
Evaluating Copy-On-Write For High
Frequency Checkpoints

Bachelorarbeit
von

Nico Böhr
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Dipl.-Inform. Marc Rittinghaus

Bearbeitungszeit: 01. Juni 2015 – 30. September 2015

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 30. September 2015

iv

Abstract

Checkpointing a virtual machine (VM) in high-frequency intervals poses a chal-
lenge for checkpointing mechanisms. The stop-and-copy approach suffers from
high downtime during checkpointing. That impedes its use in interactive scenar-
ios, for example in workloads that utilize the network or interact with a human
user. The pre-copy approach helps to reduce downtime by copying the VM’s
memory during its execution in multiple copy rounds. However, it is not able to
reduce downtime reliably when the VM’s writeable working set is too large.

This thesis aims to solve this problem by copying the VM’s memory con-
currently to its execution. Our approach utilizes copy-on-write to preserve the
consistency of the virtual machine memory checkpoint image.

In our evaluation, we have proven this mechanism to provide a predictable,
almost constant downtime of 6 ms during a kernel build with a two-second check-
pointing interval. We have determined that our implementation yields a small
constant overhead while copying pages and is therefore able to keep up with a
checkpointing interval length down to 16 ms.

v

vi ABSTRACT

Deutsche Zusammenfassung

Das Checkpointing einer virtuellen Maschine (VM) in hochfrequenten Interval-
len stellt Checkpointing-Mechanismen vor eine Herausforderung. Die Stop-And-
Copy-Methode leidet an hoher Stillstandszeit während des Checkpointing. Das
verhindert den Einsatz in interaktiven Szenarien, zum Beispiel bei Netzwerkan-
wendungen oder Anwendungen, die mit einem menschlichen Nutzer interagie-
ren. Die Pre-Copy-Methode hilft, die Stillstandszeit zu reduzieren, indem der
Arbeitsspeicher der VM während ihrer Ausführung in mehreren Runden kopiert
wird. Allerdings ist diese Methode nicht in der Lage, die Stillstandszeit zuverläs-
sig zu reduzieren, wenn das Writeable Working Set der VM zu groß ist.

Diese Arbeit zielt darauf ab, dieses Problem ebenfalls durch das Kopieren des
Speichers der VM während ihrer Ausführung zu lösen. Allerdings wird ein Copy-
On-Write-Mechanismus eingesetzt, um die Konsistenz der kopierten Speichersei-
ten sicherzustellen und daher zusätzliche Kopierrunden überflüssig zu machen.

In unserer Evaluation haben wir gezeigt, dass unser Mechanismus eine vorher-
sagbare, beinahe konstante Stillstandszeit von 6 ms während eines Kernel Build
mit einem zweisekündigen Checkpointing-Intervall bietet. Wir haben bestimmt,
dass unsere Implementierung kleine Fixkosten während des Kopiervorgangs zur
Folge hat und daher in der Lage ist, mit kleinen Checkpointing-Intervallen von bis
zu 16 ms Schritt zu halten.

vii

viii DEUTSCHE ZUSAMMENFASSUNG

Acknowledgements

I would like to thank my supervisor Marc Rittinghaus. He has invested countless
hours of his valuable time to help me throughout all stages of my thesis. Thanks
are also due to James McCuller for his help with the IT infrastructure I used for
evaluating my work. Special thanks go to everyone who has proof read my thesis
and to those who have provided their moral support.

Finally, I wish to thank my parents for their support and encouragement.

ix

x ACKNOWLEDGEMENTS

Contents

Abstract v

Deutsche Zusammenfassung vii

Acknowledgements ix

Contents 1

1 Introduction 3

2 Background 5
2.1 Full-System Simulation . 5
2.2 SimuBoost . 6

2.2.1 Simutrace . 8
2.3 Virtual Machine Checkpointing 9

2.3.1 Pre-Copy Live Migration 10
2.3.2 Incremental Deduplicating Checkpointing 10

2.4 Virtual Machine Memory Management 11
2.4.1 Shadow Page Tables . 13
2.4.2 Two-Dimensional Paging 13

3 Analysis 15
3.1 Checkpointing . 15
3.2 Data Amount Considerations . 16

3.2.1 Incremental Checkpointing 16
3.2.2 Deduplication . 18

3.3 Downtime Considerations . 18
3.3.1 Stop-And-Copy . 19
3.3.2 Pre-Copy . 19
3.3.3 Copy-On-Write . 21

3.4 Conclusion . 21

1

2 CONTENTS

4 Design 23
4.1 Design goals . 23
4.2 Mechanism . 24

4.2.1 Procedure . 26
4.3 Conclusion . 28

5 Implementation 29
5.1 Technology integration . 29

5.1.1 Simutrace . 30
5.1.2 KVM API . 30

5.2 Kernel Space Implementation . 32
5.2.1 Concurrent Copy Case 32
5.2.2 Copy-On-Write Case . 32

6 Evaluation 35
6.1 Methodology . 35

6.1.1 Evaluation environment 36
6.2 Correctness verification . 37
6.3 Workload Runtime . 38
6.4 Downtime . 40
6.5 Copy Performance . 44
6.6 Page Handler Distribution . 46
6.7 Conclusion . 47

7 Conclusion 49
7.1 Future work . 49

Appendices 51

A Additional data 51
A.1 Downtime measurements for the first checkpoint 51
A.2 Copy Performance For Improved Implementation 51

Bibliography 53

Chapter 1

Introduction

Virtualization has brought a large amount of advantages to computing. One of
this advantages is that the state of a virtual machine can be saved at any time and
then restored to the exact same state as it was before. This mechanism is known
as checkpointing of a virtual machine.

The applications for checkpointing are versatile: Cully et al. have developed
Remus [8] that allows for replication of a virtual machine to a backup host for fault
tolerance. King et al. [16] presented a time-travelling checkpointing approach for
operating system debugging. Rittinghaus et al. [20] have proposed SimuBoost,
a technique to accelerate full-system simulators by combination of virtualization
and simulation. All these applications have in common that they rely on taking
checkpoints of a virtual machine in high frequency.

However, existing checkpointing mechanisms often expose undesireable per-
formance characteristics, especially when applied to high frequency checkpoint-
ing. For example, some mechanisms interrupt the virtual machine execution while
checkpointing for undesirably long time. This time is called downtime. Long
downtime prevents the checkpointing mechanism from being applied to some
workloads, for example workloads that require network connectivity or that re-
quire interaction with a human user.

The goal of this thesis is to develop a checkpointing mechanism that suits the
requirements of SimuBoost and increases its applicability to workloads that are
sensitive to long downtime.

The checkpointing mechanism implemented in this thesis extends the existing
SimuBoost checkpointing implementation of Eicher [10]. By copying the vir-
tual machine RAM during VM execution, we aim to eliminate a large part of the
downtime. A copy-on-write mechanism is utilized to ensure a consistent copy of
pages that are written by the virtual machine while the pages are being saved. The
existing deduplicating checkpoint storage mechanism in Eicher’s implementation
is preserved.

3

4 CHAPTER 1. INTRODUCTION

Our evaluation proved copy-on-write to be a suitable mechanism for reducing
the downtime in high-frequency checkpointing. We were able to demonstrate that
copy-on-write exhibits a more predicable and lower downtime of 6 ms in compar-
ison to a stop-and-copy checkpointing approach. We have also determined that
our implementation yields a small constant overhead of 16 ms, which then limits
the minimum checkpoint interval length to that size

The rest of this document is structured as follows: Chapter 2 presents fun-
damentals of full-system simulators, virtual machine checkpointing and virtual
machine memory managmeent. Chapter 3 analyzes the characteristics of existing
checkpointing mechanisms. In Chapter 4, we present the design of our copy-on-
write checkpointing implementation. Chapter 5 then describes the implementation
derived from our design. Chapter 6 documents the results of the evaulation of our
implementation. At last, we conclude our thesis in Chapter 7 and give an outlook
on future work.

Chapter 2

Background

This chapter will give a brief introduction to full-system simulators and their cur-
rent limitations. Afterwards, we will introduce different approaches to check-
pointing of virtual machines (VMs). Then, we will discuss important concepts
in VM memory management, namely the shadow page tables (SPTs) and two-
dimensional paging (TDP).

2.1 Full-System Simulation

A fundamental property of computers is that they are able to simulate other com-
puters. This is true because the theoretical foundation of all computers, the turing
machine, allows for the construction of a universal turing machine. It accepts a
specially encoded form of another turing machine as an input and, given an input
to the simulated machine, produces the same output as the original turing machine.

While this property has theoretical importance, it is also of use in practice.
A full-system simulator simulates a whole computer system including all devices.
This is useful because it is often undesireable to run software directly on hardware
for several reasons. On one hand, hardware is usually more complex and more
expensive to set up. It often requires physically setting up devices and connecting
them to infrastructure required to run them (for example, a power supply or a
network). Apart from the often significant costs of the hardware itself, additional
costs arise from setting it up and later running it, for example for specially trained
system administrators who manage the systems.

Additionally, hardware is more difficult to automate. In contrast to software, it
cannot be reconfigured as easily as software, since that often involves physically
removing or exchanging components from the system.

Furthermore, running software enables developers to gain insight in greater
detail. While debugging and analysis capabilities in hardware are limited by what

5

6 CHAPTER 2. BACKGROUND

has been implemented by the manufacturer, Full-System Simulators allow for the
inspection of any part of the system, because every part is simulated in software
and can thus be instrumented for analysis.

Depending on the amount of insight an user wants to gain on the system,
different types of simulation exist. The tradeoff lies within the simulation perfor-
mance. While the first type of simulator, a functional full-system simulator, runs
comparatively fast, it also simulates less detail of the system. It mainly focuses
on the result of each instruction executed and does not simulate details such as the
processing in the pipeline of a processor. QEMU is an example for a functional
full-system simulator [5].

The second type of simulator, a functional full-system simulator with timing,
takes into account architectural details such as processing times of instructions
and memory accesses. Because more details must be considered, this type of
simulator generally runs slower than these without timing. A popular example for
this type of simulator is Simics [17].

The third type of simulator are architectural full-system simulators. These are
for example useful when the developer wants to analyze the design of the CPU
architecture itself, i.e. the pipeline. Gem5 is an example for an architectural full-
system simulator [6].

2.2 SimuBoost
However, traditional functional full-system simulators suffer from a performance
problem. For example, executing a kernel build workload in QEMU results in a
slowdown of 33 times in comparison to execution on hardware [20]. When the
number of accessed physical pages is measured during simulation, the slowdown
increases to 165 times.

This slowdown limits the applicability of full-system simulation. Especially
simulation of long-running workloads takes such a long time that, despite the ad-
vantages, simulation becomes unfeasible. For example, the kernel build workload
in [20] would run for 1.4 hours on hardware. In contrast, in a simulator, the same
workload runs for nearly two days, namely for 46.9 hours.

Motivated by the increasing parallel processing power of current CPUs, it is
desirable to parallelize full-system simulation. There are approaches which are
able to parallelize simulation by executing the simulation of a number of CPU
cores on the same number of CPU cores on the host machine [9]. Even though
this can speed up the simulation of multi-core machines significantly, the execu-
tion speed of each core core is still low. This can only be improved by parallelizing
the simulation of a single core. SimuBoost aims to simulate the same system at
different points of time in parallel. For example, to simulate a three-second (s)

2.2. SIMUBOOST 7

Bare Hw-Virt. Simulation
Metal KVM QEMU1 QEMU2 Simics1

Linux 3.7.1 Kernel Build
MIPS 2314 2122 71 14 3
TTC [h] 1.4 1.6 46.9 238 1080
svirt/sim – ≈ 1 ≈ 33 ≈ 165 ≈ 771

SPECint base2006 1.2
MIPS 3108 2989 140 15 3
TTC [h] 6 6.3 133.2 1243.2 6216
svirt/sim – ≈ 1 ≈ 22 ≈ 207 ≈ 1036

LAMMPS Lennard Jones
MIPS 2495 2642 65 22 4
TTC [h] 1.8 1.7 69.1 204.1 1123
svirt/sim – ≈ 1 ≈ 38 ≈ 113 ≈ 624
1 Empty hooks without analysis overhead.
2 Hooks measuring accessed physical pages per second.

