that does not
shrink which fits our use case very well. Its major downside over the Straw
algorithm is a suboptimal reorganization behavior in the case of data removal or
re-weighting of data.

6.3. DISTRIBUTED FILE SYSTEM 51

Tests

Unfortunately, our Ceph FS distributed storage solution has shown to be unfit for
our scenario. Ceph FS suffers from high latency for checkpoint writes by the pro-
ducer when we run the build-linux-kernel benchmark scenario. As a result, we
occasionally have a high checkpoint writing latency on the producer of more than
a minute for individual checkpoints. We have tried to use different distribution
algorithms as well as increasing the replication size and placement group num-
bers without success. Figure 6.3 shows the checkpoint writing delays running the
build-linux-kernel scenario 1 with two parallel simulations per consumer node and
a checkpointing interval of 4 908 ms. In addition to the List algorithm, the figure
also shows results using the default Straw algorithm to rule out any problems
specific to the selected algorithm.

0 20 40 60 80 100
Checkpoint ID

0

20

40

60

80

100

120

140

160

C
he

ck
po

in
t w

rit
e

de
la

y
[s

]

Ceph FS List Algorithm
Ceph FS Straw Algorithm

Figure 6.3: Checkpoint write delays using Ceph FS and the build-linux-kernel
scenario. We can see three checkpoint writing delays of up to about 90 seconds.

We can see delays of up to about 90 seconds for a single checkpoint using
the List algorithm as well as up to about 160 seconds using the Straw algorithm.
These delays are not a general writing problem as we do not experience them
when we are only writing checkpoints at the beginning of the simulation. The
problem seems to come from simultaneous reads by the consumers as well as
cluster re-balancing operations due to the data exchange between the consumers.
Because of these delays, the producer only manages to create 97 checkpoints using
List and 93 checkpoints using Straw instead of the about 160 checkpoints the
direct distribution solution creates in the same time frame. The reduced amount

1Tvm = 960s, ssim = 31, slog = 1, scp = 1024, N = 12, Ti = 3.7

52 CHAPTER 6. EVALUATION

of checkpoints leads to less parallelization and therefore reduces the achievable
speedup. The average checkpoint delay across all checkpoints is about 2 seconds.

6.3.2 GlusterFS
GlusterFS is another distributed file system. It works similar to Ceph FS with
the main difference that it uses file storage instead of block storage. A GlusterFS
volume consists of bricks which are the individual storage folders on the storage
nodes (see Section 2.4.2). Instead of a single monitor and metadata server on
the producer like in the Ceph FS setup, GlusterFS requires a GlusterFS daemon
(GlusterD) on every node except the producer. The producer in this scenario only
requires a GlusterFS client to write to the distributed volume. The GlustesrFS
daemons are connected via peering to exchange volume information. We have
configured GlusterFS to use a striping distribution. The striping distribution splits
the files into chunks and distributes them across the cluster. This distribution is
especially useful when working with large files. The default file-based distribution
of GlusterFS would otherwise put each file on a single node. We have a flat file
which contains about 90% of the overall data. This data would be allocated to
a single node and therefore limit the data distribution and lead to a new network
bottleneck. We have set the stripe size, which dictates over how many bricks the
chunks of a file are distributed, to six. The reason we have chosen six is that we
want to distribute the database file across all nodes because every node requires
data from the database. We have tested a default chunk size of 128 KiB, as well as
a chunk size of 2048 KiB. All of the .ckpt files in the build-linux-kernnel scenario
we use to test the distribution are below 2048 KiB size. This means that using
the chunk size of 2048 KiB, GlusterFS does not split up these files but only the
database flat file which is about 3.7 GiB large. However, this also means that all
.ckpt files land on the first consumer node while the flat file is distributed across
all six consumer nodes. An optimal solution would probably use the file-based
distribution for the .ckpt files and a striping-based distribution for the database
file. Figure 6.4 illustrates the GlusterFS distribution setup.

6.3. DISTRIBUTED FILE SYSTEM 53

Producer

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Consumer 5

Consumer 6

Brick

Producer pushing to GlusterFS

Consumer pulling from GlusterFS

GlusterD

Figure 6.4: GlusterFS cluster setup. The producer distributes the checkpoint data
across the GlusterFS volume which consists of individual bricks. The GlusterFS
daemons handle the configuration and data distribution. The consumers exchange
required data when necessary.

Tests

While we have not seen as high writing delay peaks as with Ceph FS, we had
consistently delayed checkpoint writes of up to about 12 seconds as shown in Fig-
ure 6.5. Other than Ceph FS, the checkpoint writing delays of GlusterFS seem to
be distributed across the entire runtime of the workload. We can see that overall,
GlusterFS using 128 KiB chunks seems to perform worse, resulting in 70 created
checkpoints instead of 97 like in the Ceph FS approach. The configuration using
2048 KiB chunks on the other hand seems to be slightly better with 113 created
checkpoints. The average checkpoint delay across all checkpoints is about 2 sec-
onds using 128 KiB chunks and 1.9 seconds using 2048 KiB chunks. The reason
why GlusterFS using 128 KiB chunks has about the same average delay as Ceph
FS, but a significantly lower number of checkpoint intervals is because the Ceph
FS distribution has a high delay at the last checkpoint, while the GlusterFS delays
are distributed evenly across the entire workload runtime.

54 CHAPTER 6. EVALUATION

0 20 40 60 80 100
Checkpoint ID

0

2

4

6

8

10

12
C

he
ck

po
in

t w
rit

e
de

la
y

[s
]

GlusterFS 128 KiB chunks
GlusterFS 2048 KiB chunks

Figure 6.5: Checkpoint write delays using GlusterFS and the build-linux-kernel
scenario. We can see three checkpoint writing delays of up to about 12 seconds
with both 128 KiB chunks as well as 2048 KiB chunks. The 2048 KiB chunks do
better in terms of overall delay and the amount of created checkpoints.

6.3.3 Conclusion
While we have not tried every possible configuration for Ceph FS as well as Glus-
terFS and don’t want to rule out distributed storage in general, we have decided
to not pursue this approach any further for this thesis and to focus on the multi-
cast solution. The delays using both systems hint that this seems to be an issue
related to the way distributed file systems work in general. It might be possible to
increase GlusterFS performance using different cache and chunk sizes as well as
setting up two separate volumes; one file-based distribution volume for the .ckpt
files and one striping-based distribution volume for the database flat file. The ap-
plicability of this solution is very much dependent on the interval length of the
checkpoints. Ceph FS also has several parameters which can be tweaked such as
placement groups, cache sizes, and synchronization intervals. Furthermore, Ceph
supports a distribution mechanism called erasure code which is similar to striping
but requires an additional cache tier and is more complex to setup. With bigger
intervals, write delay may have less impact and become negligible. However, we
cannot consider this a general solution for SimuBoost.

