
Address-Space Multiplexing
revisited on AMD64/x86_64

Studienarbeit
von

Marco Kroll
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inform. Marius Hillenbrand

Bearbeitungszeit: 16. Januar 2013 – 30. April 2013

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources than
the ones indicated and that due acknowledgment is given where reference is made
to the work of others.

Marco Kroll

Karlsruhe

April 30, 2013

Abstract

Address space multiplexing is a technique which enables multiple independent
processes to share a single address space. This technique can be used to reduce the
context switching time and the dependency on special hardware, such as tagged
translation lookaside buffers.

The design consist of modifying the program to achieve isolation. Thereafter the
program is loaded into a single address space where the necessary process-related
structures are initialized and execution of the subprocess is started.

In this thesis we explore how LLVM intermediate representation (LLVM IR) can
be used to achieve isolation of multiplexed processes. Using LLVM IR allows
us to be independent of programming language and hardware. Our main focus
is the protection of memory access, which we achieve by modifying the inter-
mediate representation of the target program. The modification inserts additional
instructions to limit the addressable memory of each process, thereby achieving
protection from misbehaving processes. Further protection is realized by using
mechanisms provided by the underlying operating system, such as the clone
system call.

We developed a prototype that is able to load a modified LLVM IR program into
its address space and start its execution in a subprocess. Using our prototype we
were able to show that the process-related structures are isolated and that mem-
ory access can only occur within the assigned memory area, at the cost of per-
formance. The performance impact varies depending on which type of memory
access is limited and the total number of memory accesses performed by the target
program. The overhead of our prototype for commonly used programs is expected
to be between 14% and 50%. The maximum overhead we measured is less than
100%.

Applications can benefit from using a multiplexed address space if the number
of context switches is high enough to compensate the performance loss caused
by our modification. Future research has to be done to further optimize the in-
structions used to limit the addressable memory thereby improving isolation and

iv

performance.

v

vi

Contents

Abstract iv

Contents 1

1 Introduction 3
1.1 Expected Benefits . 5

2 Background & Related Work 6
2.1 Background . 7

3 Design 8
3.1 Overview . 9
3.2 Code Preparation and Loading 9
3.3 Program Execution . 10
3.4 Process Protection . 10

4 Implementation 14
4.1 Representation of the Target Program 14
4.2 Tools . 15
4.3 Instruction Modifier . 15
4.4 Execution Environment . 16
4.5 Limitations . 18

5 Evaluation 19
5.1 Test Machine and Environment 19
5.2 Program Representation . 19
5.3 Isolation . 20
5.4 Performance . 22
5.5 Summary . 28

6 Conclusion 29

1

6.1 Future Work . 30

Bibliography 31

Appendix A 33

2

1. Introduction

All major operating systems currently use a dedicated address space per process.
Loading each process in a separate address space is advantageous, because other-
wise security breaches, such as modification to memory or file descriptors across
process boundaries, would be possible.

Running multiple processes in the same address space is called address space
multiplexing, see Figure 1.1. Operating systems can benefit from address space
multiplexing in cases where a lot of context switches are done or where the cre-
ation of a process is more expensive than its execution. A context switch is the
process of changing the current executing process. Additionally the technique we
explored does not need any support from the hardware (e.g. virtual memory or
segmentation).

One major cost of context switches, especially for microkernels [18], comes from
invalidating the translation lookaside buffer (TLB), which is responsible for map-
ping virtual to physical memory. Before 2008 Intel processors used a TLB which
had to be invalidated before loading a new process. For this reason tagged TLBs
were introduced [17,19, p. 2]. A tagged TLB stores an address space identifier for
each mapping, which prevents aliases and allows the TLB to keep its mapping. An
alternative to tagged TLBs are multiplexed address spaces as they allow the reuse
of all TLB entries regardless of TLB type. Furthermore by using a single address
space we allow for an efficient implementation of interprocess communication.
Additionally benefits are described in more detail in Section 1.1.

The main issue arising from using a single address space is that processes are able
to access any memory location in that address space. This prevents the protection
of individual processes from malicious or defective processes.

The solution is to partition the single address space. Each partition is then exclu-
sively used by one process. The protection of each partition can be realized by the
use of memory-safe languages [2, p. 24] or by special hardware features, such as
segmentation.

We present a solution that relies on translation of intermediate code and just-in-

3

Figure 1.1: Layout comparison of dedicated (top) and multiplexed (bottom) ad-
dress spaces.

time (JIT) compilation to secure the processes from each other. When a program
is started we scan its intermediate representation (IR) for memory access instruc-
tions such as load and store. We then modify the address of these instructions
in such a way that the most significant bits are set to an offset. Afterwards we
hand the modified IR to our execution environment, which generates the neces-
sary process structures and calculates the offset. Finally the JIT compiles the IR.
This approach relies solely on software modifications.

In the next Chapter we elaborate on previous works on single address spaces and
process multiplexing and provide some background information. In Chapter 3
we explain our design to create address-space multiplexing. The design consists
of three parts, the loading, starting and protection of the process. Chapter 4 de-
scribes our prototype. Currently our prototype consists of two separate programs.
The first modifies the IR and the second provides the single address space. In
Chapter 5 we evaluate our solution with respect to security and performance. We
demonstrate that our prototype has an acceptable overhead of less than 50% for

4

a commonly used program, with room for improvement. Finally, we summarize
our conclusions and present ideas for future work in Chapter 6.

1.1 Expected Benefits

In the following we take a closer look on the expected merits of our solution. By
using a single address space and an intermediate representation we can exercise
more control over the isolation of the process than previous solutions.

Translation Lookaside Buffer One application field are untagged translation
lookaside buffers (TLB). By multiplexing processes in a single virtual address
space, it would no longer be necessary to flush the TLB entries. This leads to faster
context switches and improved execution time for small application (commonly
found in microkernels).

