
Preventing Denial-of-Service Attacks on a �-Kernel for WebOSes

Jochen Liedtke Nayeem Islam Trent Jaeger

IBM T. J. Watson Research Center

jochen@watson.ibm.com

Abstract

A goal of World-wide Web operating systems (Web-
OSes) is to enable clients to download executable con-
tent from servers connected to the World-wide Web
(WWW). This will make applications more easily
available to clients, but some of these applications
may be malicious. Thus, a WebOS must be able to
control the downloaded content's behavior. In this
paper, we examine a speci�c type of malicious activ-
ity: denial-of-service attacks using legal system oper-
ations. A denial-of-service attack occurs when an at-

tacker prevents other users from performing their au-
thorized operations even when the attacker may not
be able to perform such operations. Current systems
either do little to prevent denial-of-service attacks or
have a limited scope of prevention of such attacks.
For a WebOS, however, the ability to prevent denial-
of-service should be an integral part of the system.
We are developing a WebOS using the L4 �-kernel
as its substrate. In this paper, we evaluate L4 as a
basis of a system that can prevent denial-of-service at-
tacks. In particular, we identify the �-kernel-related
resources are subject to denial-of-service attacks and

de�ne �-kernel mechanisms to defend against such
attacks. Our analysis demonstrates that system re-
source utilization can be managed by trusted, user-
level servers to prevent denial-of-service attacks on
such resources.

1 Motivations

One of the results of the explosive growth of the
World-wide Web (web) is the popularization of down-
loading executable content from the remote sites.
However, downloading content from an arbitrary site
increases the client's risk of executing malicious code.

For example, clients can easily download Java applets
using their favorite web browser. Although mech-
anisms for controlling the access rights of Java ap-
plets exist, the ability of these mechanisms to pre-
vent denial-of-service attacks is limited. For exam-
ple, FlexxGuard[1] limits the number of windows that
can be opened, processes that can be triggered, etc.
for a Java applet. However, FlexxGuard can control
only individual Java applets. It cannot take remedial
actions should the combination of applets executing
result in a denial-of-service.

Denial-of-service attacks is characterized by an at-
tacker preventing \an authorized user from referring
to or modifying information, even though the [at-
tacker] may not be able to refer to or modify the
information." [6]. This de�nition encompasses some
types of denial-of-service attacks, which we call secu-
rity malfunctions, in which an attacker implements
an attack by changing the operations of the system.
In our analysis, we focus on denial-of-service attacks
that use the system's operations in an abusive man-
ner. An example of such an attack is an attacker
writing data until the �le system is full.

In this paper, we describe the use of �-kernels to

control processes to prevent denial-of-services attacks
on WebOSes. Concrete security policies and architec-
tures vary between operating systems, applications

and domains. �-kernel security does not imply a
speci�c security policy but concentrates on security
safety and security support.

� Security safety: To what extent can �-kernel
mechanisms be used for security attacks (or
are themselves insecure)? Can these attacks be
controlled?

� Security support: Are the �-kernel mechanisms
su�cient to implement any (computable) secu-



rity policy?

In this short paper, we examine the use of the
L4 �-kernel[4] as a substrate for building WebOSes
that can prevent denial-of-service attacks. L4 is de-
signed to provide a small number of key operating sys-
tem services (e.g., processes, address spaces, threads,
IPC, etc.) in an e�cient manner. Additional system
functionality is implemented by servers that execute
in user-space. An L4-based WebOS clearly depends
on the functionality L4 provides to prevent denial-of-
service attacks. We show that L4 enables:

� system resources to be managed by user-level
servers (section refresources) and that

� servers to be constructed in such a way that
they cannot be blocked by denial-of-service at-
tacks (see section 4).

1.1 Informal De�nitions

We use the term security policy to describe a set of
rules which are enforced by the security system: the
security system implements the security policy, and
the security policy ensures that the above mentioned
security properties hold.

1. Trusted computing base (TCB) is a set of as-
sertions describing the trusted behavior of all
components. A behavior is trusted, if the secu-
rity system relies on its correct behavior. The
correctness of the TCB is a conditio sine qua

non for the security system. Usually, violating
an assertion of the TCB penetrates the security
system. For security and robustness reasons, as
few components and as few assertions as possi-
ble are classi�ed to be trusted. Typical exam-
ples for a WebOS include the hardware proces-
sor, memory, �-kernel, basic servers and some
drivers.

Untrusted components have no assertions in the
TCB. For a partially trusted component, the
TCB speci�es only some aspects of its behavior.
The functionality of completely trusted compo-
nents is de�ned completely by the TCB.