6.4. MULTICAST 55

6.4 Multicast
In this section, we will evaluate the results of the multicast approach and compare
it to the Samba and direct distribution approaches. First, we test our methods for
packet loss reduction as shown in Chapter 5.

6.4.1 Packet Loss Reduction Tests
We have tested multiple receive buffer values and rate limits using multicast trans-
mission and the build-linux-kernel and SPECjbb scenarios. We have selected the
values RX-Errors, RX-Drop, and Receive Buffer Errors from the netstat tool for
our comparison. RX-Errors are errors that have happened during the transmission
of data, these packets have been rejected by the network interface because they
are malformed due to physical problems like broken cables, or intermediate de-
vices that modify packets. RX-Drops are packets that have been dropped by the
network interface because of buffer overflows. We do not change the interface
buffers to not interfere with other applications on the system. Furthermore, we do
not expect the interface buffers to play a big role in packet loss. Receive Buffer
Errors are errors related to the size of the socket buffer. If more packets arrive
than our multicast receive endpoint in the SimuBoost client can handle, packets
start getting lost due to buffer overflows. In the build-linux-kernel scenario, all of
our consumer nodes together receive about 21 million packets.

At first, we look at the packet loss using different receive buffer sizes and no
token bucket rate limitation. Figure 6.6 shows a large amount of packet loss for
both, the default 208 KiB buffer size as well as 2 MiB buffer size. The packet loss
depicted is the sum of all consumer nodes.

56 CHAPTER 6. EVALUATION

RX-Errors RX-Drop Recv Buffer Errors0

50000

100000

150000

200000

N
um

be
r o

f l
os

t p
ac

ke
ts

Token Bucket Settings: None

208 KiB
2 MiB
20 MiB
200 MiB

Figure 6.6: Receive errors using different receive buffer sizes without rate limit-
ing. Using multicast transmission and the build-linux-kernel scenario.

As expected, the RX-Errors are not related to the receive buffer size because
these errors occur on the transmission path. We can see that the packet loss using
the default 208 KiB as well as using 2 MiB receive buffers are well above 100 000
packets. 100 000 lost packets results in about 133 MiB lost data assuming a data
payload of 1400 bytes per packet. Increasing the receive buffer to 20 MiB has
significantly reduced packet loss to less than 25 000, however, we can see a slight
peak in RX-Drops. This result means that the buffer at the network interface ex-
periences overflows. However, the number of dropped packets seems insignificant
with about 1500 lost packets. Increasing the receive buffers further up to 200 MiB
results in zero receive buffer errors and also zero RX-Drops.

Next, we look at the results using the token bucket rate limiting algorithm.
Figure 6.7 shows the results of different receive buffer sizes using a rate limit of
125 MiB/s and 5 MiB bursts. 125 MiB/s is the maximum rate Gigabit Ethernet
can handle, though the actual rate we achieve is lower at about 110 MiB/s due to
overhead in our implementation. Note that the total number of packets is the same
on all runs.

6.4. MULTICAST 57

RX-Errors RX-Drop Recv Buffer Errors0

25000

50000

75000

100000

125000

150000

175000

N
um

be
r o

f l
os

t p
ac

ke
ts

Token Bucket Settings: 5 MiB Bursts, 50 ms Refresh, 125 MiB Rate

208 KiB
2 MiB
20 MiB
200 MiB

Figure 6.7: Receive errors using different receive buffer sizes and a transmission
rate of 125 MiB/s and 5 MiB bursts. Using multicast transmission and the build-
linux-kernel scenario.

As we can see, the rate-limiting has significantly reduced the packet loss using
receive buffer sizes 208 KiB, 2 MiB and 20 MiB. The latter now experiences
only about 3 000 losses due to receive buffer overflows. Furthermore, the receive
buffer errors using the default buffer size of 208 KiB have been reduced from
about 201 000 to about 150 000. The errors using a 2 MiB buffer have also been
significantly reduced from about 145 000 to about 106 000 lost packets.

Figure 6.8 shows the results of different receive buffer sizes using a rate limit
of 90 MiB/s and 5 MiB bursts. We have not tried to reduce the rate any lower
to avoid blocking the producer. As we have seen in our analysis, the checkpoint
write rate of the producer using the more write intensive SPECjbb benchmark
stays below 100 MiB/s for the most part.

58 CHAPTER 6. EVALUATION

RX-Errors RX-Drop Recv Buffer Errors0

25000

50000

75000

100000

125000

150000

175000

N
um

be
r o

f l
os

t p
ac

ke
ts

Token Bucket Settings: 5 MiB Bursts, 50 ms Refresh, 90 MiB Rate

208 KiB
2 MiB
20 MiB
200 MiB

Figure 6.8: Receive errors using different receive buffer sizes and a transmission
rate of 90 MiB/s and 5 MiB bursts. Using multicast transmission and the build-
linux-kernel scenario.

As we can see in the figure, the build-linux-kernel scenario does not benefit
from the lower data transmission rate. This is expected because the disk write rate
using this scenario consistently stays below 55 MiB/s as shown in our analysis
(see Chapter 3). The initial high transmission peaks of up to about 300 MiB/s are
already reduced by the 125 MiB rate limit and the receive buffer size of 20 MiB
seems to be enough the reduce the impact of the lower bursts.

Further on, we will evaluate the different rate limits using the 20 MiB receive
buffer and the SPECjbb scenario, because our analysis has shown that the disk
write rate of SPECjbb reaches up to 100 MiB/s with few bursts even higher than
that. In the SPECjbb scenario, all of our consumer nodes together receive about
31 million packets. Due to a defect in the switch we have used for the previous
tests, we had to install a new device. Therefore, a comparison between the amount
of lost packets between these measurements is not valid. We do not require a com-
parison because the goal of the following tests is to find out whether the impact of
the different rate limits differs for the SPECjbb benchmark.

