
Security Architecture for Component-based Operating Systems

Trent Jaeger Jochen Liedtke Vsevolod Panteleenko Yoonho Park
Nayeem Islam

IBM Thomas J. Watson Research Center, Hawthorne, NY 10532, U.S.A
(email: fjaegert,jochen,vvp,yoonho,nayeemg@ watson.ibm.com)

1 Introduction

We present a security architecture that system admin-
istrators, users, and application developers can use to
compose secure systems from components. There are
two major issues in the development of a security ar-
chitecture for a component-based system: (1) that the
architecture can enable the enforcement of effective se-
curity policies and (2) that the architecture can support
the dynamics that systems composed from components
will possess. Effective security policies (which we will
define below) must be enforced by the system, but their
implementation is complicated by the dynamic nature of
system composition. The dynamics of system composi-
tion affect security enforcement by complicating: (1) the
assignment of permissions to components because they
can be run in more than one context; and (2) the au-
thorization of object accesses because all servers cannot
necessarily be trusted to enforce system security policy.

As has been known for quite some time [24, 15, 11],
an effective security policy must be able to control all
accesses to all objects exported by components (and pro-
tect itself from tampering [1]). Unfortunately, early
component-based systems, such as Mach [18], Cho-
rus [19], and Spring [16], only control access to com-
ponent communication, not objects. In addition, despite
the limited security flexibility provided by these systems,
they still were shown to display less than effective per-
formance [12]. Therefore, building a high-performance
system that still provides the degree of security desired is
difficult.

The dynamics of component-based system are that
the set of components used by the system and objects
defined and used by the components may not be known
at boot time. However, the security architecture must
be able to apply the system security policy effectively to
components as they are loaded. We consider components
to be analogous to dynamically-linked libraries (DLLs)
(even when placed in separate address spaces) in that they
can be loaded into different execution contexts based on
the needs of the requestor of their services. Context-
sensitivity in access control is being addressed by some

Role-Based Access Control (RBAC) models [7, 13]. For
example, principals can be parameterized, so that their
permissions can be derived based on the runtime context.
We examine the use of such models.

The issue that each component may develop its own
object space is more troublesome to enforcing security.
In a system with a fixed set of components (i.e., servers),
the security administrators could specify the set of sys-
tem objects and the security policy governing them. For
example, DTOS [15] specifies the access rights of prin-
cipals to nine system servers. The policy is passed to
the servers who verify the access. We do not believe
that it is possible for all servers to provide their own se-
curity architecture to effectively enforce each system’s
security policy. However, the security architecture can-
not enforce its policy on server objects to which it has
no knowledge. Our goal is to define the information that
servers must provide to the security architecture to enable
enforcement.

Language-based security, such as those architectures
designed for Java [8], Tcl [17], Python (Grail [20]), and
Perl (Penguin [6]), has gained popularity recently due to
its portability and perceived performance advantages. We
have shown that a security architecture that runs compiled
code and has a moderate number of interdomain crossings
can approximate the same performance (or perhaps pro-
vide better performance) than language-based systems
(even running JIT-compiled code) [10]. In addition, ad-
dress space protection has several security advantages:
(1) a smaller TCB; (2) a simpler separation mechanism
(to better protect the TCB); (3) complete system media-
tion; and (4) a history of proven security features.

Our approach is to implement security architecture at
the systems level that enables enforcement of component-
based system security policies. The security architec-
ture is implemented outside of the system nucleus which
enables different security mechanisms to be attached to
different component processes. Thus, choices about se-
curity flexibility and performance can be made without
impacting the the nucleus. The architecture supports the
dynamic assignment of permissions to tasks and the com-
munication of dynamically-developed object spaces. We



have developed a prototype implementation of a security
architecture on the Lava Nucleus. In subsequent sections,
we describe the security problems that need to be solved,
the system and security architectures, and solutions to the
security problems using the architecture.

2 Problem Definition

A component-based operating system has a small, fixed,
trusted computing base (TCB) and composes its system
services from individualcomponents. A component is an
implementation with a publicly-available interface that
other components use to access its services. Components
may be loaded into the same address space or separate
address spaces. In both cases, the code is the same;
a component runtime converts inter-task method invo-
cations into IPCs transparently. Any service can be a
component, and we expect that multiple versions of ser-
vices will be likely (e.g., to offer different functionality
or performance optimizations). For example, our vir-
tual memory system will have multiple memory object
managers each implementing different memory manage-
ment policies (e.g., pinned or not). Thus, we expect that
component-based systems will have a greater number
of “servers” than previous systems, such as Mach-based
systems.

