
GPrioSwap: Towards a Swapping Policy for GPUs

Jens Kehne
Marius Hillenbrand

Jonathan Metter
Mathias Gottschlag

Karlsruhe Institute of Technology (KIT)
Operating Systems Group

os@itec.kit.edu

Martin Merkel
Frank Bellosa

ABSTRACT
Over the last few years, Graphics Processing Units (GPUs)
have become popular in computing, and have found their
way into a number of cloud platforms. However, integrating
a GPU into a cloud environment requires the cloud provider
to efficiently virtualize the GPU. While several research
projects have addressed this challenge in the past, few of
these projects attempt to properly enable sharing of GPU
memory between multiple clients: To date, GPUswap is the
only project that enables sharing of GPU memory without in-
ducing unnecessary application overhead, while maintaining
both fairness and high utilization of GPU memory. However,
GPUswap includes only a rudimentary swapping policy, and
therefore induces a rather large application overhead.
In this paper, we work towards a practicable swapping

policy for GPUs. To that end, we analyze the behavior of
various GPU applications to determine their memory access
patterns. Based on our insights about these patterns, we
derive a swapping policy that includes a developer-assigned
priority for each GPU buffer in its swapping decisions. Ex-
periments with our prototype implementation show that a
swapping policy based on buffer priorities can significantly
reduce the swapping overhead.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Vir-
tual Memory, Swapping

Keywords
Virtualization; Memory Overcommitment; Oversubscription;
Swapping; Profiling; GPU

1. INTRODUCTION
Over the last few years, graphics processing units (GPUs)

have become popular in computing. The freely-programmable
nature of modern GPUs combined with their unprecedented
levels of performance and low power consumption make these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR 2017, May 22-24, 2017, Haifa, Israel
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5035-8/17/05. . . $15.00

DOI: https://dx.doi.org/10.1145/3078468.3078474

GPUs a perfect fit for applications like computer vision [8],
cryptography [16], network packet processing [14] and even
processing of general web requests [2]. More recently, cloud
offerings including GPUs have emerged, which allow the
cloud provider to increase the GPU’s utilization and thus
offer GPU computation time at competitive prices.
Integrating a GPU into a cloud environment, however,

requires the cloud provider to efficiently virtualize the GPU,
which creates interesting new challenges. How to share GPUs
between mutually-untrusted applications – which is the com-
mon case in a cloud environment – has been subject to
extensive research. However, these research projects have
largely focused on reducing the virtualization overhead [27,
13, 9, 30], on expanding the functionality of virtual GPUs [6,
28, 29, 32, 33] or on providing fairness between mutually
untrusted GPU applications [22, 19, 26].
A topic that has been mostly overlooked in previous re-

search, however, is how to deal with the memory of a vir-
tualized GPU. Cloud providers tend to oversubscribe their
hardware – e.g., rent out more memory than is actually avail-
able – to further increase utilization. If customers decide
to actually use all the memory they paid for, however, this
kind of oversubscription can easily lead to memory shortages,
which are difficult to handle on the GPU. While there are
research projects that can handle GPU memory shortages by
extending GPU memory with system RAM, these projects ei-
ther require scheduling of all GPU kernels in software [20, 31]
or manage the GPU’s memory in a cooperative fashion [17,
3].

To mitigate these issues, our research group developed
GPUswap [21], which achieves both fairness and high utiliza-
tion of GPU memory at the same time, without relying on
software scheduling of GPU requests. If memory pressure
occurs on the GPU, GPUswap responds by swapping data
from applications over-using their fair share of GPU memory
to system RAM. Swapping on the GPU is fundamentally
different from traditional swapping done in the CPU world:
Since modern GPUs have the ability to access system RAM
directly over the PCIe bus, swapped data is still accessible
to the GPU. Therefore, there is no need to raise a page
fault and return swapped pages to the GPU on access, as
is typically done with pages swapped to a disk. However,
accessing pages over the PCIe bus is significantly slower than
accessing pages in GPU memory, and can thus incur high
application overhead. The GPU thus resembles a NUMA
system, with GPUswap migrating pages between NUMA
nodes in response to memory pressure.



GPUswap’s current swapping policy selects pages to swap
at random, which is clearly far from optimal. Developing a
swapping policy for GPUs is not straightforward since current
GPUs lack several features found commonly in CPUs. For
example, while today’s GPUs support virtual memory, they
typically do not support page faults, and their page tables
do not include reference bits. Traditional page replacement
policies known from the CPU world therefore do not apply to
most GPUs. However, GPUs are currently growing closer to
CPUs in terms of features: The latest generation of Nvidia
GPUs includes page fault support, and may be able to set
the CPU-side reference bit on DMA operations through the
CPU’s IOMMU [10]. Unfortunately, it is still unclear to what
extent these features can be used for swapping since there is
little documentation available about the hardware of those
GPUs.
In this paper, we develop a practical swapping policy for

GPUs which mitigates the overhead of using system RAM
in case of memory pressure without relying on features that
are typically not present in GPUs. Our policy, which we call
GPrioSwap, is based on self-paging [15, 4, 7] using per-buffer
priorities. GPrioSwap requires developers to profile their
applications, and to assign priorities to application buffers
based on the results of that profiling. GPrioSwap then swaps
out pages from low-priority buffers first. Experiments with
our prototype implementation show that GPrioSwap reduces
the swapping overhead significantly compared to GPUswap’s
original random selection algorithm.
Specifically, we make the following contributions in this

paper:

1. We devise a method for profiling the memory accesses
of GPU applications which i) is not limited to a specific
type of applications, and ii) is able to profile accesses
to buffers not under application control.

2. We develop a policy for swapping data from the GPU to
system RAM. To our knowledge, our policy is the first
to target a GPU shared between multiple applications,
and also the first to explicitly handle buffers allocated
by the GPU runtime.

