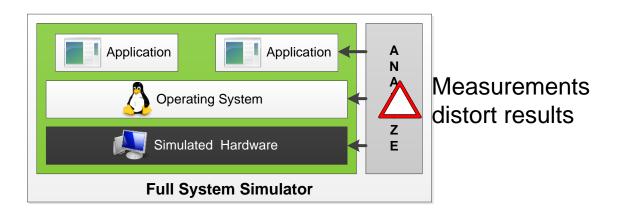


SimuBoost: Scalable Parallelization of Functional System Simulation

GI Fachgruppentreffen Betriebssysteme (BS) 2013 Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, Frank Bellosa

SYSTEM ARCHITECTURE GROUP DEPARTMENT OF COMPUTER SCIENCE


KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

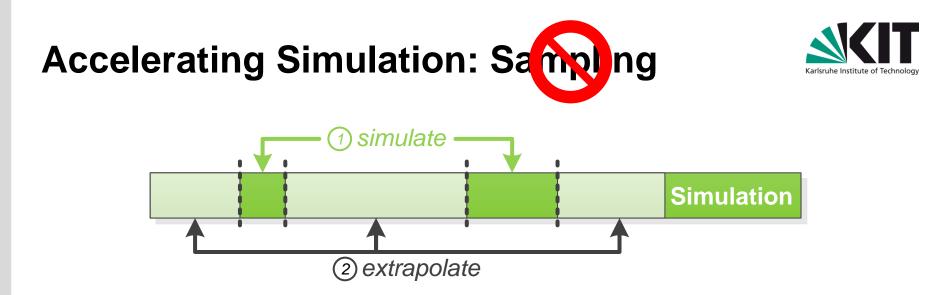
www.kit.edu

Motivation

- Operating system performance analysis:
 - Application and kernel interaction
 - Memory access patterns
 - Cache efficiency

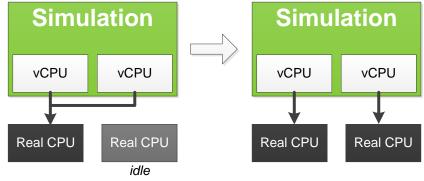
- Approach: Functional System Simulation/Emulation
 - Simulate physical machine at functional-level (instructions)
 - Monitor states/operations non-intrusively

Functional Simulation is Slow



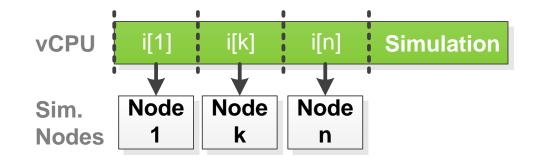
Average slowdowns for: Kernel build, SPECint_base2006, LAMMPS

Virtualization	Simulation		
KVM	QEMU	Simics	
~ 1x	~ 100x	~ 1000x	


- Example: Analyze memory duplication in kernel build
 - Memory access patterns on shareable pages
 - Operations that lead to breaking merged pages
 - Our experience with Simics: 30 min -> 10 months

Problem: Not practical for long-running workloads

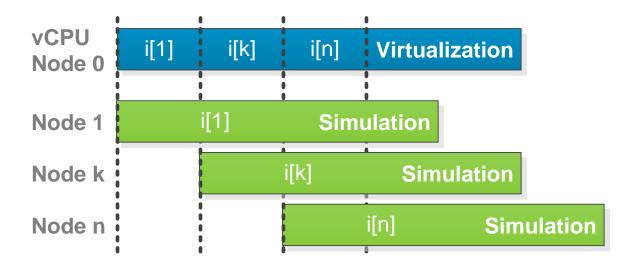
- Simulate representative samples and extrapolate (SimPoints[2])
 - There may be no representative intervals
 - Not even all applications show phase behavior (gcc [3])
 - Even less probable for whole system (i.e., mix of multiple applications)
 - Chicken-and-Egg Problem
 - How do you find representative intervals without analyzing first?



- Simulate vCPUs in parallel (e.g., PQEMU[1])
 - Scales in number of vCPUs (e.g., $4x \rightarrow still 2.5$ months)
 - Does not accelerate single-CPU simulation

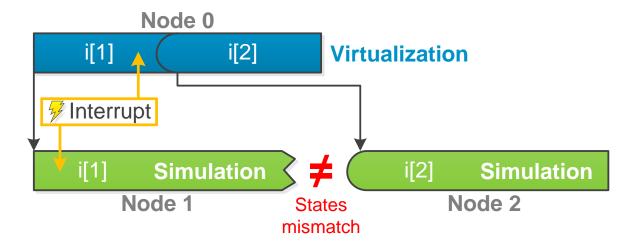
Goal: Scale-out single-core simulation

Basic Approach



- (1) Split simulation into time intervals
 (2) Simulate intervals simultaneously
 - Scales with run-time of workload
 - Applicable to single-CPU simulations

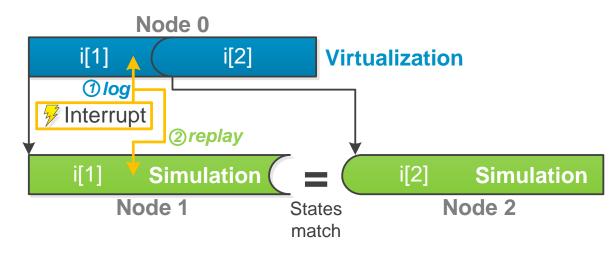
Problem: How do we bootstrap the simulation of i[2..n]?