A long desired goal of security researchers has been to
run system services in protection domains commensurate
with their security requirements. A component-based
operating system makes this goal achievable, in theory,
but additional, practical issues must be addressed. In
particular, all programs in a component-based system
other than the TCB (both applications and other kernel
programs) are analogous to dynamically-linked libraries.
Such a library must execute in the context in which it is
linked (recall that programs may be loaded into separate
address spaces and “linked” via transparent IPC). The
public interfaces of components and their ability to be
dynamically linked enables other programs to load them
for whatever purposes they deem necessary.

This model of component-based systems uncovers two
major security implications. First, because a component
may be used by a variety of principals, in a variety of sit-
uations, and may not always be completely trusted, so a
principal may wish to restrict the rights of the components
it uses. Second, since the servers may not comprehend
these restrictions, they may not be able to effectively in-
terpret the restricted rights of such “dynamically created”
principals.

First, we examine system security policy. System se-
curity policy must specify the access rights that a principal
possesses with respect to all security-sensitive objects and
how those rights can be modified. In a component-based
system, many servers may create and manage objects that
are relevant to the system security policy. For example,

with new flexible paging schemes, the sharing of memory
objects is relevant to system security policy. Also, appli-
cation objects may become relevant to the system security
policy to help the application manage their use. Also, in
order to limit a principal’s permissions, delegations to
that principal must be controlled. Also, invocations of
components in other protection domains may lead to per-
mission changes in that domain. A variety of policies
have been applied (mostly one at a time) from protected
procedure calls [4] (a protection domain switch) to pro-
tection domain extension (a union of protection domains)
to stack introspection (an intersection of protection do-
mains). A security architecture should be able to handle
these mechanisms.

The traditional problem in enforcing system security
policies on server objects is that the system TCB knows
the security policy, but the server knows the object space.
Traditional micro-kernel security models, such as those
in Mach [18], Chorus [19], and Spring [16] control com-
munication between protection domains, but depend on
the servers to enforce the security policy on objects and
control delegation. Thus, the enforcement of system se-
curity policy on object accesses is primarily the job of
the servers. DTOS [15] addresses this problem in Mach
by extending its capabilities with server-specific security
information which convey the system security policy to
the server. The servers are trusted to enforce the specified
policy. However, we do not believe that this approach
will be feasible in a dynamic component environment
because: (1) the number of servers and, hence, ad hoc se-
curity code will become unmanageable and (2) the servers
may not be able to interpret the security requirements of
the system. System-supplied security code, either a li-
brary linked to the server or an external monitor task,
is required to enforce the system security policy for the
servers.

Another problem in the context of component-based
systems is that system policy must be applied to dy-
namically changing object spaces. The well-known
time-of-check-to-time-of-use (TOCTTOU) attack must
be avoided [3]. In this attack, the authorization mecha-
nism must use object names (i.e., indirect references to
the actual object). This enables an attacker to request an
object with the needed rights. The attacker then switches
the actual object bound to this name after the authoriza-
tion has already occurred, but before the object handle is
created for the attacker. This attack is easily thwarted if
object identifiers are used, but system administrators may
not be able to specify policy in terms of such identifiers.
For example, a server may create objects on behalf of a
principal dynamically, such as memory buffers, so policy
cannot be specified in terms of such objects.

To summarize, we list the following requirements for
a system security mechanism for component-based sys-
tems:



� Map abstract policy to actual components and ob-
jects

� Authorize all object accesses

� Limit capabilities delegated to components

� Contain a small number of unique permission man-
agement mechanisms

� Protect itself from compromise

Other notable systems have goals similar to these.
Early capability-based systems, such as Hydra [24] and
SCAP [11], endeavor to provide complete mediation of
object accesses. Such systems were designed to achieve
goals similar to ours, but the security requirements of the
practical applications of the time did not justify their flex-
ibility. The primary differences between the systems that
these architectures were designed for and component-
based systems are: (1) the security policy presumed full
knowledge of the servers’ object spaces and (2) a single
permission management mechanism was applied. Exok-
ernel is an example of a recent system security architec-
ture that enables restricted permissions to be assigned to
tasks [14]. It uses hierarchical capabilities (actually prin-
cipals) to create principals with a subset of their creators’
permissions. The selection of the new principal’s rights
and the means to update all the effected ACLs is not spec-
ified. The OSKit is a component-based operating system
environment [5]. The OSKit team is using the DTOS
security architecture [15] with a Domain Type Enforce-
ment access control model [2] although the details of its
application are not yet available.

3 Architecture

The goal of the Lava system architecture is to enable the
dynamic composition of systems from components while
enforcing the system’s security policy. The security re-
quirements of the components are expressed in the access
control model. First, we detail the system architecture of
the Lava system, then we define the access control model
that it uses.