The rest of this paper is organized as follows: First, we
present details about the architecture of current GPUs, which
are necessary to understand our approach, in Section 2. In
Section 3, we present our methodology for profiling the mem-
ory access patterns of GPU applications, the access patterns
we observed and the implications of these patterns on policy.
Next, we describe the design of GPrioSwap in Section 4.
In Section 5, we evaluate the benefit of GPrioSwap over a
random eviction policy. Finally, we present related work in
Section 6, before concluding the paper in Section 7.

2. BACKGROUND
Current GPUs typically operate as asynchronous accelera-

tors. Applications submit high-level commands to the GPU,
which tell the GPU to, for example, launch CUDA kernels
or initiate DMA operations. The GPU then processes the
submitted commands autonomously, while the application
is free to perform other work. Optionally, the application
can configure the GPU to raise an interrupt after a given
command finishes execution, which applications often use to
be notified of kernel completion.

2.1 GPU Command Submission
Current GPUs allow applications to submit their com-

mands directly to the GPU, bypassing the operating system
to reduce overhead. To that end, these GPUs implement
a number of in-memory command queues called command
submission channels. The GPU driver maps these channels
into an application’s CPU address space, allowing the ap-
plication to write new commands directly into the channel.
A dedicated device register, which is also mapped into the
application’s CPU address space, serves as a doorbell for
notifying the GPU that new commands have been submitted.
Commands from a given channel are then executed in-order,
whereas commands from different channels can be arbitrarily
interleaved.

2.2 GPU Address Spaces
Since current GPUs can be accessed by multiple applica-

tions simultaneously and without operating system interven-
tion, the GPU must implement a mechanism to isolate these
applications from each other. To that end, modern GPUs
support multiple address spaces similar to those found on the
CPU. The GPU driver assigns each command submission
channel to exactly one GPU address space; all commands
originating from that channel then operate only on virtual
addresses from that address space. The GPU’s address
spaces are defined through page tables managed by the GPU
driver. These page tables map GPU-virtual addresses to
physical addresses, which either reside in GPU memory or
system RAM. The driver can thus map system RAM into
the GPU address space of arbitrary applications without the
application’s knowledge.
While GPU virtual memory is similar to virtual memory

on the CPU, GPUs typically lack basic features that are
ubiquitous on the CPU. First, the GPU driver cannot deter-
mine which regions of GPU memory are frequently accessed
since the GPU’s page table does not include reference bits.
Second, currently most GPUs neither support page faults
nor preemption. The layout of a GPU address space can
therefore be changed only while no code is being executed in
that address space.

Fortunately, these limitations are already diminishing: The
latest generation of Nvidia GPUs supports both preemption
and page faults, which improves GPU memory management
on simulated hardware [34]. In addition, recent IOMMUs
have the ability to set the reference bit in the CPU’s page
table on DMA operations, which would allow a swapping
policy to detect frequently-accessed pages in system RAM.
However, these features are not supported on earlier genera-
tions of GPU hardware and are therefore not widely available
today.

2.3 GPU Performance Counters
GPU programming often requires extensive tuning to make

the code run efficiently. To aid such tuning efforts, current
GPUs include performance counters which can count various
GPU-internal signals. On Nvidia GPUs, these signals are
grouped into domains. Each of these domains consists of
up to 256 signal lines, which can originate anywhere on
the GPU. Each domain has a distinct set of signal lines,
which implies that each signal can be counted by only one
domain. Therefore, it is often impossible to count multiple
related events simultaneously – for example, read and write
requests to memory cannot be counted at the same time.



To accurately count such events, it is therefore necessary to
repeat the execution of GPU kernels once for each event to be
counted. However, it is possible to combine multiple events
into one – for example, the sum of read and write requests
can be counted as one event if separate counts for the two
are not required. Note that we observed this behavior in
Nvidia’s profiling tools for GPUs up to the Kepler generation,
which indicates that there is indeed no better way.

2.4 GPUswap
GPUswap [21] is part of the GPU driver and operates by

intercepting memory allocation requests from applications
and migrating application data between GPU memory and
system RAM in response to memory shortage. After each
allocation request, GPUswap divides the buffer returned by
the request into fixed-size chunks. Each chunk is a virtually-
contiguous portion of application address space that can be
swapped independently of other chunks. By default, each
chunk is 2 MiB in size.
When there is insufficient GPU memory to fulfill a given

allocation request, GPUswap’s default policy evicts chunks
from applications using more than their fair share of GPU
memory to system RAM. This eviction is done in two steps:
In the first step, GPUswap selects a set of chunks at random
from the applications currently holding most GPU memory.
Once a sufficient number of chunks has been selected to
make room for the outstanding allocation request, GPUswap
transparently migrates these chunks to system RAM. Since
each application’s GPU access must be suspended before
GPUswap can migrate memory from that application’s ad-
dress space, GPUswap performs this migration one applica-
tion at a time to prevent the GPU from falling idle.

While selecting chunks from the applications owning most
GPU memory effectively maintains fairness, selecting chunks
from the applications’ GPU address spaces at random is
suboptimal. Ideally, GPUswap should swap rarely-accessed
chunks first. However, GPUswap has no information about
which chunks are accessed frequently. In GPUswap’s evalua-
tion, this problem manifests not only as high overhead, but
also as a rather large variance in that overhead, depending
on the set of chunks selected for swapping. This variance
indicates that a swapping policy can in fact improve the
swapping overhead.

3. MEMORY ACCESS PATTERNS OF GPU
APPLICATIONS

As a first step towards developing a swapping policy for
GPUs, we measure the memory access patterns of various
GPU applications. To that end, we need to count accesses
to individual pages with sufficient accuracy. However, as we
explain in Section 2, current GPUs do not support counting
accesses to individual pages out of the box.