Our notion of a TCB as a set of assertions di�ers from
the more common notion of a TCB as a set of trusted
components because the component de�nition is to

course grained for hardware and device drivers. Any
piece of hardware has to be trusted. For example, the

hardware is trusted not to short circuit, not to block
the bus, and not to modify other bus signals. On the
other hand, depending on system requirements, the
functionality of some the devices might be irrelevant
for the security system. The requirements for de-
vice drivers are similar: any device driver that is part

of TCB must not disables interrupts longer than 20
�s, although it might be irrelevant whether the loud-
speakers are driven correctly. De�ning the TCB as a
set of assertions permits us to model these partially
trusted components.

2. A security malfunction is any discrepancy of a
completely or partially trusted component from
its trusted behavior. The most noteworthy ex-
amples are hardware defects and programming
bugs.

3. A security attack is any attempt to penetrate
the security policy provided the attempt is not
based on a security malfunction. (We do not
di�erentiate between a planned and purposeful
attack and an accidental behavior having simi-
lar characteristics. The security system has to
neutralize both in the same way.)

Assume that a trusted (but incorrect) driver disables
interrupts forever. This is considered to be a mal-
function, not an attack. However, if someone tries to
modify the driver without proper authorization or to
replace it by an untrusted driver, we have a security
attack. When a trusted disk driver no longer works
due to a bug or a hardware defect, this is regarded
as a malfunction. When the network tries to deliver
packets with 10 MHz, this should be treated as an
attack.

However, programming bugs or hardware mal-
function are attacks if they occur in untrusted compo-
nents or if they relate only to the untrusted behavior
of a partially-trusted component.

The di�erence between malfunctions and attacks
is important, since the security system can only de-
fend against attacks. Dealing with malfunctions
(fault tolerance) is a completely di�erent job, also
depending on speci�c hardware support.

4. A con�dentiality attack aims to read data which
should not be readable due to the security pol-
icy. Such an attack is particularly dangerous if
it is directed against authentication data, like
pathwords or secret keys.

2



5. An integrity attack tries to modify data and/or
code unauthorized. A successful attack of this
type can change the e�ective semantics of the
entire system.

6. A denial-of-service attack tries to reduce or
even deny a service which is guaranteed by the
security policy.

This paper deals solely with denial-of-service attacks.
Other attacks and security malfunctions are not con-
sidered.

1.2 Direct Attacks

Direct denial-of-service attacks either try to overload
or to monopolize a resource. If they succeed, the sys-
tem no longer works properly or even starves com-
pletely. Overloading attacks are for example gener-
ating bulk mail or starting a large amount of space

and/or time consuming jobs. Monopolizing attacks
become possible, if a task can reserve a resource ex-
clusively, for example a diskette drive or a special
memory region.

A general strategy against monopolizing attacks:

a. Permit exclusive reservation only if the resource
cannot be multiplexed.

b. Depending on the criticalness of a resource, per-
mit exclusive reservation only for trusted pro-
cesses.

c. There should be a supervising instance which
can release the resource in question. Ensure
that the supervising instance does not depend
directly or indirectly on the resource.

Finding strategies against a overloading attack is
harder, since di�erentiating between legitimate high
load and an overloading attack is resource-dependent
and system-speci�c. In most cases, potential attack-
ers are therefore not killed but their activity is logged
and their resource utilization is limited.

1

General strategy:

a. Allocate and enforce resource budgets for sub-
jects.

b. Monitor resource usage.

1How can we recognize a potential attacker? This is impos-
sible. What if we confuse a legitimate (paying) customer for
an attacker?

c. Always provide a supervising instance which
can reduce the current budgets and potentially
release the resource (if it is locked). Ensure that
it does not depend directly or indirectly on the
resource being supervised.

1.3 Indirect Attacks

Instead of attacking the resource, the manager con-
trolling and supervising the resource might be at-
tacked. There are three types of manager attacks:

� Manager-overloading attack.

Generate junk requests such that the manager
can no longer operate "fast enough" for legal
requestors leading to a degradation of service.

� Manager-resource attack.

If the manager itself relies on a secondary re-

source, a denial-of-service attack to the sec-
ondary resource blocks the manager. Processor
time is a typical example for such a secondary
resource.

� Manager-integrity attack.

Modify the manager so that it no longer works
properly.

We can regard the manager itself as a resource. Then
the �rst two mentioned attacks can be dealt with as
direct attacks. The third indirect attack is actually
an integrity attack and will therefore not be discussed
here since We assume that integrity attacks prevented
by the security system.

