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Deutsche Zusammenfassung

Speicherduplikation entsteht, wenn mehrere Speicherseiten (page frames)
den gleichen Inhalt tragen und dadurch unnötige Redundanz im Haupt-
speicher entsteht. Eine empirische Studie von Speicherduplikation auf Vir-
tualisierungssystemen hat ergeben, dass, abhängig vom eingesetzten Be-
triebssystem und den ausgeführten Anwendungen, der Anteil von redun-
danten Speicherseiten zwischen 11% und 86% liegt [15]. Weitere Untersu-
chungen belegen diese Ergebnisse und nennen Werte zwischen 40% [37]
und 50% [22].

Um Speicherduplikation entgegenzuwirken und eine effizientere Nutzung
des Hauptspeichers zu ermöglichen, sind eine Vielzahl von Deduplizie-
rungsmechanismen entwickelt worden. Ihnen gemein ist das grundlegen-
de Prinzip, unnötige Kopien einer Speicherseite für andere Zwecke frei-
zugeben und stattdessen Referenzen im System über Copy-On-Write auf
die verbleibende Instanz zeigen zu lassen. Unterscheidungen gibt es da-
gegen in der Art und Weise wie der jeweilige Algorithmus Duplikate identi-
fiziert und welche Typen von Speicherseiten designbedingt erfasst werden
können (z.B. nur Speicherseiten, die für I/O verwendet werden). Abhän-
gig vom Algorithmus ergibt sich durch das Vergleichen von Speicherseiten
und dem Management entsprechender Datenstrukturen ein beträchtlicher
Rechenaufwand, der im ungünstigsten Fall einen vollständigen Prozessor-
kern auslasten kann [7]. Auch birgt Deduplizierung die Gefahr unnötiger
Kosten, wenn das Zusammenlegen identischer Seiten aufgrund anschlie-
ßender Schreibzugriffe rückgängig gemacht werden muss. Es ist daher
entscheidend, ein besseres Verständnis über die Charakteristika von iden-
tischen Seiten zu erlangen und dieses in bestehende Algorithmen einflie-
ßen zu lassen. Auf diese Weise können Anstrengungen zur Deduplizie-
rung auf vielversprechende Speicherbereiche fokussiert und Unkosten re-
duziert werden.
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vi DEUTSCHE ZUSAMMENFASSUNG

Frühere Forschungsarbeit auf dem Gebiet der Speicherduplikation [10, 15,
29, 38] lässt jedoch eine Menge Fragen bzgl. der Eigenschaften von iden-
tischen Seiten offen. So wurde bisher wenig Forschung betrieben, um die
zeitliche und räumliche Verteilung von identischen Seiten zu erfassen und
diese Daten mit Zugriffsmustern und der Art der Speichernutzung zu kor-
relieren. Darüber hinaus liegen keine Erkenntnisse über die Auswirkun-
gen von Speicherdeduplizierung auf die Geschwindigkeit von Hardware-
komponenten wie Prozessor-Caches vor. Ein weiteres Problem früherer
Forschungsarbeiten ist, dass aufgrund der Schwierigkeit, kontinuierliche
Daten zu sammeln, die Auswertung in jedem Fall auf abgetasteten Da-
ten beruht. Dies ist inhärent mit der Gefahr unvollständiger Informationen
und daraus entstehenden falschen oder ungenauen Aussagen verbunden.

Die vorliegende Arbeit befasst sich deshalb mit der Entwicklung eines fle-
xiblen Werkzeugs zur feingranularen Analyse von identischen Seiten so-
wie zur Messung von Effekten der Speicherdeduplizierung. Um die zeitli-
che Vollständigkeit der zugrundeliegenden Datenbasis zu garantieren, wird
dabei auf die umfassende Simulation des zu untersuchenden Systems
(Full System Simulation) gesetzt, die eine deutlich genauere Analyse er-
laubt, als es in früheren Forschungsarbeiten möglich war. Darüber hinaus
stehen durch den Einsatz von Betriebssystem-Introspektion (d.h. dem Auf-
zeichnen von relevanten Operationen im Betriebssystem) erstmals gleich-
zeitig detaillierte Informationen zum Systemzustand (z.B. aktuell laufender
Prozess, Layout von Adressräumen, Nutzung von Speicherseiten) zur Ver-
fügung, die eine genaue semantische Korrelation erlauben.

Eine erste prototypische Evaluation hat gezeigt, dass mit Hilfe der entwi-
ckelten Analysemethode ein genauer Einblick in die Charakteristika von
identischen Speicherseiten ermöglicht wird. Neben der Bestätigung frü-
herer Forschungsergebnisse, konnten ebenso bereits neue Erkenntnisse,
z.B. über die Lebenszeit und die Effekte von Speicherduplikation auf CPU-
Caches, gewonnen werden.
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Chapter 1

Introduction

Main memory is still a scarce resource in computer systems that at the
same time heavily determines the system’s performance and overall scal-
ability with regard to the accommodation of process working sets and op-
erating system file and object caches. This is especially the case for mem-
ory intensive workloads such as database applications and virtualization-
based server consolidation.

Memory duplication occurs when multiple page frames in the system’s
physical memory hold identical contents and thereby introduce data redun-
dancy. An empirical study on memory duplication in virtualization hosts
found the amount of redundant pages to be between 11% and as high
as 86% depending on the operating system and workload [15]. Further
research seconds this results and identified identical page frames in the
range between 40% [37] and 50% [22]. For NUMA systems, it can be bene-
ficial to have certain page frames duplicated to avoid frequent remote mem-
ory accesses. However, this is not the case for a single shared memory
architecture on which this work focuses on. To date, a diverse set of mem-
ory deduplication techniques have been developed that aim at reducing
this redundancy by copy-on-write remapping pages with equal contents to
a single copy in RAM. However, deduplicating sharing opportunities that
are subject to frequent modification can defeat the benefits of memory
deduplication by introducing computational overhead due to early break-
ing of COW pages. Moreover, depending on the deduplication mechanism
the detection of sharing opportunities itself is already a costly operation,
which can occupy up to a whole processor core [7].

Having a sound knowledge of the characteristics of sharing opportunities
is, thus, very important and helps to improve existing memory deduplica-
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2 CHAPTER 1. INTRODUCTION

tion mechanisms by focusing deduplication efforts and avoiding unneces-
sary computational overhead. However, previous work leaves many open
questions regarding the properties of identical pages [10, 15, 29, 38]. Only
little research has been done on investigating temporal as well as spatial
characteristics and there is no information if these correlate with access
patterns and/or page usage. Moreover, we have no knowledge of the im-
plications of memory deduplication on the system, including the perfor-
mance of affected hardware components such as processor caches. An-
other problem with previous research is that, due to the difficulty to gather
continuous data, in every case the evaluation is based on sampled data.
In some cases even only a single memory snapshot of a workload is taken
as data basis [10] or the measurement interval is decreased in periods of
high processor demand [29]. This inherently entails the risk of distorted
results.

The objective of this work is to deliver a tool chain that is capable to an-
swer open questions regarding the characteristics of sharing opportunities
as well as regarding the implications on hardware components and that
guarantees the temporal completeness of its data basis to avoid imprecise
results.

To achieve this goal the work at hand makes use of full system simula-
tion and extensive continuous tracing. This way, a broad set of information
about sharing opportunities in the evaluated system’s physical memory are
gathered and subsequently correlated to operating system state informa-
tion such as executing processes, address spaces areas and page frame
usage. Moreover, the full system simulation facilitates the analysis of ef-
fects of memory duplication on hardware components. A flexible scripting-
based analysis interface provides the means to investigate recorded data
in any way desired.

The effectiveness of the proposed analysis mechanism for sharing oppor-
tunities is demonstrated through an evaluation of the temporal and spatial
characteristics of a set of prototypical desktop oriented workloads. In this
course, the evaluation confirms some of the results of previous research.
File cache pages for instance could be verified as a valuable target for
memory deduplication as they dominate the amount of mergeable pages
with up to 70% and are characterized by a high lifetime in that 65% of shar-
ing opportunities within the file cache survive longer than 30 minutes. How-
ever, the evaluation also leads to various contradicting observations. Due
to the low measurement resolution, previous work for example greatly un-
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derestimates the amount of extremely short-lived sharing opportunities. In
fact, around 45% of sharings only exist for under a single second and 85%
of sharings vanish before they reach a lifetime of 30 seconds. Previous
research estimated the latter to be only 24.5% [38]. Further discrepancies
are related to recent findings of Barker et al. who determined most shar-
ing potential to originate from sharing opportunities within a single system
and not between multiple systems (e.g., on a virtualization host) [10]. Our
evaluation shows the contrary. For the first time, the proposed analysis
mechanism also allows getting an insight into the sharing potential within
processor caches and the evaluation reveals that large caches such as
the 20 MiB L3 cache of the Intel Xeon E52470 can save over 4% of cache
lines with memory deduplication.

The tool chain provided by this work helps to quickly complement previ-
ous research with additional high resolution measurements and fine gran-
ular analyses that for the first time allow a full correlation with operating
system state information, thereby improving the understanding of sharing
opportunities. The tracing-based architecture of our analysis mechanism,
moreover, facilitates the exchange of gathered data within the research
community and makes it easier for external researchers to comprehend
and build on previous results.

Following the introduction, Chapter 2 provides background on memory du-
plication and presents related work in the field of memory deduplication.
The chapter is supplemented with an overview of processor cache designs
and an introduction to full system simulation with Wind River Simics. Chap-
ter 3 discusses the weaknesses of previous research on the characteris-
tics of sharing opportunities and weights up the pros and cons of possible
data acquisition methods. Chapter 4 subsequently presents our proposed
analysis method for sharing opportunities based on full system simulation.
To prove the effectiveness of our approach, an evaluation is performed in
Chapter 5. This chapter also sheds light on the sharing potential in pro-
cessor caches. The work closes with a conclusion and prospect of future
work in Chapter 6.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

This chapter gives a short explanation on memory duplication as well as
on the concepts and methods that are used to deduplicate memory. The
explanations are supplemented by an overview of related work and evalua-
tion results in the respective areas. The chapter closes with an introduction
to the full system simulator Simics.

2.1 Memory Duplication

Main memory is still a scarce resource in computer systems. The amount
of physical memory heavily determines the system’s performance. Addi-
tional memory can be leveraged to cache frequently accessed data (e.g.,
file caches) and makes room for running more applications without forc-
ing the operating system to swap. Thus, the amount of main memory
effectively limits the system’s scalability. This is especially true for, but not
limited to, virtualization where main memory is a determining factor with
regard to the number of virtual machines (VMs) that can be co-located on
a physical machine.

The physical memory in modern paging-based architectures is evenly di-
vided into small chunks called page frames. Memory duplication occurs if
multiple page frames hold identical contents. Therefore, memory duplica-
tion introduces unnecessary redundancy by consuming memory, which, if
freed, could be used to increase the system’s speed and to accommodate
the working set of more processes or larger caches1.

1In systems with non-uniform memory access (NUMA), a certain degree of memory
duplication can be desired to avoid remote memory accesses. This work focuses on
systems with a single shared main memory.
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6 CHAPTER 2. BACKGROUND

Memory Consumption

Gupta et al. measured the amount of duplicated memory across three vir-
tual machines (configured with 512 MiB RAM each) running Windows XP,
Debian and Slackware Linux and found that nearly 50% of pages could be
saved through memory deduplication [22]. Other experiments conducted
with two virtual machines (512 MiB, Ubuntu Linux) compiling the Linux ker-
nel and in another benchmark serving websites with Apache, showed a
theoretical maximum saving of 40% due to redundant page frames [37].
An empirical study on memory duplication of virtual machines found the
amount of redundant pages to be between 11% and as high as 86% de-
pending on the operating system (Windows, Linux) and workload (MPI,
Hadoop, MySQL, Web App) [15]. However, recent measurements indicate
that over two-thirds (67%) of memory duplication may possibly stem from
identical pages within the virtual machines and not from redundant pages
across multiple virtual machines [10].

Sources of Duplication

Common sources of memory duplication are zero pages or other specifi-
cally initialized memory regions (e.g., heap), statically or dynamically loaded
libraries and memory mapped files in general. Barker et al., inter alia, mea-
sured the number of identical page frames in Ubuntu Linux 10.10 while
running a typical set of desktop applications (Firefox, OpenOffice, email
client, etc.). They showed that over 50% of identical page frames stem
from process heaps and identified library pages to be the second largest
source with 43%. Especially complex GUI applications such as Firefox
(48%) and OpenOffice (38%) are substantially involved in memory dupli-
cation while headless applications such as bash (9%) and ssh (6%) tend
to be less critical. In total, between 5 MiB and 165 MiB of physical mem-
ory were consumed by memory duplication inside a single VM, depending
on the evaluated workload and operating system [10]. A similar analysis
that targeted memory duplication between multiple virtual machines run-
ning various server-type workloads (Linux kernel build, Dbench, database
benchmarks) found the file system page cache (69%) and kernel pages
(19%) to be the most significant causes for identical page frames [29].
Note that both studies did not account for duplicate pages that were al-
ready prevented by common operating system mechanisms such as the
shared mapping of libraries. In addition, the measurements explicitly ig-
nored zero pages as these are regularly created by the operating sys-
tem for fast serving of future memory allocations as well as for security
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purposes when page frames are exchanged between processes. Experi-
ments also showed that zero pages are not well suited for memory dedu-
plication. Although there can be 20 times as much duplication from zero
pages as from nonzero pages, zero pages are modified frequently which
can negatively impact system performance if they are shared [38].

2.2 Memory Deduplication

Memory deduplication (in this work also referred to as simply deduplica-
tion) is the process of preventing or identifying and removing redundancy
in physical memory by mapping virtual pages with identical contents to a
single copy in RAM. Any previously mapped page frames that hold the
same contents can then be freed and used for other purposes. Deduplica-
tion is therefore primarily used to reduce the physical memory usage for
data-intensive workloads that tend to produce many identical page frames.
To prohibit processes from modifying shared pages (and thus other pro-
cesses’ address spaces), the protection bits in the established mappings
are set to read-only access. When a thread tries to modify a deduplicated
page, the CPU triggers a page fault and traps into the operating system.
If the original protection of the page allows modification, copy-on-write
(COW) is employed to break the sharing and to map a private copy of
the page into the process’s address space. The new mapping then grants
write access so that normal program execution can continue. The merging
and unmerging of pages in the course of memory deduplication is com-
pletely transparent to user-mode code.

The basic memory deduplication mechanisms are mostly the same for all
implementations (i.e., finding redundancy and using some form of COW),
but there are also more sophisticated designs. Gupta et al. presented
memory deduplication for virtual machines that in addition to full-page shar-
ing on the basis of COW, employs page patching and page compression to
share memory on a sub-page level [22]. Besides that, the actual methods
of preventing or identifying and removing redundancy mainly differ depend-
ing on the targeted workload and the information available at the level of
integration. The following sections give a brief overview of previous work in
the area of memory deduplication and introduce the variety of algorithms
developed to date.
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2.2.1 Traditional Mechanisms

The major commodity operating systems (Windows, Linux and MacOS X)
already employ methods to prevent memory duplication in the course of
normal system operation.

File-based Methods

One mechanism is the prevention of memory duplication through shared
code. Most applications depend on a set of libraries that are loaded by
all applications that utilize the same APIs. Examples are system libraries
such as the image loader (ntdll.dll on Windows, ld.so on Linux), pro-
gramming language and subsystem specific libraries such as the C library
(msvcrt.dll, libc.so) as well as libraries that are shipped as part of frame-
works (e.g., .Net, GTK and Qt). The amount of memory consumed by
shared code and data can be substantial. This is especially true for op-
erating systems with a high degree of interdependence between libraries.
On a Windows 7 (64-bit) even the fairly simple text editor Notepad maps
roughly 80 MiB of images and system files [43]. Without deduplicating
static program code and data, physical memory depletes rapidly. There-
fore, the operating system detects if pages belonging to a certain library or
executable are already in main memory so that further references can be
mapped to existing page frames while process isolation is ensured through
copy-on-write. This way, memory duplication caused by the concurrent use
of shared code can be efficiently avoided.

Closely related to the sharing of executable code is the deduplication of
memory mapped files. Since the same basic characteristics adhere to this
source of memory duplication, the same principles are applicable. In fact,
it is a common design to handle deduplication for files and executables in
the same way with the help of a global file cache that does not explicitly
distinguish between different types of files [13, 44].

Address Space Cloning

On some operating systems copy-on-write also prevents unnecessary du-
plication of page frames during process creation. While on Windows and
OpenVMS new processes start with an empty address space, the parent
process’s address space is cloned on UNIX-like operating systems such
as Linux and MacOS X [13, 20, 44].
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Limitations

A major drawback of the traditional mechanisms is that they are designed
around identical objects (i.e., libraries, files, etc.) but not around equal con-
tents as fundamental unit of sharing. For that reason, these mechanisms
generally offer limited applicability to workloads whose primary source of
memory duplication are not shared objects but identical data in distinct ob-
jects2 or anonymous memory regions. This limitation surfaces in particular
on virtual machine hosts. While the host operating system has knowledge
of the address space structure for processes running directly on the host,
it cannot infer memory usage for those executed in the context of a vir-
tual machine. Instead, the virtual machine’s physical memory has to be
treated by the host as anonymous memory. The semantic gap between
host and virtual machine undermines the basis of traditional mechanisms
that depend on the knowledge of objects and object usage. This, in con-
sequence, leads to memory duplication between multiple VMs as well as
between VMs and the host.

Traditional mechanisms for memory deduplication can also be applied to
virtual machines if the concepts are properly extended. SnowFlock is a re-
search project that aims at providing rapid cloning of VMs by applying the
principle of traditional process forking to virtual machines. Although dedu-
plication was not the project’s motivation, the proposed method is able to
reduce memory duplication through copy-on-write at the level of virtual ma-
chines [31]. A similar technique called delta virtualization is instrumented
in the Potemkin honeypot farm to increase the virtual machine density [54].
However, a problem with these approaches is that they are only capable of
avoiding redundancy for page frames that do not get modified since their
time of cloning. This includes exchanging the contents of a page frame
with data that is only read. The following sections present deduplication
techniques that are better suited to exploit duplication even in the case of
page frame modification.

2.2.2 Paravirtualization

Paravirtualization is a technique that can bridge the semantic gap between
the virtual machine and the virtualization host. In paravirtualized environ-
ments the virtual machine monitor provides interfaces which go beyond

2Identical files stored at different locations on disk are typically handled as distinct
objects because they are referenced through dedicated file control blocks.
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that of a strictly virtualized computer system and which enable the virtual
machine to communicate with the underlying hypervisor via hypercalls or
simplify as well as instrument the architectural interface in order to improve
virtualization performance and scalability [56]. An example of paravirtual-
ization is Collaborative Memory Management (CMM), which implements
exchange of page usage and residency information between virtual ma-
chines and host to improve paging performance [45].

Disco

Disco is a hypervisor which offers a specially optimized DMA-based virtual
disk interface that intercepts disk requests from the virtual machines [14,
21]. If requested disk blocks are already in physical memory (e.g., due to
a previous request by another virtual machine), Disco can finish the disk
request without going to disk. If the size of the disk request is a multiple
of the machine’s page size, the DMA operation is completed by mapping
the existing page frames into the virtual machine’s physical memory. This
way, Disco reduces memory duplication originating from repeated disk ac-
cesses on virtualization hosts.

Satori

A comparable approach is implemented in Satori which focused on ef-
ficiently detecting short-lived memory duplication [38]. As in Disco, the
virtual disk subsystem is instrumented to immediately detect sharing op-
portunities when pages are loaded from background storage. In addition,
VMs provide a repayment FIFO to the virtual machine monitor that con-
tains pages that can be leveraged when sharing is broken due to modi-
fication. Satori was implemented for the Xen hypervisor [9]. Naturally, it
performs best on disk-intensive workloads. Experiments with httperf [40]
and Apache showed that up to 94% of total sharing opportunities could
be exploited. In contrast, Satori found to be less suited for workloads that
dynamically create duplication in memory. During a Linux kernel build only
between 18% and 50% of memory duplication could be addressed.

I/O Deduplication

Koller and Rangaswami focused on the deduplication of I/O requests that
deliver identical disk blocks [30]. To achieve this effect, a content-based
disk cache is employed that uses a combination of sector and content-
hash-based lookup depending on the type of request (read or write). A
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content-based cache can further reduce memory duplication because iden-
tical data from different sectors is not duplicated in memory as it is the case
with Disco and Satori.