3.1 Approach
To allow the GPU’s performance counters to count accesses

to individual pages, we move these pages to system RAM one
at a time, as shown in Figure 1. Assuming the application
does not otherwise use system RAM, the number of system
RAM accesses – which can be counted efficiently using the
GPU’s performance counters – then equals the number of
accesses to the isolated page.
The major disadvantage of this approach is that accesses

can be counted for only one page at a time. We therefore

Virtual AS

System RAM GPU memory

Figure 1: Isolating a single page from a GPU address space
by moving that page to system RAM

run each GPU kernel of the application being observed twice
for each allocated page in its address space – once for read
and once for write accesses – with a different page in system
RAM for each pair of runs. In addition, we restore the input
data of each kernel between runs to ensure each run behaves
the same way. Note that if multiple pages were in system
RAM at once, the combined number of accesses to these
pages could still be counted, but there would be no way to
distinguish which page accumulated how many accesses.
Our approach assumes three key conditions to be met.

First, the location of application buffers in virtual memory
must not change between runs. This condition is guaranteed
by our design: Since we do not allocate or free any appli-
cation buffers between runs, but only restore the contents
of these buffers, it is impossible for a buffer’s location to
change. Second, the number of accesses to each page must be
deterministic between runs. We argue that this requirement
is fulfilled since we restore each GPU kernel’s input data
before each run. Therefore, each kernel performs the same
work on the same input data during each run. Third, we
assume that profiling is performed on the same GPU model
that is later used in production, as a different GPU model
may, for example, have a different cache size and thus pro-
duce different access counts. Note that we do not require the
GPU kernels’ execution to be timing independent since we
only record the total number of memory accesses during the
execution of each kernel, but not the exact timing of these
accesses. We do not consider the exact timing of memory
accesses to be relevant in the context of this paper since we
can only make swapping decisions at kernel boundaries.

3.2 Implementation
To implement our approach, we added an API to GPUswap

that allows userspace applications to specify which page
should be in system RAM. GPUswap then moves that page
to system RAM and all other pages to GPU memory, ensuring
that only one page is in system RAM at a time. Furthermore,
the API also includes functions allowing the application to
configure and read the GPUs performance counters.
Using the new API, we traced the memory accesses of

various GPU applications. Since GPUswap only supports
the CUDA driver API, we used a subset of the Rodinia
benchmark suite [5] which has previously been ported to that
API [18] as our target set of applications. We instrumented
each application by adding a loop around each application’s
kernel launches, which iterates over all allocated pages in
the application’s address space. In each loop iteration, the
application executes each of its GPU kernels twice – once



200

0

200

400

600

800

1000

P
a
g

e
 a

c
c
e
s
s
e
s

(a) hotspot

150

100

50

0

50

100

150

P
a
g

e
 a

c
c
e
s
s
e
s

(b) nn

10

5

0

5

10

15

20

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

(c) heartwall

Kernel 1
600

400

200

0

200

400

600

P
a
g

e
 a

c
c
e
s
s
e
s

Kernel 2
200

0

200

400

600

800

P
a
g

e
 a

c
c
e
s
s
e
s

(d) backprop

Kernel 1
5

0

5

10

15

20

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

Kernel 2
0.5

0.0

0.5

1.0

1.5

2.0

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

(e) bfs

Kernel 1
0.5

0.0

0.5

1.0

1.5

2.0

2.5

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

Kernel 2
0.5

0.0

0.5

1.0

1.5

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

(f) srad v2

Kernel 1

2

0

2

4

P
a
g

e
 a

c
c
e
s
s
e
s

Kernel 2
200

100

0

100

200

300

400

P
a
g

e
 a

c
c
e
s
s
e
s

Kernel 3
20

10

0

10

20

30

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

Kernel 4
20

15

10

5

0

5

P
a
g

e
 a

c
c
e
s
s
e
s

(g) lud

Kernel 1
20

10

0

10

20

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

Kernel 2
5

0

5

10

15

20

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

Kernel 3
20

0

20

40

60

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

Kernel 4
20

0

20

40

P
a
g

e
 a

c
c
e
s
s
e
s
 [

1
0
0
0
s
]

(h) srad v1

write

read

0

(i) legend

Figure 2: Memory access patterns of various GPU applications. Each graph shows the accesses made by one of the application’s
GPU kernels. The X-axis is the virtual address space, with virtual addresses increasing from left to right. The Y-axis shows
the number of accesses to each allocated page; values above zero show the number of read accesses, while values below zero
correspond to the number of write accesses. For better readability, we omitted unallocated regions as well as the 60 MiB stack
buffer, which is present for all applications.

for read and once for write accesses. After each finished
kernel, the application reads the number of system RAM
accesses from the GPU’s performance counters, and resets
the counters for the next kernel execution.

3.3 Results
Our results are shown in Figure 2. For most applications,

the various GPU buffers allocated by the application are
clearly visible as steep vertical drops. Backprop, for example,
allocates four buffers: Two small ones, which are visible at
the far left and at the center of the plot, and two larger
ones. The same effect is visible in the traces of the other
applications, the only exception being lud which allocates
only one buffer on the GPU. Our observations therefore
indicate that the number of accesses varies mostly by buffer
rather than by page.

While the access count of a given page depends mostly on
the buffer the page belongs to, there is also some variance in
the access counts of different pages within the same buffer.
In Figure 2, this variance manifests either as multiple parallel
lines at the same horizontal position as in heartwall, hotspot
and srad v2, or as slopes as for the leftmost buffer of back-
prop and srad v1. However, the variance between different

buffers is typically much larger than the variance within each
buffer. For example, hotspot ’s first and last buffers display a
large variance in the number of reads per page; in any case,
however, both of these buffers show a much larger number
of accesses than the buffer in the center of the plot.

In addition to the buffers shown in Figure 2, all applications
allocate another buffer of 60 MiB, which we excluded from
the figure for legibility. This buffer is allocated by the CUDA
runtime and used as stack space for the application’s GPU
threads. Since GPU threads typically keep most of their
data in registers rather than on the stack, this buffer shows
only a small number of accesses. Beside the stack buffer, the
runtime allocates several other buffers – e.g., for application
code – which are included in Figure 2, but are too small to be
clearly visible. Note that even though these buffers are not
under direct application control, their pages can be swapped
to system RAM just like pages from any other buffer.