Table 1: Measurements were taken on a dual
socket Xeon E-2420 system, virtualizing/simulating
a single-core VM. The native execution was re-
stricted to a single core, accordingly. Functional
simulation incurs an avg. slowdown of ssim ≈ 31 for
QEMU and ssim = 810 for Simics. Performing anal-
yses heavily reduces execution speed further (for
QEMU in our example ssim ≈ 162).

SimuBoost strives to close the performance gap between vir-
tualization and functional simulation. The core idea is to
run the workload in a VM, taking checkpoints in regular in-
tervals. The parts between subsequent checkpoints are then
simulated and analyzed simultaneously in one job per inter-
val. By transferring jobs to multiple nodes, a parallelized
and distributed simulation of the target workload can be
achieved, thereby reducing the overall simulation time.

As we are still working on the implementation of SimuBoost,
we cannot provide empirical results, yet. Instead we give a
first evaluation of the practical feasibility of our approach
by presenting a formal model to describe its speedup and
scalability characteristics. SimuBoost can speed up conven-
tional simulation in a realistic scenario (parameter-wise) by
a factor of 84, while delivering a parallelization efficiency of
94% according to the model.

The remainder of this paper is structered as follows: Our
approach to parallelize functional simulation is described in
Section 2. Section 3 discusses the practical feasibility and
limitations of our acceleration technique. An overview of
prior work on acceleration of full system simulation is pro-
vided in Section 4. We conclude and give a prospect on
future work in Section 5.

2. APPROACH
Our approach delivers a method for functional simulation
that provides significantly faster execution than current im-
plementations and that makes inspecting the full run-time
feasible even for long-running workloads. Current acceler-
ation techniques for functional full system simulations (a)
limit costly inspections to short time frames, trading accu-
racy for speed or (b) do not scale beyond the simulated
parallelism. SimuBoost addresses these drawbacks.

The core idea of our acceleration technique is to split the
simulation time into independent intervals that can be sim-
ulated simultaneously with conventional functional simula-
tion (see Figure 1). The benefit of taking this approach as
foundation lies in the fact that it scales with the run-time of
the simulation: the longer the simulation (including analy-
sis) takes, the more intervals can be extracted and the higher
is the degree of parallelization. Opposed to approaches that
map simulated CPU cores in a multi-core simulation to real
parallelism in the host [6, 12, 26, 31], splitting the simulation
into intervals does not limit the degree of parallelization to
the number of simulated cores. This way our method is ap-
plicable even to single-core simulations. Moreover, since the
intervals can be processed independently, it allows distribut-
ing the simulation workload across multiple hosts. To match
the number of intervals to the available hardware resources
the interval length needs to be chosen accordingly.

Simulationi[2] i[k] i[n]i[1]vCPU

Node

1

Node

2

Node

k

Node

n
Sim.

Nodes

Figure 1: The simulation is split along the time axis
into n intervals; with n being the required degree of
parallelism. Each interval is simulated on a different
node (i.e., CPU core, host, etc.).

A fundamental challenge with this approach is that every in-
terval i[k] depends on the execution of the previous interval
i[k − 1]. The simulation of i[k] thus cannot be started in
advance without knowing the simulated machine’s state at
the beginning of i[k]. We solve this problem by utilizing vir-
tualization as a fast-forward execution mode to collect state
information as quickly as possible on-the-fly (see Figure 2).

Virtualizationi[k] i[n]i[1]
vCPU

Node 0

Node 1

Node k

Node n Simulationi[n]

Simulationi[k]

Simulationi[1]

Figure 2: The workload is executed with virtualiza-
tion. Checkpoints at the interval boundaries serve
as starting points for parallel simulations.

The virtual machine that is to be inspected runs on a dedi-
cated node managed by a hypervisor such as KVM [10]. At
each interval boundary the hypervisor takes a snapshot of
the full system state (i.e., memory content, device states,
HDD data, etc.). The checkpoints then serve as starting
points for simulations. Consequently, although each simula-
tion is delayed up to the point when the respective interval
is reached in the virtualization stage, the execution speed
difference between virtualization and functional simulation
enables a parallelization of the simulation.

Figure 2.1: SimuBoost simulation parallelization. Simulation runs in parallel
for different points in time. Through virtualization, the simulation can be boot-
strapped even though simulation of the previous interval has not yet finished.
Source: [20].

workload on a dual core system, the simulation would initially simulate the work-
load for the time intervals 0 s ≤ t < 1 s and 1 s ≤ t < 2 s in parallel on both cores.
Afterwards, it would simulate the workload for 2 s ≤ t < 3 s.

However, simulation is an inherently difficult problem to paralellize, because
every simulated instruction might modify the system’s state as well as depend
on the previous state. Thus, a parallelization approach that runs the simulation
at different points of time in parallel has to know about the previous state of the
simulation. However, this previous state might not yet be known, because the
simulations are executing in parallel and the simulation of the previous state might
still be running. In the example given above, the simulation for 1 s ≤ t < 2 s has to
know about the end state of simulation for 0 s ≤ t < 1 s, but since the simulations
are executing in parallel, the result is still unknown. Thus, for this approach to
work, the simulation would have to take a look into the future.

SimuBoost intends to use modern CPUs’ support for virtualization. Because
virtualization offers near-native execution speeds, executing a workload inside a
VM is much faster than in a full-system simulator. Therefore, virtualization allows
to predict the state of the simulation. This state can then be used to bootstrap the
simulation of intervals that would otherwise require the state of a still running
simulation interval. Figure 2.1 depicts this procedure.

To bootstrap the simulation, the VM’s state must be saved regularily. This
is called a VM checkpoint. The checkpoint interval length determines the possi-
ble speedup through parallelization. Rittinghaus et al. developed a mathematical
model to predict the speed up characteristics of SimuBoost [20]. With realistic
parameters, this model predicted a checkpointing interval of two seconds to offer
a speedup of 84 times in comparison to a traditional functional full-system simu-

8 CHAPTER 2. BACKGROUND

lator. Practical experiments have shown that the theoretical model yields accurate
predictions [10].

2.2.1 Simutrace

We have already stated that full-system simulation allows a developer to gain
greater insight in comparison to the debugging capabilities offered by hardware.
This is because simulation is fully software-based and therefore allows the de-
veloper to instrument every part of the system. Often, a developer will instrument
parts of the system to produce tracing data for later analysis. For example, it could
be interesting to investigate memory access patterns by a system. This would pro-
duce large amounts of data that has to be stored. The developer therefore needs
tools to support this task.

SimuBoost is therefore part of a tracing framework for full-system simula-
tion called Simutrace. It handles the collection, reduction and storage of tracing
data [19]. Collection is handled by an extension to a full-system simlulator (for
example, QEMU). The simulator then acts as a client of the Simutrace storage
server, where collected data is reduced (for example, compressed) and stored. A
developer can then connect an analysis client to the storage server to inspect the
collected data.

Communication between the storage server and its client (be it a collecting
client, i.e. a full-system simulator or an analyzing client) happens over a RPC in-
terface. In case the storage server and the client are running on the same machine,
data is exchanged over a shared memory segment. This allows for fast zero-copy
data transfer. The storage server can also run on a remote machine.

Simutrace calls the atomic entities that are stored entries. Each entry has a
type, which is used to determine its size. For example, when tracing memory
accesses, the developer may want to define a type that contains the address at
which the access happened, the type of access (read/write) and, if it was a write,
the updated contents of the respective page frame. Applications can then create
streams, where they can store entries of a single type. By restricting entries to
a fixed size, all entries in a stream can be accesed in O(1) [19]. We will now
give an overview on the most important functions of the Simutrace API and how
a developer will use them.

When applications want to store entries, they first create a stream for a cer-
tain type of entry (StStreamRegister()). After opening the stream for
writing (StStreamAppend()), applications can obtain a pointer to memory
where they can store the first entry by calling StGetNextEntryFast(). Af-
ter doing so, the application can obtain a new pointer to the next entry by calling
StGetNextEntryFast() again and so forth.

2.3. VIRTUAL MACHINE CHECKPOINTING 9

It is often difficult to predict the amount of data that is going to be stored
in a stream. Simutrace therefore does not know how much space is to be allo-
cated for a stream. To avoid expensive resize operations, the stream is buffered:
Simutrace allocates a buffer that is divided into segments. These segments are of
fixed size that suffices to store a number of entries. When the application calls
StGetNextEntryFast(), the pointer is moved inside the segment. If the ap-
plication reaches the end of a segment (i.e. there is no more space to store another
entry in the segment), Simutrace switches to a different segment in the buffer. It
can then start to process the data in the last segment fully asynchronously to the
application. Note that Simutrace will only make a call to the storage server when
it has reached the end of a segment. Otherwise, it will just increment the entry
counter and check if there is enough space in the segment to store the next entry.

2.3 Virtual Machine Checkpointing
A VM checkpoint saves the complete state of a virtual machine for later restore.
After restoring a checkpoint, the VM resumes execution as before. Thus, a check-
point usually involves saving the VM memory, disk and other device states, for
example the CPU’s state. With disks in the size of terabytes and memory in the
size of multiple gigabytes, VM checkpointing quickly becomes non-trival to han-
dle due to the amount of data.

Checkpointing approaches can be classified by the following properties:

Downtime The amount of time the VM is unavailable due to checkpointing. The
virtual machine monitor (VMM) stops VM execution during this time to
be able to save consistent state for the checkpoint. Downtime occurs once
per checkpoint interval. When the downtime becomes too high, interactive
use of the VM such as network communication or user interaction can be
negatively affected or are no longer possible.

Execution slowdown This describes by how much the VM execution is slowed
down due to checkpointing. This slowdown might for example originate
from increased memory access latencies by the VM. Even though both
downtime and execution slowdown influence the time when a VM will com-
plete a workload, we treat these seperately, because execution slowdown
does not impact VM interactivity in general.

Data amount The total amount of data produced. This is important for the effi-
cency of the checkpointing approach and can have implications for the VM
downtime, because less data must be copied.

10 CHAPTER 2. BACKGROUND

2.3.1 Pre-Copy Live Migration

Live migration moves a VM from one physical host to a different physical host
without noticeable interruption of VM execution. Because this involves transfer-
ing the VM state, the techniques used for live migration are also interesting for
checkpointing.

For live migration, it is important to reduce the downtime to ensure the mi-
gration works without noticeable interruption. It is thus undesireable to stop the
virtual machine on the source host while transfering all state to the destination
host. Instead, pre-copy live migration [7, 18] minimizes downtime by copying
memory concurrently to VM execution. Since the VM is running during the copy
operation, some of the copied pages have become dirty when the copy operation
has finished. Thus, after the complete physical memory has been transfered to the
destination host, dirty pages still remain to be send. They will then again be trans-
fered concurrently to VM execution. This process is repeated until the number of
dirty pages reaches a certain threshold. Then, the VM execution is stopped and
the remaining dirty pages are copied. After that, VM execution can resume on the
destination host.

This approach works because the number of pages to be copied decreases
significantly in each copy round. During the first copy round, where the whole
physical memory is copied, it is likely that the working set of the VM consists
of a number of pages that is much smaller than the physical memory. In the next
round, because less pages must be copied, less time is spent copying the pages
and thus it is likely that the working set will be even smaller than before and so
forth. After some time, the number of dirty pages will be small enough so the
copy operation will have acceptable downtime.

This approach can also be adapted for checkpointing by simply writing the
transferred data to a file instead of sending it to a different VM host. Ta-Shma et
al. implemented continuous data protection on the Xen hypervisor by means of
pre-copy live migration to the same host [23].

2.3.2 Incremental Deduplicating Checkpointing

While live migration only requires a single checkpoint, continuous data protec-
tion or SimuBoost require a high frequency of checkpoints. This imposes new
challenges on the checkpointing mechanism. For example, downtime imposed
by checkpointing would occur at each checkpointing interval, rendering the re-
duction of downtime even more important. However, because the same VM is
checkpointed over and over again, this presents potential for improvements that
are not effective with only a single checkpoint. In this section, we will discuss
these potentials.

2.4. VIRTUAL MACHINE MEMORY MANAGEMENT 11

Because not all page frames of a virtual machine are changed in a checkpoint
interval, it is unnecessary to copy the whole physical memory of the virtual ma-
chine. Rather, it suffices to save the complete physical memory once on the first
checkpoint. In all following checkpoints, only frames which were changed by the
virtual machine in this checkpointing interval must be saved. We refer to these
pages as dirty frames or dirty pages. The contents of non-dirty frames can then be
obtained from the previous checkpoints.