Interprocess Communication Another mechanism that we expect to benefit
from a multiplexed address space is interprocess communication. Remote pro-
cedure calls (RPC) in particular can now be implemented via a normal function
call. A possible implementation could map a page with RPC addresses into the
subprocess address space. By using a normal function call to invoke a RPC we
have a defined entry point into another address space. When switching the address
space from the caller to the callee our technique automatically initiates a context
switch.

Using the above mentioned implementation to invoke RPC, the resources such
as CPU time are still accounted to the caller process, thereby allowing a better
accountability of resources.

Kernel Space Our technique uses intermediate representation (IR) code to pro-
tect the address spaces and prevent modification of other subprocesses. Before
execution we have to compile the IR code into native code. It is conceivable that
before the compilation step a filter scans the code for privileged instruction and
the use of privileged registers. If the code only contains unprivileged instructions
we allow the program to run in kernel space, similar to Singularity [9].

5

2. Background & Related Work

The idea to allow multiple processes to run within the same address space has
been around since 1992. Opal [6] was one of the very first operating systems to
implement a single address space, followed by Vino [7], Mungi [8], L4 [12] and
Singularity [9].

One of the main reasons for Opal and Mungi to use a single address space is to
allow fast interprocess communication, via shared and public accessible memory.
Both systems allow controlled access to addresses outside the address space of the
process. The necessary protection is realized by using individual page tables for
each process. Using a separate page table for each process forces the operating
system to flush all TLB entries, if the TLB is untagged. One of our design goals is
to avoid these flushes thereby allowing our solution to reduce the context switch-
ing time. Furthermore by restricting the addressable memory of each process to its
dedicated address space our solution prevents the use of public accessible memory
for interprocess communication. Shared pages can still be used.

The single address space implementation of L4, on the other hand, focuses on the
context switching time of processes. The approach explored by Liedtke and others
uses segmentation [12] to prevent malicious modification of memory. They were
able to show that the execution time of certain applications improved by more
than 60% [18]. However, there are two main drawbacks. First, this solution is
not able to multiplex multiple large address spaces (>3 GiB). Secondly, with the
introduction of the 64-bit architecture (AMD64/x86_64) segment register have
been reduced in their functionality [10, 3.4.2.1] if used in 64-bit mode.

Singularity uses a single address space to increase the interprocess communica-
tion performance and to become independent from hardware realized protection
mechanism. Process separation is ensured by only executing programs written in
a memory-safe [2] languages (e.g. C#). This approach however prevents the reuse
of programs written in a memory-unsafe language such as C/C++ and forces some
developers to learn a new programming language.

Our solution is heavily inspired by the Vino [7] operating system. Vino is an ex-

6

tensible kernel which allows user programs to be loaded into the kernel address
space. Memory protection is achieved by using a binary transformation to pre-
vent illegal memory access of user programs, called MiSFIT [16]. This approach
allows the use of memory-unsafe languages and does not rely on specialized hard-
ware support. After the transformation MiSFIT optimizes the code and scans the
symbol table for the address of each function. The function addresses are later
used to verify indirect calls. The solution we have chosen expects the program to
be compiled to an intermediate representation. The native code is generated after
the transformation.

Another field that uses techniques similar to ours is securing memory access of C
code. The CCured [13] type system analyzes C code to make it type safe. C point-
ers are classified into three categories: Safe, Sequence and Dynamic. Particularly
the Sequence pointers are very similar to our approach. Sequence pointers store
the base address, end address and current address. Before each memory access,
the current address is cross-checked with the base and end address. If the current
address is out of bounds CCured aborts the program. In contrast, our solution is
far more coarse-grained. We verify every access of a process with the same base
and end address. If the address is not within the specified range we automatically
calculate an address which is within bounds. In addition, we abstract from the
program language by using an intermediate representation of the code.

2.1 Background

Intermediate representation (IR) code allows programs to be stored in a lan-
guage neutral and hardware independent way. IR code is mainly used by com-
pilers to perform various analyzations and optimizations. IR code was first intro-
duced with Pascal. One well-known example for IR is Java Bytecode.

Just-in-time compilers (JIT) translate a program just before or sometimes even
during its execution into native machine code. JITs were introduced with Lisp and
are used to speed up the execution of interpreted code, such as IR code or Java
Bytecode.

7

3. Design

Address space multiplexing allows multiple processes to run within the same ad-
dress space. Using a single address space allows for faster interprocess communi-
cation and reduced context switching time. Three design aspects have to be taken
into account, to build a multiplexed address space:

• How to load a program into an already existing address space

• How to start the execution and provide the necessary resources, and finally

• How to protect the program and its resources from accidental or malicious
modification from other programs in the same address space

One major goal of our design is to ensure the isolation of the processes. Further
our design considers the reuse of translation lookaside buffer (TLB) entries and
tries to avoid using specialized hardware such as tagged TLBs or segmentation.

We assume that the program was written in a non-memory-safe language. This
adds the additional challenge that its instructions could in principle access any
memory location.

Figure 3.1: Final design. The program is compiled to LLVM IR. Thereafter the
instructions that access memory are secured. Finally the IR is loaded into the
single address space and executed.

8

3.1 Overview

To run multiple processes in a single address space we first translate the programs
into a relocatable intermediate representation (IR). This enables us to exercise
more control over the final compilation into native code and to load the code at
any memory location (see Figure 3.1). We use the intermediate representation
to set the n most significant bits of each memory address to an offset, thereby
limiting the access of the program to a predefined memory area (with the size of
2(64−n) bytes). The resolving of the offset has to be done by a modified loader
because the memory area of the process is not known until the program has to be
loaded into memory for execution. This loader is also used to prepare the memory
and process-specific structures and to translate the intermediate representation of
the program into native code. During the translation additional care has to be
taken to handle indirect function calls as well as system- and library calls that do
not consider the special memory layout. Finally, a call to the operating system is
done to register a new process and start the execution of the program.