To verify that the results of our profiling are representative,
we repeated this experiment multiple times with varying
input sizes. While the total number of memory accesses made
by each kernel did change with the input size, the number of
accesses per buffer relative to other buffers stayed the same
for all applications – for example, the same buffer always



Off-line

On-line

Assign 
chunk
priorities

Choose
victim
process

Profile 
application

Build
decision
set

Mark
random
chunk 
from set

Enough chunks
marked?

Swap marked
chunks

Yes

No

On memory pressure   

Figure 3: Operation of GPrioSwap

received the largest number of memory accesses, regardless
of input size. However, we did observe some changes in the
access counts of individual pages relative to other pages in
the same buffer. We therefore consider the results of our
profiling to be representative on the buffer-, but not on the
page level for these applications.

While profiling worked well for the applications we exam-
ined, we do assume that some workloads cannot be profiled
representatively using our method. When executing SQL
queries on a GPU [25], for example, the query being exe-
cuted does not only determine the input data, but also the
exact processing that needs to be done. One would thus
need information about what queries to expect in produc-
tion to obtain representative profiling results. We therefore
expect our method to yield representative results only for
applications performing the same task – though possibly on
a different input – each time they are run.

4. A SWAPPING POLICY FOR GPUS
In this section, we describe GPrioSwap, a practical swap-

ping policy for GPUs based on the insights gained from our
traces presented in Section 3. Since making swapping deci-
sions at runtime is not viable on current GPUs, GPrioSwap
takes a self-paging approach similar to that found in past
works like Exokernel [7], Nemesis [15] and SPIN [4]. The
key difference between these works and GPrioSwap is that
the application is never explicitly asked to return memory
to the operating system. Instead, applications only set the
policy for a swapping mechanism which otherwise operates
transparently.
The basic operation of GPrioSwap is shown in Figure 3.

GPrioSwap operates in two steps: An off-line step, in which
priorities are assigned to an application’s buffers, and an on-
line step, which uses these priorities to find suitable chunks
of memory to swap in response to memory pressure.
In the off-line step, which we describe in Section 4.1, the

application developer defines a priority for each buffer. To
that end, the developer first profiles the application’s memory

accesses to each buffer, and assigns priority values to buffers
such that rarely-accessed buffers will be swapped first. Then,
the developer modifies the application to pass these priority
values to GPrioSwap as part of the application’s memory
allocation requests.
In the on-line step, presented in Section 4.2, GPrioSwap

uses the priorities defined in the off-line step to find suit-
able candidates for swapping if memory pressure occurs.
Whenever an allocation request cannot be satisfied due to
insufficient GPU memory, GPrioSwap first chooses a set of
low-priority chunks from applications using more than their
fair share of GPU memory. These chunks are then moved to
system RAM using GPUSwap’s original swapping mechanism.
Conversely, when an application frees memory, GPrioSwap
moves high-priority chunks back to GPU memory.

4.1 Priority Assignment
The first step in the operation of GPUPrioSwap is to assign

a priority value to each application buffer. To that end, the
developer profiles the application to determine the average
number of accesses per chunk for each buffer. To speed up
this profiling process, we modified our profiling method from
Section 3.1 to swap entire buffers instead of individual pages.
In addition, since we currently weigh read and write accesses
equally, we can count both kinds of access in one pass. The
application’s kernels must thus be repeated once per buffer
rather than twice per page. The immediate result of profiling
is the total number of accesses per buffer, which we then
divide by the number of chunks in the buffer to obtain the
average number of accesses per chunk.

Once that information is known, the developer can convert
these numbers into a priority value for each buffer by ordering
the buffers in descending order of their average chunk access
counts: The buffer with most accesses per chunk receives
the highest priority value, the buffer with the second most
accesses per chunk receives the second highest priority value
and so on. Note that there is no need to coordinate prior-
ity values across applications. GPrioSwap uses the buffers’
priorities only to select which chunks from an application’s
address space to swap, but not to select the application itself.
Once a priority has been determined for each buffer, the

application passes each buffer’s priority to GPrioSwap as part
of the allocation request for the buffer. To avoid breaking
compatibility with existing applications, GPrioSwap assumes
a default priority if the application does not explicitly pass
a priority value for a buffer. If users cannot – or choose not
to – profile and modify their applications, these applications
can therefore continue to run unmodified, although without
the full benefit of GPrioSwap.

In addition to buffers without explicit priorities, GPrioSwap
must also handle buffers allocated by the GPU runtime, such
as application code or stacks. The runtime allocates these
buffers through the driver’s regular allocation mechanism.
From the driver’s point of view, these buffers are thus not
fundamentally different from application buffers; specifically,
they can be swapped just like any other buffer. However,
since these buffers are not under application control, it is
impossible for the developer to assign a priority value for
these buffers. Simply assigning the default priority to all run-
time buffers would be suboptimal since our application traces
have shown that some of these buffers are better candidates
for swapping than others. We therefore modify the GPU
runtime to assign a different default priority to each of these



input :Chunk list of a victim process
output :Decision set

decision set ← empty array
minPrio ← largest allowed priority value
foreach chunk c in victim’s chunk list do

if priority(c) == minPrio then
Append c to decision set

else if priority(c) < minPrio then
Empty decision set
Append c to decision set
minPrio ← priority(c)

end

end
return decision set

Listing 1: Algorithm for computing the decision set from
the victim’s chunk list

runtime buffers. Note that the access counts for these buffers
were highly consistent for our benchmark applications, but
that may not be the case for other applications.