Similarily, only a subset of disk sectors will change in a checkpointing interval
and the same strategy can also be applied to the disk image of a virtual machine.
Hereafter, we will call this mechanism incremental checkpointing.

Incremental checkpointing has found application in a number of cases. Re-
mus [8] and Kemari [24] replicate a VM to a backup host by means of incremen-
tal checkpointing to achieve high availability. King et al. [16] employed incre-
mental checkpointing to solve problems in operating system debugging such as
non-determinism and influence of the debugging process on the system itself.

In [4], Baudis measured the amount of dirty frames during a kernel build. For a
two second checkpointing interval, the number of dirty frames averaged at 25 352.
For a virtual machine with 2 GiB of RAM, this reduced the amount of data to be
copied to about 5 % - 10 % and thus greatly improved efficency.

Baudis also found that it is possible to reduce the amount of data through
deduplication of page frames and disk sectors. By hashing the contents of pages
and disk sectors, those with duplicate content can be identified and thus must only
be saved once. Duplicates could be identified within a checkpoint as well as across
checkpoints.

2.4 Virtual Machine Memory Management

An important part of virtualization lies within the memory virtualization. The VM
will use the same techniques as it would when it was running on real hardware,
that means it will expect to be in full control of the whole physical memory and
will set up page tables to manage its memory. However, these page tables will
translate from guest virtual addresses (GVAs) to guest physical addresses (GPAs).
Because the VM actually shares the host physical address space with other VMs,
another translation step is needed: GPAs must be translated to host physical ad-
dresses (HPAs).

This section will only take into account virtual machine memory management
on the x86 architecture.

12 CHAPTER 2. BACKGROUND

Process 1 Process 2

Host Physical
Memory

Guest A

Guest Physical
Memory

Guest Page Table Mappings for Process 1

Guest Page Table Mappings for Process 2

Shadow Page Table Mappings for Process 1

Shadow Page Table Mappings for Process 2

Figure 2.2: Shadow Page Tables: The guest page tables translate from guest vir-
tual addresses to guest physical addresses. However, to ensure isolation, these
page tables are not used for address translation. Instead, the VMM sets up shadow
page tables which translate directly from guest virtual addresses to host physical
addresses.

2.4. VIRTUAL MACHINE MEMORY MANAGEMENT 13

2.4.1 Shadow Page Tables

For each of its virtual address spaces (i.e. for each of its proccesses), the VM
will set up a page table. These page tables will contain mappings from the guest’s
view, that means they will translate from GVAs to GPAs. When hardware does
not support additional mechanisms for VM memory, it will expect these page
tables to translate to the host physical address space. Therefore, the mappings set
up by the guest are incorrect, because the VM actually shares the host physical
address space with other VMs. To preserve isolation between VMs, the VMM
must intercept all attempts of the VM to install page tables (i.e. writes to the CR3
register) and instead install shadow page tables (SPTs). Shadow page tables will
then contain the correct mappings from GVAs to HPAs [12]. For each virtual
address space in each guest (and therefore each page table in each guest), one
shadow page table is needed.

The VMM must take care that shadow page tables stay synchronized with
guest page tables. When the guest updates a mapping in its page tables, the up-
dated mapping must be reflected in the shadow page tables (with the modification
of translating GPA to HPA, of course). Such updates can for example be detected
by trapping translation lookaside buffer (TLB) flushes inside the guest [2].

Because page faults of the guest will initially trap into the VMM (and are then
maybe injected into the guest), a missing mapping in the shadow page tables is not
critical. This allows for lazy build of the shadow page tables: when a page fault
occurs, the VMM can walk the GPT and fill the shadow page tables accordingly.

2.4.2 Two-Dimensional Paging

Because a large part of functionality is implemented in software, shadow page
tables are not optimal. For example, for each context switch inside the VM, the
VMM must be involved to reflect the context switch in the shadow page tables [2].

Processor manufacturers have therefore introduced hardware support for VM
memory management in their products. Intel calls this feature "Extended Page
Tables" (EPT), for AMD it is called "Rapid Virtualization Indexing"1. As both
features are conceptually similar, we will use two-dimensional paging (TDP) as
a vendor-neutral term. With TDP, additional levels of page tables are introduced
that translate from GPAs to HPAs. These page tables are called nested page tables2

(NPTs).

1older documents from AMD sometimes refer to this as as "Nested Page Tables"
2In KVM, this page tables are also refered to as shadow page tables. However, as these per-

form an entirely different translation when TDP is used, the author wants to differentiate be-
tween these to avoid confusion. Detailed information can be found in the Linux kernel source in
Documentation/virtual/kvm/mmu.txt.

14 CHAPTER 2. BACKGROUND

These are exposed to the hardware, so in case of a page fault, hardware can
first walk the GPT to perform the GVA to GPA translation and then walk the
NPT to perform the GPA to HPA translation. Because the hardware performs this
additional translation step, isolation can be preserved even when the guest has full
control over its page tables. Thus, the VMM can grant write access on the CR3
register to the VM and the VMM does not need to be involved when a context
switch occurs inside a guest.

Benchmarks by VMWare and AMD [2, 12] have generally found TDP to be
beneficial for performance. However, because of the additional translation steps
introduced, the benchmarks have shown that applications that stress the TLB can
suffer from worse performance when TDP is used. This is because TDP intro-
duces additional levels of page tables that must be consulted. However, by using
large pages in the NPT and thereby reducing the number of page table levels to
look up, this performance regression can be avoided.

Chapter 3

Analysis

In this chapter, we will first discuss challenges that checkpointing techniques must
face, namely the amount of data to be saved and the downtime imposed on the
VM. For each of these challenges, we will show why they are relevant and then
afterwards evaluate existing techniques to tackle these problems. Then, we present
their respective advantages and disadvantages with focus on their applicability to
high-frequency checkpointing.

3.1 Checkpointing
Checkpointing is the proccess of saving a VM’s state in a way that allows for later
restore. It is also sometimes refered to as snapshotting. In this thesis, we focus
on high-frequency checkpointing that aims to save the VM state in recurring in-
tervals, each with a length of a few seconds. During an interval, a workload is
executing in the VM. When the interval comes to its end, VM execution is inter-
rupted and downtime occurs. When downtime occurs, a checkpoint is produced. It
contains the state of the virtual machine at the end of a checkpointing interval, i.e
its RAM, its disk and its device states. By the checkpointing phase, we hereafter
refer to the time during that the checkpointing mechanism is running, i.e. the time
between the first VM downtime and the last VM downtime. This terminology is
depicted in Figure 3.1.

15

16 CHAPTER 3. ANALYSIS

IntervalDowntime Downtime

Workload

Checkpoint

...Workload

Checkpointing Phase

RAM

Disk

Devices

Checkpoint

RAM

Disk

Devices

Figure 3.1: Checkpointing terminology. A workload executes in the VM. Dur-
ing the checkpointing phase, multiple instances of downtime occur in the VM.
Each downtime produces a checkpoint that contains the VM state at the end of an
interval.

3.2 Data Amount Considerations

With today’s computers reaching multiple of gigabytes in main memory and ter-
abytes for storage, the amount of data that has to be saved to capture the VM’s
complete state has become non-trivial to handle. Therefore, an important design
goal for checkpointing techniques is to reduce the amount of data that must be
saved on each checkpoint. However, it is important to preserve correctness, i.e.
the created checkpoints must allow for the complete restore of the VM’s state as
it was during checkpointing.

3.2.1 Incremental Checkpointing

During VM execution, a significant amount of data will remain static [4], i.e. it
will not change or will only change very seldom. This affects disk sectors, but

3.2. DATA AMOUNT CONSIDERATIONS 17

also memory pages. When a page or disk sector has changed in a checkpointing
interval we will call it dirty hereafter. Data that was not changed in an checkpoint
interval can simply be obtained from the last checkpoint it was changed in. It is
therefore unnecessary to save this data when it has not changed. To ensure all
data is saved, even when it is not modified in any later checkpoint, all data must
be considered dirty on the first checkpoint. We call this approach incremental
checkpointing.

For incremental checkpointing to work, the VMM must keep track of dirty
data. For memory, it can do so by write protecting the guest memory in the shadow
page tables or in the nested page tables, respectively. This will notify the VMM
(for example, through a page fault) when the guest modifies a page in memory.
The page fault initially traps into the VMM where it can mark the page as dirty in
its internal data structures and remove write protection from the respective page.
Thus, the page fault occurs only on the first write access in a checkpoint interval,
minimizing the performance impact on the guest.

Baudis has measured the amount of dirty data in a checkpointing interval [4].
For a kernel build workload, he has found that incremental checkpointing will re-
duce the amount of memory pages to be saved to about 5 % to 10 % of all pages.
In contrast, for workloads with high memory load such as the STREAM bench-
mark, the benefit of incremental checkpointing was much lower. It decreased the
amount of pages to be saved to 54 % - 64 %.

Due to the incremental nature of this approach restoring becomes a more com-
plex operation. A checkpoint that was created by copying disk or memory bit-by-
bit for each checkpoint interval can simply be restored by copying the data back
into the VM’s memory or onto its harddisk. In contrast, for incremental check-
pointing, data that has not been changed in a checkpoint interval must be obtained
from a previous checkpoint. An index must be maintained to determine where
the checkpoint data can be obtained from. When data has remained unchanged
for a large amount of checkpoints, old checkpoints might have to be consulted to
restore a current checkpoint. This has to be considered when moving old check-
points to cold storage1, as they might still be important for restoring relatively
new checkpoints. Additionally, data that must be loaded is likely to be distributed
over multiple checkpoints. This also means that the checkpoint data is likely also
scattered through the host’s disk. In comparison to bit-by-bit copies of the mem-
ory or disk on each checkpoint interval, more seeking is required on the disk and
thus restoring will be slower. Although solid state disks (SSDs) perform better
for data that is scattered over the disk, the restore performance will still be worse.
This is because checkpoints are potentially scattered over multiple files and there-

1large storage that cannot be accessed as fast as local disks, for example tapes

18 CHAPTER 3. ANALYSIS

fore more system calls are required for reading and techniques such as read-ahead
cannot be as effective.

3.2.2 Deduplication
Incremental checkpointing reduces the amount of data that must be considered
for a checkpoint, thus eliminating duplicate data between checkpoints. However,
duplicate data that for example originates from the VM writing identical data to
two different pages, is still written twice. This problem can be solved through
deduplication. In [4], Baudis used a hash function to identify duplicate pages.
During a kernel build with a checkpointing interval of two seconds, deduplication
could reduce the amount of saved pages by 11 % to 52 %. The disk deduplication
rate for the same workload was between 7 % and 71 %.

While Baudis has treated disk and memory deduplication separately, Eicher
[10] has introduced deduplication across disk sectors and memory pages. This
has reduced the number of disk sectors to be saved. For a kernel build workload,
86 % of all dirty disk sectors could be deduplicated against memory (in a two
second checkpointing interval). This is because most disk sectors are initially
loaded into memory after reading from disk. This means that disk checkpointing
automatically benefits from improvements to memory checkpoining.

3.3 Downtime Considerations
Downtime is the amount of time a VM is unavailable due to checkpointing. It
is necessary because the VM might modify its state during checkpointing. The
VMM therefore has to stop VM execution to be able to save a consistent VM
state.

Some workloads are significantly disturbed by high downtime. For example,
human users that interact with a VM during a desktop workload will be signifi-
cantly disturbed in their activities by any noticeable VM downtime. Because the
VM is completely stopped during downtime, there will be no feedback on the
user’s activities during downtime: for example, the VM will not even update the
position of the mouse cursor during that time. Users could think the VM has
locked up during downtime, because it does not respond to their inputs.

Workloads that require network connectivity are also disturbed by high VM
downtime. When using a TCP connection to transfer data between hosts, a down-
time that is higher than or close to the TCP retransmission timeout might lead to
retransmits, because the VM cannot acknowledge data during downtime. In [15],
these retransmits have been identified as the main factor for increased application
response times during VM live migration.