1.4 The L4 �-Kernel

This paper discusses denial-of-service attacks on �-
kernels. The �-kernel we use as our example is L4 [4,

5, 2]. We assume the reader has some familiarity
with the L4 �-kernel interfaces and with small kernels
design issues in general.

The analysis that we present could have been
implemented on a kernel such as the exo-kernel or
�-choices. What we illustrate is a basic technique
for providing assurance that a �-kernel is free from
denial-of-service attacks.

3



2 Denial of service attacks on

�-kernels

To the �-kernel resistant against denial-of-service at-
tacks we must show that

� all resources can be managed by servers (section
refresources) and that

� servers can be constructed in such a way that
they cannot be blocked by denial-of-service at-
tacks (see section 4).

3 �-Kernel Resources

Memory, I/O ports, interrupts, threads, tasks, pro-

cessors and time are the resources over which the �-
kernel exerts some in
uence. Since a �-kernel imple-

ments mechanism and not policies, resources should
as far as possible be maintained and allocated by
servers. Denial-of-service attacks could then be han-
dled by the according servers. This permits to imple-

ment 
exible and system-speci�c strategies.
For making the �-kernel resistant against denial-

of-service attacks we must therefore show that (a) all
resources can be managed by servers and that (b)
servers can be constructed in such a way that they
cannot be blocked by denial-of-service attacks. Topic
(b) is discussed in section 4.

3.1 Memory

Memory is maintained by so-called pagers. The root
server of this type is �

0
, the pager which initially

owns all available memory and io ports. By means of
mapping and granting operations, higher-level pagers
are implemented on top of �

0
.

�
0
is part of the trusted computing base. All com-

ponents, including the �-kernel, rely for example on
the property that the memory they get from �

0
ex-

ists physically and is not aliased with other physical
memory.

After initialization, one could imagine an attack
based on mapping. The attacker (see �gure 1)
generates an auxiliary address space (a new task) and
maps one of its own pages multiply into the auxiliary
space. This attack does not consume user memory
but page tables. For mapping the data page to 512
virtual addresses, up to 2 Mbyte of page tables might
be required. Without an appropriate control mech-
anism, the sketched attack would consume all page

attacker's
space

auxiliary
space

page table tree
for auxiliary

space

a

t

t
a

c

k

e
r

HHHHj

-��
��*

�
�
���

pdir

���) �	@R
PPPq

ptab ptab ptab ptab

?

�
��	

������

��������)
data

Figure 1: Mapping Attack

table space so that all further mapping operations
would be denied.

The basic problem is that �-kernel and pagers
compete for memory. When a pager issues a map
or grant request, the new mapping can require addi-
tional page tables and/or an extension of the �-kernel
internal pmap tree table.

The �-kernel maintains a pool of free page frames
for its own use. Since the pages have been granted
by the initial pager �

0
, no address space can contain

them, not even �
0
. If the pool is exhausted and addi-

tional memory is required for one of the above men-
tioned operations, the �-kernel denies the requested
service: mapping, granting or thread creation simply
fails with an appropriate error code.

Then the requestor must donate some of its mem-

ory to the �-kernel or �nd some other pager donating

memory to the �-kernel.

The donation goes back to �
0
which �nally un-

maps the page and grants it to the �-kernel's page
pool. Donating and granting the page is comple-
mented by the information \dedicated to T", where T
identi�es the task that invoked the failing map/grant
or create-thread operation. The �-kernel attaches
this information to the newly-received page and uses
it thereafter only for mappings etc. requested by T .

Assume that the task T tries to map a page p

into a client's address space. If the operation fails, T
selects a page p0, saves its contents if necessary, and
gives it to the �-kernel:

4



`map' in T :

map (p, dest) ;
while map failed do

select (p0) ;

unmap (p0) ; save if necessary (p0) ;
rpc (next-level pager,

\grant to �-kernel (p0 dedicated to T )");

map (p, dest)
od .

`grant to �-kernel' in intermediate pager:

unmap (p0) ; save if necessary (p0) ;
rpc (next-level pager,

\grant to �-kernel (p0 dedicated to T )");

reply (\done") .

`grant to �-kernel' in �
0
:

unmap (p0) ;

grant (p0, �-kernel page pool, \dedicated to T") ;

reply (\done") .

When the address space dest is deleted, all related
page tables etc. are released and returned (granted) to
�
0
. �

0
should remember the next-level pager already

donated the page to the �-kernel. On request of this
pager, �

0
should remap it to this kernel etc. Finally,

T could regain the page.