4.2 Chunk Selection
Once all buffers have been assigned a priority, GPrioSwap

uses these priorities to select chunks for swapping. When the
GPU driver receives a request for GPU memory that cannot
be satisfied, GPrioSwap first selects a victim which must give
up some of its memory. As in the original implementation of
GPUswap, that victim is the application owning most GPU
memory to ensure fairness. Next, GPrioSwap creates a list
of the lowest-priority chunks from the victim’s address space
which we call the decision set. The algorithm for creating
this decision set is shown in Listing 1. Finally, GPrioSwap
chooses a chunk from the decision set at random and marks
that chunk for swapping. The entire process then repeats
until swapping all marked chunks frees up enough GPU
memory to service the allocation request which triggered the
swap operation. Finally, the marked chunks are moved to
system RAM one application at a time using GPUswap’s
original swapping mechanism.
Our algorithm re-builds the entire decision set once for

each swapped chunk. We chose this approach for simplicity
since re-building the entire set implicitly handles two corner
cases: i) the next chunk to be swapped may have a different
priority, or ii) the next chunk to be swapped may belong
to a different victim. In addition, we assume the cost for
re-building the set to be small compared to the cost of the
DMA transfer moving the marked chunks to system RAM.

To maintain a high utilization of GPU memory, GPrioSwap
returns swapped chunks to the GPU whenever an application
frees chunks in GPU memory. The process of selecting chunks
to return to the GPU is similar to that for finding swapping
candidates: GPrioSwap first chooses the application consum-
ing the least amount of GPU memory as the winner, and
then builds a decision set consisting of the highest-priority
chunks from the winner’s address space using an algorithm
similar to that in Listing 1. GPrioSwap then picks a chunk
from the decision set at random and marks it for returning
to GPU memory. This process continues until the marked
chunks consume all available GPU memory, at which point
the marked chunks are migrated to the GPU one application
at a time.

5. EVALUATION
To verify that GPrioSwap reduces the overhead induced by

GPU data in system RAM, we conducted experiments using
our prototype implementation. In this section, we present
the results of these experiments.

5.1 Experimental Setup
We conducted all experiments described in this section on

an Nvidia GeForce GTX 480, which is based on the Fermi
microarchitecture and features 480 cores and 1.5 GiB of
GDDR5 memory. Our test system further includes an Intel
Core i7-4470 clocked at 3.4 GHz and 16 GiB of system RAM.
In all our experiments, we locked both CPU and GPU to the
highest possible clock frequency.
Our benchmark system runs Ubuntu 12.04.5, using the

default kernel version 3.5. GPUswap is built into the pscnv
driver [24], which is the only open-source driver for Nvidia
GPUs supporting memory-mapped command submission
channels. We used the Gdev userspace libraries [20], which
to our knowledge include the only implementation of CUDA
supporting pscnv. The applications used in our benchmarks
were originally taken from the Rodinia benchmark suite [5],
but have been modified to work with the CUDA driver API
implemented by Gdev [18]. In all experiments, we used a
chunk size of 2 MiB, which has been shown to be the optimal
size for GPUswap [21].

5.2 Swapping Overhead
In our first experiment, we measure the effect of our policy

on the overhead associated with swapping GPU data to
system RAM. To that end, we compare the average execution
time of several benchmark applications under GPUswap to
the average and best-case execution times under random
selection for different amounts of available GPU memory.
Initially, we granted each application a sufficient amount of
GPU memory so that no swapping occurs, and then gradually
reduced the amount of available GPU memory until only
20 MiB remained. To decrease the available GPU memory,
we used the same limiting mechanism as in the evaluation
of GPUswap, which causes the GPU driver to ignore all
GPU memory above a configurable threshold. To ensure
that applications actually compete for memory, we ran two
instances of each application concurrently. We ran each
application 10 times at each memory size we tested. The
numbers reported are the average runtime of both instances
over all 10 runs. To obtain an approximation of the best-
case runtime, we ran all applications another 100 times
under GPUswap’s original implementation, and recorded the
shortest execution time observed during these 100 runs.

The results are shown in Figure 4. Using random selection,
the application runtime starts to increase immediately when
the amount of available GPU memory becomes too small to
hold both application instances since some important data is
always selected for swapping. In addition, random selection
causes a high jitter in the applications’ runtimes depending
on whether a good or bad set of chunks is randomly selected
for swapping. In contrast, GPrioSwap swaps the relatively
unimportant stack buffer first and therefore initially has no
effect on the runtimes of all applications except heartwall
(Figure 4c) and srad v1 (Figure 4g), which appear to be lim-
ited by something other than the speed of the memory used.
When large amounts of memory are swapped, GPrioSwap
eventually has no choice but to select important data for



 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 20  40  60  80  100  120  140  160

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(a) backprop

 0

 10

 20

 30

 40

 0  50  100  150  200  250

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(b) bfs

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 0  50  100  150  200  250

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(c) heartwall

 0

 0.2

 0.4

 0.6

 20  40  60  80  100  120  140  160

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(d) hotspot

 0

 2

 4

 6

 8

 20  40  60  80  100  120  140  160

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(e) lud

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500  600  700  800

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(f) nn

 0

 10

 20

 30

 40

 50

 20  40  60  80  100  120  140

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(g) srad v1

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250  300  350  400

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(h) srad v2

 

 

random
prio

prio - stack last
best random

(i) legend

Figure 4: Average runtime over 10 runs of various GPU applications depending on the amount of GPU memory available.
“Random” shows the runtime when chunks for swapping are selected randomly, while “prio” denotes the runtime when chunks
are chosen by GPrioSwap. “Prio – stack last” shows the runtime under GPrioSwap with the stack buffer’s priority set to the
highest value, which mimics the behavior of a policy ignoring buffers allocated by the GPU runtime. For comparison, “best
random” indicates the best application runtime seen in 100 runs using random chunk selection. The error bars indicate the
standard deviation.