3.3. DOWNTIME CONSIDERATIONS 19

Additionally, some TCP implementations use the round trip time (RTT) be-
tween hosts as a congestion indicator. When VM downtime occurs, the VM
cannot generate acknowledgement packets (ACKs). It will generate these ACKs
when downtime has ended. However, for RTT measurements, the processing time
on the destination host is usually assumed to be neglectible. Thus, VM downtime
will be accounted to the RTT. The communication partner might incorrectly as-
sume a congestion event and thus reduce its congestion window and transfer less
data than the actual connection would allow for.

For these reasons, it is desireable to reduce downtime to a minimum.

3.3.1 Stop-And-Copy
In the simplest case, VM execution is stopped while copying all of the VM’s state.
Stopping happens even if the VM does not modify memory or disk and therefore a
consistent disk and memory checkpoint would be possible during VM execution.
This approach is mainly interesting because it comes without runtime implications
for the virtual machine: The performance is not affected during VM execution.

With the stop-and-copy approach, downtime is mainly depends on the amount
of data to be saved: as all data is copied during VM downtime, more data to copy
automatically results in more downtime. Thus, the techniques for reducing the
data amount as described in the previous section can improve downtime signifi-
cantly.

However, the database used for checkpoint storage in Baudis’ implementation
accounted for a great amount of downtime and thus made it difficult to reach the
downtime requirements of interactive applications. In [10], Eicher has shown that
replacing the database as used by Baudis with a simple memcpy operation can
significantly improve VM downtime. With the I/O intensive Bonnie benchmark,
memory checkpointing downtimes could be reduced to 166 ms for a two-second
checkpointing interval and to 305 ms for a four-second checkpointing interval.
However, for larger checkpoint intervals such as ten seconds, downtime increased
to 1160 ms. This motivates the search for solutions which further reduce down-
time.

3.3.2 Pre-Copy
Pre-Copy is an effective technique to reduce downtime, that is primarily used
in VM live migration. VM live migration aims to move a VM from one VM
host to another VM host, without noticeably affecting VM execution. This makes
the stop-and-copy approach undesireable, because its downtime depends on the
amount of data to be saved. Note that live migration does not benefit from incre-
mental checkpointing, as only one checkpoint is required to transfer the VM to a

20 CHAPTER 3. ANALYSIS

Interval Component Mean Time StDev Median

2 s
Disk 1 ms 4 ms 0 ms
Device states 7 ms 0 ms 7 ms
RAM 76 ms 297 ms 45 ms

8 s
Disk 4 ms 9 ms 2 ms
Device states 7 ms 0 ms 7 ms
RAM 187 ms 818 ms 56 ms

Table 3.1: Stop-and-copy checkpointing: Composition of downtime per check-
point for two-second and eight-second checkpointing intervals

new host. In this case, incremental checkpointing does not offer any advantage,
as there are no previous checkpoints from which non-dirty data can be obtained.

We have performed measurements on Eicher’s implementation to analyze the
composition of the downtime. Our results for a two-second checkpointing interval
are presented in Table 3.1. The table shows that downtime in the stop-and-copy
approach mainly originates from copying RAM pages. It is therefore desireable to
reduce the time needed to copy memory pages. Usually, the VM will have pages
which will not be modified during live migration. Thus, it is unnecessary to stop
the VM when these pages are copied: a consistent copy can be obtained while the
VM is currently running. In contrast, pages that are modified by the VM during
live migration cannot be copied during VM execution because the copy might
become inconsistent through a concurrent write access. These pages comprise
the writeable working set (WWS). The pre-copy approach strives to minimize
VM downtime by copying only the writeable working set during downtime and
copying all other pages while the VM is currently running [7].

The problem lies within the estimation of the WWS. The VM’s behavior can-
not exactly be predicted, but only estimated. Pages that were estimated to be
outside the WWS, but are actually in the WWS could be inconsistent, because the
copy operation and the VM write might have occured at the same time. However,
after copying the estimated WWS, it is easy to find the pages which were incor-
rectly estimated by obtaining the list of dirty pages. These pages comprise the
actual and accurate WWS.

By intersecting the set of pages that were estimated to lie outside the WWS
with the set of dirty pages, the VMM is able to determine the set of pages that
could be inconsistent. It can then attempt to copy the remaining pages in a further
copy round. This is repeated until the number of remaining pages drops below
a certain threshold. Because this number is much lower than the total number
of pages to be copied, downtime can be significantly reduced. Then, the VM
execution is stopped and the remaining pages are copied.

3.4. CONCLUSION 21

While the pre-copy approach works for VM live migration it is less suited
for high frequency checkpointing. The reasons for this are threefold. First, as
shown in [15] pre-copy checkpointing can affect the response time of a multi-
tier application running inside the virtual machine and can therefore affect results
when using checkpoints to bootstrap a simulation, such as in SimuBoost. Second,
pre-copy cannot avoid significant downtime for workloads with a large writeable
working set. As the VM is normally able to dirty pages at a higher rate than
they can be copied, a significant number of pages can remain to be copied during
downtime [7, see diabolical workload]. At last, the pages that are not part of the
writeable working set are already handled by incremental checkpointing: these
pages are not dirtied and thus will not be copied on subsequent checkpoints. The
optimizations of pre-copy checkpointing will therefore be mainly relevant on the
first checkpoint and largely irrelevant on consequent checkpoints.

3.3.3 Copy-On-Write
VM live migration migrates a VM from a host system to a different host system.
After the migration, the VM continues to run on the new host system and no
longer runs on the old host system. In contrast, VM replication introduces fault
tolerance for a VM. It continuously replicates the VM to a backup host, while
the VM continues to run on the main host. Upon failure of the main host, VM
execution can then transparently resume on the backup host.

Because the replication occurs continuously, it is especially important to re-
duce the downtime imposed on the VM. Gerofi et al. [11] have utilized similarities
in memory pages to speed up the replication and therefore the required downtime.
To ensure page contents do not change during similarity analysis, they have em-
ployed copy-on-write (CoW) for the virtual machine’s memory. Unfortunately,
the focus of their work lies within similarity analysis and they do not present de-
tails on their CoW implementation and performance.

Sun et al. [22] have implemented CoW checkpointing for the Xen hypervisor.
However, their evaluation focuses on long checkpointing intervals (more than 30
seconds). Also, they have not investigated if their checkpointing mechanism slows
down the workload running in the VM.

It is therefore desireable to further investigate a CoW-based checkpointing
mechanism and its suitability for high-frequency checkpointing.

3.4 Conclusion
In this chapter, we have identified downtime as a core problem of high frequency
VM checkpointing. Existing work has shown that reducing the amount of data to

22 CHAPTER 3. ANALYSIS

be saved on each checkpoint will improve downtime. For some workloads, for
example interactive use by humans or use of the network, these downtimes are
still too high and thus have to be improved.

For VM live migration, we found that pre-copy is a promising approach to re-
duce downtime. However, we found it to be unsuitable for high frequency check-
pointing, because significant downtime can remain with particular workloads and
the advantages offered by pre-copy are minimal when using incremental check-
pointing. This motivates the search for a checkpointing approach that solves the
downtime problem and is suitable for high frequency checkpointing.

However, copying pages concurrently to VM execution, as done in pre-copy
checkpointing, can help reduce the VM downtime and is therefore an interesting
approach to consider for high-frequency checkpointing.

Also, we have determined that through deduplication across disk and memory
we can reduce the number of disk sectors to be saved. Our work will therefore
focus on memory checkpointing.

Chapter 4

Design

This chapter initially defines the design goals for our implementation and explains
their importance. Afterwards, we will derive a suitable checkpointing mechanism
from these goals. Then, we present which problems a suitable implementation
must solve. Afterwards, we present how we designed the interfaces our imple-
mentation will use to communicate with existing implementations, i.e. Simutrace.

4.1 Design goals

The most important aspect of a checkpointing mechanism is that it saves the state
of a VM in a way that allows for a complete restore of the saved state without
error. For the VM’s memory, this can be verified by comparing the memory before
taking a checkpoint with the memory after restoring the checkpoint. If there are
no differences, the checkpointing mechanism preserved the memory of the VM
and is therefore correct.

Furthermore, our approach should work with an unmodified VM workload, i.e.
an unmodified VM operating system and unmodified applications inside the VM.
This maximizes the applicability of our approach to all workloads that can run
inside a VM: because the workload running inside the VM must not be modi-
fied, development costs for the checkpoint mechanism arise only from the initial
implementation of the checkpointing mechanism and not for every workload run
inside the VM. The implementation is then also independant from OS or appli-
cation versions running in the VM and new releases of these components do not
require adjustments.

As described in the previous chapter, existing checkpointing techniques, for
example the pre-copy or stop-and-copy approaches, often suffer from unaccept-
able downtime. High downtimes make the checkpointing mechanism unsuitable

23

24 CHAPTER 4. DESIGN

for interactive use and workloads utilizing the network. For these reasons, it is our
goal to minimize downtime needed for checkpointing.

Moreover, the implementation should keep in mind that checkpointing can in-
fluence the performance of the workload running inside the VM. For example,
additional memory accesses for copying the guest memory will slow down mem-
ory accesses inside the guest. While such influences can of course not entirely be
avoided, the design must keep this in mind. Therefore, our design should have a
limited runtime impact on the workload running inside the VM.

Lastly, we want our implementation to be suitable for high-frequency check-
pointing intervals. Thus, our implementation must copy dirty pages fast enough
to be finished before the next checkpointing interval arrives.

4.2 Mechanism

In the last chapter, we have seen that incremental checkpointing reduces the amount
of data to be considered by a great amount. Our design therefore will make use
of incremental checkpointing. As shown before, incremental checkpointing can
however still result in significant downtime.

Downtime can however not entirely be avoided. For example, the VM execu-
tion has to be interrupted to capture a consistent view of the CPU’s state, such as
its registers. It is therefore desireable to do only lightweight and fast operations
during downtime and perform heavyweight operations that take long time con-
currently to VM execution. We have already identified that copying dirty pages
comprises the largest part of VM downtime. Consequently, to reduce downtime,
copying dirty pages should be performed concurrently to VM execution.

However, this results in a data loss problem. Because VM execution continues
while copying dirty pages, the VM might modify a dirty page, destorying its origi-
nal contents. Pre-copy solves the data loss problem by simply performing multiple
copy rounds and then stopping VM execution to finally capture a consistent view.
So some pages are still copied during VM downtime and this is part of the reason
why the pre-copy approach exhibits undesireable performance characteristics for
some workloads, such as multi-tier applications.

We want to avoid this influence on applications and therefore need a different
solution to the data loss problem. Instead of multiple copy rounds, we want to
avoid the occurence of possibly inconsistent copies in the first place. This can
be achieved by a copy-on-write (CoW) mechanism: the VMM intercepts write
operations of the VM and copies pages before they have been written by the VM.
Consequently, there are two cases for a dirty page:

4.2. MECHANISM 25

• The page was copied before the VM attempted a write access to the page
and thus could be safely copied concurrently to VM execution. We call this
case the concurrent copy case.

• The page is copied because the VM attempted a write access and thus must
be copied to preserve the page contents. We call this case the copy-on-write
case.

Note that because of the copy-on-write mechanism the checkpoint for an in-
terval i is not available immediately after the VM downtime. Instead, it is con-
structed during VM execution in the interval i+1. The application consuming the
checkpoints must take this into account.

Copy-On-Write Case To preserve correctness, it is important in the copy-on-
write case to save the contents of a page before the VM actually modified it.
Because we want our implementation to work with unmodified VM operating
systems, the VMM must be instrumented to intercept write accesses by the VM.

To do so, we can utilize techniques from VM live migration: To allow for
pre-copy live migration, most VMMs already keep track of the dirty pages within
the VM. This can be achieved by write protecting the VM’s pages in the NPT1.
When the VM modifies a page that is write protected the VMM will be notified2

and can then mark the page as dirty in its data structures. Instead of just marking
the page as dirty, we can instrument this handler to save the original page contents
and thereby implement copy-on-write.

Concurrent Copy Case To reduce the amount of data to be saved, our approach
will make use of incremental checkpointing, i.e. only pages that have been modi-
fied in a checkpointing interval will be saved. All other pages are can be obtained
from previous checkpoints upon restore. Therefore, we obtain a list of dirty pages
at the checkpointing interval. In the concurrent copy case, we can then simply
iterate over this list and copy all pages in the list.