2.2.3 Memory Scanners

Memory scanners take a different approach towards finding sharing op-
portunities than solutions based on paravirtualization. The mechanisms
presented so far are solely based on capturing memory duplication which
stems from repeated access to identical data in background storage. As
Satori illustrated, this method performs less well if the degree of dynami-
cally created content is high. Memory scanners in turn are able to exploit
these sharing opportunities. They can also be used in environments where
paravirtualization is no option because the target system cannot be modi-
fied (e.g., due to certification issues or the lack of source code).

The basic idea behind memory scanners is to periodically scan the physi-
cal memory to locate identical page frames. When redundant page frames
are identified, the scanner frees them by remapping the referencing pages
to one remaining copy. To accomplish this task, the operating system
needs to support reverse mapping to enable the scanner to find the ad-
dress spaces or virtual machines that own the pages of interest. This is a
drawback of memory scanners because it is common that operating sys-
tems do not offer reverse mapping at all or only for specific types of pages
(e.g., only private pages but not shared pages or anonymous pages but not
file-backed pages) [13, 44]. Another disadvantage of memory scanners is
that one must trade off the introduced overhead against the rate at which
pages are scanned and new sharing opportunities are located.

VMware ESX

Waldspurger presented memory deduplication based on memory scan-
ning for VMware ESX [55]. The implementation uses page frame hash-
ing to identify pages with potentially identical contents. The hashes are
recorded in a hash table and a lookup is done to locate sharing candi-
dates. After a successful match, a full comparison of the page contents
follows to verify that the pages are identical and that they can be merged.
Sharing metrics from production deployments of ESX Server showed that
between 7% (of 10% maximum sharing potential) and 33% (of 43%) of
total pages could be reclaimed.
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Kernel SamePage Merging (KSM)

In contrast to the virtual machine focused implementation in VMware ESX,
the Kernel SamePage Merging (KSM) daemon is a memory scanner built
into the Linux kernel which scans pages that are specifically advised as
mergeable, no matter if they belong to a process or a virtual machine [7].
However, because of architectural constraints in the Linux kernel (e.g., in-
complete reverse mapping), KSM is only able to deduplicate anonymous
memory regions. In virtualization environments KSM is often used in con-
junction with QEMU [11] and its kernel counterpart KVM [28]. To bene-
fit from memory deduplication, QEMU marks the anonymous memory re-
gions that represent virtual machine physical memory as mergeable. Un-
like the ESX memory scanner, KSM uses multiple red-black trees to find
suitable sharing candidates, whereas the pages’ contents itself is utilized
as node keys. Depending on the workload, the latter negatively influences
merging performance as page modifications can easily lead to a consider-
able degeneration of the red-black trees [37].

Miller et al. substantially improved the performance of KSM by using a
hash table to find redundant pages and by adding a hinting mechanism
that introduces a prioritized processing of I/O generated memory duplica-
tion [37]. The presented approach combines the notion of I/O guided mem-
ory deduplication as found in Satori and Disco with memory scanners, but
without the dependence on paravirtualization.

2.2.4 Hardware Solutions

A drawback of all software-based solutions to memory deduplication is
the computational overhead they inevitably introduce. Difference Engine
shows a performance overhead within 7% of the baseline [22]. Satori has a
worst-case overhead of 34.8% for chunked reads (according to the authors,
the impact is negligible for random reads) [38]. Although memory scanners
allow to trade off overhead against deduplication performance through the
adjustment of the scan rate, they generally come with worse overhead
characteristics. Arcangeli, Eidus, and Wright report a constant single core
CPU usage of up to 10% for a recommended setting in a KSM/KVM envi-
ronment (approx. 47MB/sec, Intel Q9300 2.5 GHz) [7].

Hardware-based approaches are an alternative to software-based solu-
tions. HICAMP implements a novel content-addressable memory archi-
tecture that is designed to ease multi-threaded programming by transfer-
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ring synchronization work into the hardware layer and by providing native
support for programming language and OS structures such as threads,
iterators, read-only access and atomic updates [16]. Due to its content-
addressability-based design, HICAMP also inherently offers transparent
memory deduplication. Evaluations showed memory savings in the range
from 1.5x to more than 4x over conventional memory for text data such
HTML web pages and JavaScript scripts. For the VMmark virtualization
benchmark [53] a memory footprint compaction of the VMs by a factor be-
tween 1.86x and 10.87x was measured, while ideal page-based memory
deduplication only ranged between 1.44x and 5.21x. However, for binary
data with high entropy (e.g., compressed JPEG) a 10% overhead in mem-
ory usage was found due to negligible savings through compaction that
could not balance out the additional management overhead.

2.3 Processor Caches

This work also analysis the effect of memory deduplication on proces-
sor caches. This section provides background on the cache hierarchies
of two popular x86 processors: the Intel Pentium 4 single-core proces-
sor (Willamette) [27] and the Intel Core-i7 quad-core processor (Sandy-
Bridge) [1]. The presented cache hierarchies are used as reference de-
signs for the simulated caches instrumented in the evaluation to measure
implications of memory duplication on cache utilization.

Single Core

Trace Cache
(12K µOps)

Processor LogicProcessor Logic

L1 Data Cache
(8KiB, 4-way, 64B Lines)

L2 Cache
(256KiB, 8-way, 

128B Lines)

Figure 2.1: Simplified Intel Pentium 4 Cache Hierarchy
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The Pentium 4 single-core processor with Willamette core was released
on November 20, 2000. Although performance and feature-wise outdated,
the Pentium 4 still offers a good target platform for single-core processor
simulation. Figure 2.1 shows a simplified version of the processor’s cache
hierarchy. The CPU owns three on-chip caches organized in two levels.
The trace cache is positioned between the instruction decoder and the
actual processor logic (register banks, ALUs, FPUs, etc.) and can hold
up to 12.000 micro-operations. Data is cached in a dedicated 4-way set
associative level 1 data cache with a total capacity of 8 KiB (128 lines, 64
bytes per line). Both caches are connected to an 8-way set associative
level 2 cache that stores both data and instructions. The L2 cache has a
total capacity of 256 KiB (2048 lines, 128 bytes per line).

Core 1

L1 Instruction Cache
(32KiB, 8-way, 64B Lines)

Processor LogicProcessor Logic

L1 Data Cache
(32KiB, 8-way, 64B Lines)

Private
L2 Cache

(256KiB, 8-way, 
64B Lines)

Shared
L3 Cache

(8MiB, 16-way, 
64B Lines)

Core 2 Core 3 Core 4

Figure 2.2: Simplified Intel Core-i7 Cache Hierarchy

The Core-i7 with Sandy-Bridge architecture is a substantially more recent
processor that was released in January 2011. In contrast to the Pentium
4, the Core-i7 is a quad-core processor. The caching system internal to
each core is structured similarly to the one in the Pentium 4. Notable
changes are the move away from the trace cache towards a standard L1
instruction cache and the change in the caches’ organization. The 8-way
set associative L1 caches are each increased in size and can now hold up
to 32 KiB of data or instructions respectively (512 lines, 64 bytes per line).
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Although, the L2 cache’s capacity stayed the same, the organization of the
caches has been brought into line, so that the L2 cache in the Core-i7 now
uses 64 byte lines, too. In the course of the fundamental change towards
a multi-core processor, the CPU’s cache hierarchy is also supplemented
with a third level cache. While the L1 and the L2 caches are private to each
core, the L3 cache is shared among the four cores. With 8 MiB, it provides
the majority of the overall caching capacity. The L3 cache is designed as
a 16-way set associative cache with a line size of 64 bytes for a total of
131072 lines.

2.4 Wind River Simics

Simics [35, 57] is a cycle-accurate full system simulator developed by the
Intel subsidiary Wind River. It allows doing fully deterministic simulations of
a computer system and is thus a suitable platform for operating system and
device modeling as well as research on operating system and hardware
behavior at the software/hardware boundary. Some of Simics key features
are, in no particular order: [48]:

• High-level component-based configuration system

• Scripting environment with integrated Python 2.5 interpreter

• Save and restore of checkpoints and persistent data

• Run-time code generation for various targets (ARM, MIPS, PPC, SPARC,
x86 and x86-x64)

• Run-time inspection of virtual components (CPU, memory, etc.) via
hooks, callbacks and breakpoints

• Generic parameterized cache simulation

• User developed simulator extensions

To balance between accuracy and performance, system models are de-
signed and simulated on a functional level. The inner workings of devices
are for the most part only simulated as far as they are exposed to the op-
erating system and applications in real hardware. In that sense, processor
instruction set extensions (MMX, SSE, etc.) are implemented, but the mod-
eling of timing at a detailed level such as CPU pipelines is omitted3.

3Detailed models can be build with custom components [18].
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Naturally, the simulation performance heavily depends on the level of ac-
curacy (i.e., send instruction fetches to the memory hierarchy or not) and
the type of inspection features enabled. Measurements on a 933 MHz
Pentium III showed for an x86 target an average simulation speed in the
range of 2.1 MIPS and 5.7 MIPS [35]. The 3.4 GHz Core-i7 host used in
this work reached an average speed between 20 MIPS and 30 MIPS. How-
ever, activating the inspection of memory accesses drops the performance
by a factor of 10. Thus, for simulating a 2 GHz Pentium 4 one must expect
a slowdown at least by a factor of 1000. This does not include doing any
analysis on the gathered data. Note that although multiple simulation cells
(i.e., independent groups of components) can be simulated in parallel, a
single virtual Pentium 4-based PC for example is still treated as a single
cell and thus simulated in a single thread.

2.4.1 Virtual Platform Configuration

In Simics a virtual platform (i.e., one or more connected simulated ma-
chines) is configured with the help of a scripting-based configuration lan-
guage. The language itself supports common structured programming
constructs such as if(-else)-clauses and various types of loops (for, while,
foreach). The language also tightly integrates Python for more advanced
scripting tasks. In fact, all commands available in the Simics command
line interface (CLI) are implemented as Python functions [4].

create -motherboard -440bx $motherboard acpi = TRUE
rtc_time = "2012 -05 -07 13:15:00 UTC"
bios = "rombios -2.65.2.11"

create -processor -pentium -4 $cpu freq_mhz = 20 cpi = 1
connect $motherboard.cpu[0] $cpu.socket

create -simple -memory -module $dimm0 memory_megs = 2048
connect $motherboard.dimm [0] $dimm0.mem_bus

create -std -ide -disk $hdd size = 8589934592 file = "d0.craff"
$motherboard.southbridge.connect ide0_master $hdd

instantiate -components

Listing 2.1: Simics Script. The script creates primary components of a x86
PC and connects and instantiates them.



2.4. WIND RIVER SIMICS 17

A virtual system is assembled from user-created components, each repre-
senting a piece of hardware which connects to other parts of the system
through standardized interfaces [39, 49]. The definition of components typ-
ically follows closely the structure in a real system. Listing 2.1 illustrates
how an exemplary virtual system is configured. The system consists of an
Intel 440BX-based motherboard, a 204 MHz clocked Pentium 4 processor,
2 GiB main memory and an 8 GiB IDE hard disk drive. The disk’s data is
contained in a specifically formatted image file. Typical additional compo-
nents are a VGA graphics adapter, a console with connected mouse and
keyboard and a network interface controller. It is also possible to create
user-defined components by writing Python or C-based extensions.

The final step in the configuration is the instantiation of the components
which is comparable to the instantiation of classes in object-oriented pro-
gramming languages. After that, the configured components are accessi-
ble as objects via the CLI and the Simics API for simulator extensions. The
system’s configuration can also be extended at run-time.

2.4.2 Run-Time Inspection

Simics offers three major entry points for run-time inspection of simulated
components [49]:

Object Attributes The easiest way to get an insight into the state of
components is to read the attributes they expose. A processor object for
example offers access to all its registers, the FPU state, the CPUID values,
pending interrupts and exceptions and many more. In most cases, the
configuration settings are also available (e.g., the processor frequency). In
addition, some components do statistics which they publish with the help
of attributes (e.g., the number of committed CPU instructions).

Haps (Callbacks) Callbacks (in Simics referred to as haps) are the pri-
mary method for run-time inspection that goes beyond reading object at-
tributes. A callback is a user-defined function (in a Python script or a C-
based simulator extension) that is registered to be called by Simics at the

4A small processor frequency is recommended for interactivity because the virtual
system’s clock is bound to it. In the case of 20 MHz, the virtual clock advances one
second for every 20 million instructions executed.
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occurrence of a certain user-chosen event. Simics offers many generic
events such as control register read and write, instruction execution or pro-
cessor’s privilege level change. Other events are target specific such as
x86-TLB related ones. Heavily used in this work are the Magic Instruction
Event, that is triggered whenever the CPU executes a special instruction
(xchg bx,bx for the x86-target), and the Periodic Event, which is periodically
executed after a user-chosen amount of CPU cycles have passed.

Interfaces Interfaces are very similar to callbacks in that the user can
declare functions that are called during the simulation. But in contrast to
callbacks, interfaces cannot stand alone but must be implemented by user-
defined components. These components can in turn be used to connect to
or intercept the communication of other components that support the sup-
plied interface. Example interfaces are the Timing Model Interface and the
Snoop Memory Interface that allow to plug into the memory hierarchy of
the simulated system to observe, delay and to some degree alter memory
transactions before and after they are submitted.

2.4.3 Cache Simulation

The processor models shipped with Simics do not emulate a cache hier-
archy as this would only unnecessarily slow down the simulation. How-
ever, if the behavior of the CPU’s cache hierarchy is of interest, Simics
provides the means to do explicit cache simulation. As mentioned in Sec-
tion 2.4.2, Simics offers the possibility to monitor memory transactions that
flow through the system’s memory hierarchy by implementing a special in-
terface. Therefore, cache simulation in Simics is done with the help of a
dedicated cache component that implements the respective interfaces to
plug into the memory hierarchy. Figure 2.3 shows an exemplary setup with
a simplified memory hierarchy and a two level cache hierarchy connected
to it.

The memory hierarchy is modeled by Simics regardless if a cache simu-
lation is done and is used to control the flow of memory transactions in
the virtual system. As illustrated in the figure, the view of the memory
depends on the position the respective device connects to the memory
hierarchy. The processor for example has access to all memory ranges,
including the ones that do not map to the virtual RAM but to APIC control
registers or GPU memory. The denoted DMA device accesses the virtual
RAM’s memory space instead and therefore does not see additional map-
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cpu0.mem

L1-d Cache L1-i Cache

L2 Cache

apic

physmem

ioapic
gpu.dram
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d/i Splitter

CPU
DMA
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Cache
Simulation

Memory Hierarchy

SplitterSplitter

Figure 2.3: Simplified Memory Hierarchy with Cache Simulation. The
cache is attached to the physmem memory space and observes
CPU memory transactions but not device ones. The cache is
modeled as a hierarchy of generic parameterized cache com-
ponents.

pings. Observing the memory transactions at physmem, however does not
show transactions submitted by the device as these are not visible at this
layer [34].

The cache hierarchy is built from multiple interconnected instances of a
generic user-configurable cache component, called g-cache [5]. The most
important parameters of a g-cache are:

• Number of Cache Lines

• Cache Line Size

• Associativity

• Replacement Policy

• Virtual/Physical Tagging

• Read/Write Timing Penalty

The caches are not directly connected to the memory hierarchy but use a
set of memory transaction splitters to prepare the stream of memory trans-
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actions before they reach the caches. The i/d splitter is an instruction/data
splitter that separates memory transactions caused by instruction fetches
from those caused by regular data accesses as part of normal code execu-
tion. In the exemplary cache hierarchy in Figure 2.3 the separated streams
are then targeted at different g-caches which thereby mimic a caching sys-
tem with distinct data and instruction caches. The splitters in front of each
cache additionally split memory transactions that cross cache line bound-
aries as it is the case in a real processor.

The g-cache itself does not hold any contents but only models the assign-
ment of cache lines. If the cache is forced to write-back data or fetch a line,
a pseudo memory transaction is generated that is send to any component
that listens on the cache (i.e., a next level cache or an analyzer compo-
nent). Since the cache simulation is orthogonal to the memory hierarchy,
transactions generated by a cache will not be visible to observers of the
memory hierarchy but only to those that listen on the respective cache.

To do an analysis of a cache’s behavior, one can choose from a number
of statistics that each cache does (hit-rate, number of fetches, etc.). This
includes the inspection of the cache lines. As already mentioned, it is also
possible to analyze the memory transactions performed by a cache.
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Analysis

The effectiveness of memory-deduplication techniques can be improved if
information about the characteristics of sharing opportunities (i.e., a group
of pages with identical contents) is incorporated. Miller et al. substantially
improved the sharing performance of KSM by prioritizing the scanning of
pages that stem from I/O [37] as these have been found to be an impor-
tant source of memory duplication [29, 10]. Especially, memory scanners
can benefit from a sound knowledge of the statistical properties that dupli-
cated pages show. Identifying potential "hot-spots" that tend to develop an
increased amount of memory duplication can improve the effectiveness
of scanners by focusing their search on promising pages. Concentrat-
ing memory deduplication efforts to interesting areas also increases the
efficiency through the reduction of wasted computational overhead. Be-
sides finding sharing candidates it is important to trade off possible mem-
ory savings against potential performance losses that are caused if estab-
lished sharings need to be broken at a later time because of page writes.
Satori showed that the number of sharing opportunities originating from
zero pages is approximately 20 times greater than from non-zero pages
[38]. However, since zero-pages are used by the operating system to pro-
vide memory for allocations, it is probable that, if these are shared, many
zero-pages need to be broken at once when the newly allocated memory
is used. This adds overhead at an unfavorable moment and possibly at
time where the system experiences memory pressure. Thus, the question
arises if certain types of sharing opportunities should be ignored if perfor-
mance is crucial.

The next section gives an overview of the shortcomings of previous evalu-
ations. Section 3.2 then discusses which method is appropriate to gather
the data required for a thorough understanding of sharing opportunities.

21
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3.1 Analyzing Sharing Opportunities

Previous work that deals with memory duplication and mechanisms for
deduplication leaves many open questions regarding the characteristics of
sharing opportunities:

• Only little research has been done to study the types of pages in-
volved in sharing opportunities and the evaluations do not state if
sharing opportunities can typically be assigned to a single type of
page or if they tend to span multiple categories. In addition, solely
Barker et al. distinguish between identical pages within a single vir-
tual machine (Self-Sharing) and those that span multiple OS instances
(Inter-VM-Sharing).

• Satori is the only work that did an analysis on the temporal character-
istics of sharing opportunities. However, the results only differentiate
between zero-pages and non-zero pages. The research that focused
on page types did not investigate the temporal characteristics and
how these can be correlated.

• There is no information available if sharing opportunities in general
as well as in respect to the types of pages they include show a char-
acteristic spatial distribution.

• With the exception of measuring the number of pages that can be
freed, no work evaluated the effects that deduplicating memory has
on the applications and the system as a whole. This includes impli-
cations for the efficiency of hardware such as processor caches.

• Previous work is limited in the temporal resolution of the analysis.
Analyzing sharing opportunities is methodically difficult to do, as the
entire system needs to be stopped to search for and classify identi-
cal page frames. For that reason, previous research resorted to an
evaluation based on sampled data. For Satori an interval of thirty
seconds was chosen to take memory dumps from virtual machines.
Barker et al. based their evaluation on weeklong real-world traces
that contained memory dumps for every thirty minutes. For the sup-
plementing benchmarks they took a single memory snapshot per VM
after the test workload had been executed. Due to the way their mem-
ory deduplication algorithm works, Kloster, Kristensen, and Mejlholm
only measured sharing opportunities during idle periods.
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As stated before, having detailed knowledge of the characteristics of shar-
ing opportunities can substantially improve the efficiency of deduplication
efforts. Therefore, a method is required that allows to easily capture and
analyze all the information that is needed to get a thorough understanding
of the types of sharing opportunities that deduplication techniques have to
face.

To overcome the shortcomings that previous analyses showed, the follow-
ing areas need to be covered:

Temporal Characteristics Having information on the temporal charac-
teristics comprises the ability to make statements about when memory
duplication occurs (e.g., during phases of increased I/O) and how long
groups of identical pages exist. This enables memory deduplication tech-
niques to be triggered by events that are known to cause much duplica-
tion. Thus, overhead during less interesting phases can be reduced. I/O
guided deduplication mechanisms are already a step into this direction.
However, not taking the average lifetime of sharing opportunities into ac-
count can as well hurt performance through wasted deduplication efforts
on too short-lived opportunities. For some types it might also be more effi-
cient to consider the temporal development and to delay any deduplication
so that the contents of involved pages can stabilize.