Leverage fast virtualization

- Create checkpoints at interval boundaries
- Checkpoints bootstrap simulations:
 - Memory, device states, etc.
- Run simulations in parallel

State Deviation


Devices work asynchronous to CPU

- Different I/O data and completion timing
- Virtualization and simulation drift apart

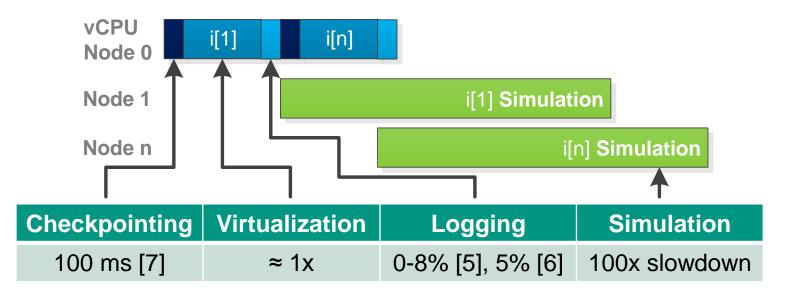
Problem: Machine states differ at interval boundaries

Coping with State Deviation

(1) Trap and log non-deterministic events in the hypervisor
 (2) Precisely replay events in the simulation

Non-deterministic events (e.g., interrupts, timing instructions)

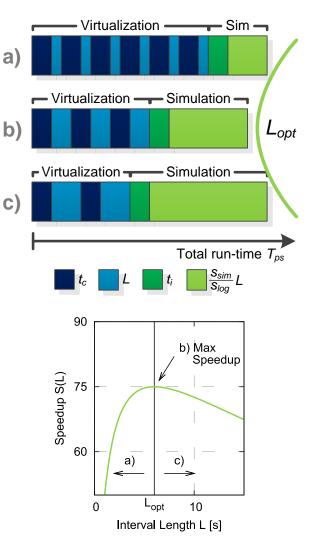
- ...appear at equal points in the instruction stream
- ...produce same data output


Virtualization and simulation stay sychronized

Implementation

Implementation is work in progress – components available:

- Fast virtualization (e.g., KVM [4])
- Fast logging of non-deterministic events (e.g., ReVirt [5], Retrace [6])
- Lightweight checkpointing (e.g., Remus [7])
- Functional simulation (e.g., QEMU [8], Simics [9])



Speedup and Scalability

- Right interval length is crucial
 - Too short (a):
 - Checkpoint time dominates
 - Too long (c):
 - Little parallelization
 - Long simulation of final interval
- Example scenario:
 - Basis: Performance of available components
 - Optimal interval length: 2s
 - Best possible speedup for 1h workload: 84x @ 90 nodes (94% parallel efficiency)

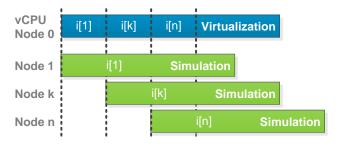
Near linear speedup possible

Open Questions

Can we reach theoretical speedups in real simulations?

- Can multi-core/multi-socket simulations benefit from SimuBoost?
 - Capturing non-deterministic events is challenging (shared memory)

- Can we simulate a machine with different hardware characteristics than the host?
 - SimuBoost replicates behavior of virtual machine


Conclusion

- Slowdown of Functional Full System Simulation: >100x
- SimuBoost: Accelerate simulation
 - Run workload with fast virtualization
 - Take checkpoints in regular intervals
 - Start parallel simulations on checkpoints
 - Logging and replay of non-deterministic events

Advantages:

- Scales with workload run-time (also for single-core simulations)
- High scalability and parallel efficiency possible (84x @ 90 nodes, 94%)

SimuBoost: Detailed Full System Simulation made practical

Functional Simulation Slowdown

Functional System Simulation is slow

Time to Completion [h] (Slowdown):

	Native	HwVirt. KVM	Simulation			
			QEMU ¹	QEMU ²	Simics ¹	
Linux 3.7.1 Kernel Build						
	1.44	1.56 (1.08x)	47 (33x)	238 (165x)	1080 (771x)	
SPECint_base2006 1.2						
	6	6.29 (1.05x)	133 (22x)	1243 (207x)	6216 (1036x)	
LAMMPS Lennard Jones						
	1.82	1.65 (0.91x)	69 (38x)	204 (113x)	1123 (624x)	
		Ø 1x	Ø 31x	Ø 162x	Ø 810x	
¹ Empty memory hooks ² Counting unique accessed physical pages per second						

16

SimuBoost: Job Distribution

- Intervals are independent jobs
 - Distribute jobs across nodes
 - One virtualization node
 - Many simulation nodes
 - (One controller node)
- Can we simulate a single core on a multi-core node in its native execution time?

References

- [1] Ding et al. '11 PQEMU: A parallel system emulator based on QEMU
- [2] T. Sherwood et al. Automatically characterizing large scale program behavior. volume 30. ACM, 2002.
- [3] V. Weaver et al. Using dynamic binary instrumentation to generate multi-platform simpoints: Methodology and accuracy. HiPEAC, 2008.
- [4] A. Kivity et al. kvm: the linux virtual machine monitor. volume 1. Linux Symposium, 2007
- [5] G. Dunlap et al. Revirt: Enabling intrusion analysis through virtualmachine logging and replay
- [6] M. Sheldon et al. Retrace: Collecting execution trace with virtual machine deterministic replay. 2007
- [7] M. Sun et al. Fast, lightweight virtual machine checkpointing. 2010.
- [8] F. Bellard. Qemu: A fast and portable dynamic translator. USENIX, 2005
- [9] P. Magnusson et al. Simics: A full system simulation platform. Computer, 35(2), 2002