3.2 Code Preparation and Loading

The normal mechanism provided by the operating system (OS) to load a program
into an address space is to call the loader which initializes various structures and
loads the program code into memory. Two options exist to load a program into a
multiplexed address space. Either each program gets always loaded at the same
address or the native code can be loaded at arbitrary memory addresses. We have
chosen the second approach since the first prevents the parallel execution of the
same program. Two techniques are known to create appropriate code.

The first technique is to generate position independent code (PIC). Instead of hard-
coded absolute addresses PIC uses relative addresses to access memory [11, p.
51].

The second technique transforms the program into relocatable code. In contrast to
position independent code, relocatable code needs to be processed before execu-
tion to run at the desired memory location [11, p. 183 ff.]. During this process the
program code and data addresses are adjusted with regard to the desired memory
location.

Both techniques presented above are still not sufficient for our purpose, because
they lack support for memory protection. Therefore, our solution modifies each
memory access in such a way that reading and writing can only occur within
a fixed memory area to achieve memory protection. Since we need to modify

9

the code anyway it was a natural choice to use relocatable code as technique to
generate position independent code.

The relocatable code is stored in an intermediate representation (IR), to exercise
more control over the code and to translate it to native code just before execution.
Alternatively, a x86_64 disassembler could be used to scan and modify the code.

If the emitted code shall be reused it must be digitally signed, otherwise the origi-
nal code must be processed before each execution. This requirement is necessary
to prevent malicious modifications to the executed code. If the code is not verified
before execution the protection of the memory can not be guaranteed, because the
code could have subsequently been modified.

3.3 Program Execution

Various abstractions to execute program code are known, most noteable the pro-
cess. Since a real process possesses an own address space it is not possible to run
multiple processes within an existing process.

To circumvent this limitation and execute multiple tasks in parallel within a pro-
cess threads are used. They exist within the same address space and can be used to
execute code at arbitrary addresses. Unfortunately, they lack support for an own
signal and file descriptor table as well as provide no protection from other threads.

A solution for this problem is a hybrid of a process and a thread. This hybrid
would own the process-relevant structures without the need for an address space.
We name this entity subprocess. Multithreaded programs are supported, if the
OS permits threads to be associated with their corresponding subprocess. We call
such threads subthreads.

If the OS does not provide a way to create subprocesses or subthreads an alter-
native would be to use normal threads. However, this workaround requires the
replacement of system calls that interact with process-specific structures (such as
open/read/kill) to emulate the correct behaviour. We do not explore this so-
lution, because the platform used to create the prototype supported the creation of
subprocesses and -threads.

3.4 Process Protection

As we already stated, protection is a core element of our design. We have to
protect access to memory and to process-specific resources such as files from

10

other subprocesses. Our design allows us to load all processes in the same virtual
address space, thereby allowing the reuse of the TLB entries.

3.4.1 Memory

As stated previously we force memory access into certain bounds by modifying
the instructions. The technique presented here was successful deployed by the
MiSFIT tool [16]. The 64-bit address of each load and store operation is
changed in such a way that access is restricted to a certain area within memory.
We achieve this by inserting additional instructions that first truncate the address
to x bits (keeping the least significant bits) and then set the most significant 64−x
bits of the truncated address, by adding an offset. The modified address is then
used in the load/store operation. This forces the subprocess to only access
memory from its own address space and preventing attempts to access memory
outside its boundaries, as illustrated in Figure 3.2. The offset is related to the
location of the program within the multiplexed memory. Using this technique the
usable address space of the program is 2x bytes large. We call the address space
of a subprocess subaddress space.

This modification has the advantage that no additional registers or (outdated) hard-
ware support is needed and that the address space size can be adjusted dynami-
cally. Since the transformation only operates on the native or intermediate rep-
resentation (IR) of the code, non-memory-safe languages such as C/C++ can be
used without modifications, which is another positive aspect of our solution.

Indirect function calls Particular attention should be given to function pointers
to ensure that they only reference addresses that are function entry points. This can
be achieved by a runtime comparison of the function pointer with all valid function
addresses. The runtime overhead can be minimized by using an appropriate data
structure, such as an open addressable hash table [16, 4.2].

3.4.2 Process-Specific Structures and System Calls

Since our solution relies on the operating system (OS) to create the subprocesses,
most of the protection concerning the process-related structures and system calls
is already handled by the OS, with one notable exception. The modification of the
memory access bits of a process must be prohibited. Otherwise a program that
generates or modifies code within its subaddress space would be able to overcome
the access limitations imposed by our modification. For this reason all programs
in the multiplexed address space must use the following access rights: read and

11

Figure 3.2: Example of address calculation. The first example (top) shows a valid
address being truncated and joined with the offset. The second example (bot-
tom) shows how an invalid address is recalculated to be within the bounds of the
subaddress space.

execute for code, read and write for heap and stack. Some programs such as just-
in-time (JIT) compilers violate this requirement. A JIT compiler for example,
first writes code into the heap and then marks that memory as executable. If a
program changes the memory permissions to executable we move that process
into a dedicated address space. The transformation from a program that runs
in a multiplexed address space to one that runs in its own address space can be
achieved transparently by creating a new page table for that process in the OS.

3.4.3 External Libraries

Another problem occurs if a call to the system or external library is made by the
subprocess. These external resources currently do not consider the usable memory
area of the subprocess. This could lead to memory leaks and non-addressable
data. This problem can be solved either by forbidding the use of such libraries

12

and system calls or by using wrappers to make them aware of the single address
space.