3.1 System Architecture

The Lava system (see Figure 1) consists of a nucleus, se-
curity architecture interface (SAI), resource managers,
reference monitors, and components. The nucleus
provides basic system functionality, including address
spaces, threads, and interprocess communication (IPC).
Also, the nucleus provides IPC redirection which enables
intertask messages to be forwarded to a specified task (in
this case, the reference monitor).

The SAI provides an interface to load components into
system tasks (i.e., processes) in such a way that the sys-
tem’s security policy can be enforced. The SAI can load
components into new or existing tasks, but the permis-
sions associated with an existing task may be changed
when code is loaded into it. The SAI authenticates com-
ponents and derives the permissions for the task in which
the component is loaded.

In order to enforce a component’s security require-
ments, the SAI associates a reference monitor with each
component task. The monitor is trusted to enforce the
system security policy. The monitor intercepts all IPC
from or to the task in which it monitors. The moni-
tors obtain object spaces from each server and authorize
accesses using the object spaces. Once the security pol-
icy is derived, it is possible for system libraries linked
into the servers to enforce the policy. However, pro-
tection of the authorization code in monitors provides a
little more resilience to bugs (i.e., they are more likely
in servers than the monitors). Also, we see no benefit
since the object space information must be reported to
the monitors anyway. Servers must use unique and im-
mutable object names, restrict objects from be moved to
another location in the hierarchy, and prevent operations
from side-effecting client objects. The reasons for these
restrictions will be demonstrated in the Implementation
Section.

The architecture also includes a set of system resource
managers that control access to fundamental system re-
sources, such as an interrupt manager and a main memory
manager. For example, in Lava any thread can bind to a
free interrupt. The interrupt manager assigns threads to
interrupts and replaces them with approved threads (e.g.,
device driver threads) as these are loaded. This prevents
an obviousdenial-of-service attack in which a component
binds to an interrupt before the expected device driver is
actually loaded.

The system TCB consists of a secure booter, the nu-
cleus, SAI, reference monitors, and the resource man-
agers described above.

A component invokes another component by calling
a method defined in its interface. Component method
invocations are either procedure calls (intra-task) or IPCs
(inter-task). Procedure calls are not authorized, so the
permissions of the task must effectively represent the
trust in all components in the task. The reference moni-
tors intercept and authorize all IPCs. The implementation
of the component model enforces a specific format on all
IPC method invocations. Therefore, any invocation that
does not adhere to this format is rejected by the moni-
tor. The monitors know the format of each component’s
methods by obtaining a signature table which describes
the number of arguments and their data types. Compo-
nents are trusted to define the interfaces that they export.
Otherwise, other components would not be able to access



C1

Lava System

C2

Monitor Monitor

Security
Architecture
Interface

Nucleus

Resource Managers

Ints Mem Sched I/O ...

Component TaskComponent Task

Figure 1: Lava system architecture

them properly.
In this security architecture, the monitor is designed

to handle all security decision-making. This contrasts
with the approach of creating a system security library to
which servers may link by: (1) keeping all the security
code in a more reliable task (servers are more likely to be
buggy) and (2) ensuring that the library is used properly
to enforce system policy (server writers may not use the
library properly. The cost of using this approach is some-
what more interaction between the server and monitor
(for dereferencing names), and it is as yet unclear of the
significance of this overhead.

3.2 Access Control Model

To derive our access control model we start with a tra-
ditional model in which principals (e.g., users, services,
and components) perform operations (e.g., method invo-
cations) on objects (e.g., files, communication channels,
and memory). A principal’s access rights or permissions
specify the operations that it may perform on objects.

The security architecture’s access control model con-
sists of the following concepts:

� Component: A set of interfaces and implementa-
tions of those interfaces

� Component Task: A task (i.e., process) that is ex-
ecuting one or more components

� Identity: A reference to a unique executor of a
component

� Object: Uniquely-named and strongly-typed entity
that is a component or is served by a component

� Operation: Method invocation on an object

� Capability: The mapping of an object (including
its type) to the specific operations that can be per-
formed upon it via a component by the holder of the
capability

� Transform: Specifies when and how a principal’s
capability set can change

� Assignment Limit: An association of a principal or
set of principals with a capability set that describes
the permissions that that principal can delegate (e.g.,
from transforms)

� Principal: The association of a set of identities with
their capabilities and capability assignment limits

Components are static objects that define interfaces
and implementations. They are executed in component
tasks that may contain one or more components. Com-
ponents are associated with an authenticated identity. A
principal consists of the identities of the components in
the task. Capabilities define the rights of the principals
(associated with their specific identities) to perform op-
erations on objects served by other components. Thus,
capabilities store an association of: server component
task, interface (type), object identifier, and operations.
We must assume that server components enforce strong-
typing upon their objects.