When a page is being copied in the concurrent copy case, the VM might con-
currently modify it. Therefore, the copy obtained might become inconsistent. An
implementation has two choices to handle this:

1Alternatively, when not using TDP, the write protection is applied to the SPT. Some
hardware also supports logging the dirty pages without write protection, for example In-
tel CPUs with Page Modification Logging (PML). For more information about PML
see http://www.intel.de/content/dam/www/public/us/en/documents/
white-papers/page-modification-logging-vmm-white-paper.pdf.

2How the actual notification is performed is vendor-specific. In the case of Intel’s EPT, a
VMEXIT with the "EPT Violation" exit code is triggered.

http://www.intel.de/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf

26 CHAPTER 4. DESIGN

• accept the inconsistent copy and fix the problem later. This means that the
concurrent copy case will obtain a (possibly) inconsistent copy of the page.
But, because the VM modified a page, the copy-on-write case will also be
triggered for the same page. Due to the the copy-on-write case interrupting
VM execution, the copy obtained by it is guaranteed to be consistent. If a
page was copied by the concurrent copy case and the copy-on-write case
in a checkpointing interval, the VMM can discard the copy made by the
concurrent copy case (because it does not know whether this copy is consis-
tent). The advantage is that no synchronization between the copy-on-write
case and the concurrent copy case is needed for ensuring a consistent copy.

• allow only one consistent copy. In the first approach, the copy obtained by
the concurrent copy case is unnecessary. By introducing a synchronization
mechanism that ensures VM execution is interrupted when the VM modi-
fies a page that is currently being copied by the concurrent copy case, the
unneccessary copy can be eliminated.

In our design, we have decided for the last option to eliminate unneccessary
copies.

Even though VM execution cannot continue during the copy operation in the
copy-on-write case, we expect that interactivity can be preserved. On the one
hand, with peak memory bandwiths in the range of multiple gigabytes per second,
copying a single 4K page is sub-millisecond operation and thus hardly noticeable.
On the other hand, we will be copying pages concurrently to VM execution. This
means that there is a reasonable chance the page was already copied before the
VM attempts to modify it. This reduces the number of pages that would be copied
in the copy-on-write case and thus reduces the number of times the VM execution
must be interrupted.

4.2.1 Procedure

These considerations lead us to the following procedure for copy-on-write check-
pointing:

1. Stop VM execution to copy device states and dirty disk sectors.

2. Obtain a list of dirty frames in the checkpointing interval that has just ended
and write protect all frames to ensure write accesses can be intercepted by
the VMM.

3. Resume VM execution, intercepting all memory writes.

4.2. MECHANISM 27

4. During VM execution, iterate over the list of dirty pages and copy each dirty
page.

By write protecting all page frames, we ensure that the VMM is notified of
all write accesses to pages. The VMM can then check if the respective page is
contained in the list of dirty pages and create a copy if so. Otherwise, the page
was not modified and can be obtained from a previous checkpoint. In this case, the
VMM will just mark the page as dirty, i.e. as to be saved at the next checkpointing
interval. Figure 4.1 illustrates this procedure.

VM
Execution

Down-
time

Copy
On

Write

Concurrent Page Copy

Mark
as

dirty

VM
Execution

VM Execution

Save device
states &

disk

Write
access
to dirty

page

Write
access
to non-

dirty
page

Time

Down-
time

Save device
states &

disk

...

...

Figure 4.1: Copy-On-Write Procedure: When the checkpoint interval arrives, the
VMM interrupts VM execution to save device states and disk. VM execution is
then resumed and VM memory is copied concurrently to execution. To ensure a
consistent copy, copy-on-write is used.

28 CHAPTER 4. DESIGN

4.3 Conclusion
In conclusion, downtime cannot be entirely avoided during checkpointing. We
have however determined that the downtime characteristics of the stop-and-copy
approach can be improved upon by performing only lightweight operations dur-
ing VM downtime and delaying heavyweight operations until the VM execution
continues. Pre-copy follows this approach by copying dirty pages while the VM
is running and only leaving a smaller number of pages to be copied during VM
downtime.

Because this final copy round during downtime is the main reason for perfor-
mance problems with some workloads in the pre-copy approach, we have chosen
a copy-on-write approach as a different solution to the data loss problem.

Chapter 5

Implementation

In this chapter, we will describe our implementation. To do so, we will first show
how we integrated our approach with existing software and Afterwards, we will
detail our implementation in kernel space, with focus on the copy-on-write and
the concurrent copy case implementation.

5.1 Technology integration

Eicher [10] has already implemented incremental deduplicating stop-and-copy
checkpointing. His implementation extends QEMU and Simutrace. QEMU runs
the VM and performs the actual checkpointing, while Simutrace is responsible
for deduplication and data storage. KVM is employed by QEMU to access the
virtualization capabilities of the CPU. To be able to focus on the copy-on-write
mechanism and to profit from its optimizations (such as deduplication), we base
our implementation on the existing work.

Eicher’s implementation uses QEMU version 1.5.50. Its checkpointing mech-
anism was solely implemented by modifying the user space part of the VMM,
the kernel space part could be left unmodified. This is in contrast to our mech-
anism, that also requires changes to the kernel space part. The reason for this is
that, for the copy-on-write case, our implementation must be notified of write ac-
cesses by the VM. The Linux kernel does not currently expose a mechanism that
allows the user space to be notified of these writes1. It is therefore desireable to
use a VMM whose source code is freely available and that is compatible with the
existing QEMU. We therefore decided to modify Linux Kernel Virtual Machine
(KVM) in Linux kernel 4.0.

1Andrea Arcangeli is however working on a patch set [3] that allows handling page faults in
user space.

29

30 CHAPTER 5. IMPLEMENTATION

5.1.1 Simutrace

In 2.2.1, we have already described how Simutrace achieves zero-copy data trans-
fer from the client to the storage server. For optimal performance, our implemen-
tation should try to preserve these zero-copy characteristics of Simutrace. While
Simutrace is an user space application, copies of the VM’s dirty pages will be
made in kernel space. We therefore need a mechanism that is able to transfer the
pages from kernel space to user space, while at the same time trying to maintain
the zero-copy characteristics.

To avoid additional copies, we must directly access the Simutrace buffer from
the kernel. In the kernel, we cannot simply directly access user space memory,
because the respective pages may for example have been swapped out. Care
must be taken that these cases are correctly handled. We could do so using the
copy_to_user() function, but this would be costly in terms of performance,
because this function has to perform checks, such as the validity of the passed
addresses, on each call. In our case, this would mean that these checks are done
for each page of the VM we copy during checkpointing. Instead, we decided to
establish a persistent mapping of the Simutrace shared memory in the kernel. This
way, the performance overhead only occurs once at the first checkpoint and not
repeatedly for each copied page.

An user space application would normally just call StGetNextEntryFast()
after each copied page. Simutrace will then advance the pointer in the segment,
only involving the storage server when the segment is full. As the name suggests,
this call is normally very fast as long as there is enough space in the segment.
If we would use this call after each written page, this would negatively impact
performance, because each call would have to cross the kernel space boundary.

To solve this problem, we can just duplicate StGetNextEntryFast() in
the kernel as long as there is enough space in the segment. We pass its address and
size to the kernel, where we write to the segment until it is full. When this happens,
we can return to user space to actually submit the entries and to obtain the pointer
to the next segment. We call this mechanism a memory proxy, because the user
space proxies the memory requests of the kernel to Simutrace. The memory proxy
is implemented as a QEMU thread that waits in kernel until it either the segment
is full or the checkpoint has finished. The action to take is then indicated by the
return code. This mechanism is detailed in the next section.

5.1.2 KVM API

This mechanism obviously needs an interface between kernel space and user
space, over that this communication can occur. To make this interface fit the
existing KVM API, we quickly take a look at how the KVM API is designed.

5.1. TECHNOLOGY INTEGRATION 31

While system calls are the traditional mechanism for user space applications
to use services offered by the kernel, there are several other mechanisms. An
important example are I/O controls (ioctls). The main difference between a
system call and an ioctl is that ioctls are executed on a file descriptor and
therefore are associated with that file descriptor. The available ioctls depend
on the file to which the file descriptor is associated to. The KVM API consists of
a range of ioctls. There are three classes of ioctls in the KVM API [1]:

System ioctls affect the whole KVM subsystem. Also used to create a new
virtual machine. These are executed on a file descriptor of the /dev/kvm
device.

VM ioctls affect an entire VM, for example the VM memory. These are exe-
cuted on a file descriptor obtained by the KVM_CREATE_VM system ioctl.

VCPU ioctls affect a single virtual CPU. These are executed on a file descrip-
tor obtained by the KVM_CREATE_VCPU VM ioctl.

ioctls that take arguments provide a pointer to a struct in user space. The
kernel can then copy this struct. As our implementation will operate on the VM’s
memory, we will implement the following VM ioctls:

KVM_COW_CHECKPOINT signals that a checkpoint is to be performed now. To
ensure a consistent checkpoint, this ioctl should only be executed when
user space has stopped the VM. The kernel will then prepare the checkpoint,
for example take a snapshot of the dirty bitmap. User space should have
saved device states and disk sectors before calling this ioctl. When user
space resumes VM execution, copy-on-write will be active.

KVM_SET_MEMCOW_REGION provides a memory segment to the kernel where
it can store dirty pages. Beside error cases, this ioctl can exit with the
following return codes:

• KVM_MEMCOW_NEED_MORE_MEM indicates that the region provided
by user space is full. User space is expected to proxy this request to
Simutrace.

• KVM_MEMCOW_CHECKPOINT_FINISHED: indicates that the check-
point has been finished and all dirty pages were saved. The last seg-
ment provided to the kernel contains data that is to be submitted to
Simutrace.

32 CHAPTER 5. IMPLEMENTATION

5.2 Kernel Space Implementation
Our implementation requires modification of the VMM page fault handler. There-
fore, we have decided to modify the Linux KVM kernel module as included in
Linux 4.0.0 to implement copy-on-write checkpointing.

5.2.1 Concurrent Copy Case
The copy-on-write case instruments the VMM page fault handler and therefore
must run in kernel space. To make communication between the concurrent copy
case and the copy-on-write case easier, we have decided to also move the concur-
rent copy case to kernel space. In an user space thread that controlls checkpoint-
ing, QEMU provides a memory segment to the kernel via the KVM_SET_MEMCOW_REGION
ioctl. This thread remains in kernel space while dirty pages are copied to the
segment. When the segment is full, the ioctl returns with the corresponding
exit code (as described in Section 5.1.2) and QEMU proxies the memory request
to Simutrace. When the checkpoint has been finished, the ioctl will return with
a different exit code.

The actual copy of the dirty pages is then performed while the ioctl is in ker-
nel mode. Similar to the Simutrace segment mentioned earlier, we had originally
planned to also establish a mapping of the VM’s memory in the kernel. However,
this approach was proven to be unreliable, because only part of the VM’s memory
could be accessed this way.

5.2.2 Copy-On-Write Case
We have already determined that the VMM must be notified of changes to the
VM memory before the change is actually performed. With Intel EPT, this can
be achieved by write protecting the guest memory in the NPT. When the VM
attempts to access a page that is write protected in the NPT, the CPU will triger a
VMEXIT with the EPT violation exit code [13, p. 28-7].

However, some Intel CPUs also support Page Modification Logging (PML), a
feature that allows the hardware to log pages modified by the VM without involv-
ing the VMM [14]. This is beneficial because avoids VMEXITs and thus improves
performance. However, this means the VM can modify a page without the VMM
being notified before the change is performed. This is unsuited for copy-on-write.
We therefore had to disable PML support in the Linux kernel by permanently
setting the enable_pml flag to 0.