13

4. Implementation

Based upon the design in Chapter 3 we implemented a single address space that is
able to execute multiple processes. An implementation needs following function-
ality:

• the loading of the target program into an existing address space

• the protection of the target program
• the execution of the target program

The program loading is achieved by allocating the necessary resources in the
single-address-space which is provided by the execution environment. The execu-
tion environment assigns a memory area of its own memory as subaddress space
to the modified LLVM IR code. Thereafter the LLVM code is compiled into native
code. The protection of the target program can be divided into memory protec-
tion and protection of process-related structures. The memory protection of the
target program is realized by inserting additional instructions that recalculate the
address of each memory access. The security of the process-related structures is
implemented in the execution environment. It uses the mechanisms provided by
the operating system. Finally, to start the execution of the target program the main
method of the native compiled LLVM IR code is called by the subprocess.

Since our prototype is a proof of concept and the focus of this work is isolation,
we have not implemented any special optimizations to improve the performance.

4.1 Representation of the Target Program

To ensure the correct operation of our prototype it is necessary that the target
program is already compiled into an intermediate representation (IR), to be precise
LLVM IR (Section 3.2). The technique presented here can also be applied to
native compiled programs, by using a x86 to LLVM IR disassembler [3]. An
additional advantage of using LLVM IR code is that we were able to use the
LLVM just-in-time (JIT) compiler to relocate the target program (Section 3.4.1)).

14

4.2 Tools

We have been using Linux (Ubuntu 12.04 LTS) and the LLVM Compiler Frame-
work (version 3.1) [1] to develop our prototype. We used the clone system call
and the pthread library to create the subprocess. To modify the load and
store instructions we implemented a LLVM FunctionPass. A FunctionPass is a
shared library that can be instrumented by LLVM to analyze and transform LLVM
IR code. The execution environment is a partial rewrite of the default LLVM in-
terpreter (lli).

4.3 Instruction Modifier

The protection of the target program can be divided into two categories. The pro-
tection of the memory access and the protection of the process-related structures
such as file descriptors.

We first implemented the memory protection of the process. We therefore created
a LLVM FunctionPass (muxpass) which locates each store and load instruc-
tion in the IR of the target program and replaces it. The inserted instructions
recalculate the memory address. First of all the address of the store or load
instruction gets truncated to 32 bits by performing an and instruction. Afterwards
an offset is added via an or instruction, which sets the most significant 32 bits,
thereby limiting the addressable memory of the target program to 4 GiB (example
in Table 4.1). The offset is stored in a global variable (program_offset). This
global variable is then inserted into the target program by the FunctionPass. The
program_offset variable is later set by the execution environment.

Original target program Modified target program (after muxpass)
1 %orptr = ptrtoint i32* %1 to i64
2 %rst = and i64 %orptr10, 4294967295
3 %offset = load i64* @program_offset
4 %fix = or i64 %rst, %offset
5 %ofptr = inttoptr i64 %fix to i32*

1 store i32 0, i32* %1 6 store i32 0, i32* %ofptr

Table 4.1: Left: Unmodified target program. Right: Target program after bee-
ing processed by muxpass. store instruction was replaced by a version which
sets the most significant address bits to program_offset. The procedure is
identical for load instructions.

The muxpass FunctionPass is written in C++ and contains only 144 lines of code

15

including comments. Our prototype allows us to separately switch the modifica-
tion of load and store instruction on and off.

4.4 Execution Environment

The execution environment is responsible for loading the target program into its
address space, to compile the target program into native code and to start its execu-
tion. Additionally, the remaining protection, namely the protection of the process-
related structures, is ensured by the execution environment.

The execution environment (muxlli) is based upon the LLVM interpreter (lli). lli is
used to execute programs compiled to LLVM IR. Contrary to its name the LLVM
interpreter is also able to just-in-time compile the LLVM IR.

muxlli consists of 538 lines of C++ code. Compared to the original LLVM inter-
preter 233 lines were modified. Most of the modifications result from additional
code to create the subprocess.

4.4.1 Overview

Our execution environment (muxlli) creates a subprocess with dedicated memory
as illustrated in Figure 4.1. The current prototype reserves 4 GiB of memory
for each subprocess, where the upper 1 GiB are used by the stack. Next our
prototype creates a subprocess, which later executes the modified target program.
The subprocess calculates its offset within the multiplexed memory. This offset
is later used to ensure that the modified program can only access memory of its
own subaddress space. Subsequently process-specific structures are initialized.
Finally, the subprocess compiles the modified target program into native code and
calls the main-method thereby starting the execution of the target program.

Currently, we do not load dynamic libraries into the subaddress space of the pro-
cess. However, calling a dynamic library works since our prototype is not check-
ing the memory address of function calls. We will cover the isolation of runtime
dependent control flow, such as indirect function calls in future work.

4.4.2 Subprocess creation

We use the clone system call with CLONE_VM, to create a real subprocess with
own signal and file descriptor table. The CLONE_VM flag ensures that the parent
(muxlli) and the child (target program) run in the same address space. By using

16

Figure 4.1: Steps to create a subprocess. First the target program LLVM IR code
is loaded. Then the execution engine allocates memory and starts a subprocess
(therefore the stack). Subsequently the subprocess uses the execution engine to
compile the LLVM IR and store the native code into its memory. Finally the
subprocess executes the compiled code.

the clone system call we delegate the protection of the process-related structures
to the underlying operating system.

The current prototype does not create an own thread local storage (TLS) which is
passed to clone. Therefore, immediately after the clonewe call pthread_create
from the pthread-library to get a proper initialized TLS. The TLS is used to
store certain process-specific data, such as the value of errno.

After the subprocess is created a default signal handler for SIGSEGV is installed,
which exits the subprocess if called. This prevents the termination of muxlli in
case of a segmentation fault in the subprocess. Since muxlli and the subprocess
share the same address space, Linux delivers the signal to muxlli if the subprocess
has no segmentation fault handler.

Our prototype does not fully support dynamic libraries, therefore access to std-

17

in/stdout/stderr results in a memory access violation. In our prototype we copy
the information of stdin/stdout/stderr into the subaddress space and rewrite the
memory location during the compilation, to use standard in- and output.

4.4.3 Target Program Compilation

Before the modified target program is compiled the value of program_offset
is calculated. This offset is stored in the target program and ensures that the sub-
process can only address a limited amount of memory.