Changes in a principal’s capabilities are implemented
by transforms. Transforms may either grant (i.e., del-
egate) or revoke a capability. Control of delegation is
enforced by assignment limits. Each principal may have
a set of assignment limits that specify potential delega-
tors and the rights that they may delegate to this principal.
The architecture uses the assignment limits to authorize
delegations (see Section 4.3).

Different flexibility in security policy can be achieved
using different mechanisms for managing capability sets.



We define three levels of flexibility: (1) fixed, (2) variable
or (3) composable. Fixed capability sets enforce a stan-
dard mandatory access controlpolicy. Variable capability
sets enable multiple principals to specify mandatory ac-
cess control limits. For example, the system administra-
tor may specify one MAC domain, and permit the virtual
memory system to specify another MAC domain within
some limits. This enables the virtual memory system to
restrict the permissions of the component more tightly
than system administrator could without requiring that
it provide its own security architecture to control such
delegations. Composable capability sets are variable sets
that enable transient composition of principal capabilities
on method invocation. For example, temporary intersec-
tion or union of permissions on a method invocation, as is
done in some Java security models [8] (intersection)or by
protection domain extensions in Mungi [21] (union), can
be supported by a composable capability set. We describe
how the architecture supports permission composition in
Section 4.4.

4 Implementation

We now describe the implementation of our security
model on the Lava system. In this paper, we focus on
demonstrating how the security requirements are satis-
fied by the implementation. These requirements are: (1)
resolution of security policy to component tasks; (2) au-
thorizationof object operations; (3) control of delegation;
and (4) enforcement of multiple security mechanisms.

4.1 Security Policy Resolution

When a component is loaded, the SAI derives a set of ca-
pabilities for it. The first problem is to find the policy rel-
evant to a specific component. Since the component may
be loaded into an arbitrary context, we specify formalize
the notion of a context. A context is a combination of
the component requestor, component author, application
in which the component is loaded, and the role which
the component plays in the application. The requestor
determines the values of the application and role for the
component. For example, if a component is being loaded
as a device driver, the requestor specifies that fact (i.e., the
application is device driver). If the component provides
a specific memory object management policy on behalf
of the virtual memory system, its rights are specific to
that role in the virtual memory system. In a previous
paper, we describe a model for managing such security
policies [9].

Next, the policies themselves may specify that the
assignment limits (i.e., the permissions that a principal
can delegate to this component) themselves are context-
dependent. For example, the permissions that the vir-
tual memory system may delegate to the component may

be dependent on the requestor application and virtual
memory system’s states. Parameterized access control
models [7, 13] enable permissions to specified based on
parameterized objects. For example, the memory objects
to which a component can access may depend on those
belonging to certain principals. However, changes in
context can result in changes in assignment limits and,
hence, changes in permissions. Therefore, the selec-
tion of context-sensitive rights should be made with care.
Preferably, the contexts should specify the maximal per-
missions that can ever be delegated to the component.

The permissions are represented in two sets: (1) the
set of resolved capabilities and (2) the set of unresolved
policy entries. Since all components may not be present
at load time, the policy must still be accessible to the ref-
erence monitors after the completion of the load. When
a capability to a specific service is received (via delega-
tion), it must be resolved against the policy before the
component may use it. Components receive references
to capabilities (indices in their capability table) rather
than the actual capabilities, so the reference monitors can
immediately revoke them. A capability consists of the
following fields: (1) task and thread; (2) interface type;
(3) component instance; (4) object; and (5) operations.

4.2 Authorization

In Lava, tasks define protection domains, so monitors are
designed to authorize inter-task operations and responses.
An inter-task operation specifies: (1) the destination task
and thread; (2) the component instance; (3) the interface
type; (4) the operation; and (5) the operation arguments.
A response is differentiated from an operation because
the component instance and interface are null.

When a component performs an object access on a
server (actually another component, but we call it a server
to differentiate between the two components), it specifies
the identity of the object to the server. The format of this
identity depends on the interface provided by the server.
For example, files are specified by string path names.
However, the object field in a capability uses immutable
OIDs that are unique within the context of the object
space. The use of object identifiers, rather than object
names, in capabilities enables prevention of TOCTTOU
attacks [3].