In the design chapter we already discussed the necessity for synchronization
between the concurrent copy case and the copy-on-write case. The sychronization
mechanism must keep the congestion between copy on write case and concurrent

5.2. KERNEL SPACE IMPLEMENTATION 33

copy case to a minimum: because the copy-on-write case interrupts VM execu-
tion, it should run as fast as possible to minimize the slowdown of worloads run-
ning in the VM. Additionally, the concurrent copy case should not have to wait
for the copy-on-write case if there is no ressource conflict, i.e. if they copy dif-
ferent pages, to ensure that the concurrent copy can finish as early as possible and
therefore allow for high frequency checkpointing. We have therefore decided to
create spinlocks for each guest frame. This approach trades minimal congestion
off against space usage of the spin locks. However, as it can be seen in the Linux
kernel source, the spinlock structure is a small data type. On the amd64 architec-
ture (with CONFIG_DEBUG_SPINLOCK=n), the spinlock type spinlock_t
occupies 4 B. For a virtual machine with 2 GiB of memory, the per-page locks
would therefore occupy

2GiB

4096B
∗ 4B = 2MiB

We consider this to be an acceptable trade off.
To further reduce congestion, we do not copy pages directly into the Simu-

trace segment in the copy-on-write case. Instead, we introduce the copy-on-write
queue where pages for which the copy-on-write case was triggered are initially
stored. After the concurrent copy case has finished, it will pop elements from the
queue and then copy each element to the Simutrace segment, until the queue is
empty. This completely eliminates the need for synchronization on the pointer to
the current offset in the Simutrace segment. Moreover, when directly writing to
the segment, it is possible that the segment does not offer enough space for the
page. Then, the request would have to be passed to user space, where it would be
proxied to Simutrace. The copy-on-write case would have to wait for this to finish,
imposing a slowdown on the workload running inside the VM. The copy-on-write
queue eliminates this problem.

Instrumentation for Copy-on-write

To find a suitable point where the copy-on-write case could be placed, we ana-
lyzed calls to the function mark_page_dirty() in the kernel source. It soon
became clear that it does not suffice to instrument the EPT violation handler. For
example, the Linux kernel can pretend to be a HyperV hypervisor [21]. This al-
lows Windows guests to make hypercalls and thereby become an "enlightened"
guest that is aware that is runs in a VM to improve performance. For this commu-
nication to work, the Linux kernel has to write the guest’s memory. This dirties
a page in guest memory without triggering an EPT violation (beacause it runs in
the hypervisor context). We therefore analyzed each call to mark_page_dirty
and searched for the place where the guest memory is actually modified by KVM.
In most cases, the mark_page_dirty() function is called when the modifica-

34 CHAPTER 5. IMPLEMENTATION

tion was already performed and the original contents of the page are therefore no
longer available. Therefore, we developed the function kvm_page_cow() that
takes a GFN as an argument and adds the given guest frame to the copy-on-write
queue. Calls to this function were placed at each location where guest memory is
modified.

Additionally, KVM also has to emulate memory accesses by the VM. In case
of a CMPXCHG instruction, the emulation is performed by simply executing a
CMPXCHG in the hypervisor’s context (while adjusting addresses). In the copy-
on-write case, this opposes a problem: we must copy the page if the CMPXCHG
succeeded (i.e., it has modified the guest’s memory). But, if CMPXCHG succeeds,
the page’s contents have already been modified, because it is an atomic instruc-
tion. However, the original contents of the page are not lost. By examining the
instruction arguments, we can determine the offset in the page where the mod-
ification occured. The instruction arguments also contain the value which the
CMPXCHG instruction was seeing at the offset before the modification occured
(otherwise, the compare operation would have failed and no modification would
have been made). We can therefore copy the page contents after the modification
occured and patch the offset in the page to resemble the original contents. The
kvm_page_cow_patch() function handles this case.

Chapter 6

Evaluation

In this chapter, we are going to evaluate our implementation through measure-
ments. We will first introduce the methology used for evaluation. Our evaluation
will be based on the design goals introduced in Section 4.1:

• first, we are going to verify if our implementation is correct, i.e. it allows
for complete restore of the VM’s state.

• next, we will measure the runtime overhead of our implementation by exe-
cuting a workload during checkpointing and measuring its runtime.

• third, we will verify that our approach is able to reduce the downtime in
comparison to the stop-and-copy approach.

• fourth, we will verify if our implementation is suitable for high-frequency
checkpointing by examining the time needed to copy the VM’s dirty pages.

• at last, we are going to measure the number of pages the copy-on-write
mechanism must be used for to evaluate the effectiveness of the copy-on-
write approach.

At the end of this chapter, we conclude the results of our measurements.

6.1 Methodology
We set up the Simutrace storage server and the modified version of QEMU to run
on the same machine. This enables the use of the shared-memory based zero-copy
data transfer between QEMU and Simutrace. During checkpointing, all check-
point data was written to disk as it would be in a real-world scenario.

35

36 CHAPTER 6. EVALUATION

The VM was set up with a single CPU core, 1 GiB of RAM and 20 GiB of disk
space. It was running Debian Linux 8.0 and its default 3.16 kernel. QEMU was
configured to run with the vmware VGA adapter, unless otherwise noted.

Unless otherwise noted, ten iterations were made for each measurement. In
each measurement iteration, a new instance of QEMU and the Simutrace stor-
age server was started. Before starting the storage server, its data directory was
completely cleaned. QEMU was always started with the -snapshot parameter.
This means that QEMU redirects all disk writes of the VM to temporary stor-
age and does not perform them on the real disk image. This ensures a clean and
reproducible environment for each measurement iteration.

In each measurement, we ran a build of the Linux 4.0 kernel. A kernel build
stresses the VM’s memory, disk as well as CPU. It was also used in the evaluation
of the checkpointing implementations from [4, 8, 10, 22]. Given a configuration,
a kernel build has a constant runtime (within some jitter) and is therefore also
suitable for comparing the slowdown of different checkpointing mechanisms. We
used a kernel configuration that results in a total build time of about 30 min with-
out checkponting in the VM. All measurements were controlled by scripts. After
starting QEMU, these scripts waited until the VM has booted. Then, the check-
pointing mechanism was started. Immediately afterwards, the kernel build was
started.

6.1.1 Evaluation environment
All measurements were performed on the following machine:

CPU 2x Intel Xeon CPU E5-2630 v3, 2.4 GHz
(8 cores with 2 logical cores each)

Memory 64 GiB DDR3, 1866 MHz
(4x 8 GiB modules per CPU)

Disk 256 GB SSD

Mainboard Supermicro X10DRi

The following software versions were used:

Operating System Debian 8.0, 64-bit

Kernel Linux 4.0.0 with patches of our implementation

QEMU 1.5.50 with patches of our implementation

Simutrace 3.1.1 with modifications from [10]

6.2. CORRECTNESS VERIFICATION 37

6.2 Correctness verification
First, we verify the correctness of our implementation. We denote our implemen-
tation correct if the state of a virtual machine after restoring a checkpoint matches
the state at which the checkpoint was created.

Because we have not modified Eicher’s implementation of device state and
disk saving, there is no need to verify their correctness. For memory checkpoint-
ing, we verify the correctness by means of a bit-by-bit comparison of the physical
VM memory at the checkpointing downtime, hereafter called the verification im-
age, with the physical VM memory after restoring that checkpoint.

To obtain the physical VM memory at the checkpointing downtime, we utilize
a simple non-incremental stop-and-copy approach. QEMU was modified to copy
the VM’s memory to a file during VM downtime. When VM execution resumes,
our copy-on-write checkpointing will also save the VM’s memory. We can then
restore the memory obtained by the copy-on-write approach and check if all pages
were correctly saved.

This was done by starting a new instance of QEMU. To avoid that the VM exe-
cution resumes after restoring the checkpoint, QEMU was configured to freeze the
guest CPU upon start (using the -S parameter). Then, a checkpoint was loaded
and an image of the VM’s memory was created by QEMU’s pmemsave com-
mand. This image was then compared with the verification image. We denote a
page as incorrectly saved as soon as one bit of the page does not match its contents
in the verification image.

The measurements revealed that our implementation is unable to save all pages
correctly. Table 6.1 shows the number of pages that was incorrectly saved while
checkpointing. In the first checkpoint, 922 pages were incorrectly saved on aver-
age (stdev = 186, median = 940). Because a large number of pages must be saved
on the first checkpoint (266 255 pages during all iterations), the average number of
incorrectly saved pages on the first checkpoint only makes up 0.35 % of all pages
that were saved.

In subsequent checkpoints, incorrectly saved pages only occur sporadically in
low numbers. The highest number pages occurs in iteration three for checkpoint
number two, where 15 pages are incorrectly saved.

A first analysis of the differences between the memory before creating a check-
point and after restoring the checkpoint, showed that the addresses ranging from
0xB8000 to 0xBFFFF (8 pages) were always zero in memory saved by our
implementation but were non-zero in the verification image. This region of mem-
ory contained the text as displayed on the VM’s console. This fact suggests the
hypothesis that this memory is owned by the guest’s emulated video card (the
vmware video card was used in our tests). Further analysis revealed that QEMU
does not provide user space addresses for this memory region to KVM (i.e., no

38 CHAPTER 6. EVALUATION

CP
Dirty Iteration
Pages 1 2 3 4 5 6 7 8 9 10

1 266 255 764 750 697 1067 720 1075 1096 1087 813 1151
2 34 665 0 0 15 0 0 4 4 4 0 0
3 14 615 0 0 0 0 2 0 0 0 0 0
4 13 816 0 0 0 0 0 0 0 0 0 0
5 13 314 0 0 0 0 0 0 9 0 0 0
6 12 922 3 0 1 0 0 0 0 0 0 0
7 13 492 0 0 0 0 5 0 4 0 0 0
8 14 911 0 0 0 0 0 1 0 0 7 0
9 13 655 0 0 0 0 0 0 2 0 0 0
10 15 450 0 2 1 0 0 0 0 0 0 0

Table 6.1: Number of incorrectly saved pages. The measurements were performed
in ten iterations. During each iteration, ten checkpoints were performed while a
kernel build was executing in the VM. Our implementation misses a small amount
of pages, mainly on the first checkpoint.

struct kvm_memory_slot is set up). This means that our implementation
does not copy these addresses, because it does not know that there is data to be
copied at this memory region. This makes it clear that an implicit but important
assumption of our design does not hold true: copying memory from kernel space
alone is not sufficent and more information from user space must be included.
Investigation on how this is best achieved is a starting point for future work.

Although the error rates of our implementation make its checkpoints unuse-
able, the number of errors is very low in relation to the number of pages saved.
The highest number of errors occurs on the first checkpoint, where the error is in
about 0.35 % of all saved pages. Because this error is minimal, the performance
characteristics of our implementation are going to be very similar to an imple-
mentation that correctly saves all pages of the VM. In consequent checkpoints,
the error rates are much lower and therefore their effects on the performance char-
acteristics are even lower.

6.3 Workload Runtime

Checkpointing a virtual machine introduces overhead, for example through down-
time. While our approach aims to reduce downtime, it also introduces additional
overhead through the concurrent copy case and the copy-on-write case. To get a

6.3. WORKLOAD RUNTIME 39

1750 s

1800 s

1850 s

1900 s

1950 s

2000 s

2050 s

2100 s

2150 s

2200 s

No Checkpointing

CoW, i =
8

Stop+Copy, i =
8

CoW, i =
4

Stop+Copy, i =
4

CoW, i =
2

Stop+Copy, i =
2

R
un

tim
e

Figure 6.1: Kernel build runtime. The chart depicts the runtime of a build of the
Linux 4.0 kernel. i denotes the length in seconds of the checkpointing interval
used. Values given are averages over ten iterations. The copy-on-write approach
offers a lower slowdown in comparison to the stop-and-copy approach.

high-level overview of the performance of our approach, we execute a workload
in a VM and measure the time it takes to run.

Measurement is performed by setting up a virtual serial port to the virtual
machine, where the VM is configured to open a text console. A script on the host
system starts QEMU and boots the VM, waits until booting has finished, starts the
checkpointing mechanism in QEMU and then immediately starts the workload in
the VM by sending the appropriate commands over the serial port. The runtime is
measured from the host system.

The runtime was measured without any checkpointing, with the stop-and-copy
approach from [10] and with our copy-on-write approach. Each measurement was
made with checkpointing intervals of two, four and eight seconds. This allows
comparison of our approach with no checkpointing and with the stop-and-copy
approach. All measurements were made with Linux 4.0.0. The measurements
without checkpointing and with the stop-and-copy approach used a kernel with
Eicher’s instruction count patch [10, p. 49]. This was done to ensure compatibility
with Eicher’s implementation.

40 CHAPTER 6. EVALUATION

Figure 6.1 shows the results of the runtime measurements. Unsurprisingly,
all checkpointing mechanisms slow down the workload. For the stop-and-copy
approach, the slowdown is at 11 % for the eight-second checkpointing interval,
respectively at 13 % and 18 % for the four-second and the two-second check-
pointing interval. With the copy-on-write approach, a lower slowdown can be
observed. The slowdown is at 8 % for the eight-second interval and at 10 % for
the four-second interval. At the smallest interval of two seconds, the slowdown
climbs to 15 %. From these numbers, we can draw the conclusion that the copy-
on-write approach impedes the workload less than the stop-and-copy approach in
all checkpointing intervals considered.