Figure 6.9 shows a comparison between different rate limits and a receive
buffer size of 20 MiB using the SPECjbb scenario. The figure shows that unlike
the build-linux-kernel scenario, the SPECjbb scenario profits from the 90 MiB/s
rate limit. This result reinforces our assumption that the rate limit benefits work-
loads with a higher average disk write rate while the receive buffer seems to work
well for short bursts of high network load. The reasons for the significantly lower
packet loss rates in general using this scenario are the new switch we have used,

6.4. MULTICAST 59

as well as the about 100 MiB/s lower initial disk write burst of the SPECjbb sce-
nario in the beginning of the workload, and the following two higher bursts of the
build-linux-kernel scenario which are all at about 300 MiB/s (see Chapter 3).

RX-Errors RX-Drop Recv Buffer Errors0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r o

f l
os

t p
ac

ke
ts

Token Bucket Settings: None

None
125 MiB
90 MiB

Figure 6.9: Comparison of receive errors using the SPECjbb scenario, a 20 MiB
receive buffer, and different rate limits. The comparison shows that the SPECjbb
scenario, unlike the build-linux-kernel scenario, benefits from these rate limits due
to a higher average data rate.

6.4.2 Simulation Tests
Based on our packet loss reduction tests, we have set the receive buffers on the
consumer nodes to 20 MiB and the rate limiting to 90 MiB/s with 5 MiB bursts.
We will start with the build-linux-kernel scenario 2 we have already used for our
analysis with two parallel simulations per consumer node and a checkpointing in-
terval of 4 908 ms. As shown in Figure 6.10, the multicast solution is significantly
faster than the direct distribution approach and very consistent. The average load-
ing time of the direct distribution solution is about 120 seconds. The checkpoint
loading using multicast on the other hand only requires about 5 seconds on aver-
age. This average loading time is about 24 times faster than the direct distribution
solution. Assuming a simulation slowdown of 31 and 5 second intervals, the simu-
lation of an interval would take 155 seconds. The average checkpoint loading time
of 5 seconds using the multicast solution only increases the runtime of the interval
by about 8 percent instead of the 77 percent increase using the direct distribution.

2Tvm = 960s, ssim = 31, slog = 1, scp = 1024, N = 12, Ti = 3.7

60 CHAPTER 6. EVALUATION

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Checkpoint ID

0

50

100

150

200

250

C
he

ck
po

in
t l

oa
di

ng
 ti

m
e

[s
]

Direct
Multicast

Figure 6.10: Comparison between direct distribution and multicast approaches.
Build-linux-kernel scenario with six nodes, two jobs per node and a simulation
interval of 4 908 ms.

To test shorter checkpointing intervals and an increased number of check-
points, we have increased the number of parallel simulation jobs per consumer
node from two to four and adjusted the model to get the optimal interval. Fig-
ure 6.11 shows the results of the build-linux-kernel scenario 3 using a check-
pointing interval of 2 454 ms. The direct distribution approach experiences av-
erage checkpoint loading times of about 382 seconds. Multicast on the other hand
still achieves stable checkpoint loading times of about 12 seconds. Reducing the
checkpointing interval in half has roughly doubled the checkpoint loading times
using the multicast approach. The reason for the overall increased checkpoint
loading times is the increased parallelism on the consumer nodes, which leads to
a decrease in available memory for the file system cache by 4 GiB. We can see
that the direct distribution approach has created about five more checkpoints on
average. This difference is not due to writing delays as we have experienced in the
distributed file system approach. Therefore, we have not further examined them.
We consider this deviation a result of our whole evaluation setup.

3Tvm = 960s, ssim = 31, slog = 1, scp = 1024, N = 24, Ti = 3.7

6.4. MULTICAST 61

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250260270280290300310320
Checkpoint ID

0

100

200

300

400

500

600

C
he

ck
po

in
t l

oa
di

ng
 ti

m
e

[s
]

Direct
Multicast

Figure 6.11: Comparison between direct distribution and multicast approaches.
Build-linux-kernel scenario with six nodes and four jobs per node.

0 1000 2000 3000 4000 5000
Time elapsed [s]

0

20

40

60

80

100

N
et

w
or

k
lo

ad
 [M

iB
/s

]

Build-Linux-Kernel, 2 jobs, 4908 ms intervals
Build-Linux-Kernel, 4 jobs, 2454 ms intervals

Figure 6.12: Network load of both build-linux-kernel scenarios. High initial peak
due to initial vRAM image and data. Small peaks due to checkpoint repairs.

Figure 6.12 shows the network load of both build-linux-kernel scenarios. We
can see an initial transmission peak due to the initial vRAM image and data being
transmitted. Because of the pushing mechanism, we can continue to send the
checkpoints until all checkpoint data has been transmitted. Furthermore, the figure
shows data repair transmissions later during the simulation. This result reinforces
our decision to use a custom multicast repair approach that only repairs data when

62 CHAPTER 6. EVALUATION

it is required. This way we utilize the idle network instead of retransmitting data
while the network load is already increased. Additionally, we can see that the
scenario with more parallel jobs and shorter intervals achieves a better speedup
as it finishes faster. While it looks like both scenarios transmit a relatively equal
amount of data, the scenario with four jobs per node transmits significantly more
data with about 8.6 GiB instead of about 5.3 GiB with two jobs per node.

Next we look at our results using the SPECjbb benchmark scenario 4 with
a checkpointing interval of 6 720 ms. SPECjbb is a Java benchmark that takes
about twice as long as the build-linux-kernel to finish. It causes more changes
to memory pages which results in a significantly higher data size. As shown in
3, the compressed overall checkpoint size of the SPECjbb is about 17 GiB while
the combined checkpoints of build-linux-kernel only reach about 4 GiB when
compressed. Figure 6.13 shows a similar result to the build-linux-kernel scenario.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280
Checkpoint ID

0

20

40

60

80

100

120

140

160

C
he

ck
po

in
t l

oa
di

ng
 ti

m
e

[s
]

Direct
Multicast

Figure 6.13: Comparison between direct distribution and multicast approaches us-
ing the SPECjbb scenario with six nodes and two jobs per node. This figure shows
the impact of packet loss on both the direct distribution as well as the multicast
approaches.

The average checkpoint loading time of the direct distribution is about 65 sec-
onds. Like in the build-linux-kernel scenario, multicast performs much better
with an average checkpoint loading time of 1.5 seconds which, assuming an in-
terval length of about 7 seconds and a slowdown of 31, increases the interval
runtime by less than 1 percent while the direct distribution has an impact of about

4Tvm = 1800s, ssim = 31, slog = 1, scp = 1024, N = 12, Ti = 3.7

6.4. MULTICAST 63

30 percent. This result is even better than the results from the build-linux-kernel
scenario. Furthermore, similar to the build-linux-kernel scenario, the checkpoint
loading times remain consistent.