Spatial Characteristics Similar to the temporal properties, data on the
spatial characteristics of identical pages are of great value for deduplica-
tion mechanisms. The latency of memory scanners depends on the config-
ured scan-rate and on the spatial distribution of duplicated pages. Those
which form contiguous regions can be deduplicated faster than those that
spread over the whole memory. In the case of comparable workload (e.g.,
cluster of web servers), deduplicating the physical memory of virtual ma-
chines might also benefit from heuristics that first try to find equal (inter-
VM) pages at similar locations. Another important metric is the typical rank
of sharing opportunities (i.e., the number of pages with identical contents).
It helps focusing deduplication on promising areas.
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Access Characteristics Comparable to the L-shape policy used in var-
ious power management systems [50], an analysis should investigate if
there is a relationship between memory access patterns and page stabil-
ity. If similar policies like the L-shape policy can be applied to memory,
timing of deduplication efforts can be made more efficient.

Page Usage A fundamental property of pages is the type of usage they
are subject to (e.g., file-backed page, heap page, anonymous page, etc.).
Since this information can easily be gathered online, heuristics based on
page usage are potentially a good basis for deduplication decision algo-
rithms. Therefore, an analysis should correlate data on access patterns
and temporal as well as spatial characteristics with data on page usage.

Implications Deduplicating memory has diverse effects on the system’s
operation. Memory allocations are handled differently as memory is freed
(which might be reclaimed at a later time). This leads to a different layout of
pages in physical memory. An increased degree of memory sharing plays
into the hands of processor caches and the TLB but potentially harms
performance on NUMA systems. This effect should be considered when
memory deduplication is done. Thus, information on the implications of
memory deduplication needs to be gathered. This work focuses on the
implications on the processor’s cache hierarchy.

3.2 Data Acquisition Method

To be able to gather all the information required for a thorough analysis as
described in Section 3.1 restricts the set of suitable methods by which the
data is collected. The method needs to measure access patterns and tem-
poral properties with a high granularity while it must not be too intrusive
to distort evaluation results. Moreover, it requires access to system-wide
memory as well as data structures to identify page usage and to include
pages that are used internally to the operating system only.

The following sections give an overview of commonly used techniques for
data acquisition and discuss their advantages and disadvantages with re-
gard to the analysis of sharing opportunities. For the rest of this work, the
term target system or simply target refers to the entire operating system
or application that is to be examined.
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3.2.1 Performance Counters

Modern processors provide performance counters as a mean to do run-
time CPU performance monitoring [25]. They enable software to measure
the number of times configured hardware internal events occurred and
thereby permit to capture information on run-time behavior otherwise trans-
parent to application code. Measurable events are for example the number
of retired instructions or the number of mispredicted branches, whereas
the set of supported counters is specific to each processor model.

Since CPUs often also provide access to cache related counters (e.g.,
number of cache misses) they are suitable for a basic performance analy-
sis of the processor’s cache hierarchy. This is necessary for the evaluation
of memory deduplication effects. However, a fundamental problem with
performance counters with regard to the requirements of this work is that
they only provide the means to count events but not to inspect them. They
do not give information on the contents or characteristics of operations
(e.g., addresses, type of memory accesses, etc.). Another challenge in
the analysis of sharing opportunities in a running system is that because of
multi-tasking and asynchronous device operations, the state of the system,
such as the contents of memory pages, can change at any time. Thus, the
operating system needs to be modified to enable the analysis code to run
without preemption. This allows synchronously scanning all system mem-
ory and finding identical pages. However, it is not sufficient if page access
characteristics need to be measured as the analysis code is not capable
to track individual memory accesses. So in practice additional changes to
the operating system are required. Furthermore, resorting to a "stop-and-
scan" method inherently leads to a sample-based analysis which does not
meet the granularity requirements of this work.

Performance counters are thus not a suitable method for the analysis of
sharing opportunities and the effects of memory deduplication. Especially,
because they require multiple intrusive changes to the behavior of the tar-
get system which leads to distorted results. This is particularly problematic
with regard to a cache performance analysis.

3.2.2 Dynamic Recompilation

Another conceivable approach to the analysis of sharing opportunities is
the dynamic recompilation of the target. The concept of dynamic recom-
pilation is based on the idea of run-time program code replacement. The
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new code semantically executes the same logic but can be instrumented
in required ways. In the context of this work, this might be additional code
to track each memory access that the original program code executes. Val-
grind is a programming tool which uses dynamic recompilation techniques
to do memory debugging, memory leak detection and profiling [51].

An advantage of this approach is that the target’s program code does not
need to be modified on a source level to allow analysis code to run. This
fully preserves the original program logic of the target and thus avoids devi-
ating measurement results. In contrast to performance counters, dynamic
recompilation is also not reliant on a sample-based analysis since opera-
tions can be tracked at the moment they are executed. Therefore, a fine
granular analysis of the temporal and spatial characteristics of sharing op-
portunities is feasible. Scanning memory pages can be done "between
the lines" of the target program code. Since all memory accesses are ob-
servable, the analysis of effects on the cache hierarchy is possible, too.
Gleipnir is a memory profiling tool based on the Valgrind framework [19]
that records memory accesses. The traces can then be used in conjunc-
tion with the cache simulator DineroIV [17]. This way, effects on the cache
hierarchy are made visible through a dedicated cache simulation run after
the target system was executed. It is also possible to perform the cache
simulation on memory accesses at run-time. In general, doing a cache
simulation instead of monitoring the real processor’s cache hierarchy has
the benefit that arbitrary statistics can be generated. It is also possible to
examine different cache organizations based on the same dataset.

A problem with dynamic recompilation as implemented in Valgrind though
is the restriction of the recompilation to a single application. The analysis
code can therefore only consider sharing opportunities within the address
space of a single running process. Expanding the instrumentation across
all applications would introduce massive synchronization overhead due to
multi-tasking and it would still leave out pages which are not used by user-
mode code. Thus, dynamic recompilation would also need to cover the
operating system kernel to allow a complete analysis of sharing opportu-
nities. However, this is very difficult to realize and may not be feasible
for all kernel code paths. Furthermore, expanding dynamic recompilation
onto the whole system is a very intrusive approach and therefore not well
suited for this work. Even restricted to a single application, dynamic re-
compilation is not fully non-intrusive. Although the original program logic
is preserved, the environment in which this logic executes is altered. The
additional program code and data originating from the dynamic recompila-
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tion consumes memory in the address space of the target process. Thus,
if the process is very memory intensive, it may hit memory quotas or ex-
periences an exhaustion of virtual address space. Moreover, the timing
conditions in the communication with other processes are influenced when
dynamic recompilation is employed.

3.2.3 Virtualization

Virtualization1 is used by most previous work (e.g., [10, 29, 37, 38]). This
is due to the fact that the technology is widely available and the virtual
machines’ physical memory is a promising target for memory deduplica-
tion and therefore a realistic use case. Moreover, virtualization makes it
easy to monitor one or more entire systems. In contrast to the already
mentioned data acquisition methods, analyzing sharing opportunities in a
virtualized environment benefits form the fact that the code performing the
analysis can run outside of the target system. Consequently, the measure-
ments regarding sharing opportunities are guaranteed not to be distorted
by the analysis method itself. In addition, the hypervisor can pause the
virtual machines at any time. This makes it substantially easier to get a
consistent view of the memory (to find duplicated pages) than it is possible
for analysis code that runs within the target system.

However, moving the analysis out of the system introduces a semantic
gap between the analyzer and the target. For instance, the information
on page usage can no longer be inferred. Instead, paravirtualization tech-
niques or other communication channels are required to make certain vir-
tual machine internal information available for code running directly on the
virtualization host. Depending on the overhead of such a mechanism, mea-
surings can potentially get distorted. Another weak point is that, in contrast
to binary recompilation, virtualization offers no easy way to track individual
memory accesses. Therefore, monitoring the cache hierarchy is to some
extent only possible with the supplementary use of performance counters.
This restricts virtualization to a sample-based analysis since the target
needs to be periodically paused to track sharing opportunities.

Regarding the requirements of this work, virtualization is comparable to
the use of performance counters. Although virtualization offers a much

1In this work, the term virtualization always refers to virtualization based on trap-and-
emulate [47] or hardware extensions such as Intel-VT [26, 42] or AMD-V [6], in which
cases unmodified target code is run.
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better platform for memory analysis, it lacks the tracking of individual mem-
ory accesses and thereby reduces the evaluation resolution and limits the
scope of a cache performance analysis.

3.2.4 Custom Hardware

It is also possible to take a hardware-based approach to analyzing shar-
ing opportunities. Specialized RAM modules are a feasible approach [8]
as they allow fully observing any memory activity as well as monitoring
the contents of page frames. Another approach is the development of a
specialized processor [41]. This way, sharing opportunities can be found
and continuously tracked in hardware. In contrast to virtualization or perfor-
mance counters, these methods do not need to resort to a sample-based
examination and are therefore suited for a fine granular analysis of tem-
poral and spatial characteristics. However, like virtualization, a hardware-
based approach needs extra logic to overcome the semantic gap between
the analyzer component and the target system. Otherwise, no information
on page usage can be gathered. A possible solution is to write page usage
information in a defined area in physical memory so that they are accessi-
ble to the hardware.

With regard to the examination of deduplication effects on the caching in-
frastructure, a custom processor offers great potential. It can incorporate a
specialized cache that is capable of measuring interesting memory duplica-
tion related statistics at run-time and which publishes these with the help of
a dedicated interface (e.g., a special CPU instruction). A hardware-based
solution that is implemented in the RAM modules though would need to
resort to a cache simulation. This could be done directly in hardware or
in a subsequent simulation step in software (e.g., with DineroIV). However,
the latter depends on the recording of all memory accesses which leads
to huge amounts of data if no compression is applied. Doing a run-time
compression in turn increases the hardware complexity.

In sum, specialized hardware is conceptually able to fulfill the requirements
of this work. A major drawback, however, is the high development com-
plexity. This is especially the case for such central components like a
custom processor. Depending on the type of hardware customized (e.g.,
CPU), compatibility with commodity operating systems and applications
may also be compromised. This questions the representativeness of eval-
uations done on such a platform. Another inherent problem is the limited
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flexibility bound to hardware-based solutions. While it is easy to change
analyzer software to examine new aspects, hardware designs typically de-
mand greater efforts to be adapted to new requirements.

3.2.5 Full System Simulation

Full system simulation emulates an entire physical machine. In contrast to
virtualization, it does not depend on hardware support or concepts such
as trap-and-emulate. Instead, it uses binary recompilation or binary trans-
lation [3] to run the target code in a confined virtual environment. Binary
translation is an advanced form of binary recompilation that is capable to
run target code compiled for a different instruction set architecture than the
host system provides. This is done by a run-time translation of the foreign
machine instructions into instructions available on the host system.

Since an entire physical machine is simulated, full system simulation is
not restricted to the context of a single application. All code of the tar-
get is covered by the translation/recompilation process. This eliminates
a major drawback of the previously mentioned application-level recompila-
tion. With the full instrumentation of all applications, operating system and
drivers, a complete and continuous analysis of sharing opportunities in the
simulated machine is feasible. Every memory access can be inspected by
an analyzer component. As it is the case with virtualization, the analyzer
resides outside the simulation and thereby preserves exact measurement
results. However, full system simulation suffers the same way from the
semantic gap between the simulator and the simulated system. Thus, ad-
ditional logic is needed to communicate target internal information.

Another advantage of using simulation is the fully deterministic behavior
of the target system. This is especially useful, if the same experiment
is intended be run several times, each time with slightly altered parame-
ters. In the context of this work, this may be a comparison between the
cache performance with and without activated memory deduplication. Full
system simulation also makes it very easy to analyze the implications of
memory deduplication on the hardware. Since all components in the target
are simulated, the virtual hardware can be customized to gather relevant
information on-the-fly. This makes simulation substantially more flexible
than specialized hardware. The flexibility, though, comes with a high com-
putational overhead (see Section 2.4). Hence, full system simulation is
potentially the slowest of the presented data acquisition methods.
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3.3 Conclusion

Having a sound knowledge of the characteristics of sharing opportunities
helps to improve existing memory deduplication techniques by focusing
deduplication efforts and avoiding unnecessary computational overhead.
However, previous work leaves many open questions regarding the prop-
erties of identical pages. Only little research has been done on investigat-
ing temporal as well as spatial characteristics and there is no information
if these correlate with access patterns and/or page usage. Moreover, we
have no knowledge of the implications of memory deduplication on the sys-
tem, including the performance of affected hardware components. There-
fore, a method is required that is capable of doing a thorough analysis of
sharing opportunities and the effects of deduplication.

Areas of interest are: temporal, spatial and access characteristics, page
usage and deduplication effects. To cover these areas, a suitable data
acquisition method needs to be employed. Table 3.1 summarizes the ad-
vantages and disadvantages of the presented methods:

Perf.
Counters

Dynamic
Recomp.

Virtua-
lization

Custom
Hardware

Full Sys.
Simulation

Continuous #  #   
Synchronous1 G#   G#  
Complete2 G# #    
Non-Intrusive # G#    
Deterministic #  # #  
Flexible G#   #  
Fast  #   #
Cache Eval. G#  G#   
1 Analysis runs synchronous with the target and thus has a consistent view of its state.
2 Method is capable to analyze sharing opportunities in the whole target.

Table 3.1: Comparison of Data Acquisition Methods. Full system simula-
tion offers the best trade off.

Compared to the other data acquisition methods, full system simulation
offers the best trade off. It combines the advantages of dynamic recom-
pilation and virtualization in that it allows doing a semantically, temporally
and spatially complete analysis of sharing opportunities. At the same time
it profits from the abstraction of virtual machines with regard to analysis
complexity and intrusiveness. As pure software solution it is also more
widely available and can easily be adapted to new data acquisition and
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evaluation requirements. For these reasons, this work builds, in contrast
to most previous work, on full system simulation as the data acquisition
and evaluation environment.
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Chapter 4

Design and Implementation

Full system simulators only deliver the basic platform on which the target
system can be run. To analyze sharing opportunities within the system
the simulator needs to be complemented with additional software. The re-
quired components can be divided into two main areas: data acquisition
and data analysis. The software components responsible for the acquisi-
tion collect the data (i.e., sharing opportunities, memory accesses, page
usage information, etc.), which in a second step is used by the analyzer
components to compute statistics related to the characteristics of sharing
opportunities. With the help of these software components, a fine granular
analysis can be accomplished.

The first section starts with an overview of the fundamental considerations
that were laid out as basis for the design of the software components. The
following sections introduce the design of the acquisition and analyzer soft-
ware; describe how each of the required information can be retrieved from
a full system simulator and how this data can be efficiently correlated and
analyzed.

4.1 Design Considerations

Choosing full system simulation as data acquisition method only defines
the environment into which additional software needs to be embedded. To
get a comprehensive solution for the examination of sharing opportunities
requires each software component to be carefully designed and directed
towards the goals of this work. Hence, a set of design goals have been
defined that software components should meet:

33
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Completeness A fundamental requirement for the software is that it is
capable to measure all information necessary to overcome the shortcom-
ings of previous work (see Section 3.1). This includes closing the semantic
gap between the simulator and the simulated system to gather data inter-
nal to the target (e.g., page usage).

Completeness also requires that the software does not resort to a sample-
based inspection, but instead gets invoked on crucial events (e.g., memory
accesses) so that each type of information is complete with regard to its
temporal development.

In addition, completeness aims at the ability to analyze the collected data
in any way necessary to extract desired results.

Intrusiveness Measuring and analyzing phenomena within the system
they occur, is always bound to the risk that measurements get distorted
by the observation. This is especially true for the examination of sensi-
tive components such as processor caches. As illustrated in the previous
chapter, full system simulation does a great step towards a non-intrusive
analysis as it allows additional software components to reside outside the
target system. However, since this work depends on target internal data,
minor additions to the target have to be made to communicate this infor-
mation to the components outside the system. Thus, an important design
goal is to keep the introduced overhead as minimal as possible.

Efficiency As showed in Section 2.4, full system simulation is potentially
the slowest of the presented data acquisition methods. The time needed
for a single simulation pass can range from hours up to several days, de-
pending on the amount of details simulated and the complexity of the analy-
sis. It is therefore desirable that any additional software components work
efficiently and that the design itself takes high simulation times into ac-
count. This includes the ability to do multiple analyses in one simulation
pass1.

As important as efficiency in time, is an efficient use of space. Since huge
amounts of data are gathered during a single simulation, a deliberate use
of storage space is just as important.

1The term simulation pass denotes the phase until the simulation reaches a point
after which no further measurings need to be taken (e.g., after a benchmark run) and the
simulation can be stopped.
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Figure 4.1: Decoupled Data Acquisition and Analysis Phase. A tracer
records interesting information during a simulation and stores
that data in a specially formatted file. Afterwards, dedicated
software is used to analyze it.

Flexibility A last design goal regards the flexibility of the introduced soft-
ware components and the general design they are based on. This com-
prises the ability to easily extend and adapt the software as well as the
ability to run arbitrary analyses on the gathered data.

Based on these considerations, a software architecture has been chosen
that decouples the data acquisition phase from the analysis. This is illus-
trated in Figure 4.1. While the simulation of the target system runs, a tracer
component embedded into the simulation software gathers all required in-
formation and stores it as efficient as possible in a specially crafted trace
file. After the simulation is stopped, this file can be opened with dedicated
software which in turn allows executing arbitrary analyses on the collected
data.

Although such a two-stage design increases the software’s complexity, it
pays off with regard to efficiency and flexibility. Decoupling simulation and
analysis allows examining a single simulation’s measurements based on
different criteria without the need to rerun the simulation itself. Since run-
ning a simulation is potentially a very time-consuming process, having an
independent analysis phase makes this approach substantially more effi-
cient than an integrated solution with regard to the total required run-time
(especially if many distinct analyses are planned). On a technical perspec-
tive, it also offers the possibility to parallelize computations. While the sim-
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ulation is an inherently single-threaded process, it is no problem to have
several analyses concurrently executing side-by-side on the same trace.

An overall reduced run-time also increases the flexibility to do a more com-
prehensive exploration of the gathered data. Moreover, storing the basis
of any analysis (i.e., the trace data) allows working on the dataset even
if the simulation environment itself is not available. The tracing-based de-
sign thereby simplifies the exchange of material with other researchers
and makes it easier for others to comprehend and build on previous re-
search results.

Completeness and a non-intrusive acquisition are properties exclusive to
the tracing module and the analyzer and are therefore not affected by the
presented architecture. The Sections 4.2 and 4.3 explain how these com-
ponents are designed and how they meet the chosen criteria.

Simulation Plaform

The implementation of this work is based on the Wind River Simics 4.2
(x86) [57] full system simulator. It provides all features that are needed by
the proposed tracer design. This includes the ability to write extensions for
the simulator as well as to retrieve all data that is of interest to this work
via public hooks and callbacks. Section 2.4 gives further information on
the software.

Alternative x86 full system simulators are QEMU [11], Bochs [12] and
MPTLSim [58]. However, QEMU and Bochs do not offer a cache simu-
lation which is crucial to this work. In addition, not all information sources
are accessible through official interfaces which make the implementation
more complex. MPTLSim is an interesting alternative that, in contrast to
Simics, utilizes processors models that allow a cycle accurate simulation
below the instruction level. Consequently, CPU internal mechanisms such
as the whole cache hierarchy are integrated, whereas Simics depends
on a dedicated cache simulation. However, the flexibility that comes with
a separated cache simulation is advantageous for this work, as different
cache hierarchies are evaluated.



4.2. DATA ACQUISITION 37

4.2 Data Acquisition

The data acquisition is encapsulated in the tracer component. Since the
tracer runs as an extension of the simulator it has access to all information
regarding the state of the simulated machine. Its responsibility is to inspect
the machine’s state at certain points in time and store this information in
a trace file. This file can then be processed with the help of the analyzer
software.

A system simulator is based on the concept of binary translation or binary
recompilation. This allows the simulator to instrument each executed tar-
get CPU instruction. In addition, hardware operations such as memory
accesses can be made visible. The simulation software exposes this in-
strumentation through hooks and/or callbacks that software can utilize to
inspect the state of the machine and to monitor operations (e.g., memory
accesses) and events (e.g., interrupts) that occur within the simulation. To
get invoked, the tracer is designed to either make use of any available
hooks and callbacks, which is preferred, or, if no other means are pro-
vided, it can be directly build into the corresponding code paths within the
simulator. In contrast to a periodic, sample-based measurement, the trac-
ing guarantees the temporal completeness of the information, since every
event that changes the state of the simulation in a relevant form can be
captured and recorded if necessary.