3.2 IO Ports and Interrupts

IO ports are managed like memory by pagers. The
�-kernel does not depend on their availability.

3.3 Threads and Tasks

Task creation and deletion is completely controllable
by servers.

The number of threads per task is currently lim-
ited to 128. This number can be further reduced by
the �

1
-pager which allocates pages for thread control

blocks.

3.4 Processor and Time

A thread s with maximum controlled priority mcps

can change priority and timeslice of a thread t pro-
vided for its current priority holds pt �mcps. The
new priority cannot exceed mcps. All threads of a
task have the same mcp. When a new thread is cre-
ated, the creator de�nes its new mcp which also can-
not exceed the creator's mcp.

Due to the priority system, threads with priorities
pt >mcps are not a�ected. Related attacks can be
handled outside the �-kernel at the server level.

4 Server-Directed Attacks

Any of the mentioned �-kernel resources could be at-
tacked indirectly by attacking the server which man-
ages the resource. Recall that attacking a server's
integrity is assumed to be blocked by the security
system and will not be discussed here. Two types
of attacks remain: either attack a secondary resource
the server relies on (section 4.3) or attack the server
by �-kernel-provided inter-task operations.

By invoking inter-task operations, one task can
in
uence another task. The �-kernel provides four
operations of this type (the remaining three system
calls thread switch, nearest id and lthread ex regs af-
fect only the invoker's task and can thus not be used
for attacks):

1. task new permits to delete a task. However,
only the creator of a task can delete it. Conclu-
sion: The system call cannot be used for denial-
of-service attacks.

2. thread schedule permits to change priority and
timeslice of thread's in other tasks. However,
the system call is only e�ective if the destination
thread's current priority is less or equal than
the invoker's maximum controlled priority, i.e.
if the invoker has the explicit right to schedule
the destination. Conclusion: The system call
cannot be used for denial-of-service attacks.

3. fpage unmap permits to unmap a page in a for-
eign address space. Assume that A tries to un-
map a page in B. This requires that the page is

also part ofA's address space and that it was al-
ready mapped (directly or indirectly) by A into
B's address space. In other words, B accepted
a page mapping from A and therefore implic-
itly a subsequent unmap operation by A on the
page. Conclusion: The system call cannot be
used for denial-of-service attacks.

4. ipc permits to send messages across address

spaces. Note that mapping and granting fpages
is also done by ipc. Ipc requires a certain agree-
ment between sender and receiver: the sender
speci�es the message to be sent; the receiver
speci�es (a) the receive bu�er as well as the

5



type of message it is willing to receive and (b)
whether it is willing to receive a message from
this speci�c sender. However, there are only
three receive states: `not ready to receive', `will-
ing to receive from thread t' and `willing to
receive from any thread'. On the one hand,

the latter status is required at least for general
servers; on the other hand it might be used for
attacks as well as for legal service requests.

Conclusion: The ipc system call is the only handle for
denial-of-service attacks based on �-kernel-provided
inter-task operations. It permits pulsar-like attacks
(section 4.1) and poisoning a receiver or sender with
a malicious pager which never serves page faults (sec-
tion 4.2).

4.1 Pulsar Attacks

The attacker sends junk messages as fast as possible

to the attackee.
Messages are not bu�ered. Instead, the sending

threads are put into a receiver-related queue. There-
fore, the maximumqueue length is basically the num-
ber n of attacking threads. Any legal request will be
delayed at most by n�, where � is the time required to
transfer one message and to let the attackee classify
it as a junk message. Defense possibilities:

a. The attack can only be made against server
threads which frequently use open receive op-
erations (receive from anyone). Therefore use
one thread per client whenever possible. It can
issue closed receive operations which makes this
type of attack impossible.

b. Limit the receiver's bu�er size for receive-from-
any operations to limit �.

c. Encapsulate suspicious clients by a clan. The
chief can sequentialize the messages. Then, a
pulsar attacks the chief instead of the servers
outside the clan. For a more detailed descrip-
tion of this protection method see section 5.

4.2 In�nite Send/Receive

A sending thread may attack a receiving thread as

shown in �gure 2. The attacker sends a message from
an unmapped region of its own address space. when
the �-kernel tries to copy the message into the re-
ceiver's address space, a page fault will be raised on
the sender side. It has to be handled by the sender's

&%
'$

&%
'$

� �
6

sender

locked

receiver
locked

�-kernel copies message

6
\PF"

~sender's
pager

Figure 2: Sender Attacking Receiver

pager. If this one never resumes the fault the mes-
sage transfer will never complete and the receiver will
remain blocked forever. Defense:

a. The receiver speci�es a send-pagefault timeout.
The IPC operation is aborted if a page fault
occurring in the sender's address space is not
served within this receiver-speci�ed timeout.