Figure 6.14 shows the SPECjbb scenario 5 using a checkpointing interval of
3 360 ms. We can see that multicast remains consistent with average checkpoint
loading times of about 4 seconds. The average of the direct distribution approach
reaches about 180 seconds. As with the build-linux-kernel tests, using four jobs
per simulation node and half of the simulation interval has increased both the
direct distribution as well as multicast checkpoint loading times.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560
Checkpoint ID

0

50

100

150

200

250

300

350

C
he

ck
po

in
t l

oa
di

ng
 ti

m
e

[s
]

Direct
Multicast

Figure 6.14: Comparison between direct distribution and multicast approaches.
SPECjbb scenario with six nodes and four jobs per node. This figure shows stable
loading with the exception of few peaks due to checkpoint repairs.

Looking at the network load using the SPECjbb benchmark in Figure 6.15
we can see more checkpoint repair transmissions compared to the build-linux-
kernel scenario. Similarly to the build-linux-kernel though, the transmissions are
distributed across the simulation runtime. As with the build-linux-kernel scenario,
increasing the number of parallel jobs and decreasing the intervals has resulted
in a better speedup which is shown by the shorter overall runtime. There is a
significant difference in the amount data transmitted between the two scenarios.
While the scenario with two jobs per node results in about 19.1 GiB of data, the
scenario with four jobs per node increases the amount of data to about 31.8 GiB.

5Tvm = 1800s, ssim = 31, slog = 1, scp = 1024, N = 24, Ti = 3.7

64 CHAPTER 6. EVALUATION

0 2000 4000 6000 8000 10000
Time elapsed [s]

0

20

40

60

80

100
N

et
w

or
k

lo
ad

 [M
iB

/s
]

SPECjbb, 2 jobs, 6720 ms intervals
SPECjbb, 4 jobs, 3360 ms intervals

Figure 6.15: Network load of both SPECjbb scenarios. High initial peak due to
initial vRAM image and data. Small peaks due to checkpoint repairs distributed
evenly across the simulation runtime.

Overall simulation runtime Table 6.2 compares the overall simulation run-
times of the native execution without parallelization, as well as the direct dis-
tribution and multicast approaches. To estimate the native simulation time, we
have multiplied the workload runtime Tvm with the slowdown factor between vir-
tualization and functional simulation ssim. We have used Tvm = 16min for the
build-linux-kernel scenario as well as Tvm = 30min for the SPECjbb scenario.
The slowdown factor in our calculations is ssim = 31. These are the same values
we have used to calculate the interval length for our scenarios.

build-linux-kernel
2 jobs

build-linux-kernel
4 jobs

SPECjbb
2 jobs

SPECjbb
4 jobs

Native 496 min 496 min 930 min 930 min
Direct 103 min 156 min 185 min 198 min
Multicast 79 min 69 min 162 min 135 min

Table 6.2: Comparison of overall simulation runtimes using the direct distribution
and multicast approaches. Multicast scales well which leads to a reduction of sim-
ulation time with an increased parallelism. The direct distribution approach does
not scale very well and leads to an increased simulation runtime when performing
more parallel simulations.

We can see that the simulation using SimuBoost is significantly faster than the
estimated native execution by a factor of at least 6 for multicast and 3 for direct

6.5. DISCUSSION 65

distribution. The SPECjbb scenario profits more from the parallelization of the
simulation than the build-linux-kernel scenario. Furthermore, this figure shows
that the direct distribution approach does not scale well. In both the build-linux-
kernel and the SPECjbb benchmarks, increasing the number of parallel jobs in the
direct distribution increases the overall simulation runtime. Using multicast, on
the other hand, an increase in the number of parallel jobs reduces the overall sim-
ulation runtime. This result means that the direct distribution leads to a slowdown
while the multicast solution profits from more jobs and increases the speedup.

6.5 Discussion
We have discarded the distributed storage solution due to checkpoint writing de-
lays on the producer. There are several factors which might have an impact on
this delay such as file distribution calculations, data rebalancing, and file locks.
We have only tested basic configurations, and both Ceph FS and GlusterFS pro-
vide many options which can be tweaked to achieve different results. However,
we have decided to focus on multicast as it seems to be a more promising solu-
tion. For example, the network load using multicast is more predictable with the
exception of repair transmissions.

The multicast approach has achieved stable checkpoint loading times. Un-
like the Samba solution shown in Chapter 3, multicast has shown no significant
increases in loading times over time. Furthermore, we have experienced signifi-
cantly lower average checkpoint loading times of a factor of up to about 43 com-
pared to the direct distribution approach. Using an increased receive buffer and a
rate limiting algorithm, we were able to reduce the amount of packet loss. The few
losses we have experienced did not significantly impact the average checkpoint
loading times. However, individual checkpoints such as shown in Figure 6.14
have experienced increased loading times of a factor of about 13. The packet loss
is dependent on several factors such as the network hardware, operating system
buffers, transmission rates, overall network load and the efficiency of the multi-
cast implementation. We provide two ways of regulating packet loss by providing
configuration options for receive buffer sizes and rate limiting. Due to the many
factors involved, the limited amount of hardware we had, and a limited amount
of workloads we were able to run, we can only provide limited recommendations.
For our tests, a rate limit of about 95 MiB/s and a 20 MiB receive buffer on the
consumer nodes have provided good results in terms of packet loss. The overall
network load is close to the disk write rate and does not exhaust a Gigabit Ether-
net connection. By using a custom packet loss handling mechanism, we were able
to distribute retransmissions over the course of the entire simulation runtime. A
good example for this distribution is Figure 6.15, which shows checkpoint repair

66 CHAPTER 6. EVALUATION

transmissions distributed across the runtime of the entire simulation and especially
after the higher initial network load during which the data loss occurred.

Finally, we have compared the overall simulation runtimes using an estimate
for a native, non-parallel simulation as well as measured runtimes of the direct dis-
tribution and multicast approaches. It is important to note that we do not use de-
terministic replay (see Section 2.2) for our tests, instead we sleep a pre-calculated
amount of time (see Section 6.1), which means the values for the direct distribu-
tion and multicast also provide only an estimate. We have shown that the direct
distribution approach does not scale well and leads to a slowdown of the simula-
tion when increasing the number of parallel jobs and respectively shortening the
checkpointing intervals. The multicast approach on the other hand has achieved a
higher speedup using the increased parallelism. This shows that we have reached
the goal of increasing the scalability of the checkpoint distribution.