Due to the nature of code instrumentation, the tracer is invoked by the
simulator synchronously to the simulation itself. Therefore, the state which
the tracer sees is always consistent and the simulation continues as soon
as the tracer finishes its state inspection. Since the internal clock of the
target is decoupled from the wall clock time, the overhead introduced by
the tracer has no effect on the state of the simulation. However, the time
consumed by a full simulation pass may increase. This depends on the
amount and detail of information that the tracer is configured to gather and
the overhead that is bound to the retrieval of the respective information.

To collect and store all the information necessary to build statistics about
the properties of sharing opportunities as described in Section 3.1, several
information sources need to be covered by the tracer. These are described
in the next sections. For each of these sources one or more trace providers
are responsible to react to events and supply corresponding trace data.
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4.2.1 Memory Inspection

To examine the characteristics of sharing opportunities, the first step is
to gather information about which page frames in the simulation’s physi-
cal memory hold equal contents and what temporal and spatial properties
these groups of frames have. This can be accomplished with memory
inspection. Memory inspection describes the process of inferring informa-
tion about sharing opportunities by just reading the simulation’s physical
memory. No additional semantic information about the page frames (e.g.,
their type of usage) is known in this step.

Sharing opportunities can be formally represented through sets of page
frames with identical contents, called sharing groups. The number of
frames contained in a single sharing group (i.e., the number of page frames
with a certain contents) determines its rank. A sharing group with a rank
of 4 therefore denotes a group of four page frames with equal contents.
Based on the definition of sharing groups, the minimal rank is 2 and there
naturally can only be a single group per page contents. In sum, sharing
groups are characterized by their referenced contents, their rank and the
page frames they hold.

Detection of Sharing Opportunities

To make statements about sharing opportunities, the tracer first needs to
identify sharing groups in the physical memory of the simulated machine.
Figure 4.2 illustrates the basic logic. To get an initial list of sharing groups
present in physical memory, all page frames are marked as dirty when the
tracing of sharing opportunities is activated. Marking a frame as dirty re-
moves the frame from its sharing group (if any), deletes the sharing group
if its rank falls below 2 and prepares the frame for further processing.

For each dirty frame, the tracer first searches for an existing sharing group
that references the same contents. If such a group can be located, it is
expanded by adding the examined frame. This increases the group’s rank
by 1. If no sharing group can be found, the tracer tries to find at least
one other frame with equal contents so that a new sharing group can be
build. In the case this attempt also fails, the frame does not belong to a
sharing opportunity. Nevertheless, each frame that has been processed is
marked as clean and does not need to be visited again. Since the tracer
only reads page frames in the course of this logic, the target’s state is not
affected. Hence, the algorithm is completely non-intrusive.
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Figure 4.2: Simplified Program Flow of Memory Inspection. At the begin-
ning an initial list of sharing groups is created. Afterwards,
write accesses trigger an update of the list to reflect the con-
tents modifications.

The list of sharing groups is only guaranteed to be valid at the time it is cre-
ated. As soon as the simulation continues and the memory gets modified,
existing sharing opportunities may vanish and new ones may emerge. To
ensure that the sharing groups reflect these changes, the tracer inspects
every subsequent memory access. While read accesses can be safely
ignored, write accesses need further examination. As soon as a modifi-
cation to the page frame is applied, the tracer marks the page frame at
which the write operation was targeted at as dirty and starts the detection
of sharing opportunities. This time it only covers the accessed page frame.
This way, the sharing groups always represent the sharing opportunities
present in the physical memory of the simulated machine.
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However, updating the sharing groups at every write access comes at the
cost of a high computational overhead and, with regard to the simulation
speed, is the most expensive operation performed by the tracer. Depend-
ing on the rate at which write accesses are issued by the simulated ma-
chine, a slowdown factor of 10 is realistic. Despite optimizations in the
implementation, this cost needs to be paid to allow the fine granular study
of sharing opportunities.

It is important to differentiate sharing opportunities by the contents of the
frames they involve. This way, sharing opportunities based on zero-pages
can be statistically treated separately. To take this requirement into ac-
count, the tracer incorporates a pattern recognition that is able to mark
sharing groups that reference frames with previously configured patterns.

The generated sharing groups already expose much information about the
general sharing potential of the target as well as on the spatial characteris-
tics of the detected sharing opportunities. This includes the total number of
page frames that can be deduplicated and thereby the amount of memory
that can potentially be freed as well as statistics about the size of sharing
opportunities. The latter can be computed with the help of the sharing
groups’ rank. Since the individual page frames which participate in the
memory duplication are known, the spatial distribution of these frames in
physical memory can also be examined. However, up to this point, it is not
possible to make statements about the spatial distribution in virtual mem-
ory as no mapping information is available.

To increase the informational value of sharing groups, they are supple-
mented with important timing information. This additional information adds
the ability to examine basic temporal characteristics of sharing opportuni-
ties. Every time a new sharing group is created, a timestamp (Create
Time) is added. This way, the lifetime of sharing groups can be calculated
when they are destroyed. Furthermore, every time a modification to the
sharing group is made, a timestamp (Last Modified Time) is updated to re-
flect the time of change; allowing calculating the amount of time a sharing
group has been stable.

Implementation

As already mentioned in the previous section, the detection of sharing
opportunities is a costly operation, since it has to be done after each write
access. In the implementation, the detection of sharing opportunities is
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Figure 4.3: Red-Black Tree to detect Sharing Opportunities. Page frames
are added to a red-black tree via their hashes. Nodes are ei-
ther the frames itself or sharing groups. Hash collisions are
resolved with chaining.

optimized with the help of a red-black tree and hardware accelerated CRC-
32C hashing [23]. The nodes of the tree are either single page frames or
sharing groups that contain multiple frames. The CRC-32C hash of the
frame’s contents is used as key. This way, searching a sharing group or a
page frame as illustrated in Figure 4.2 is reduced to a single lookup in the
tree (and a subsequent frame compare on success). If a frame with the
same contents is found, the node is replaced with a sharing group. Existing
sharing groups are extended. If the lookup fails, the frame is added to the
tree as a new node. In addition, chaining is used to resolve hash collisions.

Tracing of Sharing Opportunities

The basic software architecture depends on the ability of the analyzer soft-
ware to solely work on the data contained in the trace files. The tracer
must therefore record enough data so that the analyzer software is able
to reconstruct the sharing groups that were present at any time during the
simulation. Since resorting to a sampled output is no option, the tracing
is based on the three major events which characterize the detection of
sharing opportunities:

• Creating a new sharing group

• Expanding an existing sharing group

• Detecting writes that do
not result in sharings
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Every write operation that the tracer inspects leads to one of these events.
The tracer records enough information for each of the events to enable the
analyzer software the reconstruction of the sharing groups (including all
previously mentioned properties). Note that the tracing does not include
the payload of the write access itself. The analyzer therefore cannot infer
the exact contents of page frames. However, it is possible to configure the
tracer to store full frame dumps for sharing groups that reach a specified
rank.

4.2.2 Operating System Introspection

Having information on sharing groups alone does not suffice to correlate
sharing opportunities with the workload that created or benefited them as
information on the simulation’s operating system state (e.g., running pro-
cess) is missing. Hence, it is for instance not possible to examine if cer-
tain processes tend to produce more memory duplication than others or if
certain types of address space areas (e.g., anonymous memory) show a
particularly high amount of sharing opportunities.

Moving the tracer code outside of the target system leads to a semantic
gap between the simulated machine and the tracer. This is caused by the
fact that the tracer can no longer use services provided by the simulated
operating system to retrieve system and application specific information
(e.g., enumerate processes). Moreover, the direct access to kernel-mode
data structures is substantially more complicated because the memory ad-
dresses of kernel objects are unknown. This is especially the case for
dynamically created objects.

A solution to get information about the current operating system’s state is
to find relevant data structures through the search for known patterns or
strings in the physical memory of the simulated machine. These identifi-
able memory locations may allow inferring the address of data structures
by adding/subtracting a certain offset. However, this approach is very sen-
sitive to changes in the operating system (e.g., new kernel version), possi-
bly insufficient to gather all state information and might not even be possi-
ble for operating systems such as Windows that are able to page out kernel
memory. Furthermore, applying this concept to a running system leads to
a very time-consuming, constant polling, examination and interpretation of
the relevant data structures.
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Operating system introspection is capable to close the semantic gap by
actively communicating the occurrence of relevant events to the tracer.
This way, the tracer does not rely on constant memory polling but can
get informed about changes in the operating system state when they oc-
cur. To implement the operating system introspection the respective code
paths in the kernel of the target system are instrumented to collect and
synchronously send information to the tracer. For a process creation this
might be for instance the path of the executable image and the id of the
new process. For the analysis of sharing opportunities such data is of
special interest as it allows correlating the occurrence and properties of
sharing opportunities with certain system activity.

The information traced by the introspection employed in this work can be
divided into four fundamental areas:

• Process Management and Dispatching

• Kernel-Mode Address Space Management

• User-Mode Address Space Management

• Virtual-To-Physical Page Mapping

The first area comprises the creation, destruction and dispatching of pro-
cesses and address spaces. The two following areas cover all events that
lead to a structural change of the kernel or any user address space. These
are for instance the allocation or removal of virtual address space areas
such as file-mappings. However, this explicitly excludes individual mem-
ory allocations that do not change the address space layout (e.g., regular
heap allocations). The last area refers to all information about events that
change the virtual-to-physical mapping of pages.

Having all this information available in the trace data allows the analyzer
software not only to reconstruct the sharing groups at every time of the sim-
ulation, but also to reconstruct all relevant parts of the operating system
state. This way, the usage of a frame can be determined by resolving the
address spaces and processes that use the frame at the time of interest
and doing a lookup on the type of mapping that is applied for the respective
virtual page. In addition, sharing information as well as for instance cache
statistics can be brought into connection with state information such as the
current active process or address space.
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The advantage of introspection in respect to plain memory inspection is
that the instrumentation code can use and access all operating system
services and data structures as if the tracer was integrated directly into
the simulated machine. Hence, information can be gathered in a very
powerful and at the same time convenient way. An inherent problem with
introspection, however, is the fact that the target needs to be modified.
This is not possible for closed-source operating systems such as Microsoft
Windows. Depending on the communication method and the amount of
information that needs to be transported, the overhead of introspection can
also quickly reach a point that is not justifiable with regard to the overall
intrusiveness. It is therefore crucial to employ a suitable communication
method.

Communication

A fundamental challenge of the semantic gap is to transport the informa-
tion from within the target machine to the tracer that runs as extension in
the simulator. One of the design goals of the tracer is to affect the state of
simulation as little as possible. Standard high-level communication chan-
nels such as those provided by Ethernet or other commonly used commu-
nication interfaces (COM, USB, etc.) are not an option as these introduce
too much side-effects to comply with the design goals. In most cases, they
rely on the allocation of additional memory (e.g., for data packets) and
the data potentially traverses multiple software or protocol layers until it
is sent. Since even primitive operations such as the mapping of a page
frame need to be communicated, this complexity might also lead to nested
tracing of operations. This in turn increases the complexity and overhead
of the communication code as it has to gracefully handle these situations.
Another problem is the latency with which events are recognized by the
tracer. Since the tracer timestamps events when they are received, the dif-
ference between the actual time that the event happened in the simulation
and the time that the tracer recognizes the event needs to be as small and
predictable as possible. Thus, a very lightweight communication channel
needs to be utilized.

The binary translation used by full system simulation is well suited to build
such a lightweight communication channel. Since every instruction can
be instrumented, it is possible to define a seldom used "magic" instruction
and to invoke a callback within the simulator each time this instruction is
executed by the target. In Simics this is supported through the Magic In-
struction Callback. The magic instruction for the x86 architecture is defined
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Figure 4.4: Communication based on a Magic Instruction. The target
stores introspection data in a buffer, executes a magic instruc-
tion and the tracer is invoked. When the buffer is processed,
the simulation continues.

as xchg bx, bx as this operation has no effects in the context of a regular
program and, thus, minimizes the number of unintentional invocations of
the simulator.

With the help of the magic instruction the data transport itself can be done
with minimal simulation internal overhead. The payload is stored in a buffer
in kernel virtual memory and a set of CPU registers are used to pass the
buffer address and size to the magic instruction callback handler in the
tracer. Since the buffer is typically very small (depending on the type of in-
formation), it can always be allocated on the kernel stack of the thread that
performs the action, which is to be traced. Thus, the intrusiveness of the
communication is comparable to an extra regular procedure call. Moreover,
since the kernel stack of the currently running thread is always guaranteed
to be present in physical memory, nested tracing operations are prevented.

To retrieve data from the payload buffer, the callback handler in the tracer
needs to translate the kernel virtual address of the buffer into the corre-
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sponding simulation physical address by using the currently active page
directory. Afterwards, it can read the specified amount of bytes. If the
buffer crosses page frame boundaries, additional address translations are
necessary.

Virtual Machine Support

Due to the high probability of identical page frames between VMs that are
running the same operating system, virtualization is a common use case
for memory deduplication. It is therefore desirable that the tracer as well as
the analyzer software is capable to handle the analysis of virtual machines
within the simulation. This includes the detection of sharing opportunities
and the support for virtual machine introspection.

The Simics version used in this work does not support processor models
that come with the instruction set extensions for virtualization (Intel-VT or
AMD-V). For that reason, the implementation of the tracer has been di-
rected to handle virtualization based on binary translation. However, the
design is also compatible with other virtualization technologies. The cur-
rent implementation is based on QEMU as the virtual machine monitor
(VMM) [11]. Without the hardware-based virtualization extension KVM [28],
QEMU hosts each virtual machine in a separate process. Hence, each
virtual machine’s physical memory is represented through a correspond-
ingly large contiguous memory area in the address space of the respective
QEMU process. Figure 4.5 depicts this setup.

The tracer needs no additional logic to detect sharing opportunities in this
scenario. Since identical page frames between VMs are also equal in the
physical memory of the simulated virtualization host, the presented algo-
rithm is able to track them. The identification of the virtual machines which
are referenced by a sharing group could optionally be done through the
reverse mapping of the corresponding page frames to the QEMU virtual
machine monitor processes that host the VMs.

Performing operating system introspection in a virtualized environment,
however, requires special handling. As the physical memory of virtual
machines is mapped as anonymous memory in the host, the information
received through the operating system introspection in the host kernel is
not sufficient to resolve the page usage of VM owned page frames. The
additional level of abstraction within the simulation introduces another se-
mantic gap. Therefore, the operating system state of the VMs is not trans-
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Figure 4.5: Semantic Gap. The physical memory of a simulated virtual
machine is mapped as anonymous address space area. Any
information about the page usage is lost.

parent to the tracer. To close the semantic gap, the introspection must
also cover virtual machines. Although this can be accomplished by run-
ning an introspection-enabled kernel within the simulated VMs, additional
modifications in the three following areas are required:

Communication Channel The binary translation employed by QEMU
optimizes the target code by removing unnecessary instructions. Since the
magic instruction defined by Simics falls into this category, the invocation of
the tracer from within introspection-enabled VM kernels is unintentionally
removed. A way to bypass this mechanism is to choose a magic instruc-
tion for virtualized systems that is not targeted by binary code optimiza-
tions. This instruction is then trapped by the virtual machine monitor which
in turn can forward the call to the simulator through executing the original
magic instruction. Figure 4.6 illustrates the additional indirection. In the
implementation, the magic instruction for virtual machines is defined as a
read from the model specific register (MSR) with index 0x40000000 through
the readmsr instruction [24]. The MSR address range between 0x40000000

and 0x400000FF is marked as a reserved range that is guaranteed not to be
used by any processor in the future [26].
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Figure 4.6: Communication with Virtualization. A system ID identifies the
source of events. For virtualization with binary translation, ex-
tra steps in the communication can be necessary.

An alternative to this approach is to modify the code optimization per-
formed by QEMU to skip the removal of the original magic instruction.

Operating System Identification As the tracer receives introspection
data from multiple machines, it must be able to determine the system to
which the data belongs. This can be solved by tagging each system with
a unique identifier and letting it include this identifier with every invocation
of the magic instruction. Therefore, the tracer requires each simulated
machine (including the virtualization host) to request a system id before the
first introspection data is sent. In Figure 4.6 the system id is denoted by the
number between the square brackets. Since the simulated virtualization
host starts before any virtual machines, its system id is always 0. Virtual
machines are in turn identified by a system id greater than 0.

Multi-Level Address Translation The last extension required to support
virtual machines relates to the translation of the payload buffer’s address.
If a virtual machine stores introspection data in a buffer, this buffer is allo-
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cated on the kernel-stack of the currently running thread. However, since
this thread runs in the virtual machine, the buffer’s address sent to the
tracer is only valid in the virtual address space within the virtual machine
and cannot be used to access the data in simulation physical memory.

VM
Virtual

VM 
Physical

QEMU 
Virtual

Simulation
Physical

Figure 4.7: Three-Stage Address Translation. To access the payload
buffer in a virtual machine, the tracer has to perform multi-level
address translation.

Figure 4.7 depicts the tree-stage address translation that is applied by the
tracer whenever it detects that the buffer resides in a virtual machine (us-
ing the system id). The buffer VM virtual address is first translated into a
VM physical address. Subsequently, the VM physical address is translated
into a virtual address pointing into the contiguous address space area in
the QEMU VMM process that represents the VM’s physical memory. The
last step translates this virtual address into the corresponding physical ad-
dress in the simulation’s physical memory. This address can finally be
used to read the buffer.

To accomplish this translation each invocation of the magic instruction
needs to include a pointer to the currently active page directory that trans-
lates the buffer’s virtual address into the physical address. Since for virtual
machines the payload buffer is not accessible prior to the first complete
address translation, the system id and the pointer to the page directory
must be supplied via registers. Another information required by the trans-
lation process is the location of the physical memory address space areas
in each QEMU VMM to enable the second translation step. In the imple-
mentation, QEMU has been modified to provide this offset at the start of a
new virtual machine.

In practice, a single address translation from VM virtual to simulation phys-
ical requires between 4 and 6 nested address translations, depending on
if the virtual address resides in a huge page or not. This is caused by ad-
ditional address translations required to traverse the page table hierarchy
of the virtual machine.
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Linux Kernel Introspection

For evaluation purposes, the Linux kernel (version 3.3.2) has been ex-
tended to support operating system introspection. Table 4.1 gives an
overview of the kernel operations being traced:

Process Management
and Dispatching

• Process: create/terminate/switch
• Address Space: create/destroy

Kernel-Mode Memory
Management

• Build-Specific Kernel Layout1

• Machine-Specific Kernel Layout2

• Zoned Buddy Allocator: allocate/free
• Slab Cache: create/destroy/expand/shrink
• Large Kernel Allocation: allocate/free
• Virtual Kernel Allocation: link/unlink area
• Page Cache: add/replace/remove page
• Kernel Modul: load/unload
• Kernel Stack: allocate/free

User-Mode Memory
Management

• Address Space Area: create/adjust/destroy

Virtual-To-Physical
Page Mapping

• Page Directory Entry3: set/clear
• Page Table Entry: set/clear

1 Segments (text, data, bss), kernel start page, etc.
2 Number of page frames, high memory start frame, etc.
3 Only for huge pages

Table 4.1: Linux Kernel Introspection Overview

4.2.3 Cache Performance Analysis

The processor models shipped with Simics do not include a cache simu-
lation. However, Simics provides the possibility to do a dedicated cache
simulation with the help of the generic cache class g-cache (see Section
2.4.3 for details). The class allows building arbitrary cache hierarchies
with customized cache properties (size, organization, etc.). The current
implementation of the tracer uses the g-cache to model and trace various
caches.
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Figure 4.8: Cache Assignment with and without Memory Deduplication.
Deduplicating memory changes how the operating system
serves memory allocations. This has complex effects on cache
line assignment.

To get an insight into the effects of memory deduplication on the proces-
sor caches, it is not possible to modify the cache simulation to emulate
the effects. The implications of memory deduplication on the cache are
too complex. Freeing page frames through deduplication changes the way
the operating system serves memory allocations in the future. Hence, the
placement of semantically same frames possibly changes with activated
deduplication, leading to the replacement of otherwise preserved cache
lines. Figure 4.8 illustrates this problem. A pure cache simulation cannot
estimate how the operating system would use free memory. Emulating all
possible behaviors quickly leads to a state explosion and is not feasible.
Instead, two dedicated simulations (one with and one without activated
memory deduplication) need to be traced and compared. Since the simu-
lation is fully deterministic any changes regarding the cache utilization and
performance must be caused by memory deduplication.