To force the compilation to emit the native code into a predefined memory area
we wrote our own JIT memory manager. Based on the default LLVM memory
manager we had to change 138 lines of code. The memory manager does not only
enable us to specify the location of the native code, but it also allows us to replace
function calls such as malloc and free with own implementations, which are
aware of the subaddress space. For this reason we do not require the target pro-
grams to statically link with a modified libc which is aware of the multiplexed
address space.

The only necessary modification to the LLVM source code was to enable argument
passing via stack in the execution engine. This modification was needed because
the default implementation uses the heap of the execution environment to store
the arguments. Accessing the arguments in the subprocess resulted in an access
violation error since the location of the arguments was outside the addressable
memory of the subprocess.

4.5 Limitations

Although we limit the addressable memory (subaddress space) of the multiplexed
process (subprocess), we currently do not check the address of functions. This
allows us to use dynamic libraries outside the subaddress space. However, it also
allows the program to make arbitrary calls to functions outside its address space, in
a worst-case scenario a malicious program could use a modified function pointer
to skip the address modification by directly jumping to the load/store instruc-
tion. This could be prevented if prior to an indirect function call the address is
verified by comparing it to all valid function addresses of the program.

18

5. Evaluation

The evaluation of our approach is divided into two parts: isolation and perfor-
mance. First we evaluate if our solution provides the same isolation mechanisms
as a normal process. We tried to escape from the subaddress space (assigned area
within the execution environment) and tried to manipulate process structures of
the execution environment, muxlli. Thereafter, we show that the performance im-
pact on a commonly used application is below 50%, with room for improvement.
We measured the performance impact by comparing the execution time of our
modified binaries to native compiled code.

5.1 Test Machine and Environment

All experiments were conducted on a Intel Core i7-2600 (with hyper-threading
disabled) with 32 GiB of main memory and a SSD hard drive. We used Ubuntu
12.04 LTS (Kernel 3.2.0-38) as operating system and LLVM version 3.1 as basis
for our own implementation. LLVM IR code was generated with clang version
3.0 1.

5.2 Program Representation

For all our test we pre compiled the C programs to LLVM intermediate representa-
tion (LLVM IR) code. We used clang to compile each C file into a corresponding
LLVM IR file. For the performance tests we also created an executable ELF file
with clang.

Since our execution environment (muxlli) and the default execution environment
of LLVM (lli) expect a single LLVM IR file, we used the LLVM linker llvm-link
to link all LLVM IR files into a single one.

1compile options: -S -emit-llvm

19

Additionally, the LLVM IR files used by muxlli were modified to ensure that each
access of a store and load instruction occurs only within the subaddress space.
For our tests we have chosen to limit the addressable memory to 4 GiB.

The transformation was performed by the LLVM optimizer with our additional
modification pass called muxpass. muxpass allows us to separately enable the
modification of store or load instructions.

5.3 Isolation

As previously mentioned isolation is one of our main design goals. We therefore
modify the LLVM intermediate representation (IR) code of the program to prevent
memory access across subprocess boundaries. A subprocess is a process that we
created in our execution environment, muxlli, with own file descriptors, memory,
and signals. Although each subprocess runs in the same virtual memory modifi-
cation of other subprocesses has to be prevented. In this section we demonstrate
that our prototype isolates the subprocess to such an extent that it can be viewed
as a full featured process, if indirect function calls are excluded.

5.3.1 Signals

We experimentally verified that signals sent to the subprocess are not routed to
the execution environment. Furthermore we could demonstrate that modifying
the signal handler in the subprocess does not affect the way signals are handled
in the execution environment muxlli. We used the program in Listing 3 (page 34)
to perform the tests. The program sets up a signal handler for SIGUSR1 and then
goes to sleep. If the signal handler is triggered a message is printed. Next we
manually send a SIGUSR1 signal to the sleeping process via the kill command.
muxlli was modified to handle the same signal with a different output and to print
a message before exiting. We consider the test successful when only the signal
handler of the test program is called and the final message from the execution
environment is displayed.

All our tests were successful. An example output can be seen below (Listing 5.1).

$ muxlli ./signal # kill -SIGSEGV PID expect no output
from signal

muxlli: Bye
$ muxlli ./signal # kill -SIGUSR1 PID expect signal

handler output
signal: Signal Handler

20

muxlli: Bye

Listing 5.1: Test if signals sent to the subprocess affect the execution environment.

5.3.2 File Descriptors

Each subprocess owns a dedicated set of file descriptors. Any modification to
these file descriptors must not affect the execution environment. As with the sig-
nals we experimentally verified that our subprocess is not able to modify the file
descriptors of our execution environment, muxlli. The conducted test is very sim-
ple (see Listing 4, page 34). We started a subprocess which closes the stdout
file descriptor. Thereafter, the program prints a messages to stdout. The test was
considered successful if the message of the subprocess after the close call is not
shown and the final message of muxlli is displayed, since its stdout was not closed.

All performed tests were successful, see Listing 5.1 for a test output.

$ muxlli ./io # expect no output of io, but from muxlli
muxlli: Bye

Listing 5.2: Test if modifying the filedescriptor affects the execution environment.

5.3.3 Memory

Finally, we tested if the subprocess is able to gain access to the memory of the
execution environment (muxlli). Our test program (Listing 5, page 34) allocates
memory via mmap at a predefined location. muxlli ensures that this location is
unused, so that the call succeeds. Since we did not modify the behaviour of mmap
we enabled the subprocess to allocate memory outside its subaddress space. Of
course mmap should not be allowed to handle memory operations outside the cur-
rent subaddress space. This behaviour can be prevented by instrumenting our
memory manager (see Section 4.4.3). Every attempt to use the memory of mmap
has to fail, for the reason that it is outside its subaddress space. After the allo-
cation, the subprocess tries to write into the memory and prints its content. We
further installed a signal handler to show segmentation faults. We expected that
the subprocess crashes due to an invalid memory access and the final message of
muxlli is displayed.