6.6 Conclusion
As we have shown in this chapter, the distributed storage solution suffers from
checkpoint writing delays on the producer node. Both, the Ceph FS, and the
GlusterFS suffer from these delays although in different manifestations. We leave
a further optimization of these approaches for future work. The multicast solu-
tion provides fast checkpoint loading times which are close to or even below the
checkpoint interval. We achieve these loading times by utilizing the checkpoint
compression, reducing the network, and sending the data continuously. The key
factor of this distribution is sending the data of each incremental checkpoint only
once as soon as it has been created using multicast transmissions. The repair
transmissions we have to make because of the packet loss are rare, small, and dis-
tributed across the runtime of the whole simulation. Therefore they do not have
a significant impact on the average checkpoint loading times. We have shown
that we can meet the goal of providing a fast checkpoint distribution over a Gi-
gabit Ethernet connection without a network bottleneck. Furthermore, we have
shown that our solution scales well with an increased amount of parallelism and a
reduced checkpoint interval.

Chapter 7

Conclusion

SimuBoost [1] utilizes parallelization to achieve fast full system simulation. For
this goal, SimuBoost runs the workload of interest in a hardware-assisted vir-
tual machine (VM) and periodically creates incremental checkpoints of the VM.
The SimuBoost server distributes these checkpoints across a cluster of simulation
nodes to bootstrap parallel simulations of the intervals. The execution speed dif-
ference between hardware-assisted virtualization and functional simulation drives
a parallelization of the simulation. The speedup that can be achieved by Simu-
Boost is dependent on the number of parallel simulations and the checkpoint in-
terval length. The checkpoint distribution is an important factor as it delays the
actual start of the parallel simulations. As a result, the complete simulation takes
longer, and the achievable speedup is reduced. Therefore, the checkpoint distri-
bution needs to be reliable and as fast as possible to reduce any overhead to a
minimum. In a direct distribution approach by Eicher [4], the simulation nodes
pull all necessary data for the current simulation interval from SimuBoost. Eicher
has shown that using a small number of consumers and a Gigabit Ethernet network
connection saturates the network and leads to a network bottleneck.

We have reproduced the results of Eicher, showing that the direct distribution
approach exhausts a Gigabit Ethernet network and results in slow loading times
and reduced speedup and scalability. By using a network attached storage, we
were able to utilize the data compression of SimuBoost. This approach allowed
us to achieve significantly better results. However, due to the pulling mechanism,
this approach still causes high network load as well as an uneven distribution of
network load. Additionally, the connection between the virtualization host and
the simulation nodes remains a bottleneck. Therefore, we have evaluated solu-
tions of pushing data to the simulation nodes to achieve a more even distribution
of network load. Our first solution, distributed file systems, has resulted in high
write delays on the virtualization host and therefore was not a viable option. We
were able to achieve good results using multicast transmission. By pushing all

67

68 CHAPTER 7. CONCLUSION

available data to every node using single multicast transmissions as well as a cus-
tom method to detect and repair packet loss, we were able to reduce the impact of
the checkpoint distribution on the runtime of the individual interval simulations.
Our solution increases the individual checkpoint simulation runtime by less than
10 percent, while the direct distribution increases the runtime by up to about 77
percent.

7.1 Future Work
We have evaluated basic configurations for the distributed file systems Ceph FS
and GlusterFS. Our tests have shown checkpoint writing delays on the virtual-
ization host which are unacceptable for our solution. Optimizations of these dis-
tributed file systems might yield better results.

Future work may also investigate the use of jumbo frames to enhance the net-
work throughput. Jumbo frames increase the available maximum transmission
unit of Ethernet networks from 1500 bytes up to 9000 bytes. Jin et al. [102]
have shown that the throughput in Myrinet, a gigabit-per-second local area net-
work, increases significantly with a larger MTU size. Bencivenni et al. [103] have
achieved throughput improvements using UDP and jumbo frames in a 10 Gigabit
Ethernet network. SimuBoost, however, only benefits from higher throughputs
when disabling the rate limiting algorithm we have implemented. Further inves-
tigation is required to find out whether SimuBoost would be able to benefit from
higher throughputs.

Bibliography

[1] Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bel-
losa. Simuboost: Scalable parallelization of functional system simulation.
In Proceedings of the 11th International Workshop on Dynamic Analysis
(WODA 2013), Houston, Texas, March 16 2013.

[2] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[3] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-
gren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moest-
edt, and Bengt Werner. Simics: A full system simulation platform. Com-
puter, 35(2):50–58, 2002.

[4] Bastian Eicher. Virtual machine checkpoint storage and distribution for
simuboost. Master thesis, Operating Systems Group, Karlsruhe Institute of
Technology (KIT), Germany, September04 2015.

[5] Jim Smith and Ravi Nair. Virtual machines: versatile platforms for systems
and processes. Elsevier, 2005.

[6] Inc. Free Software Foundation. Gcc, the gnu compiler collection. https:
//gcc.gnu.org/. Accessed: 27.09.2017.

[7] Inc. Free Software Foundation. Abi policy and guidelines. https://
gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.
Accessed: 27.09.2017.

[8] Linux Foundation. Itanium c++ abi (revision: 1.83). http:
//refspecs.linuxbase.org/cxxabi-1.83.html. Accessed:
27.09.2017.

[9] Microsoft. Windows api index. https://msdn.microsoft.com/
en-us/library/windows/desktop/ff818516(v=vs.85)
.aspx. Accessed: 20.10.2017.

69

https://gcc.gnu.org/
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
http://refspecs.linuxbase.org/cxxabi-1.83.html
http://refspecs.linuxbase.org/cxxabi-1.83.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

70 BIBLIOGRAPHY

[10] Bob Amstadt and Michael K Johnson. Wine. Linux Journal, 1994(4es):3,
1994.

[11] WineHQ. Winehq wiki. https://wiki.winehq.org/. Accessed:
20.10.2017.

[12] Jeffrey Racine. The cygwin tools: a gnu toolkit for windows, 2000.

[13] Cygwin authors. Cygwin documentation. https://cygwin.com/
docs.html. Accessed: 20.10.2017.