The g-cache exposes most of the interesting performance metrics via at-
tributes. This way, external components can access statistics on the num-
ber of fetches, the current hit-rate and many more. To record these at-
tributes, the tracer incorporates a trace data provider which periodically
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captures user-configured object attributes. The current implementation
does not offer an alternative to the sample-based tracing of attribute val-
ues. However, the interval can be configured on a CPU cycle basis and
therefore allows maximum precision if desired.

To supplement to the statistics supplied by the g-cache, several memory
duplication related metrics have been added:

• The number of cache lines referencing mergeable page frames

• The number of referenced unique mergeable page frames

• The number of referenced unique sharing groups

Subtracting the last two values for instance gives an indication on how
much the cache benefits from memory deduplication. If the number of
unique mergeable frames and the number of unique sharing groups is
close to equal, nearly all mergeable frames referenced by the cache are
located in different sharing groups. Merging the frames within these shar-
ing groups will therefore have only little effect on the cache.

Other information periodically captured by the tracer is the contents of the
cache (i.e., the referenced page frame numbers). This allows the analyzer
to find the processes for each cache line that own the respective page
frame. This data can be used to make statements about the importance of
scheduling policies for the cache utilization in relation to memory dedupli-
cation. It might be for instance beneficial to co-schedule processes which
own page frames in the same sharing group.

4.2.4 Data Organization and Storage

Tracing all the information presented in the last sections quickly leads to
the accumulation of huge amounts of tracing data. A billion records per
simulated minute is a realistic rate for a simulated single-core 20 MHz pro-
cessor. This demands for an efficient storage mechanism to reduce the
size of the resultant trace file. Otherwise, traces can quickly grow up to sev-
eral TiB in size and get overly complicated to handle. Moreover, depending
on the performance of the storage backend, the rate at which new trace
data needs to be written can saturate the I/O bandwidth, thereby slowing
down the simulation. The implemented storage system overcomes these
challenges through a trace data compression that saves up to 99% of stor-
age space. At the same time, it structures the trace data in a way that
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enables the analyzer software to quickly extract the data that it is looking
for. To accomplish this the tracer organizes trace data into the following
basic primitives:

Entries Each datum that the tracer generates is packed into a structure
called trace-entry. An entry is the smallest unit of information and every
data that is to be stored in the trace file needs to be encoded into one or
more of such trace entries. The size of a single trace-entry is 10 bytes,
regardless of the data it holds. The format of a trace-entry, i.e., how these
10 bytes need to interpreted, is only partially defined and apart from that
chosen by the respective data provider that generates the entries. Hence,
the format of a trace-entry containing information on a certain operating
system introspection related event is for the most part completely different
from a trace-entry describing a CPU memory access. The part which is
equally formatted for both entry types is the first (header) byte of a trace-
entry. It encodes the fundamental type of the entry (e.g., introspection data,
memory access, metadata, etc.). The header also specifies if this entry is
a continuation of the previous one. This way, arbitrary long trace informa-
tion can be stored by chaining multiple trace entries into a single large one.
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Figure 4.9: Entry for a Data Memory Access

Figure 4.9 exemplary depicts the format of a trace-entry encoding a CPU
memory access. The last 12 bits of the entry represent the number of
elapsed CPU cycles since the last entry generated by the data provider.
The time stamping is, however, not fixed to this format and can also be
expressed with the help of a specially formatted metadata entry that is
chained to the actual entry. Thereby, a 64 bit absolute timestamp can be
used if the format of the trace-entry or the value of the timestamp delta
requires it.
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Streams To organize semantically connected trace entries, the tracer
uses the abstraction of streams. For each source of information which
is to be traced, a dedicated stream is registered by the respective trace
provider. For each stream, the tracer’s stream management code returns
a unique stream handle that allows the corresponding trace provider to
store a trace-entry in a specific stream. The operating system introspec-
tion data for each system (i.e., the simulation itself and simulated virtual
machines) is for example stored in a dedicated stream. The same is true
for the information on sharing groups as well as for each cache attribute
that is traced. This way, streams enable the tracer and the analyzer soft-
ware to distinguish between different data sources.

The tracer also registers some internal streams that do not hold trace infor-
mation. For instance, the tracer allows each stream to be associated with
arbitrary description information (expressed via key/value pairs) such as
a name or properties of the data source. These stream descriptions are
stored in a built-in stream themselves.

Data Source

Set page
table entry

Switch to
Pid 2324

Create 
process

Trace Entries Streams

System [0]

Stream [0]
Introspection Data of System 0

Figure 4.10: Stream Model. Semantically connected trace entries are
stored in dedicated streams.

Trace-Lists In contrast to entries and streams, which semantically struc-
ture the trace data, trace-lists are exclusively used to optimize data stor-
age and access. Their purpose is to partition each stream into a set of
segments with a pre-configured amount of entries (typically approx. 2.5
million ∧

= 24 MiB at 10 byte per entry). These segments can then be pro-
cessed (i.e., read or written) independently of each other.

As already mentioned, tracing all needed information is a costly operation
with regard to I/O bandwidth and storage space. Therefore, the entries
in each trace list are compressed using the Lempel–Ziv–Markov chain
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algorithm (LZMA) from the 7-Zip compression library [2]. Naturally, the
achievable space savings heavily depends on the data which is to be com-
pressed. For trace data it varies between 80% and 99%. The latter is
realistic if the page frame hashes for each CPU write operation are omit-
ted. They hurt the compression ratio because of the high degree of entropy
they induce into the trace data. Compressing the trace lists is the key to
make the amount of data manageable. It also takes the burden off the I/O
backend as substantially less data needs to be written to disk.

Since the simulation of the target system is single-threaded, a modern
quad-core processor provides enough computational power to perform an
asynchronous compression of trace lists on the spare cores. The inde-
pendence of trace lists enables the tracer to compress multiple trace lists
simultaneously. On the other side, trace lists allow the analyzer software
to only partially decompress a stream (in parallel if multiple trace lists are
involved). This is very important as the total size of a trace file quickly ex-
ceeds the available memory capacity.

Despite the compression, trace lists also function as index for the ana-
lyzer. Since each piece of trace data may span multiple trace entries, the
exact position of certain trace data in the stream is unknown. Instead, it
is necessary to search the first trace-entry of the record by iterating over
all previous trace entries. Thus, the random-access performance within
a stream is very poor. To overcome this limitation, each trace list stores
the index of the first trace record it holds. This substantially reduces the
number of trace entries that need to be scanned, because the search is
confined to the trace list which contains the data of interest. To further
reduce seek times the analyzer successively builds an index-based jump
table for each list when entries are being searched.

Trace File The last storage primitive used during tracing is the output
file which contains all trace data of a single simulation. In its current form,
the format of the trace file is kept relatively simple. Figure 4.11 illustrates
the layout. Each time a trace list of an arbitrary stream is full, i.e., stores
enough trace entries, the trace list is asynchronously compressed and ap-
pended to the file. Each list is preceded by a small header that stores
various list properties such as the size of the compressed and uncom-
pressed data as well as the index of the first trace-entry contained in the
list. To ensure a correct order when the trace lists are read by the analyzer,
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Figure 4.11: Trace File Format. The trace is stored as a linked list of
variable-sized trace-lists. Each list comprises a header and
compressed trace-entries. The lists are tagged to associate
them with the corresponding streams.

a sequence number is included in each header. In addition, an identifier
assigns each trace-list to its stream.

4.2.5 Conclusion

The first step when analyzing sharing opportunities is to gather information
about which page frames hold equal contents and what temporal and spa-
tial properties these groups of frames have. The tracer accomplishes this
through the inspection and continuous monitoring of write accesses to the
simulation’s physical memory and introduces sharing groups to describe
and track sets of identical page frames. A red-black tree and hardware
accelerated CRC-32C hashing is used to optimize this operation.

However, the information on sharing groups does not enable the analyzer
software to examine if for instance certain processes tend to show more
sharing opportunities than others of if memory duplication can particularly
be observed in address space areas of a certain type. A semantic gap
between the simulation and the tracer prevents the retrieval of such in-
formation. Operating system introspection is able to close this gap by
communicating relevant events (e.g., the creation of a new process or ad-
dress space area) and operating system state information to the tracer. A
lightweight communication channel on the basis of a magic instruction is
employed to transport the data.
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To measure the effects of memory deduplication on the performance of
processor caches, Simics offers the g-cache class which allows simulat-
ing arbitrary cache hierarchies. The g-cache has been extended to pro-
vide memory duplication related statistics such as the number of cache
lines that reference mergeable page frames. Besides basic cache perfor-
mance metrics such as the current hit-rate, the tracer periodically captures
this additional information. Since the simulation is deterministic, compar-
ing the measurements of two subsequent simulations (one with and one
without activated memory deduplication) allows examining the effects on
processor caches.

Tracing all the mentioned information quickly leads to trace files that are
several TiB in size and that get overly complicated to handle. For a sin-
gle simulated minute of a single-core 20 MHz processor a billion trace-
entries (10 bytes each) are generated. The implemented storage sys-
tem overcomes this challenge through a trace data compression based
on LZMA [2] that saves up to 99% of storage space. Furthermore, the ap-
plied storage format efficiently organizes semantically connected entries
into streams and allows the partial decompression of trace data through
trace-lists.

4.3 Data Analysis

The software design strictly separates the data acquisition from the data
analysis phase. This way, time consuming simulations of a target system
need only be run once, even if the collected data should be analyzed in
many different ways.

In contrast to the tracer, which is implemented as a C-based Simics ex-
tension, the analyzer software is completely self-contained and detached
from Simics. Thus, it does not need to be adjusted, if the tracer is ported to
other simulation platforms. The implementation is based on the Microsoft
.Net Framework 4.0 [36] and has been entirely developed in C#. To give ac-
cess to the core functionality from within other software (e.g., a command
line utility), the trace file handling, data interface and full analysis support
is encapsulated in a dedicated .Net class library. For the rest of this work
this library is referred to as the core analysis library.

The fundamental design behind this core library is to provide all means to
analyze trace file data, but not to supply any functionality specific to a cer-
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tain analysis. Instead, a set of generic data primitives and mechanisms is
used to supply an interface that works similar to the query-based interface
employed by many databases (e.g., SQL). However, the interface provided
by the core library is more powerful in that, through the integration of a C#-
based scripting environment, it allows to implement rich analysis logic that
goes beyond that what usual query-based interfaces offer. In addition, the
core library comprises several state machines that are able to reconstruct
the operating system state (as described in Section 4.2.2) of the traced
machines for any chosen point of simulation time, thereby facilitating a full
replay of the traced operating system operations.

This Section (4.3) deals exclusively with the architecture and facilities of
the core library. The trace viewer tool which adds a graphical user interface
to the library’s functionality is presented in Section 4.4.

4.3.1 Data Primitives

To explain how trace file data can be analyzed with our library, the data
primitives on which the core functions are based on, need to be covered
first. These data primitives are very similar to the ones used by the tracer.
However, the application of each primitive is extended to increase its flexi-
bility with regard to the analysis’ work flow:

Entries An entry is the smallest unit of data. All information that needs
to be processed by the core functions must be represented as an entry of
a specific type. In contrast to the tracer’s view of an entry, the analyzer al-
ways regards a complete trace datum as a single entry. Thus, if the tracer
needed to encode a large datum with the help of multiple 10 byte trace-
entries (e.g., a long string or array), the analyzer detects this and outputs
only a single entry that rebuilds the entire original information. For that
reason, the core library includes over 50 different types of basic entries to
cover the spectrum of information captured by the tracer (e.g., data read-
s/writes, various operating system events, value types, etc.).

In addition to the direct representation of traced data, entries may also rep-
resent complex objects such as the model of an entire address space or
the reconstruction of a process that was simulated. The approach is to ex-
tract as much information as possible from a collection of basic entries and
to build semantically richer ones through merging or interpretation. The
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current implementation comes with approximately 30 of such extended en-
tries. Among these are for instance entries to represent sharing groups,
processes, address spaces and address space areas.

On the other end of the spectrum, the analyzer is also able to represent
basic data types such as an integer or float as an entry.

Streams While in the tracer, streams are used as storage destination,
the analyzer treats them as a source of entries. Streams enable the core
library to expose the same interface and fundamental behavior to process-
ing functions regardless of the type of data source that generates the en-
tries. To give special consideration to the different characteristics of data
sources, streams incorporate several capability flags that specify how a
stream delivers entries (e.g., ordered) and how it may be accessed (e.g.,
multi-threaded). The latter also includes if a stream can be accessed in
random order (such as a list or array) or if a reader is limited to strict FIFO
access.

A standard stream expects its data source to already have the entries gen-
erated when the stream is read. Therefore, the access to a standard
stream is always non-blocking. However, there are cases where a data
source is not able to create all entries beforehand. An example is a stream
that delivers an entry for each process creation during a running replay of
a traced operating system state. To enable analysis code to inspect the
current state, whenever a new process is created, it must be able to start
reading the stream at the beginning of the replay. In that case, reading the
stream must be a blocking operation so the analysis code is paused until
the replay reaches the creation of a new process and a respective entry is
created. Figure 4.12 depicts the logic of a blocking stream:

Gate

Stream

Data Source Gate

Blocking Stream

Buffer

Figure 4.12: Blocking Stream. A blocking stream works like a pipe in UNIX.
An intermediary buffer stores entries. If the buffer is full, the
data source is blocked. If it is empty, the reader is blocked.
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The data source and the reader can block on a blocking stream whenever
the intermediary buffer, which holds the entries, is full or empty (depend-
ing on the operation). Blocking streams, thus, very much resemble UNIX
pipes. Consequently, reading a blocking stream removes the entries from
the stream, whereas this is not the case for standard streams.

Another special type of stream is the multiplexing stream that merges mul-
tiple input streams into a single output stream. The input streams need to
be either all non-blocking, in which case the entries are returned according
to their timestamp, or blocking where entries are served in the order they
reach the multiplexing logic.

Source [0]

Source [n]

Multiplexing
Logic

(Stream Source)

Destination Stream

...
Figure 4.13: Stream Multiplexing. Multiple source streams are combined

into a single output stream.

Stream Sources Streams are typically provided by objects that identify
themselves as a stream source. A trace file for instance is just a stream
source that gives access to the streams which the tracer generated and
which map to entries stored in the respective file on disk. An example
for another stream source is an address space that offers access to its
virtual pages and mapped address space areas through streams. Since
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Figure 4.14: Stream Sources. Streams are created by stream sources.
Each entry within a stream can be a stream source itself and
offer further streams.
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each stream source is automatically an entry, streams may deliver entries
that are stream sources themselves and which expose further streams. A
mapped address space area for instance is not just an entry, but also a
stream source that via a stream gives access to particularly those pages
of the parent address space that it contains.

Trace The counterpart to a trace file in the tracer is the trace object. It
functions as working context for a single trace file and brings together all
the objects and components that are created as part of the file’s analy-
sis. Among these components are various caches to improve analysis
performance, the host for the scripting environment and the stream man-
agement.

4.3.2 Queries

Up to this point, the presented primitives do not provide any means to
analyze the data they hold. Queries close this gap. They constitute the
mechanism around which any analysis is centered and which enables to
do arbitrary computations on trace data.

Figure 4.15 depicts the basic concept. A query is always directed to a
single input stream. When the query executes, the entries of this stream
are sent through multiple stages of a user-defined filtering and analysis
logic. Entries that are returned by the logic are again accessible as a
stream and can be used as input for further queries.

Input
Stream

Query

Filtering and
Analysis 

Logic

Result
Stream

Figure 4.15: Analysis through Queries. Entries from an input stream are
processed through custom query logic.

The result entries returned by the filtering and analysis logic do not need to
be input entries, but instead can be completely new ones from one or more
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entirely different types. The amount of entries is also independent from
that of the input stream. This way, any data present in a (non-blocking)
stream can be analyzed in different ways and iteratively be transformed
into entries with richer informational value with regard to the desirable
analysis result. To compute a histogram of the lifetime distribution of shar-
ing groups, for instance, a query can be executed that takes a stream of
sharing groups as input, computes the histogram in its analysis logic and
returns entries representing the individual values of the histogram in its
result stream. This stream can then be used as input for further queries or
it can be exported to process it with external software such as a plotter. In
the following sections this example is used to demonstrate the structure of
a query.

Depending on the capabilities of the input stream, queries can be config-
ured to process only a selected window of the stream (based on index
or timestamp). Moreover, the maximum number of entries returned can
be limited. This is useful if the output should be confined in size but the
amount of entries in the window of interest is not known beforehand.

Filtering and Analysis Logic

The processing of entries through a query is divided into two distinct stages.
Custom filtering and analysis logic can be applied at both or only one of
the stages2:

First-Stage Processing The first-stage processing logic is executed in
a dedicated run for each input entry. The first stage, thus, works on single
input entries, only. Independent from the computations performed by the
logic, for each entry the logic ultimately reverts to one of the following three
basic operations:

• Pass the entry on to the next stage

• Create an entirely new entry (of any type) and pass that on

• Block the entry so it is not processed any further

The execution of the filtering and analysis logic is not stateless. Thus, the
code may generate any kind of state information and access it in subse-
quent executions. However, the state is only accessible within the current

2In fact, it is possible to not set any analysis logic at all. In that case the selected input
window (if any specific) is returned one-to-one.
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query and solely for the time of the query’s execution. This includes, shar-
ing the state with the second-stage logic.

To compute the histogram of the lifetime distribution of sharing groups, the
first-stage analysis code would start by initializing an empty histogram as
part of its state. The query would then invoke the analysis logic for every
sharing group in the input stream, thereby enabling it to inspect each shar-
ing group’s lifetime and to update the histogram accordingly. Since the
entries themselves are not required in the second stage, the logic would
block all entries, effectively returning no data. Instead, the associated state
would hold all information, ready to be further processed by the second
stage.

To optimize performance, the first-stage processing is parallelized3. If, for
instance, the retrieval of entries from the input stream involves much com-
putational overhead this can substantially reduce total execution time. The
streams directly provided by a trace file are a good example, as, on access,
they trigger the decompression of relevant trace-lists. The parallelization
spreads this operation over all available CPU cores by finding windows in
the input stream that can be processed concurrently. Therefore, any anal-
ysis code for the first-stage processing has to be developed with thread-
safety in mind. Moreover, the logic must not depend on any order in which
entries are supplied.

To sum up, the first stage should be used to discard entries as quickly as
possible (build richer state information instead) and to do operations that
benefit from parallelization.

Second-Stage Processing The second-stage analysis logic is executed
when all entries have been processed by the first stage and the results
have been trimmed to the specified amount of maximum allowed query
results (unlimited by default). The second stage is very similar to the first
one in its ability to freely operate on the input entries. This again includes
creating completely new entries. In contrast to the first stage, however, the
entries are now guaranteed to be ordered by their index/timestamp and
are delivered in custom-sized groups. By default all entries are served in
a single large group, thereby facilitating computations with access to all
entries at once. This is useful to implement analysis logic that is not par-

3Parallelization is suppressed if the input stream does not support multi-threaded, in-
dexed access. This is for example the case for blocking streams.
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Figure 4.16: Two-Stage Query Processing. The first stage logic is exe-
cuted in parallel on a single entry each. The first stage can
pass an entry on, create a new one or block it. Entries are
gathered in an intermediary buffer and are sorted if neces-
sary after the first stage has finished. They are then sent (in
custom-sized groups) to stage two where arbitrary operations
on the ordered entries may be done. The output is stored in
a new stream.
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allelizable while still allowing the multi-threaded retrieval of entries in the
first stage. If a group size is specified, the computations are parallelized
on a per-group granularity.

To finish the computation of the histogram showing the lifetime distribution
of sharing groups, the second-stage logic would take the histogram from
the shared state and create an (integer) entry for each data point.

Implementation of Custom Analysis Logic

Similar to a query in a SQL database, queries allow filtering, combining
and inspecting entries. However, the filtering and analysis logic of a query
is not restricted to a single statement. Instead, it is implemented with the
help of a C#-based object-oriented scripting environment, which is inte-
grated into the core library via CS-Script [46]. The environment exposes
full access to the functionality of the core library as well as to the entire
.Net Framework, including Language Integrated Query (LINQ) [32] and
3rd-party .Net assemblies. To preserve performance, all C# scripts are
compiled prior to their execution and therefore run as fast as code directly
built into the core library.