As shown in Listing 5.3 all tests we ran were successful.

$ muxlli ./mem # expect segfault in mem

21

mem: Segmentation Fault
muxlli: Bye

Listing 5.3: Test if subprocess is able to modify memory of the execution
environment.

5.4 Performance

We show that the overhead of our solution is less than 100% for the worst case
and can be as low as 14% if we relax the isolation requirement. We analysed the
performance impact introduced by replacing load and store instructions by
measuring the execution time of three programs, with and without modification.
All presented results are the mean of 30 runs. The maximal deviation from the
mean was 1.6% in the unoptimized bzip2 run for the default LLVM interpreter.
All other deviations were below 0.75%. The first two programs execute a loop
wherein a load respectively store to memory is done. We used these programs as
micro-benchmarks to evaluate the impact of our modification on a specific instruc-
tion (load/store). Finally, we measured bzip2, a commonly used compression
program, to evaluate the impact of our modification on the execution time.

All programs are written in C and were precompiled to native code and to LLVM
IR with the appropriate modifications. We compared the execution time of the test
programs with:

• native compiled ELF binary (clang)

• just-in-time compiled LLVM IR executed by the default LLVM interpreter
(lli2)

• a just-in-time compiled LLVM IR, where only store instructions were
modified, executed by our interpreter (store-muxlli3)

• a just-in-time compiled LLVM IR, where store and load instructions
were modified, executed by our interpreter (muxlli4)

Since we observed that using optimizations reduces the number of loads and
stores, we additionally compiled each program with optimizations enabled5.

2version 3.1
3same interpreter as muxlli only the input file differs
4based on lli version 3.1
5compiler flags: -O2 -fno-strict-aliasing

22

5.4.1 Micro-Benchmarks

Our mechanism to secure the memory access of the subprocesses introduces an
overhead during memory access. The overhead results from the replacement of
the load and the store instructions in the LLVM IR. We measured the impact
of our solution with two very simple programs. Both programs allocate memory
and read from respectively write to that memory, thereby executing a significant
number of loads and stores. The memory is allocated on the heap. We assume
that these tests show the worst case behaviour for our modification.

load program

The load program (Listing 1, page 33) was used to examine the performance
impact of our modification on the load instruction.

The program allocates an integer array on the heap. We chose an array size of
1 GiB. The program calculates the sum of the uninitialized array values. The sum
is calculated multiple times (32×) to simulate a larger array.

The results are presented in Figure 5.2. For the unoptimized code (red) our re-
sults show that the execution time of the full modification only increased by 20%
(muxlli) and almost no penalty (only 3%) is recognizable for the store-only
modification (store-muxlli) compared to the native compiled code (clang). The
overhead of the store-muxlli can be accounted to the necessary process initializa-
tion performed by the execution engine. Although the default LLVM interpreter
(lli) is faster than clang, this can be explained by the additional run-time optimiza-
tions performed by lli. Another reason for the difference in runtime between lli,
store-muxlli and muxlli are the additional inserted instructions.

Using the optimized code (blue) lli and store-muxlli were almost as fast as clang
(less than 0.1% overhead). However, the overhead of muxlli increased to almost
70%.

One reason for the faster execution of the optimized code is that certain optimiza-
tions reduce the number of memory instructions (see Table 5.1) for example by
storing values in register instead of memory.

Our findings for the modification of read-only memory instructions are that the
store-only modification has no impact on the performance and that 70% is the
maximum overhead that is to be expected.

23

Figure 5.1: Execution times (min/avg/max) for reading 32 GiB of data. En-
abling optimizations (blue) reduced the execution time as expected. The default
LLVM interpreter (lli) performs additional optimizations and is therefore faster
than the native compiled code (clang). Since only load instructions were used
the store-only modification (store-muxlli) performed better than the full modi-
fication (muxlli uses modified loads and stores).

instruction occurrences
load 23
store 16
load (O2) 4
store (O2) 1

Table 5.1: Total number of load and store instructions in the LLVM IR for the
unoptimized and optimized (O2) load-program

store program

We used the store program (Listing 2, page 33) to examine the performance impact
of our modification on the store instruction.

24

Similar to the load program store allocates 1 GiB of integer variables on the heap.
store then calculates the sum of the uninitialized values. Again, a larger array is
simulated by calculating the sum multiple times (32×).

We present our measurements in Figure 5.1. The results for the unoptimized code
show that the default LLVM interpreter (lli) performs even better (approx. 9%)
than the native compiled code (clang). Again, the reason are the additional opti-
mizations performed by lli. The overhead of the store-only and full modifica-
tion is 6%.

When using the optimized code the overhead drastically increases to more than
95% for store-muxlli and muxlli compared to clang. In connection with the per-
formance difference of the unoptimized code and the measurements from the load
test the results suggest that optimizations are performed to the unmodified IR
code, which cannot be applied to our modified IR code.

Some optimizations are able to reduce the number of memory instructions, with-
out affecting the correctness of the program (see Table 5.2). Reducing the memory
access allows the optimized code to execute almost four times faster than the un-
optimized code.

Contrary to our expectations the store-only modification is inferior to the full
modification in this test. We expected store-muxlli and muxlli to have the same
performance. We verified that neither the array size nor the optimizations done
by our execution environment caused this behaviour. We further reviewed the C
and the modified LLVM IR code. The cause is currently unknown and will be
investigated in a future work.

We conclude from the results that the maximum overhead of our solution is less
than 100%.

instruction occurrences
load 24
store 16
load (O2) 4
store (O2) 1

Table 5.2: Total number of load and store instructions in the LLVM IR for the
unoptimized and optimized (O2) store-program

25

Figure 5.2: Execution times (min/avg/max) for writing 32 GiB of data. Enabling
optimizations (blue) reduced the execution time as expected. The default LLVM
interpreter (lli) performs additional optimizations and is therefore faster than the
native compiled code (clang). Since almost exclusively store instructions were
used the store-only modification (store-muxlli) and the full modification (muxlli
uses modified loads and stores) are on par.