6.4 Downtime
A main goal of our design is to reduce the downtime during checkpointing. We
are going to verify this by measuring the checkpointing downtime during a ker-
nel build. This chapter aims to investivate if further downtime improvements are
possible and how efficent our implementation handles downtime.

On the first checkpoint, a large amount of data must be saved and therefore a
very high downtime can be observed. For example, for a two-second checkpoint-
ing interval, downtime values of 11 484 ms and 17 296 ms were measured for the
copy-on-write and the stop-and-copy approach, respectively. For our work, we are
mostly interested in the checkpointing mechanism’s behaviour while executing a
workload. We have therefore left out the first checkpoint from all measurements
presented here. The downtime measurements for the first checkpoint can be found
in the appendix in Tables A.2 and A.1.

The copy-on-write approach was able to significantly reduce the downtime
during checkpointing. While the stop-and-copy approach offered a mean down-
time of 84 ms for the two-seconds checkpointing interval, the copy-on-write ap-
proach reduced downtime to about one third, namely to 26 ms.

Additionally, the standard deviation of the downtime in the copy-on-write im-
plementation is much lower than in the stop-and-copy approach (Tables 6.2 and
6.3). This hints at a more constant downtime behavior of the copy-on-write ap-
proach. In Figure 6.3, we have plotted the downtime behaviour during a kernel
build in a single iteration for a two-second checkpointing interval. The graph in-
deed confirms that the downtime is less prone to fluctuation in the copy-on-write
approach.

As the next step, we want to investigate the downtime behavior further. We
aim to find potential ways to further improve downtime and to find performance
issues in our implementation. Because we have only implemented copy-on-write
for RAM, the first area for improvements would be the implementation of copy-

6.4. DOWNTIME 41

0ms

20ms

40ms

60ms

80ms

100ms

120ms

140ms

160ms

180ms

200ms

2 s 3 s 4 s 5 s 6 s 7 s 8 s

D
ow

nt
im

e

Interval length

CoW
Stop+Copy

Figure 6.2: Average downtime. The chart depicts the average downtime during a
kernel build for several checkpointing interval lengths. Values shown are averages
over 10 iterations. The first checkpoint was stripped from all measurements. The
standard deviation is very large for the stop-and-copy curve and has therefore been
ommitted from the graph. It can be obtained from Table 6.3. The CoW approach
offers a much lower downtime, that only slightly increases with the length of the
checkpointing interval.

on-write for the disk as well. To investigate the possible improvements, we have
listed the average number of dirty sectors and the average downtime in Table 6.2.
As a comparison, we have included the same numbers for the stop-and-copy ap-
proach in Table 6.3. The average number of dirty sectors in each checkpoint
increases with the interval length. Although more sectors are to be saved, the
average downtime only increases slightly for CoW. This means that saving the
dirty disk sectors only comprises a small part of the VM downtime. Therefore,
copy-on-write for the disk image would only yield a small improvement for this
particular scenario.

This motivates more detailed measurements on the composition of the down-
time. Eicher [10] has already included code for detailed measurements on down-
time overhead in his implementation. We have adjusted his code to our imple-
mentation to be able to measure the following downtime components:

42 CHAPTER 6. EVALUATION

0ms

20ms

40ms

60ms

80ms

100ms

120ms

0 100

200

300

400

500

600

700

800

900
D

ow
nt

im
e

Checkpoint

CoW
Stop+Copy

Figure 6.3: Downtime behaviour. The chart depicts the downtime during a single
iteration of a kernel build for a two-second checkpointing interval with the copy-
on-write and stop-and-copy approach. Some spikes in the copy-on-write curve
and the stop-and-copy curve are cut off. The CoW approach results in a steadier
downtime curve that stays almost constant.

Device state saving time the time needed to save the states of emulated devices
of the VM, for example the video adapter.

Disk saving time the time needed to copy dirty disk sectors.

ioctl time the time that is spent in the kernel for the KVM_COW_CHECKPOINT
ioctl. This corresponds to the time needed to set up data structures and
to prepare the checkpoint in the kernel.

The measurements were made during a kernel build with a two-second check-
pointing interval and with five measurement iterations. Table 6.4 shows the results
of these measurements.

First, the measurements confirm the fact that the number of dirty sectors only
has limited impact on the downtime with the CoW approach. Only 1 ms is spent
with saving dirty disk sectors on average. However, as the standard deviation
indicates, spikes to the tens of milliseconds can be observed.

6.4. DOWNTIME 43

Interval
Downtime Dirty sectors

mean stdev median mean stdev median
2 s 26 ms 5 ms 26 ms 75 288 4
4 s 27 ms 6 ms 26 ms 145 391 71
8 s 29 ms 10 ms 27 ms 280 606 27

Table 6.2: CoW Downtime. The table lists average downtime and average number
of disk sectors to be saved for several checkpointing interval lengths. Although
the number of disk sectors to save increses with the interval length, the downtime
increases only slightly.

Interval
Downtime Dirty sectors

mean stdev median mean stdev median
2 s 84 ms 299 ms 54 ms 72 239 4
4 s 117 ms 444 ms 59 ms 145 356 71
8 s 199 ms 825 ms 66 ms 279 567 150

Table 6.3: Stop-and-copy downtime. The table lists average downtime and aver-
age number of disk sectors to be saved for several checkpointing interval lengths.
The number of disk sector as well as the downtime increases with the interval
length.

Comparison of the measurement data with the raw data obtained by Eicher
[10] showed that in our setup, the device state saving time is much higher. This
is the case for the copy-on-write approach as well as the stop-and-copy approach.
Analysis revealed that using the vmware VGA adapter results in higher check-
point saving time. Replacing it with the default VGA adapter resulted in a device
state saving time below 1 ms. We have, however, not changed our measurement
setup and continued all measurements with the vmware VGA adapter.

Moreover, the detailed downtime measurements show that the ioctl ac-
counts for 18 ms of the downtime on average. Using the kernel’s ftrace facility,
we have profiled the code executed in the ioctl. This investigation has shown
that obtaining and resetting the list of dirty pages (dirty bitmap) only accounts for
a small part of the downtime. No detailed measurements were performed, but the
ftrace logs showed that this takes around 3 ms. The main performance problem
turned out to be an error in our implementation that resulted in a data structure (the
struct kvm_cow_page_stat) being reset more often than neccessary. We
have fixed this bug in our implementation and were able to half the total down-
time for a two-second checkpointing interval. It was reduced from 26 ms (ten

44 CHAPTER 6. EVALUATION

Downtime component Mean Time StDev Median
Disk 1 ms 5 ms 0 ms
Device states 7 ms 0 ms 7 ms
ioctl 18 ms 1 ms 18 ms

Table 6.4: CoW downtime composition. The table shows composition of down-
time for a two-second checkpointing interval. The disk saving time is very low,
but the time needed to save device states was higher than expected. We deter-
mined the cause to lie within the vmware graphics adapter. The time spent in the
ioctl was also very high, which was due to an error in our code.

iterations, stdev = 5 ms, median = 26 ms) to 13 ms (six iterations, stdev = 5 ms,
median = 13 ms).

As noted before, using the vmware graphics adapter results in a higher down-
time of 7 ms instead of a value below 1 ms with the default graphics adapter. When
we account for that increased downtime value by subtracting the resulting down-
time overhead we can conclude that we are able to achieve average downtimes of
6 ms.

We have, however, continued our measurements with the implementation that
contained the performance regression to preserve comparability.

6.5 Copy Performance
In comparison to the stop-and-copy approach, our implementation introduced ad-
ditional overhead while copying pages, for example through synchronization and
the memory proxy. To investigate the performance impact of this overhead, we
analyzed the correlation of the number of pages to be copied with the time needed
to copy these pages in a checkpoint for the copy-on-write approach and the stop-
and-copy approach. Figure 6.4 illustrates this correlation by displaying the num-
ber of dirty pages on the y-axis and the time needed to copy these pages on the
x-axis for a two-second checkpointing interval. For each approach, a linear fit was
performed on the data and the resulting linear function was also plotted.

The first point to note about the plot is that the data for the stop-and-copy
approach seems to be split in two classes: one of them has a higher slope and
therefore a shorter copy time and the other one has a lower slope and therefore a
longer copy time. Investigation of this phenomenon is out of scope for this thesis
and therefore was not performed.

The fit function of the copy-on-write case (hereafter called c(x)) is shifted to
the right in comparison to the fit function for the stop-and-copy approach (here-

6.5. COPY PERFORMANCE 45

0

10 000

20 000

30 000

40 000

50 000

0
m
s

20
m
s

40
m
s

60
m
s

80
m
s

100
m
s

120
m
s

140
m
s

D
ir

ty
Pa

ge
s

Copy Time

CoW
Stop+Copy

CoW Linear Fit (c(x))
Stop+Copy Linear Fit (s(x))

Figure 6.4: Copy Performance. Copy time is plotted over the number of pages to
be copied for a two-second checkpointing interval. The CoW fit is steeper than
the stop-and-copy fit. The CoW curve is offset to the right, therefore limiting the
minimum checkpointing interval length. This was caused by printk() calls in
our code.

46 CHAPTER 6. EVALUATION

after called s(x)). While s(x) crosses the x-axis at about 3 ms, c(x) does so at
about 86 ms. This suggests some constant overhead of our implementation that
occurs regardless of whether pages are to be copied or not. A possible explana-
tion for part of this overhead could be the ioctl that must be called to enter the
concurrent copy case.

This constant offset indicates that our implementation is not able to keep up
with checkpointing intervals that are smaller than around 90 ms. For checkpoint-
ing intervals smaller than this size, saving the dirty pages will exceed the length
of the checkpointing interval. Eichers self-regulating mechanism [10] will enlarge
the checkpointing interval in this case and checkpoints will effectively be made at
longer intervals.

Further analysis of this constant overhead with the kernels ftrace frame-
work yielded that the offset is mainly caused by internals of our implementation:
for debugging reasons, we had placed printk() calls in our code, that were
not removed during benchmarking. ftrace revealed that each of this calls took
around 5 ms in our setup. We have removed these calls and performed a linear
fit on the new measurement data (c2(x)). c2(x) crosses the x-axis at about 16 ms.
However, to preserve comparability of our results, we have continued using the
slower version of our implementation in the evauluaton.

Moreover, c(x) is steeper than s(x). This means that our implementation is
able to copy pages faster than the stop-and-copy approach, even though our design
yields additional overhead, for example during synchronization of the copy-on-
write case with the concurrent copy case. Detailed investiation on why this is the
case is out of scope of this thesis and therefore was not performed.

6.6 Page Handler Distribution

A goal of our design is to save dirty pages of the VM during its execution. The
copy-on-write mechanism then ensures that these pages are saved consistently.
Saving a page in the copy-on-write case is more expensive than in the concurrent
copy case, because a page fault is caused and the VM’s execution is interrupted
while the page is being copied. The number of pages that can be handled fast, i.e.
in the concurrent copy case, is therefore an interesting metric for our approach
and evaluates its effectiveness.

Figure 6.5 shows the percentage of pages that could be handled by the concur-
rent copy case during a single iteration of a kernel build. The values were obtained
by averaging over ten checkpoints to smoothen the plot.

Although the plot shows a significant number of spikes, we can see that it does
not reach above the 95 % mark. Likewise, except for the last 100 checkpoints, the

6.7. CONCLUSION 47

70%

75%

80%

85%

90%

95%

100%

100

200

300

400

500

600

700

800

900

D
ir

ty
pa

ge
s

Checkpoint

Pages handled by CoW Pages handled by CCC

Figure 6.5: Page Handler Distribution. Percentage of pages copied by the con-
current copy case and the copy-on-write case during a single iteration of a kernel
build. The plot was smoothened by averaging over ten checkpoints. A majority of
the pages can be saved by the concurrent copy case.

plot only sometimes reaches below the 80 % mark. This suggests that a differnt
phase, such as the linking phase, of the kernel build starts.