An alternative to using C# scripts is to implement the logic in a dedicated
.Net assembly. However, this requires restarting the entire analyzer if
changes to the code need to be performed. Scripts, in contrast, can be
modified on-the-fly and thereby make it substantially easier to experiment
with variations of the analysis logic (e.g., tuning a parameter).

Listing 4.1 illustrates the structure of an analysis script. The logic is encap-
sulated in a dedicated class, in the listing called MyAnalysisLogic. The class
implements first-stage and second-stage analysis through the public meth-
ods FSPFilterMain (First - Stage Processing) and SSPFilterMain (Second -
Stage Processing), respectively. In the listing both methods just pass the
input on. The first-stage method can replace the input entry by overwriting
the entry argument. The return value determines blocking. The second-
stage method controls its output solely through the returned list of entries.
The parameter argument supplies an optionally configured user-value. In
contrast to the listing, the methods are not required to reside in the same
script. For every query, the core library creates a new instance of the
class(es) that implement the analysis logic. It is therefore possible to use
class members to store and share state information and to use the class
constructor to perform state initialization.
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using System;
using System.Linq;
using System.Collections.Generic;
using System.Text;

using TraceViewer.Core;
using TraceViewer.Core.Entries;
using TraceViewer.Core.Entries.Linux;
using TraceViewer.Core.Filtering;
using TraceViewer.Core.Scripting;
using TraceViewer.Core.Statistics;

public class MyAnalysisLogic :
ICustomFSPFilter ,
ICustomSSPFilter

{
private int _myStateVariable;

public MyAnalysisLogic ()
{

// Initialize state here

_myStateVariable = 1;
}

public bool FSPFilterMain(ref Entry entry ,
object parameter)

{
// Implement first -stage processing here

return true; // Return false to block the entry
}

public List<Entry > SSPFilterMain(
List<Entry > entries , object parameter)

{
// Implement second -stage processing here

return entries;
}

}

Listing 4.1: Template Analysis Script
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4.3.3 Data Correlation

Queries provide a powerful mechanism to do filtering and arbitrary com-
putations on entries. However, queries are conceptually very generic and
thereby lack a convenient way to directly work on the raw, basic trace data
gathered during the simulation. It is, for instance, not possible to easily an-
swer the question what processes were involved in certain sharing oppor-
tunities. Therefore, queries need to be supplemented with a mechanism
that is specifically directed to work on the collected raw trace data and that
is able to build richer information from it.

The approach taken in this work is to use the trace data from memory
inspection and operating system introspection, reconstruct relevant parts
of the simulated machine’s state and present this richer information in a
form suitable to be analyzed with queries. This way, analysis logic can, for
instance, easily get the processes that were alive at a certain point in time
within the simulation and correlate these with the sharing groups that were
concurrently present.

State Models

To reconstruct relevant parts of the simulated machine’s state, including
simulated virtual machines, a model is needed that is capable to reproduce
the state information of interest. Depending on the state’s scope this model
can reach a substantial complexity. The core library therefore reduces the
complexity by splitting the state model in multiple small models that each
cover independent areas of the overall model. This approach also comes
with the benefit of a natural modularization that increases flexibility and
extensibility. The current implementation includes three state models:

System State Model The system state model interprets trace data that
is generated by operating system introspection (see Section 4.2.2). For
every traced point in time it is able to reproduce major state information
of the operating system that was running in the simulated host (or virtual
machine). The following list gives an overview of the most important infor-
mation available:

• A hierarchy of all processes and kernel threads alive (incl. name,
command line, environment variables, etc.)
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• The complete address space layout for each process (heap, stack,
mapped files, etc.) and for the kernel (kernel memory pools, kernel
stacks, file cache, etc.)

• The mapping of virtual pages to physical pages for each address
space including complete reverse mapping information

• Page frame allocation (free/used status for each frame)

• The currently running process and active address space

In addition, the system state model is capable to traverse reverse mapping
information to infer per-page frame usage information (e.g., frame is used
as heap).

As already depicted in Figure 4.14, most of the system abstractions imple-
mented by the system state model such as processes, address spaces
and individual virtual as well as physical pages are entries that are avail-
able in streams and, thus, can be analyzed via queries. Furthermore, they
are directly accessible through public members so that analysis code al-
ways has access to the whole model.

To keep the number of abstractions small, the physical memory is repre-
sented through an address space entry just like a standard process ad-
dress space. The same is true for the kernel address space. However, the
latter is additionally set as overlay for the kernel address range in process
address spaces so that operations (e.g., a write or mapping) targeted at
kernel memory locations are always redirected to the same kernel address
space.

Sharing Model The sharing model is responsible to process entries gen-
erated during memory inspection (see Section 4.2.1). Its primary tasks are
to reproduce the sharing groups that existed at the targeted point in simu-
lation time and to update page access statistics and content hashes. The
following list summarizes the most important information provided by the
sharing model:

• The sharing groups (incl. list of referenced frames, pattern (if any) or
complete page contents if traced, creation time, stable time4, etc.)

4An object’s stable time denotes the time span in simulation time between its last state
change and the currently inspected point in simulation time.
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Figure 4.17: System State Model and Sharing Model. The system state
model and the sharing model work on the same physi-
cal memory address space, thereby connecting information
about sharing groups and operating system state.

• A hash of each page frame’s current contents

• Per-page frame write statistics (number of writes, percentage of non-
destructive writes5, last modified time, stable time)

Like the system state model, the sharing model works with a physical mem-
ory address space. If the system state is evaluated together with the shar-
ing model, both models may use the same physical memory object and
thereby connect information about sharing groups and the operating sys-
tem state. This is illustrated in Figure 4.17. Since the sharing groups
are accessible as stream, a query can now be executed which analyzes
how sharing groups are related to processes and certain types of address
space areas.

Cache Model For some analyses of the cache performance a detailed
insight into the assignment of cache lines can be beneficial. This is for ex-
ample the case if an examination intends to identify processes that utilize

5A non-destructive write is a write operation that does not change the contents of a
page.
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a high number of cache lines to cache identical page frames. The cache
model allows to perform such evaluations by reproducing the cache line
assignment. This includes a page frame number and offset for each line.

Since the current tracer does not implement a continuous recording of
cache internal operations such as line fetches, the cache model is only
updated periodically with the interval which has been chosen for tracing.

Resolving

State models only provide abstractions and the operations that can be per-
formed on these abstractions. This is for example the mapping of a virtual
page to a physical page in an address space. The mechanism that reads
corresponding input streams and ensures that each model in the analysis
represents its state at the same point in simulation time is the resolver. It
is responsible to replay the traced actions in the exact same order they
occurred in the simulation, synchronized over all models. The resolver
thereby allows jumping to any point within the traced simulation and the at-
tached models are brought into their respective state. This state can then
be analyzed with queries that work on the numerous streams offered by
the state models.

Figure 4.18 illustrates the process of state resolving. Each state model
has a single input stream attached which exclusively contains entries that
it is able to interpret. This is, for instance, a stream of introspection data
entries for a system state model. To include a specific (stream, state) tu-
ple, it is added to the resolver. The resolver’s task is to sort the entries
according to the time they were traced in the simulation and to apply them
to their corresponding state models afterwards. This process is continued
until the specific target simulation time is reached. To sort the entries, the
resolver repeats a loop of getting one entry for each stream and forwarding
the one with the smallest timestamp. The entries are, thus, required to be
sorted within their input streams. Otherwise, the resolver would need to
retrieve and sort all entries at once which is not feasible due to the amount
of main memory required for such an operation.

Although the presented approach is well suited to analyze sharing opportu-
nities that existed at a certain point in simulation time, it does not provide a
convenient way to do analyses that take the whole simulation time into con-
sideration. This might be, for example, an analysis of the average lifetime
of sharing opportunities. Therefore, a mechanism is needed that allows
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Figure 4.18: Resolving. Each state model is attached to an input stream.
A timing gate sorts the input entries according to their times-
tamp. The entries are then applied to their respective state
model. Stream states allow the inclusion of arbitrary streams.
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analysis code to be invoked at interesting points during the resolving. This
way, the resolver can be instructed to fully replay all traced actions (i.e.,
jump to the end of the traced simulation time) and the analysis code is
able to concurrently examine the development of states and their abstrac-
tions.

The core library offers two mechanisms to perform full simulation time
spanning analyses. Since analyses are done with the help of queries, two
types of blocking streams are available that are supplies with entries in the
course of the simulation replay:

Event Streams For most analyses it is the best to be invoked at certain
events in the replay that the researcher intends to examine. The presented
state models therefore offer special (blocking) event streams on which a
query can be executed concurrently to the replay. Each time a state model
performs an operation that triggers an event an entry with event-specific
information is generated and written to the stream, thereby leading to the
invocation of the analysis code. The current implementation only includes
events in the sharing model (e.g., creation/destruction of a sharing group).

Although some events are already represented by corresponding entries
in the raw traces, entries supplied by event streams typically include infor-
mation that is not explicitly traced or which would require the cumbersome
manual interpretation of a series of basic trace entries.

Stream State Model Stream states allow any ordered and time stamped
stream to be included in the resolving. This is depicted in Figure 4.18 with
the Cache Hit-Rate stream. In contrast to the other state models, a stream
state model is a pseudo model which only forwards the entries it receives
to a blocking stream.

The analysis logic of a query that is executed on one of these types of
streams is invoked synchronously to the entry flow during resolving. This
way, the logic is able to inspect the entry that triggered it together with
the reproduced simulation state at the respective point in simulation time.
To compute, for instance, the average lifetime of sharing opportunities, a
query can be started on a stream that is supplied with a certain event entry
every time a sharing group is destroyed in the sharing model. The analysis
code can then compute the lifetime of the dead sharing group and include
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the new value in its calculations. Another example is the triggering of the
analysis for each entry in a stream included via a stream state (e.g., for
each measuring of the cache hit-rate). When the analysis has finished pro-
cessing the entry, the resolver continues the simulation replay.

The resolving of a whole simulation can take considerable time. A sharing
model, for instance, reproduces every single CPU write to update statis-
tics and page hashes. On a 3.4 GHz Core-i7 it is realistic that a single
simulation replay of 30 minutes (single trace) takes about 3 to 4 hours. Al-
though this is substantially faster than running the simulation itself several
times (approx. 1.5 days for a single run), it is beneficial to execute multiple
queries concurrently if different analyses are planned. This is no problem
as it has been taken into consideration during the design of the relevant
mechanisms. It is even possible to execute multiple queries on the same
event stream.

Multiple-Trace-Support

Since the Simics version used in this work does not ship processor models
that provide the virtualization instruction set extensions Intel-VT or AMD-
V, QEMU has been used to implement virtual machine support through
binary translation (see Section 4.2.2). However, performing binary transla-
tion in the simulation turned out to be a major performance bottleneck. The
computational overhead resulted in an additional slowdown factor of up to
300 between the simulated virtualization host and the virtual machine. At
the aforementioned simulation time of about 1.5 days for 30 minutes, this
made the evaluation of a virtualization scenario unfeasible. It is therefore
crucial to use a full system simulator that is capable to emulate virtualiza-
tion technologies so computational overhead for the virtual machine mon-
itor is kept minimal. This would also benefit the tracing performance, as
the additional hop through the VMM could be saved.

An alternative to use virtualization within the simulation is to perform mul-
tiple dedicated simulations and interpret these simulations as virtual ma-
chines in the analysis. Since the sharing model already keeps page frame
hashes up to date, it is feasible to extend the model to find identical page
frames between multiple physical memory address spaces through a com-
parison of the page frame hashes. The core library, thus, has been ex-
tended to support the analysis of multiple traces at the same time. This
includes the ability to mix streams and state models of different traces in
the same resolving process, effectively allowing the concurrent replay of
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Figure 4.19: Inter-Domain Sharing Groups. If sharing models for different
traces are used in the same resolving, inter-domain sharing
groups are detected based on page frame hashes.

multiple simulations. If a sharing model detects that other sharing models
are involved in the same resolving, the detection of identical page frames
between the different physical memory address spaces is activated. Every
time a page frame is changed (i.e., its hash is updated), the sharings are
updated accordingly. To represent this new form of sharing opportunities,
the core library differentiates regular intra-domain sharing groups that ex-
ist only within a single trace and inter-domain sharing groups which cross
multiple traces.

Since both types of sharing groups derive from the same base class, analy-
sis code does not need to be adjusted to take inter-domain sharing groups
into account. However, the query that does the analysis needs to be exe-
cuted on a stream that multiplexes the event streams of all sharing models.
Otherwise, events that are triggered through additional sharing models are
missed.

A drawback of this approach is the chance of false positives during the
detection of inter-domain sharing groups due to hash collisions. Using a
stronger hashing algorithm than CRC-32C, however, can reduce the risk
to a negligible level.
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4.3.4 Conclusion

The data analysis code is implemented in a dedicated analysis core li-
brary written in C# for the Microsoft .Net Framework 4.0. The core library
does not supply the functionality specific to a certain analysis but instead
provides generic data primitives and mechanisms that are directed to do
arbitrary analyses on trace file data.

The data primitives employed in the core library are comparable to that of
the tracer, but are extended in their applicability. Entries are not restricted
to only represent the data included in a trace file but also complex objects
such as the model of an entire address space or the reconstruction of a
process that was simulated. Streams are utilized as universal data store
and transport channel for entries of any type. In contrast to the tracer,
any object can identify itself as stream source, and thereby publish own
streams (e.g., a stream of pages in an address space).

Queries are a generic way to analyze the entries in a stream with the help
of C# object-oriented scripts that have access to the full .Net Framework
and 3rd-party assemblies. They enable to do powerful filtering and ar-
bitrary computations on entries. Query results are accessible again as a
stream, thereby enabling information enrichment through iterative process-
ing.

To interpret and connect trace data recorded through memory inspection
and operating system introspection, a simulation replay mechanism is avail-
able. It employs various state models to reproduce relevant parts of the
simulated machine’s state that existed at a certain point in simulation time.
This includes, besides others, the process hierarchy and the layout of the
processes’ address spaces including virtual-to-physical page mappings as
well as the list of sharing groups. Queries are used to inspect the state in-
formation and thereby allow making statements about the connection of
sharing groups and operating system abstractions such as processes and
address space areas. Besides inspecting a certain point in simulation time,
resolving also enables to do full simulation time spanning analyses (e.g.,
the computation of the average lifetime of sharing groups). Moreover, it
allows performing analyses that include multiple trace files at once.

When combined, the presented mechanisms provide a powerful toolset
that enables a researcher to quickly implement custom analyses, covering
even a broader field than the analysis of sharing opportunities alone.
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4.4 Trace Viewer

The presented core library implements the mechanisms to open and work
with trace files. The trace viewer tool supplements the core library by pro-
viding a graphical user interface to access the analysis functionality. Fig-
ures 4.20 and 4.21 depict the tool’s user interface.

The GUI is primarily based on a range of tool windows that allow the user
to work with and inspect trace data. Since each tool window works on a
single instance of a certain primitive (e.g., stream) or abstraction (e.g., ad-
dress space), it is possible to have multiple instances of the same type of
tool window open concurrently (e.g., to inspect two different streams). A
flexible docking and tabbing system allows clearly arranging the windows
and making use of the extra space available in multi-monitor setups. Po-
tentially time-consuming operations such as the execution of a query or
the export of a stream are performed in the background and therefore al-
low the user to continue working while waiting for results. In addition, all
operations are cancelable at any time.

In its current state the trace viewer implements five major tool windows:

Stream Explorer The core library supports to open more than one trace
file at the same time to do analyses that take multiple traces into account.
For each open trace file a stream explorer window is created. It enumer-
ates the streams contained in a trace file and builds a tree representing
the hierarchy of the corresponding data sources traced in the simulation.
Besides streams, the explorer also lists analysis scripts (under Filters) and
general scripts. Double-clicking any of the elements opens the according
viewer or editor.

Stream Viewer To view the entries contained in a stream, the stream
viewer is the right tool window. It allows performing a query on the supplied
stream and subsequently displays the result entries in a table. By default,
the query is not configured with any analysis logic and thus simply returns
the input entries. However, even with a one-to-one mapping the query can
be used to restrict the display to a specific window within the stream. If
analysis scripts are configured, the stream viewer is a convenient way to
quickly get a view on the analysis results.
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Figure 4.20: Trace Viewer. Left: Stream explorers showing streams of two
trace files; Top: Stream viewer, listing processes after resolv-
ing; Bottom: Address space viewer, showing address space
layout of the metacity process and details on a selected area
and page.
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Figure 4.21: Trace Viewer. Left: Stream explorers showing streams of two
trace files; Top: Chart viewer, illustrating development of the
amount of mergeable pages; Bottom: Script editor, presents
C# script file with syntax highlighting and code completion.
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Address Space Viewer The address space viewer is the only tool win-
dow specifically designed to give an insight into the properties of a certain
type of entry. The primary interface of this window is a visualization of the
address space and its individual pages. Groups of pages that semanti-
cally belong together such as an address space area or a sharing group
are highlighted when the user hovers over them. Different types of groups
(e.g., a group of pages forming a heap vs. stack) are displayed in specific
colors to make it easy to quickly locate and differentiate them.

The visualization can also be switched between different display modes:

• Address Space Layout (Heap, Stacks, Mapped Files, etc.)

• Page Allocation (Free/Used)

• Page Frame Mapping (Mapped to Page Frame/Unmapped)

• Sharing Groups

• Heatmap or Binary Map (Reads/Writes/Non-Destructive Writes)6

Chart Viewer The chart viewer is a plotting tool which can visualize inte-
ger or float based trace data such as the development of shareable pages
as depicted in Figure 4.21. The user can choose from the most common
chart types (e.g., scatter chart, line chart, area chart, bar chart) and freely
zoom and pan within the plotted data. It is possible to export the plot as
pixel or vector graphic. However, the tool is not intended to do advanced
plotting but only helps to get a quick visualization of traced or generated
data.

Script Editor To implement analysis logic, the script editor can be used.
The user can compile the scripts from within the editor and a list of er-
rors is presented if the compilation fails. The collapsed error list window
can be seen in Figure 4.21 at the bottom left corner. Scripts that success-
fully compile are subsequently available to be used in queries. In addition
to analysis logic, the script editor supports to write and directly execute
generic scripts that are not supposed to be run in the context of a query.
This way, scripts can be written that execute queries and start simulation
replays. Since the current version of the trace viewer does not include a

6The threshold for the binary map as well as the range for the heatmap are config-
urable via a slider control.
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tool window to perform resolving, a generic script is the only way to start
a simulation replay from within the software. To ease the development of
scripts, the editor includes syntax highlighting and code completion.

4.5 Simulation Control

Like most virtualization software, Simics uses virtual hard disk images
(VDIs) to store the contents of emulated disk devices. To run a bench-
mark within the simulation, an operating system and the benchmark itself
need to be installed into the disk image. Since it is very time consuming
and inconvenient to perform an installation in a simulated machine, it is
a more efficient way to prepare the disk image with much faster standard
virtualization software such as VirtualBox [52]. The disk image can after-
wards be converted into a Simics compatible format.

Since a fully tracing simulation is too slow to be interactively controlled, the
system needs to be configured to execute the benchmark automatically af-
ter boot. If only a single benchmark is supposed to be run, this solution is
sufficient. However, this is not the case if multiple benchmarks with differ-
ing software or input parameters are planned and a serial execution is not
desired (e.g., to ensure the exact same start environment). In that case,
a dedicated (explicitly configured) disk image is needed for every bench-
mark configuration. This complicates the overall management and makes
changes to the underlying system cumbersome because multiple disk im-
ages need to be maintained.

This work takes a different approach that requires only a single disk image
but offers the flexibility to choose the benchmark to be executed in the sim-
ulator. This is accomplished with the help of a tool (tracerctrl) that runs
within the simulation and that requests a benchmark script directly from
the simulator. Figure 4.22 depicts the sequence of actions. Like the oper-
ating system introspection (see Section 4.2.2), the tool utilizes the magic
instruction to communicate with the simulator and ultimately with the tracer.
The tracer in turn is able to interpret the request, reads a previously for this
simulation run configured shell script and writes it into a buffer within the
simulation. The buffer has been previously allocated by the tool (in its
virtual address space) and its address is supplied as part of the request.
When the tool continues execution it can simply write the script into a file
and invoke the appropriate shell to run it (e.g., bash).
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Figure 4.22: Simulation Control. Benchmarks scripts are transferred
into the simulation via "shared memory", thereby avoiding
changes to the virtual disk image.

For this approach to work, the disk image needs to be prepared to run
every application required for the entire set of planned benchmarks. After-
wards, very high workload flexibility is reached, as the benchmark script
can be efficiently adjusted and extended without the need to change the
virtual disk image.