swapping, prompting a steep increase in the applications’
runtimes as the amount of GPU memory available decreases
further. However, these increased execution times are close
to, and in some cases even below the best-case execution
time with random selection. At 20 MiB of available memory,
finally, virtually all application data is in system RAM, leav-
ing both policies with little choice about what to swap. As a
result, the application runtimes at 20 MiB of GPU memory
are virtually identical for both policies. In all cases, however,
GPrioSwap does not increase the runtime of any applica-
tion compared to random selection. Overall, we therefore
conclude that GPrioSwap improves the swapping overhead
compared to random selection.
To verify that swapping the stack buffer is indeed the

reason why swapping initially has no effect on the runtime of
most applications, we repeated the previous experiment with
the stack buffer’s priority set to the highest value, ensuring

that this buffer is swapped last. Note that the remaining
system buffers, such as code segments, have a high priority
already since we found these buffers to be important during
profiling. In this experiment, we therefore expect GPrioSwap
to mimic the behavior of a solution that ignores system
buffers until only system buffers remain in GPU memory.
The results, labeled “prio – stack last” in Figure 4, show that
the application runtime increases even more steeply than
using random selection as soon as GPU data is swapped.
This result is expected since random selection likely chooses
at least some chunks from the stack buffer for swapping.
It is noteworthy that there are cases where the best-case

execution time using random selection is below the execution
time using GPrioSwap, and in some cases even below the ex-
ecution time with all application data in GPU memory. This
result indicates that the swapping overhead can be further
reduced if hot individual pages inside buffers can be reliably



 0

 3

 6

 9

 12

 15

backprop

bfs
heartw

all

hotspot

lud
nn srad1

srad2

S
w

a
p

p
in

g
 l

a
te

n
c
y

 (
m

s/
M

iB
)

Application

random
prio

Figure 5: Average swapping latency per megabyte of data
swapped for various applications.

detected. Recent research suggests that the performance of
GPU applications can improve if some application data is
placed in system RAM [1], and it is possible that we are
observing a similar effect.

5.3 Policy Overhead
In a second experiment, we measured the latency induced

by GPrioSwap in cases where there is not enough GPU
memory readily available. This latency includes selecting
chunks for swapping, suspending of victim applications and
the transfer of selected chunks to system RAM, but not the
time spent in the driver’s original memory allocator. In
addition to the time, we also recorded the amount of memory
that GPUswap had to migrate to satisfy each request. Since
the delay experienced by the allocating application naturally
increases with the amount of swapped memory, we then
calculated the latency induced by GPrioSwap per megabyte
of data swapped.

Figure 5 shows the delay induced per megabyte of swapped
data for GPrioSwap as well as the original implementation
of GPUswap. The results indicate that GPrioSwap does not
cause any significant delays beyond those induced by the
original implementation of GPUswap. In fact, the delays
induced by GPrioSwap appear to be shorter than those of
the original implementation for some applications, though
not by a significant amount. This result is consistent with
our expectations: Since the delay induced by GPUswap
is generally dominated by the DMA transfers needed for
migrating data to system RAM [21], the delay induced by
any policy tends to be negligible.

6. RELATED WORK
The problem of sharing a GPU between multiple applica-

tions or virtual machines has been addressed by several
research projects. GViM [13], gVirtuS [9], rCUDA [6],
VOCL [32], vCUDA [27] and VGVM [30] employ an ap-
proach called API remoting : These projects intercept GPU
commands in a modified GPU runtime library and forward
these commands to the hypervisor. As a consequence, these
projects are generally limited to applications using that spe-
cific library. TimeGraph [19] and PTask [26] take this ap-
proach a step further, defining new, more efficient APIs
at the operating system level. However, either the user
space libraries or the applications themselves must be mod-
ified to support these new APIs. With GPUvm [28] and
gVirt [29], the hypervisor instead exposes a virtual GPU

device that is identical to the physical GPU, allowing the
VM to use the GPU’s original device driver without modifica-
tion. VGRIS [33] and LoGV [12] take a paravirtual approach,
intercepting commands in a guest device driver which ex-
poses the same interface as the native GPU driver towards
user space, allowing applications and user space libraries to
remain unmodified. While all of these projects are able to
share a GPU between multiple applications and/or virtual
machines, none of them support oversubscription of GPU
memory.
Gdev [20] implements a kernel-level command scheduler

for GPUs: Application commands are queued within Gdev,
with a software scheduler deciding when to forward these
commands to the GPU. This software scheduling allows
Gdev to share GPU buffers between applications: Whenever
the scheduler selects an application to execute on the GPU,
Gdev copies the contents of any shared buffers in that appli-
cation’s address space to the GPU before the application’s
GPU kernel begins execution; any data already present in
that buffer is copied to system RAM. GDM [31] later gener-
alized Gdev’s approach by making all GPU buffers implicitly
shared: When a GPU kernel is selected for execution, any
data that kernel might touch is copied to the GPU before
the kernel is executed; data from other applications may be
evicted to system RAM in the process. While both Gdev
and GDM are able to extend GPU memory, both rely on
software scheduling, which defeats the GPU’s own, highly
efficient scheduling and context switching and thus induces
considerable application overhead even in the absence of
memory pressure. In addition, both Gdev and GDM may
copy data that the application does not actually need, while
with GPUswap, only data that is actually accessed is trans-
ferred over the PCIe-Bus.
RSVM [17] places GPU memory management in a user-

space runtime library that implements swapping through
explicit API calls: Applications must map GPU buffers into
their address space explicitly, and unmap these buffers after
use. On each map call, the runtime copies the mapped
data to the GPU and swaps unmapped buffers if necessary.
Swapping is thus cooperative – if applications do not actively
unmap their GPU buffers, these buffers will stay on the GPU
indefinitely. The work of Becchi et al. [3] instead ties the
swap operation to the kernel launch: When the application
launches a GPU kernel, the runtime copies all data given to
that kernel as parameters to the GPU, potentially evicting
other data from the same application’s address space in
the process. Swapping data from other applications is also
possible, but only in a cooperative fashion: On memory
shortage, applications receive requests to swap data, but may
choose not to obey that request. In contrast, GPrioSwap is
completely transparent to applications and can thus swap
data even against the application’s will.