Symmetrically, a receiving thread can attack
sending threads. The defense is then based on the
sender-speci�ed receive-pagefault timeout.

4.3 Secondary-Resource Denial

The servers managing �-kernel related resources
themselves need resources, in particular memory and
processor time. Therefore the set of corresponding
servers must be constructed in such a way that no
trusted server depends on a less trusted server or a
server not su�ciently robust against denial-of-service
attacks. A way to ensure this:

a. Run all critical servers on a su�ciently high pri-
ority.

b. Give su�cient memory to all critical servers on
initialization. Use a trusted pager which will
never unmap this memory.

5 Using Clans for Defense

The L4 �-kernel provides a general mechanism which
can be used for defending against denial-of-service at-
tacks: Clans & Chiefs [3]. A clan (denoted as an
oval in �gure 3) is a set of tasks (denoted as circles)
headed by a chief task. Inside the clan all messages

6



i ii
ii

ii
i iPPPPq

BBM

-
���

?

'
&
$
%
�
�
�
�

'

&

$

%
Figure 3: Clans & Chiefs

are transferred freely and the kernel guarantees mes-
sage integrity. But whenever a message tries to cross
a clan's borderline, regardless of whether it is outgo-
ing or incoming, it is redirected to the clan's chief.
(\Original" ipc is denoted by thick lines, redirected

ipc by thin lines.) The chief may inspect and/or mod-
ify the message. Clans can be nested.

Figure 4 shows a chief which is used to enforce
the security policy. All server requests from the en-

i
i
ii

y
iiiJJ

J]







�

PP
PP

Pi

'

&

$

%
Figure 4: Security-Policy Chief

capsulated tasks are inspected by the chief (�lled cir-
cle). The chief drops any request which would violate
the security policy. In particular, it uses account-
ing mechanisms to restrict denial-of-service attacks.
Note that page faults and mappings are also handled
by IPC. Therefore the according resources are also

under the chief's control.
Clans can also be used to restrict pulsar at-

tacks 4.1. The chief sequentializes the messages of
all threads running inside the clan's tasks. The ver-
tical bars in �gure 5 denote threads which together
attempt to attack a server by 
ooding it with junk
messages. Since the server is located outside the clan,
the attacking threads are not queued at the server but
at the anti-pulsar chief. The chief sends the IPC re-

quests to the server, one after the other. As a result,
never more than one instead of n junk IPCs compete

ii
ii
��>

�
�
��� y

ii��
��
J
JJ]
J
JJ]

J
J
J]







�







�







�

PPiP
PiPPi

'

&

$

%
Figure 5: Anti-Pulsar Chief

with useful messages.

6 Conclusion

With the popularity of code downloading on the web
operating must be structured to minimize and pre-
vent the denial of service attacks. To this e�ect the
operating system should be small in code size and
should have a small set of interface calls.

We have shown that it is possible to construct and
reason that denial of service attacks can be prevented
in small �-kernels. The burden falls on the servers
to prevent attacks at a higher levels in the system's
software.

References

[1] R. Anand, N. Islam, and J. R. Rao. A Capability{basedSe-
curity Model for Using Internet Content. Technical Report

20664, IBM Research, 1996.

[2] M. Hohmuth, T. Jaegert, J. Liedtke, and J. Wolter. Guide-
lines for implementing os servers on top of L4. Research

Report RC xxxxx, IBM T. J. Watson Research Center, to
appear 1996.

[3] J. Liedtke. Clans & chiefs. In 12. GI/ITG-Fachtagung Ar-

chitektur von Rechensystemen, pages 294{305, Kiel, March
1992. Springer.

[4] J. Liedtke. On �-kernel construction. In 15th ACM Sympo-

sium on Operating System Principles (SOSP), pages 237{
250, Copper Mountain Resort, CO, December 1995.

[5] J. Liedtke. L4 reference manual (486, Pentium, PPro). Ar-
beitspapiereder GMD No. 1021, GMD|GermanNational
Research Center for Information Technology, Sankt Au-
gustin, September 1996. also Research Report RC 20549,

IBM T. J. Watson Research Center, Yorktown Heights,
NY, Sep 1996.

[6] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278{1308, September 1975.

7