In its current implementation, the tool also enables to instruct the simulator
to execute scripts. This is very useful to, for instance, start full tracing only
on certain events within the simulation. Another use case is to stop the
simulation when a benchmark run finished. In contrast to the previously
mentioned direction, scripts executed by the simulator are required to be
already stored on the host. A transfer out of the simulation is not intended.

Another useful feature exposed by the tool is to tag the trace file. A tag
is a special trace-entry that facilitates the structuring of a trace from the
perspective of the researcher by marking a certain point in simulation time
with a custom string message. This way, a benchmark script can, for in-
stance, tag the start and end times of a certain workload. In the current
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implementation, tags are also used to store the console output of bench-
marks in the trace file. Depending on the scenario, this enables to lookup
results such as execution times or other performance metrics measured
during the benchmark.

4.6 Conclusion

Full system simulators only provide the platform to perform simulations of
a target system. To analyze sharing opportunities within the simulation,
additional software components are necessary. The software architecture
chosen in this work decouples the data acquisition from the data analysis
phase. This way, a high flexibility in the analysis is achieved as the time
consuming rerun of simulations is avoided if different analyses are planned
or if frequent changes to analysis parameters are required. To bridge the
gap between the two phases, tracing is employed.

The tracer resides as an extension in the simulator and monitors the simu-
lation’s memory, detects any changes to the contents of page frames and
identifies and tracks sharing opportunities. The gathered information al-
lows an analysis of the temporal and spatial properties of sharing opportu-
nities. However, they do not enable a correlation of sharing opportunities
with the operating system state of the target system such as the usage
of page frames. A semantic gap prevents the tracer from inferring such
information. To retrieve the desired data the tracer employs operating sys-
tem introspection. Kernel modifications in the target actively communicate
interesting events such as the creation of processes or the allocation of
memory areas to the tracer. To transport the data, a lightweight mecha-
nism is used that minimizes the overhead within the simulation by exploit-
ing the ability of full system simulators to instrument CPU instructions. In
addition, the tracer makes use of cache simulation to periodically record
cache related statistics.

All gathered data is written to a specially formatted and compressed trace
file and is thereby made available for a later analysis. Instead of imple-
menting specific analyses, the software components for the examination
of trace data provide a set of generic data primitives and mechanisms that
give the researcher room to analyze the input data in many different ways.
Queries are the central mechanism offered by the analyzer software. They
allow filtering trace data and doing arbitrary computations. To implement
analysis logic that is executed in the course of queries, specifically crafted
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C# scripts are used. However, with queries alone it is difficult to inter-
pret the immense flow of trace data that is collected during the simulation.
This makes it hard to examine, for instance, the connection of sharing
opportunities with certain processes of address space areas. Thus, the
analyzer implements a resolving mechanism that models relevant parts of
the traced simulation’s operating system and memory state (e.g., address
space layouts, virtual-to-physical page mapping, etc.) and is capable to do
a replay of these parts of the simulation. With resolving in place, queries
can be performed on data that has a much richer informational value and
therefore facilitate complex conclusions. A powerful GUI supplements the
core analysis functionality and enables to visualize generated examination
results.
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Chapter 5

Evaluation

In the previous chapters a full system simulation based tracing and anal-
ysis software has been proposed as a platform for the fine granular anal-
ysis of sharing opportunities. This chapter supplements the presented
approach with a prototypical evaluation, which demonstrates the practi-
cal feasibility of analyzing sharing opportunities with the proposed design.
Moreover, it gives examples on how the functionality of the analysis core
library can be used to examine the characteristics of sharing opportunities
as described in Chapter 3.

In particular, the evaluation shows that the approach is capable to:

• Examine the temporal and spatial characteristics of sharing opportu-
nities in a resolution, which goes beyond that of previous research.

• Fully correlate the sharing opportunities with the operating system
state and allow a detailed semantic differentiation between various
classes of sharing opportunities.

• Evaluate the effects of sharing opportunities on hardware compo-
nents such as a processor’s cache hierarchy.

The chapter begins with an introduction to the evaluation methodology and
an overview of the utilized hard- and software, including the configuration
of the simulated machines. Afterwards, the capabilities of the proposed so-
lution are demonstrated by presenting the results of a prototypical analysis.
The chapter ends with a discussion of the findings.
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5.1 Methodology

As basis for the evaluation a range of simulations with different workloads
and hardware configurations were traced. The examinations take advan-
tage of the fact that the proposed tracing-based architecture allows to per-
form analyzes with differing emphases on the same trace data without the
need to rerun the simulations. Thus, the presented results are gathered
solely by changing the analysis logic or by incorporating other data from
the same traces. The evaluation is divided into two major parts.

The first analysis (Section 5.3) focuses on the classification of sharing op-
portunities and thereby demonstrates how the proposed approach can be
utilized to get an insight into the temporal and spatial characteristics of
sharing opportunities. The results are correlated to the operating system
state to make statements about the semantic background of the detected
sharing opportunities and to identify characteristics typical to certain types
of page frames.

The second analysis (Section 5.4) is directed to examine memory dupli-
cation in a processor’s cache hierarchy. For this purpose, three different
cache hierarchies were simulated. The analysis is centered on a compar-
ison of the various sharing related metrics such as the number of cache
lines that could potentially be merged.

5.2 Evaluation Setup

The evaluation setup comprised two hosts that executed the simulation
and performed the tracing as well as three exemplary simulation targets.

Simulation Hosts

As the simulation of a target system is a primarily single-threaded process,
the simulator itself does not directly benefit from huge multi-core systems.
Instead, the computational power of a single core determines the simula-
tion speed. Thus, for the evaluation quad-core processors with a 3.4 GHz
per-core frequency were used which are able to automatically overclock if
the thermal state permits it. Since the compression of trace data during
a simulation is performed asynchronously and fully parallelized, the tracer
profits from the remaining cores. This way, the simulation is not slowed
down due to the computationally costly compression. Depending on the
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amount of data traced, multiple simulations can be performed on a single
host at the same time until all cores are fully utilized. The configuration
used for the evaluation permitted to run three simulations concurrently. To
minimize the overall simulation time, two systems functioned as simulation
hosts for a total of six parallel simulations. Hardware and software specifi-
cations are summarized in Table 5.1.

Component Model / Specification

Primary Host
CPU Intel Core i7-2600K

Cores 4 (8 logical cores)
Frequency 3.4 GHz (3.8 GHz Turbo Boost)

Memory 16 GiB (DDR3-1333)
Hard disk 2 TB Seagate Barracuda Green

Secondary Host
CPU Intel Core i7-2600

Cores 4 (8 logical cores)
Frequency 3.4 GHz (3.8 GHz Turbo Boost)

Memory 16 GiB (DDR3-1333)
Hard disk 500 GB Western Digital Caviar Blue

Operating System Windows Server 2008 R2 Enterprise Edition
Architecture 64 Bit (x64)
Version 6.1.7601 Service Pack 1 Build 7601

Simulator Wind River Simics for Windows
Architecture 32 Bit (x86)
Version 4.2.83
Extensions Model Library Intel 440BX X86 PC 4.2.17

Simics Model Builder 4.2.43

Table 5.1: Specification of Simulation Hosts

Simulation Targets

The core of the evaluation is built around three simple desktop workloads
running on Ubuntu Linux 11.10 that comprise the execution of standard
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desktop software. As depicted by Figure 5.1, each workload executes a
single major application such as LibreOffice or the development environ-
ment Eclipse paired with Firefox as a second "background" application.
Barker et al. found such scenarios to offer a high amount of sharing oppor-
tunities which makes them well suited for prototypical analyses [10]. We
do not cover any server workloads as these would have required simulat-
ing a network of at least two synchronized target systems, a server and
a client. It is not feasible to stress the simulated server from a physical
machine, because the simulation runs much to slow to provide timely re-
sponses. Consequently, network protocols such as TCP timeout or adapt
otherwise to the high latency (e.g., adjusted window size) and thereby pre-
vent a realistic benchmark.

Ubuntu Linux 11.10
(custom kernel)

GUI

Firefox
Libre Office

Writer

Ubuntu Linux 11.10
(custom kernel)

GUI

Firefox Gimp

Ubuntu Linux 11.10
(custom kernel)

GUI

Firefox Eclipse

Workload 1 Workload 2 Workload 3

Figure 5.1: Simulation Workloads

The exact software versions and information on the files used as input for
the applications can be found in Table 5.2. Depending on the configuration
of the simulation, the tool described in Section 4.5 executes a benchmark
script that starts the selected workload.

15 25 60

Time [min]

0

OS Boot Wait Workload

Full tracingOS tracing only

Figure 5.2: Evaluation Timeline

In every case, the benchmark script waits 10 minutes before the applica-
tions are launched to let any background activity caused by the recent boot
calm down. The applications then get approximately 30 minutes to come
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Component Model / Specification

Simulated Hardware
CPU Intel Pentium 4

Architecture 32 Bit (x86)
Cores 1 (1 logical core)
Frequency 20 MHz (1 cycle/instruction)

Memory 2 GiB (no timing simulation)
Hard disk 8 GB System Disk

Operating System Ubuntu Linux 11.10
Architecture 32 Bit (x86)
Kernel Custom Vanilla Build1 (Version 3.3.2)

Software
Firefox 12

www.kit.edu [local copy, 29.04.2012]
LibreOffice Writer 3.4.4 (Build 402)

Official LibreOffice Writer Manual (13 MiB)
Gimp 2.6.11

Picture of earth from Apollo 172 (6.21 MiB)
Eclipse 3.7.0 (Indigo)

Multi-page Editor sample project
1 Includes operating system introspection
2 http://de.wikipedia.org/wiki/Datei:The_Earth_seen_from_Apollo_17.jpg [10.05.2012]

Table 5.2: Specification of Simulation Targets

up and load the respective input files. While operating system introspec-
tion data is traced from the beginning (which is required for a simulation
replay), the tracing of sharing opportunities is activated together with the
start of the workloads.

In all scenarios, the target system runs on an equally configured virtual
machine. The processor is a single-core Intel Pentium 4 with 20 MHz.
The low frequency was chosen so that a workload simulation time of 30
minutes could be achieved in a reasonable time frame (approx. 1.5 days).
The machine is equipped with 2 GiB of main memory. For an explanation
on how virtual machines are configured in Simics see Section 2.4.1.
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5.3 Classification of Sharing Opportunities

The first analysis examines the spatial and temporal characteristics of the
traced sharing opportunities and correlates each property with the seman-
tic usage of the involved page frames.

The analysis is performed through a concurrent simulation replay (see Sec-
tion 4.3.3) of the three gathered traces. At the same time, a query is ex-
ecuted on a multiplexed event stream of sharing state models to evaluate
sharing group related creation/modification events. In addition, system
state models deliver information about the page frame usage. This data
in turn is taken to infer a sharing group’s memory category (e.g. heap, file
cache, etc.) Note that zero-pages are excluded from all statistics.

5.3.1 Sharing Potential

The applications selected for the individual workloads show a varying ten-
dency to memory duplication. The temporal development of the amount
of mergeable pages for each workload is depicted in Figure 5.3. With
27,000 to 30,000 pages (approx. 110 MiB), the system running the LibreOf-
fice workload (workload 1) offers the most sharing potential. Workloads 2
(Gimp) and 3 (Eclipse) generate a comparable potential of around 22,500
to 25,000 pages (approx. 93 MiB).
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Figure 5.3: Sharing Potential by Workload. The LibreOffice workload pro-
duces the most mergeable pages.
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Since the benchmark script waits 10 minutes to let the system calm down
before Firefox and the respective applications are started, the number of
mergeable pages at the beginning of the trace gives a good indication
of the baseline sharing potential of the Ubuntu-based evaluation system.
With around 80 MiB this is nearly as twice as much than Barker et al.
found for a comparable 32 bit Ubuntu machine [10]. This might be due
to the amount of physical memory (2 GiB) assigned in our experiments
which gives plenty room for file caching. Unfortunately, Barker et al. do not
state the main memory size for their VMs. With a baseline of 80 MiB, ap-
proximately 13 MiB to 30 MiB of mergeable pages originate from the test
applications.

The sudden decrease in mergeable pages in the first seconds (around 10
MiB) of the trace are potentially due to memory allocations (e.g., file cache
pages) required to start the new processes and caused by the zeroing of
free dirty pages. As zero-pages are not counted, the sharing potential
drops. As expected, the amount of mergeable pages starts to drift apart
the longer the system executes different workloads. A striking detail in
the temporal development is the periodic fluctuation of around 300 to 400
pages that can be observed in places especially in workload 1 and 2. The
time between two consecutive changes, i.e., an increase or decrease, is
nearly exactly 10 seconds, which suggests that the fluctuation is caused
by a timed operation. A first examination of the processes that ran at the
corresponding points in time indicates that the mergeable pages are possi-
bly created by the kernel and are subsequently consumed by the X display
manager LightDM [33] that is shipped with Ubuntu. However, it is not clear
why this phenomenon is not equally visible for all workloads. Further inves-
tigations with our analysis software are necessary to clarify this behavior.

Self-Sharing vs. Inter-VM Sharing

Running memory deduplication in a virtualization host is a common prac-
tice. If the same operating system and system services run in the virtual
machines, the chance of finding identical page frames is high [15, 22, 29,
55]. Barker et al. first used the terms self-sharing and inter-VM sharing
to differentiate sharing opportunities that arise from identical page frames
within a single VM and those that come from page frames that are merge-
able between VMs only [10]. We adopt this definition throughout our eval-
uation and give according results for each analysis. The inter-VM sharing
was calculated with the help of the multiple-trace support of the resolving
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Figure 5.4: Self-Sharing vs. Inter-VM Sharing. The results are averaged
over all workloads. With 81.57%, inter-VM sharing dominates
the amount of mergeable pages.

mechanism (see Section 4.3.3). For both, self-sharing and inter-VM shar-
ing, the results represent the average of the three examined workloads.

In contrast to the findings of Barker et al., our evaluation showed a high
sharing potential that stems from identical page frames between the sim-
ulated systems (i.e., inter-VM sharing). Figure 5.4 depicts the ratio be-
tween self-sharing and inter-VM sharing over the time the workloads were
executed. On average a total of approximately 413300 mergeable page
frames (1.58 GiB of 6 GiB overall VM memory) was detected, comprising
18.43% self-sharing and 81.57% inter-VM sharing. In our evaluation the
rate of inter-VM sharing benefits from the fact that the full system simula-
tion is deterministic and therefore produces the exact same physical mem-
ory content up to the point the simulations execute different workloads.
This naturally allows for a high degree of inter-VM sharing. Nevertheless,
the same is true for copy-on-write based virtual machine deployment [31].

As for every set of identical page frames at least a single copy must be kept
in RAM, the effective number of page frames that can be freed through
memory deduplication is smaller than the plain amount of mergeable pages.
Figure 5.4 also includes measurements of the number of effectively merge-
able pages. While the ratio between self-sharing and inter-VM sharing
roughly stays the same (17.13% vs. 82.87%), the absolute amount of total
mergeable pages drops down to 266800 (approx. 1 GiB).
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Correlating Sharings with Page Usage

The usage for each page frame is determined with the help of the intro-
spection trace data and the subsequent replay of all actions (e.g., map-
ping of a page) in the system state model. This way, the analysis logic
can easily retrieve page usage information from the OS model. A problem,
however, with the correlation of sharing opportunities with specific mem-
ory categories is that sharing groups may contain page frames of many
different types. Simply building a mixed category from all types of frames
that a sharing group includes during its lifetime makes it hard to get a clear
picture of characteristics specific to certain types of page frames. A better
approach is to weight each involved page usage by the time and number
of pages it contributes to a sharing group and thereby identifying a group’s
dominating page types. This way, the properties of a sharing group such
as its rank and lifetime can be attributed to a clear memory category. To
determine the memory category of a specific sharing group, the analysis
logic, thus, takes the usage of each page frame that is at some point part
of the group and accounts the number of CPU cycles it spends in the
group. Finally, the page usage with the most cycles is chosen as the shar-
ing group’s primary memory category. If multiple categories achieve the
same amount of page cycles, a combined memory category is built (e.g.,
file and heap). In contrast to simply counting page frames, this approach
guarantees that the dominating memory categories are identified, even if
individual page frames of secondary categories are often added and re-
moved to a sharing group. This is illustrated in Figure 5.5.

1 2 3 4 5 6 7 8

H H H H H

F F

F

Time

Page
F File Cache Page H Heap Page

Figure 5.5: Page Cycles vs. Page Counts. Simply counting the number
of page frames added and removed to a sharing group can
lead to a false impression of its dominating memory category
(5 heap vs. 3 file).

The results of the semantic correlation are presented in Table 5.3. With
the algorithm based on page cycles, most of the sharing opportunities
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Memory
Category

Self-
Sharing

Inter-VM
Sharing

Total

File 69.78% 72.24% 71.79%
Heap 0.64% 11.14% 9.20%
Anonymous 13.52% 4.63% 6.27%
Slab Cache 0.02% 7.10% 5.80%
Reserved1 4.70% 3.53% 3.75%
Free and File 10.19% 0.01% 1.88%
User Stack 0.32% 0.93% 0.82%
Kernel Stack 0.00% 0.39% 0.32%
Other 0.83% 0.03% 0.18%
1 Contains non-free pages not explicitly tracked by the OS introspection (e.g.,

driver private pages)

Table 5.3: Mergeable Pages by Memory Category. The top three cate-
gories are underlined. In all cases sharings that stem from the
file cache are most prominent.

were originating from identical page frames in the operating system’s file
cache. This is the case for self-sharing (69.78%) as well as inter-VM shar-
ing (72.24%). Heap memory and anonymous memory are also very promi-
nent sources of sharing opportunities (9.20% total and 6.27% total, respec-
tively). This seconds the findings of Barker et al., but stands in contrast
to the results of Kloster, Kristensen, and Mejlholm who identified kernel
pages as second largest source of sharing opportunities. In our evalua-
tion kernel pages were mostly represented in the results by equal pages
(inter-VM) in the slab caches (7.10%). This makes sense, as those pages
are initialized with sets of equally sized objects to quickly serve frequent
kernel object allocations. Looking at the results of the self-sharing, a huge
amount of sharing opportunities also stems from sharing opportunities be-
tween page frames in the file cache and frames already freed by the ker-
nel’s buddy allocator (10.19%). This suggests that the free page frames
were previously used in the file cache or served as temporary buffer for file
contents (read or write).

The temporal development of each memory category’s contribution to the
total sharing potential (measured in mergeable pages) is illustrated in Fig-
ure 5.6. To preserve a clear scale, file pages are omitted. Over the period
of 30 minutes, the proportion of the categories to each other roughly stays
the same. The most notable change is the increase of sharing potential
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Figure 5.6: Temporal Development of Mergeable Pages by Memory Cate-
gory (Total). For the evaluated workloads, the categories show
only moderate variation over time.

within anonymous memory at the beginning of the trace. This is most prob-
ably caused by the increasing amount of allocated anonymous memory
during the start of the workloads and the reading of the input files.

5.3.2 Rank

The rank of an individual sharing opportunity denotes the number of page
frames with specific identical contents. As the rank of a sharing opportunity
can vary over time, the analysis considers the time that a sharing group
has a specific rank and attributes this to the respective rank category. If
for instance a sharing group has a rank of 2 for 50% of the time and a rank
of 3 for the other 50%, then the sharing group is equally counted (half) in
both rank categories.

Miłós et al. have found 79.70% of sharing opportunities to span exactly the
minimum of two page frames [38]. In their evaluation 7.01% of sharings
consisted of three page frames and 13.29% involved four page frames or
more. The ranks measured in our analysis lead to a slightly different pic-
ture. While the majority of sharing opportunities within a single simulation
(self-sharing) also had a rank of 2 or 3, the distribution among the two
categories differs. 55.24% of sharing opportunities consisted of two page
frames and 38.98% spanned three page frames, which is noticeably more
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Rank Self-
Sharing

Inter-VM
Sharing

Total

2 55.24% 6.52% 15.44%
3 38.98% 93.46% 83.04%
4 0.23% 0.02% 0.06%
5 0.10% 0.00% 0.03%
6 0.08% 0.00% 0.02%
> 6 5.37% 0.00% 1.42%

Ø Rank 2.45 2.91 2.82

Table 5.4: Breakdown of Sharing Opportunities by Rank

than what Miłós et al. measured. This might rest on the different kinds of
workloads examined (server vs. GUI/desktop). Table 5.4 summarizes our
experimental results. Since our evaluation of inter-VM sharing is based on
three traces, the most prominent rank for inter-VM sharing opportunities is
3. This circumstance also determines the results of the total rank distribu-
tion.
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Figure 5.7: Rank by Memory Category (Self-Sharing only)

Figure 5.7 illustrates the rank distribution for the major memory categories
that were identified in the last section. The averaged self-sharing over
all workloads is used as data basis. The largest categories with sharing
opportunities that were dominated by file (69.78%, compare Table 5.3),
anonymous (13.52%) and free-and-file pages (10.19%), show a primary
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rank of 2 or 3. This is the reason for the clear results in Table 5.4. Shar-
ing opportunities in the free-and-file memory category for instance have
almost exclusively a rank of 2 (99.99%). Considering the categorization
algorithm for sharing groups, this is a logical result. Opportunities domi-
nated by anonymous memory pages in contrast show a typical rank of 3
(74.83%). It is striking that the semantically comparable heap category
presents a very similar rank distribution with a peak at rank 3 and similar
shares in the adjacent sizes.