5.4.2 bzip2

We have chosen bzip26 [5,14], a commonly used compression program, to observe
the impact of modifying store and load instructions on the execution time of
a real world program. The code used for testing is the same as provided by the
SPEC CPU2006 benchmark7.

Figure 5.3 shows our results for the bzip2 benchmark.

The measurements clearly show a performance gain from using the optimization
(blue). The unoptimized full modified code (red muxlli) is five times slower than

6version 1.0.3
7compiler flags -DSPEC_CPU -DNDEBUG -DSPEC_CPU_LP64

26

Figure 5.3: Execution times (min/avg/max) of compressing and decompressing
64MiB with bzip2 (from the SPEC CPU2006) with three different block sizes.
Enabling optimizations (blue) reduced execution time down to 28%. The default
LLVM interpreter (lli) performs additional optimizations and is therefore faster
in the unoptimized case than the native compiled code (clang). As expected the
store-only modification (store-muxlli) performed better than the full modifica-
tion (muxlli uses modified loads and stores).

the optimized native compiled code and two times slower than the unoptimized
native compiled code (clang). The performance gap for the full modified code
(muxlli) compared to the native compiled code (clang) can be reduced from more
than 100% down to 43% if the code gets optimized. The difference between the
unoptimized and optimized code can be traced back to the increased number of
necessary instruction modifications and the resulting increase in code size (see
Table 5.4). Additionally, the full modified unoptimized code contains 2.75 times
more memory instructions than the optimized code (Table 5.3).

Relaxing the isolation requirement to allow arbitrary read access (store-muxlli)
reduces the performance impact of our solution by 30-50% depending on the
optimization level. For the optimized case (red) the overhead is less than 14%

27

compared to the native compiled code (clang).

The measurements for bzip2 differ from the values of the previous tests. This dif-
ference can partially be accounted to the fact that bzip2 is not as memory intensive
as the load and store program.

instruction occurrences
load 8945
store 2992
load (O2) 2615
store (O2) 1716

Table 5.3: Total number of load and store instructions in the LLVM IR for the
unoptimized and optimized (O2) code

instruction modified lines of LLVM IR code size increase
none 30771 -
store 45698 49%
store & load 90201 193%
none (O2) 19911 -
store (O2) 28430 43%
store & load (O2) 41259 107%

Table 5.4: Comparison of LLVM IR code lines, after replacing the store in-
struction (store) and after replacing store and load instructions (store &
load). The optimized code is marked with O2.

5.5 Summary

We have shown that our modification to the LLVM IR in connection with our
execution environment is able to create a full featured and protected subprocess.
A subprocess is not able to escape its subaddress space and modify the signal
and file handler of another process. Our current prototype is able to run a bzip2
compression with an acceptable overhead of less than 50%. Using a slightly less
restrictive modification (securing only the write access) allows us to further reduce
the overhead down to 14%. The results from the load and store tests suggest
that the maximum overhead introduced by our approach is less than 100%. This
makes our solution practical for everyday use, when performance can be traded
for isolation. The overhead of our solution can be compensated if the program
makes use of the expected benefits described in Section 1.1.

28

6. Conclusion

In this paper we explored how to multiplex the address space between several sub-
processes on a 64-bit architecture, namely AMD64 and x86_64. A single address
space allows the reuse of the page table entries thereby improving interprocess
communication and context switches.

Our design focused on isolation. A subprocess (process created within an existing
address space) is not permitted to access memory outside its assigned memory
area (subaddress space) and should not be able to modify the signal handlers and
file descriptors of other subprocesses.

We approached this problem by modifying the compiled program code to limit
the memory access to an area determined during the program start. For that pur-
pose the program was compiled to LLVM intermediate representation (IR) code.
Before execution we scan the IR for load and store instructions. We modify
each memory address of a load and store by setting the most significant bits
to an offset. The next step is to load the modified IR code into our execution
engine. The execution engine calculates and inserts the offset into the IR code.
Additionally the execution engine is responsible for creating and initializing the
process-related structures such as memory, signals and file descriptor. Finally the
IR code is translated into native code and executed.

We used our prototype to evaluate the isolation and performance of our approach.
Our prototype was able to withstand illegal memory access and attempts to mod-
ify the signal handler and file descriptors by the subprocess. The results of the
performance tests were better than anticipated. The bzip2 executed by our proto-
type introduced only an overhead of 50% compared to the native compiled pro-
gram. An optimization which trades isolation for performance by only modifying
the store instructions (loads are ignored), thereby allowing arbitrary memory
read access, reduced the overhead with bzip2 to 14% overhead. Thus, we believe
that our solution is practical in certain scenarios where a lot of context switches
and interprocess communication is done.

29

6.1 Future Work

Since our solution works on LLVM IR we are not able to prevent return-oriented
programming [4,15] attacks within the subprocess. This protection can be achieved
by a compiler backend which sets the most significant bits of each return address.

Another topic that has to be considered is performance. Future work should focus
on improving the execution time of modified programs. The solution we propose
is very similar to using position independent code. The program gets compiled
with the 32-bit instruction set, except for memory and control flow instructions.
These are compiled using 64-bit instructions. A fixed 64-bit offset register is
added to the address of these instructions. By limiting the program to 32-bit in-
structions and 32-bit register, memory access can only occur within 4 GiB. The
64-bit offset register is set when the program is loaded into the address space and
determines the position within the execution environment.

30

Bibliography

[1] The llvm compiler infrastructure project. https://llvm.org/. Ac-
cessed: 2012-12-12.

[2] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compil-
ers: principles, techniques, & tools, volume 1009. Pearson/Addison Wesley,
2007.

