
Hardware-Assisted Virtual Memory Management
Improving page replacement and migration with on-line memory access information

Raphael Neider
Karlsruhe Institute of Technology

neider@kit.edu

Frank Bellosa
Karlsruhe Institute of Technology

bellosa@kit.edu

1. Motivation
Ever since its inception, virtual memory support in operating sys-
tems has relied solely on two bits per page to drive page replace-
ment strategies: The referenced bit and the modified bit associated
with every virtual memory page in the system respectively indicate
whether a page has been accessed or (possibly) even modified since
the last time these bits had been reset by the OS. On top of this little
information, policies such as least recently used (LRU) are approx-
imated in software, e.g., using a variant of the two-handed clock
algorithm, which is both imprecise and costly.

Due to the rise of new memory technologies with different
characteristics than today’s DRAM regarding read/write latency,
endurance, energy usage, and persistence of data, and due to the
integration of such memories into the memory hierarchy, even more
placement decisions have to be made by the operating system:

• Read-only pages (e.g., code) can be held in energy-efficient
flash memory,

• read-mostly data such as warehouse databases could be held
in memory that is cheaper than DRAM in terms of energy or
price per volume, similarly fast on reads but slow and/or energy
intensive on writes,

• frequently accessed data could be placed into fast SRAM, and
• less frequently accessed data could be placed into DRAM mod-

ules that could often remain in a low-power state.

A good decision as to which page to store in what kind of memory
technology requires even more detailed knowledge of the memory
access patterns at runtime—information that is not available in
today’s systems.

2. Hardware-Assisted Memory Management
We propose to integrate a dedicated hardware module (the “mem-
ory profiling unit” or MPU) to monitor all memory accesses and to
collect the required information. Such a module can

• record last access times and/or access frequencies per page to
facilitate true LRU page replacement.

• record read and write accesses separately to support the selec-
tion of the appropriate memory technology per page.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS ’11 March 5–11, 2011, Newport Beach, California
Copyright c© 2011 ACM . . . $10.00

• collect memory traces (e.g., on cache misses) for on-line anal-
ysis by the OS to support cache-aware page allocation (“cache
coloring”).

• collect memory traces and export them for off-line analysis
(e.g., system simulation).

Challenges for such a hardware module are numerous:

• How/where can the timestamps/access counters be stored? With
4 GiB of memory and 4 KiB pages, 1 mio. counters need to be
stored and updated frequently.

• What should the interface to the OS be? If we simply expose
1 mio. counters to the OS, finding good candidates for page
replacement or migration is still costly. On the other hand, let-
ting the hardware select a number of candidates is easy for the
most recently/frequently accessed pages, thus supporting page
migration. Finding the least recently/frequently pages for page
replacement is more difficult, since the candidate list cannot be
updated only on memory accesses.

• If the MPU is to export memory access traces, how can the
required bandwidth be reduced to a feasible level?

While we envisage the MPU to collect physical memory ref-
erences in order to support page replacement/migration and thus
locate the MPU after the caches/right in front of the memory con-
troller, one could also investigate uses of placing the MPU before
the TLBs to trace program references or after the TLBs but before
the caches to record physical memory references without cache ef-
fects.

3. Prototype
Research in this area is hindered by the fact that today’s comput-
ing systems are not easily extensible at their memory access path.
For that reason, we developed the OPENPROCESSOR platform [1],
an FPGA-based system-on-chip with a RISC CPU core, separate
software-controlled translation look-aside buffers for instructions
and data, separate caches, a DDR memory controller, several I/O
device controllers to interact with a host computer, and a bus in-
terconnect between the components. All parts of the platform, es-
pecially the memory access paths, are easy to extend or adjust to
facilitate research in this area.

We have augmented the OPENPROCESSOR platform with a
prototypical implementations of a memory profiling unit and are
currently conducting research on all of the issues mentioned above.

References
[1] R. Neider. The OpenProcessor platform: Fostering research on the

hardware/software boundary. Technical Report TR 2011,1, Karlsruhe
Institute of Technology, Department of Informatics, Jan. 2011. URL
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000021677.