[14] Bill Venners. The Java Virtual Machine. McGraw-Hill, New York, 1998.

[15] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
virtual machine specification. Pearson Education, 2014.

[16] Erik Meijer and John Gough. A technical overview of the common lan-
guage infrastructure, 2001.

[17] James S Miller and Susann Ragsdale. The common language infrastructure
annotated standard. Addison-Wesley Professional, 2004.

[18] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current
technology and future trends. Computer, 38(5):39–47, 2005.

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In ACM SIGOPS operating systems review, volume 37,
pages 164–177. ACM, 2003.

[20] Anthony Velte and Toby Velte. Microsoft virtualization with Hyper-V.
McGraw-Hill, Inc., 2009.

[21] John Kelbley, Mike Sterling, and Allen Stewart. Windows Server 2008
Hyper-V: Insiders Guide to Microsoft’s Hypervisor. John Wiley & Sons,
2011.

[22] Oracle. Virtualbox documentation. https://www.virtualbox.
org/wiki/Documentation. Accessed: 20.10.2017.

[23] Robert Warnke Thomas Ritzau. Qemu, kernel-based virtual machine
(kvm), xen + libvirt. http://qemu-buch.de/de/index.php?
title=QEMU-KVM-Book. Accessed: 20.10.2017.

[24] Yasunori Goto. Kernel-based virtual machine technology. Fujitsu Scientific
and Technical Journal, 47(3):362–368, 2011.

https://wiki.winehq.org/
https://cygwin.com/docs.html
https://cygwin.com/docs.html
https://www.virtualbox.org/wiki/Documentation
https://www.virtualbox.org/wiki/Documentation
http://qemu-buch.de/de/index.php?title=QEMU-KVM-Book
http://qemu-buch.de/de/index.php?title=QEMU-KVM-Book

BIBLIOGRAPHY 71

[25] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration
of virtual machine based on full system trace and replay. In Proceedings of
the 18th ACM international symposium on High performance distributed
computing, pages 101–110. ACM, 2009.

[26] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High availability via asyn-
chronous virtual machine replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, pages 161–
174. San Francisco, 2008.

[27] Daniel J Scales, Min Xu, Matthew D Ginzton, et al. Low overhead fault
tolerance through hybrid checkpointing and replay, July 30 2013. US Patent
8,499,297.

[28] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L
Scott. Proactive fault tolerance for hpc with xen virtualization. In Proceed-
ings of the 21st annual international conference on Supercomputing, pages
23–32. ACM, 2007.

[29] Samuel T King, George W Dunlap, and Peter M Chen. Debugging oper-
ating systems with time-traveling virtual machines. In Proceedings of the
annual conference on USENIX Annual Technical Conference, pages 1–1,
2005.

[30] Wim De Pauw and Donald P Pazel. Method and apparatus for non-
deterministic incremental program replay using checkpoints and syndrome
tracking, August 21 2006. US Patent App. 11/507,166.

[31] Michael H Sun and Douglas M Blough. Fast, lightweight virtual machine
checkpointing. Technical report, Georgia Institute of Technology, 2010.

[32] Saurabh Agarwal, Rahul Garg, Meeta S Gupta, and Jose E Moreira. Adap-
tive incremental checkpointing for massively parallel systems. In Proceed-
ings of the 18th annual international conference on Supercomputing, pages
277–286. ACM, 2004.

[33] John Mehnert-Spahn, Eugen Feller, and Michael Schoettner. Incremental
checkpointing for grids. In Linux Symposium, volume 120, 2009.

[34] Francisco Javier Thayer Fábrega, Francisco Javier, and Joshua D Guttman.
Copy on write, 1995.

72 BIBLIOGRAPHY

[35] Keith Loepere. Osf mach final draft kernel principles. Open Software
Foundation and Carnegie Mellon University, 1993.

[36] Elmootazbellah Nabil Elnozahy, David B Johnson, and Willy Zwaenepoel.
The performance of consistent checkpointing. In Reliable Distributed Sys-
tems, 1992. Proceedings., 11th Symposium on, pages 39–47. IEEE, 1992.

[37] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. ACM SIGOPS Operating Systems Re-
view, 40(5):2–13, 2006.

[38] Leendert Van Doorn. Hardware virtualization trends. In ACM/Usenix In-
ternational Conference On Virtual Execution Environments: Proceedings
of the 2 nd international conference on Virtual execution environments, vol-
ume 14, pages 45–45, 2006.

[39] R Hiremane. Intel virtualization technology for directed i/o (intel vt-d).
Technology@ Intel Magazine, 4(10), 2007.

[40] R Lantz. Fast functional simulation with parallel embra. In Proceedings
of the 4th Annual Workshop on Modeling, Benchmarking and Simulation,
2008.

[41] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam,
Boris Weissman, et al. Retrace: Collecting execution trace with virtual ma-
chine deterministic replay. In In Proceedings of the 3rd Annual Workshop
on Modeling, Benchmarking and Simulation, MoBS. Citeseer, 2007.

[42] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin.
V2e: combining hardware virtualization and softwareemulation for trans-
parent and extensible malware analysis. ACM Sigplan Notices, 47(7):227–
238, 2012.

[43] Avadh Patel, Furat Afram, and Kanad Ghose. Marss-x86: A qemu-based
micro-architectural and systems simulator for x86 multicore processors. In
1st International Qemu UsersâĂŹ Forum, pages 29–30, 2011.

[44] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[45] Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa. Simutrace: A
toolkit for full system memory tracing. White paper, Karlsruhe Institute of
Technology (KIT), Operating Systems Group, May 2015.

BIBLIOGRAPHY 73

[46] Nico Boehr. Evaluating copy-on-write for high frequency checkpoints.
Bachelor thesis, Operating Systems Group, Karlsruhe Institute of Technol-
ogy (KIT), Germany, September30 2015.

[47] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttam-
chandani. Demystifying data deduplication. In Proceedings of the ACM/I-
FIP/USENIX Middleware’08 Conference Companion, pages 12–17. ACM,
2008.

[48] Nikolai Baudis. Deduplicating virtual machine checkpoints for distributed
system simulation. Bachelor thesis, System Architecture Group, Karlsruhe
Institute of Technology (KIT), Germany, November2 2013. http://os.
ibds.kit.edu/.

[49] L Peter Deutsch. Gzip file format specification version 4.3. 1996.

[50] Yann Collet. Lz4 explained. https://fastcompression.
blogspot.de/2011/05/lz4-explained.html. Accessed:
10.03.2017.