File User
Stack

Heap Anon-
ymous

Reserved

Rank 62 5 4 751 949
Percent 0.35% 19.03% 11.37% 1.76% 9.06%

Table 5.5: Primary Rank for Large Sharing Opportunities (Self-Sharing
only)

Sharing opportunities that are dominated by user stack pages or reserved
pages (i.e., driver private pages) are characterized through a rank greater
than 3. The same is true for a small fraction of file, heap and anonymous
memory based sharings. Table 5.5 reveals which rank (greater than 3)
is the most prominent for each of the memory categories. Around 19%
of sharing opportunities in the user stack category for instance have a
rank of 5. Noticeably larger sharing opportunities can be found in the re-
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Figure 5.8: Rank Distribution for Reserved. Peaks at: 42, 70, 930, 1160
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served memory category, where 9% of all sharings reach a size of 949
page frames. Figure 5.8 gives an overview of the categorie’s complete
rank distribution. The smoothed distribution shows peaks at 42, 70, 930
and 1160. This suggests that the category mainly covers specially initial-
ized buffers in the range between 3.5 MiB and 4.5 MiB.

5.3.3 Lifetime

The lifetime of sharing opportunities is an important metric as merging too
short-lived sharings can lead to undesirable performance penalties due to
early breaking of affected copy-on-write sharings. If performance is a criti-
cal factor, it is therefore the best to merge only those sharing opportunities
that provide a good trade off between rank (i.e., the amount of memory
that can be freed) and longevity.

Satori is the only work that did an analysis of the temporal characteristics
of sharing opportunities [38]. For a kernel build experiment with a 256 MiB
virtual machine, they found that most sharings (46%) exists for a duration
between 30 seconds and 5 minutes. Only 24.5% of opportunities were
identified to be very short-lived with a lifetime below 30 seconds. Increas-
ing the size of the virtual machines physical memory reduced the amount
of short-lived sharing opportunities to 15.9%. The results were computed
on the basis of VM memory dumps which were captured every 30 seconds.
A problem with this approach is the low measurement resolution that inher-

Lifetime Self-
Sharing

Inter-VM
Sharing

Total

< 1 s 45.47% 97.00% 95.68%
≥ 1 s 54.53% 3.00% 4.32%
≥ 2 s 30.61% 2.38% 3.10%
≥ 3 s 27.33% 2.20% 2.84%
≥ 4 s 25.46% 1.96% 2.57%
≥ 5 s 24.09% 1.88% 2.45%
≥ 30 s 15.04% 1.25% 1.60%
≥ 1 min 13.78% 1.18% 1.51%
≥ 5 min 12.95% 1.12% 1.43%
≥ 10 min 10.87% 1.10% 1.35%
≥ 30 min 8.79% 1.02% 1.22%

Table 5.6: Integrated Lifetime Distribution
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ently misses sharing opportunities that exist only in between the interval
of examination. This entails the risk of distorted results.

Our simulation-based evaluation method in contrast is able to capture ev-
ery sharing opportunity, even if it only exists in between two consecutive
write operations. Our evaluation show that, in fact, Miłós et al. missed a
large part of extremely short-lived sharing opportunities. In the case of
self-sharing, over 45% of sharing opportunities only live for under a sin-
gle second. With 97% this rate is even higher for inter-VM sharing. For
the interval chosen in Satori this means that approximately 85% (or 98%,
respectively) of sharing opportunities vanish before they reach a lifetime
of 30 seconds. Table 5.6 summarizes the results. The development as
well as a probability distribution of the lifetime of sharing opportunities for
self- and inter-VM sharing is additionally depicted in Figure 5.9. Due to the
mentioned proportions between the timeframes below and over 30 sec-
onds, the figure omits data for the former.
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Figure 5.9: Self-Sharing vs. Inter-VM Sharing Lifetime Distribution. Start-
ing at 30 seconds.

Examining the lifetime of sharing opportunities by memory category re-
veals that besides offering much sharing potential, pages in the operating
system’s file cache also have the longest lifetime. This makes them ideal
candidates for memory deduplication. However, their lifetime naturally de-
pends on the available physical memory which determines how long pages
in the file cache can be preserved until they get evicted due to memory
pressure. In addition, other OS policies can lead to an early eviction of
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Figure 5.10: Integrated Lifetime Distribution by Memory Category (Self-
Sharing only)

file pages. Figure 5.10 shows that although the evaluation system freed
file cache pages, they are not reused for a long time. This suggests that
the kernel evicted the file pages without experiencing memory pressure,
which seems logical, considering the huge amount of physical memory
assigned to the simulation (2 GiB) versus the small footprint of the cho-
sen workloads. In contrast to the file cache pages, heap pages as well
as anonymous memory pages show a noticeable shorter lifetime. In the
case of the latter, only a fraction (2.42%) of sharing opportunities survives
longer than one minute.

5.4 Sharing Opportunities in Caches

Memory deduplication makes it possible to run certain workloads with a
smaller physical memory footprint. This raises the question if a proces-
sor’s cache hierarchy can also benefit from the deduplication of memory
through a reduced number of required cache lines during execution. This,
in turn, would leave room to catch more memory requests.

For the evaluation of the sharing potential, cache simulations were per-
formed and traced as part of the full system simulation. To examine the
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effect of memory duplication on different types and sizes of cache hierar-
chies, three models were simulated (see Section 2.3 for more details1):

• Intel Pentium 4 (Willamette) - 8-way, 256 KiB L2 cache

• Intel Core i7-2600K - 16-way, 8 MiB L3 cache

• Intel Xeon E52470 - 20-way, 20 MiB L3 cache

In each case only the last cache level was analyzed as this is typically the
largest one and, thus, offers the most potential to contain cache lines that
reference distinct page frames with equal contents. The term mergeable
cache lines is used to denote this type of lines.
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Figure 5.11: Mergeable Cache Lines (Self-Sharing only)

Figure 5.11 depicts the temporal development of the amount of mergeable
cache lines for each workload over the time of simulation. The measure-
ments show that depending on the cache size, the development of the
number of mergeable pages as illustrated in Figure 5.3 is reflected in the
cache. Even the fluctuations, for instance in workload 1 in the range be-
tween minute 18 and 24, are clearly visible in the Xeon’s profile. The mea-
surements for the Pentium 4 show that with decreasing size, the cache
only approximates such patterns. This makes sense as the limited capac-
ity forces the cache to frequently evict cache lines in favor of new ones.

1The Xeon’s cache hierarchy only differs from the Core i7’s ones in the associativity
and size of the L3 cache.
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Figure 5.12: Effective Mergeable Cache Lines (Self-Sharing only)

Nevertheless, even for small caches a clear relationship between the num-
ber of mergeable pages and the amount of mergeable cache lines can be
proven. On average, 7.26% of the lines in the Pentium 4’s L2 cache and
13.81% of lines in the Xeon’s L3 cache reference mergeable pages.

Since not all of the page frames to which the cache points to can be freed
(a single copy per contents must be preserved), the amount of cache lines
that can potentially be saved is smaller than the plain number of merge-
able cache lines. Figure 5.12 illustrates the percentage of each cache that
can be freed if this is taken into account. These results do not consider
each cache line’s offset into its page frame. Instead, the results are in-
ferred by calculating the average number of cache lines per referenced
page frame and multiplying this value with the amount of surplus refer-
enced page frames (due to identical contents). This approximation thus
assumes that for each page frame the corresponding lines point to the
same offsets and can therefore be freed. Obviously, this is the best-case
and gives only an indication of the maximum potential. In the worst-case,
on the other hand, every line references a different offset within identical
frames and hence needs to be preserved. In the consequence, no lines
can be freed. However, the worst-case is limited due to the fact that for
instance for a cache line size of 64 byte only 64 cache lines may refer-
ence different offsets in a 4 KiB target frame. Each extra cache line (that
references a different but identical frame) is redundant. The worst case,
therefore, depends on the cache organization and size.
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Figure 5.13: Average Effective Mergeable Cache Lines (Self-Sharing only)

Figure 5.13 contrasts the average percent of cache lines that can effec-
tively be freed in the best-case. As apparent, larger caches show no-
ticeable more potential to benefit from memory deduplication. Moreover,
increasing a cache’s size leads to a superlinear increase in sharing poten-
tial. While the Core i7’s cache is only 64 times larger than the Pentium
4’s one, it contains about 100 times more mergeable pages. Transitioning
from the Core i7 to the Xeon shows a similar development, however, the
discrepancy is less in this case (factor 1.2 vs. 1.6).

5.5 Conclusion

The evaluation showed that the proposed simulation-based analysis mech-
anism is capable to give a detailed insight into the characteristics of shar-
ing opportunities. Moreover, it is able to correlate the findings with the
operating system state.

For the examined workloads, file cache pages could be identified as a
valuable target for memory deduplication. They combine a large sharing
potential (approx. 70% of all sharings) with the highest lifetime (65% sur-
vive longer than 30 minutes) and are therefore ideal candidates for sharing.
This seconds the findings of previous research [10, 29, 38]. With around
15% of all sharing opportunities, anonymous and heap pages also offer a
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high sharing potential. However, they typically show a much shorter life-
time than pages within the file cache.

The evaluation also illustrated that without the analysis granularity pro-
vided in this work, measurements may get distorted. This is the case
with the results presented by Miłós et al. concerning the lifetime of shar-
ing opportunities [38]. Their evaluation missed most of the very short-lived
sharing opportunities and, thus, they did not find that 95% of sharings exist
for less than a single second.

With regard to the ratio between self-sharing and inter-VM sharing, a re-
markable difference to the results of Barker et al. could be determined.
While Barker et al. found that the majority of sharing potential stems from
self-sharing [10], our evaluation did not confirm this. Even more, with on
average 81% inter-VM sharing, our results indicate the contrary. Further
investigation is needed, to clarify if this discrepancy originates from the
differing measurement methods (virtual machine memory dumps vs. com-
parison of simulation traces).

A first examination of sharing potential in caches revealed that especially
the large caches of server processors such as the 20 MiB L3 cache of the
Intel Xeon E52470 provide the potential to benefit from memory dedupli-
cation. In contrast to small caches (e.g., the 256 KiB Pentium 4 L2 cache)
that suffer from too frequent cache line eviction, large caches may save on
average over 4% of cache lines for a deduplicated workload.
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Conclusion

Memory duplication occurs when multiple page frames hold identical con-
tents, thereby introducing unnecessary data redundancy in main memory.
Memory deduplication aims at reducing this redundancy by copy-on-write
remapping page frames with equal contents to a single copy in RAM. It is
important to have a thorough knowledge of the characteristics of such shar-
ing opportunities to focus deduplication efforts to promising memory areas
and to avoid deduplicating page frames that lead to wasted computational
overhead caused by the early breaking of established sharings. However,
previous research leaves many open questions regarding the temporal and
spatial properties of sharing opportunities as well as regarding the corre-
lation of these characteristics to operating system state information (e.g.,
processes, address space areas, page usage, etc.). Moreover, no eval-
uation exists that deals with the effects of memory deduplication on the
performance of hardware components such as processor caches.

In this work, a framework has been proposed that combines fine granu-
lar continuous tracing with a flexible and extensible analysis concept to
answer these questions. In contrast to previous work, that for the most
part based its examinations on virtualization and sampling, our approach
employs full system simulation as data acquisition environment. The bi-
nary translation that comes with this method enables our approach to pro-
vide temporal completeness of information regarding memory operations,
sharing opportunities and operating system operations. The respective in-
formation is gathered through memory inspection and operating system
introspection. A lightweight register-based communication channel has
been presented that allows transferring introspection data with minimal
overhead and side-effects for the simulated system. This lays the founda-
tion for an analysis of sharing opportunities with maximum resolution. In
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fact, our evaluation showed that some of the results presented by previous
work are distorted due to the low data resolution inherent to sampling.

The applicability of the proposed tool chain has been demonstrated with
an evaluation of sharing opportunities for prototypical desktop workloads.
The evaluation illustrated that the presented analysis mechanism is capa-
ble to give a detailed insight into the characteristics of sharing opportuni-
ties. Moreover, for the first time an examination of the sharing potential in
processor caches has been performed that shows that memory dedupli-
cation can increase cache performance by reducing the number of cache
lines required to run the same workload.

6.1 Future Work

Our primary focus for the future lies in improving the proposed tool chain to
conduct a more advanced evaluation based on real world scenarios. We
especially plan to examine server workloads such as a typical LAMP stack
or virtualization-based server consolidation as these are common targets
for memory deduplication. To this end, a major challenge will be to enable
the full system simulation of such complex configurations in a reasonable
timeframe. This might include the adaption of the proposed tracer to a
simulation platform that supports processor models with instructions for
hardware virtualization.

An area not covered by the evaluation is the analysis of memory access
patterns. Determining any characteristics in this field may help to improve
the effectiveness of memory deduplication through optimized timing (e.g.,
wait 2 minutes after a page is mapped until its memory is scanned). Since
the proposed analysis software offers for every of the interesting events,
such as mappings or CPU writes, corresponding event streams to perform
queries on, an examination of memory access patterns can easily be done.
With this technique, we already made the observation that a surprisingly
high share of write operations (around 34%) does effectively not change
a frame’s contents as the target memory already holds the intended data.
Since these types of writes do not require a COW break for deduplicated
frames, we call this type non-destructive writes. We plan to invest further
research into this direction.

Our first evaluation results concerning the sharing potential within proces-
sor caches show that this area is also a promising target for future re-
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search. We therefore intend to perform more thorough cache analyses
that take each cache line’s offset into account and thereby allow making
more sound statements about the effective sharing potential. Moreover,
we plan to measure actual cache related performance differences result-
ing from memory deduplication and investigate if modifications to, for in-
stance, the operating system’s process scheduling can increase potential
performance benefits.

Another direction for future work is the examination of memory deduplica-
tion effects in NUMA systems. Current deduplication techniques dedupli-
cate page frames without take NUMA nodes into account and may thus
degrade memory read performance for remote nodes. As NUMA systems
are becoming increasingly popular today, further research in this field is
required.
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Appendix A

Page Cache Files

The file cache has been found to be the most prominent source of sharing
opportunities. The following tables list the top twenty of the files with the
most sharing potential (measured in percent of total page cycles).

Rank File Name Cycles

1 /var/cache/apt/pkgcache.bin.o6NBEA 24.33%
2 /var/cache/apt/srcpkgcache.bin 24.14%
3 /usr/lib/firefox/libxpcom.so 13.99%
4 /usr/lib/jvm/java-6-openjdk/jre/lib/i386/client/classes.jsa 4.37%
5 /usr/lib/libreoffice/basis3.4/program/libswli.so 2.25%
6 /lib/i386-linux-gnu/libc-2.13.so 1.74%
7 /usr/lib/jvm/java-6-openjdk/jre/lib/i386/client/libjvm.so 1.52%
8 /usr/lib/eclipse/.../org.eclipse.jdt.ui_3.7.0.dist.jar 1.36%
9 /usr/lib/libreoffice/basis3.4/program/libsvxcoreli.so 1.30%
10 /usr/lib/firefox/omni.ja 1.14%
11 /usr/lib/jvm/java-6-openjdk/jre/lib/rt.jar 1.04%
12 /usr/lib/libreoffice/basis3.4/program/libvclli.so 0.94%
13 /usr/lib/eclipse/.../org.eclipse.jdt.core_3.7.0.dist.jar 0.83%
14 /usr/lib/libreoffice/basis3.4/program/libsvtli.so 0.78%
15 /usr/lib/libreoffice/basis3.4/program/libxoli.so 0.71%
16 /usr/lib/libreoffice/basis3.4/program/libsfxli.so 0.69%
17 /usr/share/icons/hicolor/icon-theme.cache 0.66%
18 /usr/lib/libreoffice/basis3.4/program/libpackage2.so 0.64%
19 /usr/lib/libreoffice/basis3.4/program/libtkli.so 0.62%
20 /usr/lib/libreoffice/basis3.4/program/libfwili.so 0.56%

Table A.1: Files by Cycles of Mergeable Pages (Self-Sharing)

109



110 APPENDIX A. PAGE CACHE FILES

Rank File Name Cycles

1 /usr/lib/firefox/libxpcom.so 11.48%
2 /usr/lib/i386-linux-gnu/libQtGui.so.4.7.4 8.73%
3 Linux Kernel Image 6.99%
4 /usr/lib/libgtk-3.so.0.200.0 4.97%
5 /usr/lib/i386-linux-gnu/libgtk-x11-2.0.so.0.2400.6 4.62%
6 /usr/share/icons/hicolor/icon-theme.cache 4.15%
7 /usr/lib/jvm/java-6-openjdk/jre/lib/i386/client/classes.jsa 2.81%
8 /usr/lib/firefox/omni.ja 2.78%
9 /usr/lib/i386-linux-gnu/libQtXmlPatterns.so.4.7.4 2.01%
10 /usr/share/icons/gnome/icon-theme.cache 1.99%
11 /usr/lib/python2.7/dist-packages/gtk-2.0/gtk/_gtk.so 1.79%
12 /usr/lib/libapt-pkg.so.4.11.0 1.22%
13 /var/cache/apt/srcpkgcache.bin 1.15%
14 /usr/lib/locale/locale-archive 1.08%
15 /usr/lib/sse2/libxapian.so.22.3.0 1.01%
16 /lib/i386-linux-gnu/libc-2.13.so 0.94%
17 /var/cache/apt/pkgcache.bin.o6NBEA 0.92%
18 /usr/lib/jvm/java-6-openjdk/jre/lib/i386/client/libjvm.so 0.87%
19 /usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf 0.77%
20 /lib/i386-linux-gnu/libdbus-1.so.3.5.7 0.74%

Table A.2: Files by Cycles of Mergeable Pages (Inter-VM Sharing)



111

Rank File Name Cycles

1 /usr/lib/firefox/libxpcom.so 12.70%
2 /var/cache/apt/srcpkgcache.bin 12.32%
3 /var/cache/apt/pkgcache.bin.o6NBEA 12.30%
4 /usr/lib/i386-linux-gnu/libQtGui.so.4.7.4 4.51%
5 Linux Kernel Image 3.60%
6 /usr/lib/jvm/java-6-openjdk/jre/lib/i386/client/classes.jsa 3.57%
7 /usr/lib/libgtk-3.so.0.200.0 2.56%
8 /usr/share/icons/hicolor/icon-theme.cache 2.46%
9 /usr/lib/i386-linux-gnu/libgtk-x11-2.0.so.0.2400.6 2.38%
10 /usr/lib/firefox/omni.ja 1.98%
11 /lib/i386-linux-gnu/libc-2.13.so 1.33%
12 /usr/lib/jvm/java-6-openjdk/jre/lib/i386/client/libjvm.so 1.18%
13 /usr/lib/libreoffice/basis3.4/program/libswli.so 1.09%
14 /usr/share/icons/gnome/icon-theme.cache 1.04%
15 /usr/lib/i386-linux-gnu/libQtXmlPatterns.so.4.7.4 1.03%
16 /usr/lib/python2.7/dist-packages/gtk-2.0/gtk/_gtk.so 0.92%
17 /usr/lib/jvm/java-6-openjdk/jre/lib/rt.jar 0.79%
18 /usr/lib/eclipse/.../org.eclipse.jdt.ui_3.7.0.dist.jar 0.66%
19 /usr/lib/libreoffice/basis3.4/program/libsvxcoreli.so 0.63%
20 /usr/lib/libapt-pkg.so.4.11.0 0.63%

Table A.3: Files by Cycles of Mergeable Pages (Total Sharing)
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