Agarwal et al. [1] propose another mechanism for extending
GPU memory with system RAM. Their allocation policy is
similar to GPrioSwap in that it based on per-buffer hints
generated from application profiles. However, their work
is different from ours in three ways: First, their method of
profiling is based on compiler modification, and therefore only
considers application buffers, but not buffers allocated by the
GPU runtime. In addition, relying on compiler modification
restricts their profiling to CUDA applications, while our
performance counter-based approach can be applied to any
type of application. Second, the authors do not target a



GPU shared by multiple applications, but instead focus on
HPC applications with a working set larger than the available
GPU memory. Third, the authors target future machines in
which the CPU and GPU form a CC-NUMA system without
the bandwidth constraints of the PCIe-Bus. In contrast,
GPrioSwap assumes that the GPU is connected via PCIe,
resulting in a much larger difference in bandwidth between
GPU memory and system RAM.

Finally, current CUDA SDKs [23] include a function called
Unified Memory, which enables automatic data transfers
between CPU and GPU. Unified memory creates a shared
address space between CPU and GPU. When data in unified
memory is accessed, the runtime transparently copies that
data to the location of the access (CPU or GPU). More re-
cently, Heterogeneous Memory Management (HMM), which
offers a similar functionality in a device-agnostic way, has
been proposed for inclusion into the Linux kernel [11]. How-
ever, to the best of our knowledge, neither Unified Memory
nor HMM enable oversubscription of GPU memory since
both reserve memory for all data that might be on the GPU.

7. CONCLUSION
In this paper, we have presented GPrioSwap, a practical

swapping policy for GPUs. First, we have analyzed the be-
havior of various GPU applications, and determined that the
importance of pages in the address spaces of those applica-
tions varies mostly by buffer rather than by individual page.
Following that insight, GPrioSwap allows developers to de-
termine the relative importance of their applications’ buffers
through profiling, and to assign a priority to each buffer based
on the buffer’s importance. In the event of memory pressure,
GPrioSwap then selects buffers for swapping based on these
priorities: Buffers critical to application performance stay
in GPU memory, while less important buffers are moved to
system RAM. Our experiments with our prototype have
shown that GPrioSwap significantly reduces the overhead
associated with using system RAM in place of GPU memory
compared to the original implementation of GPUswap.
There are currently two main drawbacks to GPrioSwap.

First, our current prototype only assigns a single priority
value to each buffer, which is then valid for the entire life-
time of the buffer. However, different GPU kernels of the
same application can sometimes display different memory
access patterns. In the future, we plan to investigate ways to
assign separate buffer priorities for each kernel. The second
drawback of our policy is the required profiling of GPU appli-
cations, which is a complicated and time-consuming process.
GPU vendors could alleviate this requirement by adding
appropriate hardware support, such as reference bits in the
GPU’s page tables. We believe that such hardware support
has a significant potential to improve memory management
on the GPU, and hope that our work will inspire GPU ven-
dors to include this functionality in future generations of
their hardware.

8. REFERENCES
[1] Agarwal, N., Nellans, D., Stephenson, M.,

O’Connor, M., and Keckler, S. W. Page
Placement Strategies for GPUs Within Heterogeneous
Memory Systems. In Proceedings of the ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (Mar.
2015), ASPLOS ’15, pp. 607–618.

[2] Agrawal, S. R., Pistol, V., Pang, J., Tran,

J., Tarjan, D., and Lebeck, A. R. Rhythm:
Harnessing Data Parallel Hardware for Server
Workloads. In Proceedings of the ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (Mar. 2014),
ASPLOS ’14, pp. 19–34.

[3] Becchi, M., Sajjapongse, K., Graves, I.,

Procter, A., Ravi, V., and Chakradhar, S. A
Virtual Memory Based Runtime to Support
Multi-tenancy in Clusters with GPUs. In Proceedings
of the ACM International Symposium on
High-Performance Parallel and Distributed Computing
(June 2012), HPDC ’12, pp. 97–108.

[4] Bershad, B. N., Savage, S., Pardyak, P.,

Sirer, E. G., Fiuczynski, M. E., Becker, D.,

Chambers, C., and Eggers, S. Extensibility
safety and performance in the SPIN operating system.
In Proceedings of the ACM Symposium on Operating
Systems Principles (Dec. 1995), SOSP ’95, pp. 267–283.

[5] Che, S., Boyer, M., Meng, J., Tarjan, D.,

Sheaffer, J., Lee, S.-H., and Skadron, K.

Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the IEEE International
Symposium on Workload Characterization (Oct. 2009),
IISWC ’09, pp. 44–54.

[6] Duato, J., Peña, A. J., Silla, F., Mayo, R.,

and Quintana-Ortı́, E. S. rCUDA: Reducing the
number of GPU-based accelerators in high performance
clusters. In Proceedings of the IEEE International
Conference on High Performance Computing
Simulation (June 2010), HPCS ’10, pp. 224–231.

[7] Engler, D. R., Kaashoek, M. F., and

O’Toole, J. Exokernel: An operating system
architecture for application-level resource management.
In Proceedings of the ACM Symposium on Operating
Systems Principles (Dec. 1995), SOSP ’95, pp. 251–266.

[8] Fung, J., and Mann, S. Using graphics devices in
reverse: GPU-based Image Processing and Computer
Vision. In Proceedings of the IEEE International
Conference on Multimedia and Expo (June 2008),
ICME ’08, pp. 9–12.

[9] Giunta, G., Montella, R., Agrillo, G., and

Coviello, G. A GPGPU Transparent Virtualization
Component for High Performance Computing Clouds.
In Proceedings of the Springer European Conference on
Parallel Processing (Sept. 2010), Euro-Par ’10,
pp. 379–391.

[10] Glisse, J. Using process address space on the GPU,
Sept. 2013. https://www.x.org/wiki/Events/XDC2013/
XDC2013JeromeGlisseUsingProcessAddressSpaceGPU/
xdc2013-glisse.pdf.

[11] Glisse, J. LKML: HMM (Heterogeneous Memory
Management) v18, Mar. 2017.
https://lkml.org/lkml/2017/3/16/596.