[3] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim
Gruen, Nathan Giles, and Rajeev Barua. A compiler-level intermediate rep-
resentation based binary analysis and rewriting system. In Proceedings of
the 8th ACM European Conference on Computer Systems, pages 295–308.
ACM, 2013.

[4] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When
good instructions go bad: generalizing return-oriented programming to risc.
In Proceedings of the 15th ACM conference on Computer and communica-
tions security, pages 27–38. ACM, 2008.

[5] Michael Burrows and David J Wheeler. A block-sorting lossless data com-
pression algorithm. 1994.

[6] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska. Opal: a single ad-
dress space system for 64-bit architecture address space. In Workstation
Operating Systems, 1992. Proceedings., Third Workshop on, pages 80–85.
IEEE, 1992.

[7] Yasuhiro Endo, Margo Seltzer, James Gwertzman, Christopher Small,
Keith A Smith, and Diane Tang. Vino: The 1994 fall harvest. 1994.

[8] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The
mungi single-address-space operating system. Software: Practice and Ex-
perience, 28(9):901–928, 1998.

[9] Galen Hunt, James Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel
Fähndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy,
et al. An overview of the singularity project. 2005.

31

https://llvm.org/

[10] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 1: Basic Architecture. March 2013. http://download.
intel.com/products/processor/manual/253665.pdf.

[11] John R Levine. Linkers and loaders, morgan-kauffman. Technical report,
ISBN 1-55860-496-0.

[12] Jochen Liedtke. Improved address-space switching on pentium processors
by transparently multiplexing user address spaces. Technical Report 933,
November 1995. http://l4ka.org/publications/.

[13] George C Necula, Scott McPeak, and Westley Weimer. Ccured: type-safe
retrofitting of legacy code. In ACM SIGPLAN Notices, volume 37, pages
128–139. ACM, 2002.

[14] Julian Seward. bzip2, 1998.

[15] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM con-
ference on Computer and communications security, pages 552–561. ACM,
2007.

[16] Christopher Small. A tool for constructing safe extensible c++ systems. In
Proceedings of the Third USENIX Conference on Object-Oriented Technolo-
gies and Systems, pages 175–184, 1997.

[17] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Mar-
tins, Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H Leung,
and Larry Smith. Intel virtualization technology. Computer, 38(5):48–56,
2005.

[18] Volkmar Uhlig, Uwe Dannowski, Espen Skoglund, Andreas Haeberlen, and
Gernot Heiser. Performance of address-space multiplexing on the pentium.
Interner Bericht 2002-01, Fakultät für Informatik, Universität Karlsruhe,
2002. http://l4ka.org/publications/.

[19] AMD64 Virtualization. Secure virtual machine architecture reference man-
ual. AMD Publication, (33047), 2005.

32

http://download.intel.com/products/processor/manual/253665.pdf
http://download.intel.com/products/processor/manual/253665.pdf
http://l4ka.org/publications/
http://l4ka.org/publications/

Appendix A

Listing 1: load.c
#include <stdio.h>
#include <stdlib.h>
const int MB = 1024 * 1024;
int main(int const argc, char const * const argv[]) {

size_t size = 500;
int rep = 1;
int sum = 0;
if(1 < argc) size = atoi(argv[1]);
if(3 == argc) rep = atoi(argv[2]);
char *ary = (char *) malloc(size * MB);
if(NULL == ary) return 1;
for(int j = 0; j < rep; j++)

for(unsigned long long i = 0; i < size * MB; i++)
sum += ary[i];

printf("output: %d\n", sum);
free(ary);
return 0;

}

Listing 2: store.c
#include <stdio.h>
#include <stdlib.h>
const int MB = 1024 * 1024;
int main(int const argc, char const * const argv[]) {

size_t size = 500;
int rep = 1;
if(1 < argc) size = atoi(argv[1]);
if(3 == argc) rep = atoi(argv[2]);
char *ary = (char *) malloc(size * MB);
if(NULL == ary) return 1;

33

for(int j = 0; j < rep; j++)
for(unsigned long long i = 0; i < size * MB; i++)

ary[i] = i;
printf("output: %d\n", ary[size * MB - 1]);
free(ary);
return 0;

}

Listing 3: sig.c

#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

const char *prog;
void sighandler(int signo){

printf("%s: Signal Handler\n", prog);
exit(0);

}
int main(int const argc, char const * const argv[]) {

prog = argv[0];
signal(SIGUSR1, sighandler);
sleep(5);
printf("Don’t print me\n");
return 0;

}

Listing 4: stio.c

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int const argc, char const * const argv[]) {
close(1);
printf("%s: Hello\n", argv[0]);
return 0;

}

34

Listing 5: mem.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <signal.h>

const char *prog;
const int FLAGS = MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED;
void sighandler(int signo){

fprintf(stderr, "%s: Segmentation fault\n", prog);
exit(EXIT_FAILURE);

}
int main(int const argc, char const * const argv[]) {

prog = argv[0]; signal(SIGSEGV, sighandler);
void *l = (void *) 0x110000000ull;
char *p = (char *) mmap(l, 4096, PROT_READ |

PROT_WRITE, FLAGS, -1, 0);
if(l == p) {

p[0] = ’O’; p[1] = ’K’; p[2] = ’\0’;
printf("%s: %p: %s\n", argv[0], p, p);
munmap(p, 4096);

} else {
fprintf(stderr, "%s: Failed to allocate memory at

%p\n", argv[0], l);
}
return 0;

}

35

	Abstract
	Contents
	Introduction
	Expected Benefits

	Background & Related Work
	Background

	Design
	Overview
	Code Preparation and Loading
	Program Execution
	Process Protection

	Implementation
	Representation of the Target Program
	Tools
	Instruction Modifier
	Execution Environment
	Limitations

	Evaluation
	Test Machine and Environment
	Program Representation
	Isolation
	Performance
	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix A