When analyzing the unsmoothened data, in all the checkpoints more than 50 %
of the dirty pages were handled by the concurrent copy case. This demonstrates
the effectiveness of our approach: in all cases, the majority of pages can safely be
copied during VM execution, without involving the copy-on-write mechanism.

6.7 Conclusion

Our evaluation has shown that copy-on-write VM checkpointing offers improve-
ments in comparison to stop-and-copy checkpointing. In Section 6.3, we have
demonstrated that the same workload has a lower runtime with copy-on-write
checkpointing than with stop-and-copy checkpointing.

Section 6.4 has shown that downtime is lower and more predictable in compar-
ison to stop-and-copy checkpointing. We have also confirmed that implementing

48 CHAPTER 6. EVALUATION

copy-on-write checkpointing for the VM’s memory is more beneficial in terms
of downtime than copy-on-write checkpointing for the VM’s disk. However, we
were able to observe a high standard deviation of 5 ms in the disk saving com-
ponent of the downtime during a kernel build. Future work can investigate if a
copy-on-write scheme for the VM’s disk image is able to offer further improve-
ments.

However, the evaluation has also shown that our implementation does not fully
leverage the benefits the copy-on-write mechanism would theoretically offer: two
performance regressions in our code slowed down the checkpointing mechanism
significantly. Measurements with a version that included fixes for these issues
confirmed that the slowdown was indeed caused by the errors we suspected.

Nevertheless, none of the performance regressions was actually by design, all
of them were caused by our implementation. We can therefore conclude that our
design is effective with regards to performance.

In Section 6.5, we have identified that the copy-on-write checkpointing mech-
anism is also suitable for very small checkpointing intervals, such as these used in
Remus [8] and is therefore suitable to extend Remus in this regard.

The main benefit of the copy-on-write approach results from being able to
copy pages during VM execution. In Section 6.6, we have confirmed that our
implementation is indeed able to handle more than half of the dirty pages with-
out involving the copy-on-write mechanism. The variability in the percentage of
pages copied by the concurrent copy case, however, hints at variable performance
between the checkpoint intervals. The analysis of these spikes is left for future
work. Possible improvements may arise from pre-copy rounds before the next
checkpointing interval starts or from utilizing a mechanism similar to pre-paging
in the copy-on-write case, i.e. to copy nearby dirty pages when the copy-on-write
case is triggered for a page.

Chapter 7

Conclusion

SimuBoost aims to speed up full-system simulation. It achieves this by executing
the simulation at different points in time in parallel. The state required to bootstrap
simulations can be obtained by executing the workload through virtualization and
then copying the state by means of checkpointing.

The stop-and-copy checkpointing approach can cause significant downtime of
the VM. This limits the its applicability in the SimuBoost concept, because it im-
pedes checkpointing workloads that utilize the network or that require interaction
with a human user. As suggested in previous work [11, 22], the copy-on-write
scheme is a potential candidate for solving the downtime problem. However, no
detailed research on the characteristics of copy-on-write checkpointing existed
this far.

Our design resulted in a mechanism that copies the VM’s dirty pages during
VM execution by iterating over the list of dirty pages. The consistency of the
image is preserved by means of a copy-on-write mechanism. Our implementa-
tion then resulted in a patch for KVM and QEMU that implements the suggested
mechanism. The implementation is based on Eicher’s implementation [10] and
therefore also stores its checkpointing data in the Simutrace storage server.

While evaluating our approach, we have determined that our implementation
offers an almost constant downtime of 6 ms for a two-second checkpointing in-
terval during a kernel build. We have determined the minimum checkpointing
interval length that our implementation is able keep up with. It is at 16 ms, mak-
ing it suitable for high-frequency checkpointing.

7.1 Future work

We have implemented copy-on-write for the VM’s memory, but not for its disk
image. While our implementation has resulted in a more predictable downtime in

49

50 CHAPTER 7. CONCLUSION

comparison to the stop-and-copy approach, a standard deviation of 5 ms could be
observed for the disk saving component in the downtime. Future work has to be
done to investigate if a copy-on-write scheme for the VM’s disk image is able to
offer further improvements.

Further work may also investigate if pre-copy rounds before the next check-
pointing intervall starts can offer further improvements, for example for different
workloads.

Appendix A

Additional data

A.1 Downtime measurements for the first checkpoint

Interval
Downtime

mean stdev median
2 s 11 484 ms 186 ms 11 470 ms
4 s 11 462 ms 179 ms 11 474 ms
8 s 11 680 ms 242 ms 11 780 ms

Table A.1: Copy-on-write checkpointing: Average downtime for the first check-
point.

Interval
Downtime

mean stdev median
2 s 17 296 ms 444 ms 17 252 ms
4 s 17 403 ms 326 ms 17 475 ms
8 s 17 372 ms 219 ms 17 334 ms

Table A.2: Stop-and-copy checkpointing: Average downtime for the first check-
point.

A.2 Copy Performance For Improved Implementa-
tion

51

52 APPENDIX A. ADDITIONAL DATA

0

10 000

20 000

30 000

40 000

50 000

0
m
s

20
m
s

40
m
s

60
m
s

80
m
s

100
m
s

D
ir

ty
Pa

ge
s

Copy Time

CoW
Stop+Copy

CoW Linear Fit (c(x))
Stop+Copy Linear Fit (s(x))

Figure A.1: Copy Performance for fixed implementation. Copy time is plotted
over the number of pages to be copied for a two-second checkpointing interval.
The CoW fit is steeper than the stop-and-copy fit. The offset of the CoW curve to
the right is less significant.

Bibliography

[1] The definitive kvm (kernel-based virtual machine) api documentation. to be
found in the Documentation/virtual/kvm/api.txt file in the linux kernel tree.

[2] AMD. Amd-v nested paging. White paper, Advanced Micro Devices Corp.,
2008. http://developer.amd.com/wordpress/media/2012/
10/NPT-WP-1%201-final-TM.pdf.

[3] Andrea Arcangeli. Rfc: userfault. Post on the linux kernel mailing
list http://thread.gmane.org/gmane.linux.kernel.mm/
119732, 2014.

[4] Nikolai Baudis. Deduplicating virtual machine checkpoints for distributed
system simulation. Bachelor thesis, System Architecture Group, Karlsruhe
Institute of Technology (KIT), Germany, November2 2013. http://os.
itec.kit.edu/.

[5] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the FREENIX Track: 2005 USENIX Annual Techni-
cal Conference, April 10-15, 2005, Anaheim, CA, USA, pages 41–
46, 2005. http://www.usenix.org/events/usenix05/tech/
freenix/bellard.html.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011. http://doi.acm.
org/10.1145/2024716.2024718.

[7] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migra-
tion of virtual machines. In Amin Vahdat and David Wetherall, edi-
tors, NSDI. USENIX, 2005. http://www.usenix.org/events/
nsdi05/tech/clark.html.

53

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://thread.gmane.org/gmane.linux.kernel.mm/119732
http://thread.gmane.org/gmane.linux.kernel.mm/119732
http://os.itec.kit.edu/
http://os.itec.kit.edu/
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://www.usenix.org/events/nsdi05/tech/clark.html
http://www.usenix.org/events/nsdi05/tech/clark.html

54 BIBLIOGRAPHY

[8] Brendan Cully, Geoffrey Lefebvre, Dutch T. Meyer, Anoop Karollil,
Michael J. Feeley, Norman C. Hutchinson, , and Andrew Warfield. Re-
mus: High availability via asynchronous virtual machine replication. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), April 2008.

[9] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung.
Pqemu: A parallel system emulator based on qemu. In Parallel and Dis-
tributed Systems (ICPADS), 2011 IEEE 17th International Conference on,
pages 276–283, Dec 2011.

[10] Bastian Eicher. Virtual machine checkpoint storage and distribution for
simuboost. Master thesis, System Architecture Group, Karlsruhe Institute
of Technology (KIT), Germany, September 2015. http://os.itec.
kit.edu/.

[11] Balazs Gerofi, Zoltan Vass, and Yutaka Ishikawa. Utilizing memory
content similarity for improving the performance of replicated vir-
tual machines. In UCC, pages 73–80. IEEE Computer Society, 2011.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=6123165.

[12] VMWare Inc. Performance evaluation of intel ept hardware assist. White
paper, VMWare Inc., 2009. https://www.vmware.com/pdf/Perf_
ESX_Intel-EPT-eval.pdf.

[13] Intel. 64 and IA-32 Architectures Software Developer’s Manual, volume 3C:
System Programming Guide, Part 3.

[14] Intel. Page modification logging for virtual machine monitor. White
paper, January 2015. http://www.intel.de/content/
dam/www/public/us/en/documents/white-papers/
page-modification-logging-vmm-white-paper.pdf.

[15] S. Kikuchi and Y. Matsumoto. Impact of live migration on multi-tier appli-
cation performance in clouds. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 261–268, June 2012.

[16] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debug-
ging operating systems with time-traveling virtual machines. In Pro-
ceedings of the USENIX Annual Technical Conference (USENIX’05),
April 2005. http://www.eecs.umich.edu/~pmchen/papers/
reverseDebug.pdf.

http://os.itec.kit.edu/
http://os.itec.kit.edu/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6123165
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6123165
https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.eecs.umich.edu/~pmchen/papers/reverseDebug.pdf
http://www.eecs.umich.edu/~pmchen/papers/reverseDebug.pdf

BIBLIOGRAPHY 55

[17] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, Feb 2002.

[18] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent mi-
gration for virtual machines. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05, pages 25–25, Berke-
ley, CA, USA, 2005. USENIX Association. http://dl.acm.org/
citation.cfm?id=1247360.1247385.

[19] Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa. Simutrace: A
toolkit for full system memory tracing. White paper, Karlsruhe Institute of
Technology (KIT), Operating Systems Group, May 2015.

[20] Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bellosa.
Simuboost: Scalable parallelization of functional system simulation. In Pro-
ceedings of the 11th International Workshop on Dynamic Analysis (WODA
2013), Houston, Texas, March 2013.

[21] Vadim Rozenfeld. Kvm as a microsoft-compatible hypervisor. Talk at the
KVM Forum, slides at http://www.linux-kvm.org/images/0/
0a/2012-forum-kvm_hyperv.pdf, November 2012.

[22] Michael H. Sun and Douglas M. Blough. Fast, lightweight virtual machine
checkpointing.

[23] Paula Ta-Shma, Guy Laden, Muli Ben-Yehuda, and Michael Factor. Vir-
tual machine time travel using continuous data protection and checkpoint-
ing. SIGOPS Oper. Syst. Rev., 42(1):127–134, January 2008. http:
//doi.acm.org/10.1145/1341312.1341341.

[24] Yoshiaki Tamura, Koji Sato, Seiji Kihara, and Satoshi Moriai. Kemari:
Virtual machine synchronization for fault tolerance. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC ’08.
USENIX Association, 2008.

http://dl.acm.org/citation.cfm?id=1247360.1247385
http://dl.acm.org/citation.cfm?id=1247360.1247385
http://www.linux-kvm.org/images/0/0a/2012-forum-kvm_hyperv.pdf
http://www.linux-kvm.org/images/0/0a/2012-forum-kvm_hyperv.pdf
http://doi.acm.org/10.1145/1341312.1341341
http://doi.acm.org/10.1145/1341312.1341341

	Abstract
	Deutsche Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Background
	Full-System Simulation
	SimuBoost
	Simutrace

	Virtual Machine Checkpointing
	Pre-Copy Live Migration
	Incremental Deduplicating Checkpointing

	Virtual Machine Memory Management
	Shadow Page Tables
	Two-Dimensional Paging

	Analysis
	Checkpointing
	Data Amount Considerations
	Incremental Checkpointing
	Deduplication

	Downtime Considerations
	Stop-And-Copy
	Pre-Copy
	Copy-On-Write

	Conclusion

	Design
	Design goals
	Mechanism
	Procedure

	Conclusion

	Implementation
	Technology integration
	Simutrace
	KVM API

	Kernel Space Implementation
	Concurrent Copy Case
	Copy-On-Write Case

	Evaluation
	Methodology
	Evaluation environment

	Correctness verification
	Workload Runtime
	Downtime
	Copy Performance
	Page Handler Distribution
	Conclusion

	Conclusion
	Future work

	Appendices
	Additional data
	Downtime measurements for the first checkpoint
	Copy Performance For Improved Implementation

	Bibliography