[51] Yann Collet. Lz4 frame format : Final specifications.
https://fastcompression.blogspot.de/2013/04/
lz4-streaming-format-final.html. Accessed: 10.03.2017.

[52] Yann Collet. Inter-block compression. https://fastcompression.
blogspot.de/2013/08/inter-block-compression.html.
Accessed: 10.03.2017.

[53] Randy H Katz. Network-attached storage systems. In Scalable High Per-
formance Computing Conference, 1992. SHPCC-92, Proceedings., pages
68–75. IEEE, 1992.

[54] Jay Ts, Robert Eckstein, and David Collier-Brown. Samba. " O’Reilly
Media, Inc.", 2003.

[55] Paul J Leach and Dilip Naik. A common internet file system (cifs/1.0)
protocol. Technical report, Internet-Draft, IETF, 1997.

[56] Christopher R Hertel. Implementing CIFS: The Common Internet File Sys-
tem. Prentice Hall Professional, 2004.

[57] Yaniv Pessach. Distributed Storage: Concepts, Algorithms, and Implemen-
tations. 2013.

http://os.ibds.kit.edu/
http://os.ibds.kit.edu/
https://fastcompression.blogspot.de/2011/05/lz4-explained.html
https://fastcompression.blogspot.de/2011/05/lz4-explained.html
https://fastcompression.blogspot.de/2013/04/lz4-streaming-format-final.html
https://fastcompression.blogspot.de/2013/04/lz4-streaming-format-final.html
https://fastcompression.blogspot.de/2013/08/inter-block-compression.html
https://fastcompression.blogspot.de/2013/08/inter-block-compression.html

74 BIBLIOGRAPHY

[58] TC Jepson. The basics of reliable distributed storage networks. IT profes-
sional, 6(3):18–24, 2004.

[59] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th symposium on Operating systems design and imple-
mentation, pages 307–320. USENIX Association, 2006.

[60] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian Satran.
Object storage: The future building block for storage systems. In Local
to Global Data Interoperability-Challenges and Technologies, 2005, pages
119–123. IEEE, 2005.

[61] Inc. Inktank Storage and contributors. Ceph documentation - ceph architec-
ture. http://docs.ceph.com/docs/jewel/architecture/.
Accessed: 24.04.2017.

[62] Inc. Inktank Storage and contributors. Ceph documentation - ceph filesys-
tem. http://docs.ceph.com/docs/jewel/cephfs/. Ac-
cessed: 24.04.2017.

[63] Inc. Inktank Storage and contributors. Ceph documentation - monitor con-
fig reference. http://docs.ceph.com/docs/master/rados/
configuration/mon-config-ref/. Accessed: 24.04.2017.

[64] Inc. Inktank Storage and contributors. Ceph documentation - ceph block
device. http://docs.ceph.com/docs/jewel/rbd/rbd/. Ac-
cessed: 24.04.2017.

[65] Inc. Inktank Storage and contributors. Ceph documentation - ceph object
gateway. http://docs.ceph.com/docs/jewel/radosgw/. Ac-
cessed: 24.04.2017.

[66] Inc. Inktank Storage and contributors. Ceph documentation - place-
ment groups. http://docs.ceph.com/docs/master/rados/
operations/placement-groups/. Accessed: 24.04.2017.

[67] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn. Crush:
Controlled, scalable, decentralized placement of replicated data. In Pro-
ceedings of the 2006 ACM/IEEE conference on Supercomputing, page 122.
ACM, 2006.

[68] Inc. Inktank Storage and contributors. Crush maps. http://docs.
ceph.com/docs/master/rados/operations/crush-map/.
Accessed: 26.04.2017.

http://docs.ceph.com/docs/jewel/architecture/
http://docs.ceph.com/docs/jewel/cephfs/
http://docs.ceph.com/docs/master/rados/configuration/mon-config-ref/
http://docs.ceph.com/docs/master/rados/configuration/mon-config-ref/
http://docs.ceph.com/docs/jewel/rbd/rbd/
http://docs.ceph.com/docs/jewel/radosgw/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/rados/operations/crush-map/

BIBLIOGRAPHY 75

[69] Eric B Boyer, Matthew C Broomfield, and Terrell A Perrotti. Glusterfs
one storage server to rule them all. Technical report, Los Alamos National
Laboratory (LANL), 2012.

[70] Inc Red Hat. Glusterfs documentation. https://gluster.
readthedocs.io/en/latest/. Accessed: 26.04.2017.

[71] Inc Red Hat. Glusterfs documentation: Architecture.
https://gluster.readthedocs.io/en/latest/
Quick-Start-Guide/Architecture/. Accessed: 26.04.2017.

[72] Nikolaus Rath. Linux fuse (filesystem in userspace). https://github.
com/libfuse/libfuse. Accessed: 20.10.2017.

[73] Ariel J Frank, Larry D Wittie, and Arthur J Bernstein. Multicast communi-
cation on network computers. IEEE software, 2(3):49, 1985.

[74] S Deering. Host extensions for ip multicasting. RFC1112, 1997.

[75] Jon Postel. User datagram protocol. RFC768, 1980.

[76] Shepherd, Greg and Fairhurst, Gorry and Eggert, Lars. UDP Usage Guide-
lines. RFC 8085, RFC Editor, March 2017.

[77] Phoronix Media. Timed linux kernel compilation [pts/build-linux-
kernel]. https://openbenchmarking.org/test/pts/
build-linux-kernel. Accessed: 29.06.2017.

[78] Standard Performance Evaluation Corporation. Standard performance eval-
uation corporation - jbb2015. https://www.spec.org/jbb2015/.
Accessed: 29.06.2017.

[79] John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols, Ma-
hadev Satyanarayanan, Robert N Sidebotham, and Michael J West. Scale
and performance in a distributed file system. ACM Transactions on Com-
puter Systems (TOCS), 6(1):51–81, 1988.

[80] Mary G Baker, John H Hartman, Michael D Kupfer, Ken W Shirriff, and
John K Ousterhout. Measurements of a distributed file system. In ACM
SIGOPS Operating Systems Review, volume 25, pages 198–212. ACM,
1991.