[12] Gottschlag, M., Hillenbrand, M., Kehne, J.,

Stoess, J., and Bellosa, F. LoGV: Low-Overhead
GPGPU Virtualization. In Proceedings of the IEEE
International Workshop on Frontiers of Heterogeneous
Computing (Nov. 2013), FHC ’13, pp. 1721–1726.



[13] Gupta, V., Gavrilovska, A., Schwan, K.,

Kharche, H., Tolia, N., Talwar, V., and

Ranganathan, P. GViM: GPU-accelerated Virtual
Machines. In Proceedings of the ACM Workshop on
System-Level Virtualization for High Performance
Computing (Mar. 2009), HPCVirt ’09, pp. 17–24.

[14] Han, S., Jang, K., Park, K., and Moon, S.

PacketShader: A GPU-accelerated Software Router. In
Proceedings of the ACM SIGCOMM Conference (Aug.
2010), SIGCOMM ’10, pp. 195–206.

[15] Hand, S. Self-Paging in the Nemesis Operating
System. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (Feb.
1999), OSDI ’99, pp. 73–86.

[16] Jang, K., Han, S., Han, S., Moon, S. B., and

Park, K. SSLShader: Cheap SSL Acceleration with
Commodity Processors. In Proceedings of the USENIX
Symposium on Networked Systems Design and
Implementation (Mar. 2011), NSDI ’11.

[17] Ji, F., Lin, H., and Ma, X. RSVM: A
Region-based Software Virtual Memory for GPU. In
Proceedings of the IEEE International Conference on
Parallel Architectures and Compilation Techniques
(Sept. 2013), PACT ’13, pp. 269–278.

[18] Kato, S. Gdev benchmarks.
https://github.com/shinpei0208/gdev-bench.

[19] Kato, S., Lakshmanan, K., Rajkumar, R., and

Ishikawa, Y. TimeGraph: GPU scheduling for
real-time multi-tasking environments. In Proceedings of
the USENIX Annual Technical Conference (June 2011),
USENIX ATC ’11, pp. 17–30.

[20] Kato, S., McThrow, M., Maltzahn, C., and

Brandt, S. A. Gdev: First-Class GPU Resource
Management in the Operating System. In Proceedings
of the USENIX Annual Technical Conference (June
2012), USENIX ATC ’12, pp. 401–412.

[21] Kehne, J., Metter, J., and Bellosa, F.

GPUswap: Enabling Oversubscription of GPU Memory
Through Transparent Swapping. In Proceedings of the
ACM International Conference on Virtual Execution
Environments (Mar. 2015), VEE ’15, pp. 65–77.

[22] Menychtas, K., Shen, K., and Scott, M. L.

Disengaged Scheduling for Fair, Protected Access to
Fast Computational Accelerators. In Proceedings of the
ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (June 2014), ASPLOS ’14, pp. 301–316.

[23] Nvidia Corporation. CUDA Toolkit,
2013-07-02T10:16:48-07:00.
https://developer.nvidia.com/cuda-toolkit.

[24] PathScale, Inc. Pscnv.
https://github.com/pathscale/pscnv.

[25] Rauhe, H., Dees, J., Sattler, K.-U., and

Faerber, F. Multi-level Parallel Query Execution
Framework for CPU and GPU. In Proceedings of the
Springer East European Conference on Advances in
Databases and Information Systems (Sept. 2013),
ADBIS ’13, pp. 330–343.

[26] Rossbach, C. J., Currey, J., Silberstein, M.,

Ray, B., and Witchel, E. PTask: Operating
System Abstractions to Manage GPUs As Compute
Devices. In Proceedings of the ACM Symposium on
Operating Systems Principles (Sept. 2011), SOSP ’11,
pp. 233–248.

[27] Shi, L., Chen, H., Sun, J., and Li, K. vCUDA:
GPU-Accelerated High-Performance Computing in
Virtual Machines. IEEE Transactions on Computers 61,
6 (June 2012), 804–816.

[28] Suzuki, Y., Kato, S., Yamada, H., and Kono,

K. GPUvm: Why not virtualizing GPUs at the
hypervisor? In Proceedings of the USENIX Annual
Technical Conference (June 2014), USENIX ATC ’14,
pp. 109–120.

[29] Tian, K., Dong, Y., and Cowperthwaite, D. A
full GPU virtualization solution with mediated
pass-through. In Proceedings of the USENIX Annual
Technical Conference (June 2014), USENIX ATC ’14,
pp. 121–132.

[30] Vasilas, D., Gerangelos, S., and Koziris, N.

VGVM: Efficient GPU capabilities in virtual machines.
In Proceedings of the IEEE International Conference
on High Performance Computing & Simulation (July
2016), HPCS ’16, pp. 637–644.

[31] Wang, K., Ding, X., Lee, R., Kato, S., and

Zhang, X. GDM: Device Memory Management for
GPGPU Computing. In Proceedings of the ACM
International Conference on Measurement and
Modeling of Computer Systems (June 2014),
SIGMETRICS ’14, pp. 533–545.

[32] Xiao, S., Balaji, P., Zhu, Q., Thakur, R.,

Coghlan, S., Lin, H., Wen, G., Hong, J., and

c Feng, W. VOCL: An optimized environment for
transparent virtualization of graphics processing units.
In Proceedings of the IEEE Conference on Innovative
Parallel Computing (May 2012), InPar ’12, pp. 1–12.

[33] Yu, M., Zhang, C., Qi, Z., Yao, J., Wang, Y.,

and Guan, H. VGRIS: Virtualized GPU Resource
Isolation and Scheduling in Cloud Gaming. In
Proceedings of the ACM International Symposium on
High-Performance Parallel and Distributed Computing
(June 2013), HPDC ’13, pp. 203–214.

[34] Zheng, T., Nellans, D., Zulfiqar, A.,

Stephenson, M., and Keckler, S. W. Towards
high performance paged memory for GPUs. In
Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (Mar. 2016),
HPCA ’16, pp. 345–357.