[81] Matthias Schmidt, Niels Fallenbeck, Matthew Smith, and Bernd
Freisleben. Efficient distribution of virtual machines for cloud comput-
ing. In Parallel, Distributed and Network-Based Processing (PDP), 2010
18th Euromicro International Conference on, pages 567–574. IEEE, 2010.

https://gluster.readthedocs.io/en/latest/
https://gluster.readthedocs.io/en/latest/
https://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Architecture/
https://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Architecture/
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://openbenchmarking.org/test/pts/build-linux-kernel
https://openbenchmarking.org/test/pts/build-linux-kernel
https://www.spec.org/jbb2015/

76 BIBLIOGRAPHY

[82] Giacinto Donvito, Giovanni Marzulli, and Domenico Diacono. Testing of
several distributed file-systems (hdfs, ceph and glusterfs) for supporting
the hep experiments analysis. In Journal of Physics: Conference Series,
volume 513, page 042014. IOP Publishing, 2014.

[83] Dhruba Borthakur. The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 11(2007):21, 2007.

[84] Alex Davies and Alessandro Orsaria. Scale out with glusterfs. Linux J.,
2013(235), November 2013.

[85] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia
Zhang. A reliable multicast framework for light-weight sessions and ap-
plication level framing. IEEE/ACM Transactions on Networking (TON),
5(6):784–803, 1997.

[86] Sanjoy Paul, Krishan K. Sabnani, JC-H Lin, and Supratik Bhattacharyya.
Reliable multicast transport protocol (rmtp). IEEE Journal on Selected
Areas in Communications, 15(3):407–421, 1997.

[87] Hugh W Holbrook, Sandeep K Singhal, and David R Cheriton. Log-based
receiver-reliable multicast for distributed interactive simulation. ACM SIG-
COMM Computer Communication Review, 25(4):328–341, 1995.

[88] Alex Koifman and Stephen Zabele. Ramp: A reliable adaptive multicast
protocol. In INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE
Computer Societies. Networking the Next Generation. Proceedings IEEE,
volume 3, pages 1442–1451. IEEE, 1996.

[89] B Adamson, C Bormann, M Handley, and J Macker. Negative-
acknowledgment (nack)-oriented reliable multicast (norm) protocol. Tech-
nical report, 2004.

[90] Jo-Mei Chang and Nicholas F. Maxemchuk. Reliable broadcast protocols.
ACM Transactions on Computer Systems (TOCS), 2(3):251–273, 1984.

[91] Brian Whetten, Todd Montgomery, and Simon Kaplan. A high performance
totally ordered multicast protocol. Theory and Practice in Distributed Sys-
tems, pages 33–57, 1995.

[92] Rajendra Yavatkar, James Griffoen, and Madhu Sudan. A reliable dissem-
ination protocol for interactive collaborative applications. In Proceedings
of the third ACM international conference on Multimedia, pages 333–344.
ACM, 1995.

BIBLIOGRAPHY 77

[93] Ryan G Lane, Scott Daniels, and Xin Yuan. An empirical study of reli-
able multicast protocols over ethernet-connected networks. Performance
Evaluation, 64(3):210–228, 2007.

[94] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 5th edition, 2010.

[95] Joao Eriberto Mota Filho Michael Prokop. Ubuntu manuals -
iwatch. http://manpages.ubuntu.com/manpages/zesty/
man1/iwatch.1.html. Accessed: 29.06.2017.

[96] Heinrich Schuchardt Michael Kerrisk. Linux programmer’s manual: In-
otify. http://man7.org/linux/man-pages/man7/inotify.
7.html. Accessed: 20.10.2017.

[97] Andy Yoo, Morris Jette, and Mark Grondona. Slurm: Simple linux utility
for resource management. In Job scheduling strategies for parallel pro-
cessing, pages 44–60. Springer, 2003.

[98] Nigel Griffiths. Nmon for linux. http://nmon.sourceforge.
net/. Accessed: 20.10.2017.

[99] Inc. Inktank Storage and contributors. Ceph documentation - pools.
http://docs.ceph.com/docs/jewel/rados/operations/
pools/. Accessed: 20.10.2017.

[100] Inc. Inktank Storage and contributors. Ceph pgs per pool calculator. http:
//ceph.com/pgcalc/. Accessed: 26.04.2017.

[101] Inc. Inktank Storage and contributors. Manually editing a crush
map. http://docs.ceph.com/docs/master/rados/
operations/crush-map-edits/. Accessed: 26.04.2017.

[102] Hyun-Wook Jin, Chuck Yoo, and Sung-Kyun Park. Stepwise optimizations
of udp/ip on a gigabit network. In European Conference on Parallel Pro-
cessing, pages 745–748. Springer, 2002.

[103] Marco Bencivenni, Angelo Carbone, Armando Fella, Domenico Galli, Um-
berto Marconi, Gianluca Peco, Stefano Perazzini, Vincenzo Vagnoni, and
Stefano Zani. High rate packet transmission on 10 gbit/s ethernet lan using
commodity hardware. In Real Time Conference, 2009. RT’09. 16th IEEE-
NPSS, pages 167–182. IEEE, 2009.

http://manpages.ubuntu.com/manpages/zesty/man1/iwatch.1.html
http://manpages.ubuntu.com/manpages/zesty/man1/iwatch.1.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://nmon.sourceforge.net/
http://nmon.sourceforge.net/
http://docs.ceph.com/docs/jewel/rados/operations/pools/
http://docs.ceph.com/docs/jewel/rados/operations/pools/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://docs.ceph.com/docs/master/rados/operations/crush-map-edits/
http://docs.ceph.com/docs/master/rados/operations/crush-map-edits/

	Abstract
	Deutsche Zusammenfassung
	Contents
	Introduction
	Background
	Virtual Machines
	Checkpointing
	Emulation
	Hardware-Assisted Virtualization

	Full System Simulation
	SimuBoost
	Speedup and Scalability
	SimuBoost Checkpointing

	Ethernet Data Transmission
	Network Attached Storage
	Distributed Storage
	Multicast

	Analysis
	Direct Checkpoint Distribution
	Bandwidth Requirements
	Pulling vs. Pushing
	Checkpoint Distribution
	Conclusion

	Design
	Distributed Storage
	Multicast
	Data Integrity
	Reliability

	Conclusion

	Implementation
	Packet Loss Reduction
	Packet Loss Handling

	Evaluation
	Job distribution
	Evaluation Setup
	Benchmarks

	Distributed File System
	Ceph FS
	GlusterFS
	Conclusion

	Multicast
	Packet Loss Reduction Tests
	Simulation Tests

	Discussion
	Conclusion

	Conclusion
	Future Work

	Bibliography