Therefore, when an operation in which an object name
rather than an identifier is used, called a bind operation,
the reference monitor must obtain the identifier for the
object before performing the authorization. For exam-
ple, consider opening a file in a file server. The monitor
copies the file name argument to prevent modification by
the caller and requests that the file server dereference the
object name. The file server is trusted to dereference the
object name to the proper OID. The monitor then autho-
rizes the requested file operations using this OID. This



object identifier must be used in the actual bind opera-
tion which, of course, requires a change to traditional file
servers.

Object spaces for each server are a forest with roots
corresponding to the identities of each object owner.
Owning an object only implies that the object is in the
owner’s hierarchy, but does not imply control over ac-
cess. The system security policy still restricts access and
delegation. However, it is still beneficial to specify rights
in terms of a hierarchy of objects rather than each object
individually. Therefore, a component principal may pos-
sess a capability that refers to a set of objects (e.g., a file
directory and its subdirectories). When an object name
is presented the entire OID chain for that object is returns
to the monitor on dereferencing, so such “higher-level”
capabilities can be used to authorize the access. Hashing
must be used to retrieve the capabilities quickly.

Authorizationof operations involves verifying that the
component has a capability that permits the operation to
be invoked on the object specified. Components do not
pass the OID of the object to the server, but rather an
index to the capability in the monitor. The monitor re-
turns these indices when the capability is delegated to
the task. Since components cannot be trusted to present
a legitimate capability and we desire immediate revoca-
tion, monitors must authorize each controlled operation.
Using the reference, monitors can efficiently retrieve the
capability and authorize the operation.

4.3 Controlled Delegation

An object reference may be passed as an argument in an
operation, so it may be necessary to authorize a delega-
tion within an operation. The fact that an object reference
is being passed is determined by the argument’s type. If
this reference refers to a capability for a task other than
the destination of the operation, then the monitor as-
sumes that the capability is being delegated (regardless
of whether the destination already has the right or not
because multiple delegations of the same capability are
separate). The destination task’s monitor authorizes del-
egations using the assignment limits of the caller to the
destination. Note that the lifetime of such a delegation
is the duration of the operation (i.e., until the response is
sent) unless an explicit transform is used. Performance
may be affected because we need to retrieve: (1) the
capability for this object in the assignment limits and
(2) when no such capability is present, the capability for
the ancestor objects in the assignment limits. To solve
the first problem, capabilities are indexed by their OID,
task/thread, component instance, and interface, so they
can be found quickly (e.g., in a hash table). The sec-
ond problem is addressed efficiently by having the object
field refer to a chain of objects from the requested object
through all its ancestors. This chain is set at bind time
when the object names are dereferenced by the server.

In general, the lifetime of the delegations from trans-
forms may vary in length, so the implementation must
be able to revoke capabilities when their lifetimes ex-
pire. For example, a delegation may be permanent unless
explicitly revoked (e.g., file access), for the life of the
delegator (e.g., access to the delegator), for some specific
duration (i.e., time-limiteddelegation), or for the duration
of a method invocation. Delegations only for the dura-
tion of an invocation are handled upon the response by
the delegatee’s monitor. For other delegations, monitors
cache mappings between events and delegations (delega-
tee tasks and capabilities). When the event occurs, the
monitor requests that the delegatee’s monitor decrement
the delegation count of the capability. If the delegation
count reaches 0, the capability is revoked and any fur-
ther delegations of this capability are revoked. Typically,
only the delegator can revoke a permission (either by
explicitly executing a transform or triggering its revoca-
tion event). Special tasks may be allowed to revoke any
privilege within their assignment limits. Revocation is
immediate.

4.4 Multiple Enforcement Mechanisms

Since reference monitors are separate tasks and can be
assigned per component task, different authorization and
permission management policies can be provided for each
task. This permits us to keep the simple monitors fast
while still enabling some components to come under com-
plex monitoring policies. Below, we describe a complex
policy in which a component is invoked with either a
union or intersection of the rights of itself and its caller
(called a composable capability set).

For principals whose permissions are intersected or
unioned upon an invocation, entry capabilities which note
such a fact (via a bit set in the operations field as a few bits
are reserved for such purposes) are used to invoke them.
Upon receipt of an operation invoked using such a capa-
bility, the caller’s reference monitor creates a task for the
component dynamically (Lava tasks are cheap to create
and the nucleus can support a large number of tasks). The
new task (the callee) is assigned to a precreated monitor
that implements the appropriate authorization mechanism
(union or intersection of rights depending on another bit).
Thus, it is important that the monitors are external to the
nucleus, so different authorization mechanisms can be
supported by different monitors. Also, in order to au-
thorize operations using the capability sets of different
principals, it is necessary for the monitors to share access
to the each task’s permissions, so a shared permission
table is accessible (read-only) to all monitors. A monitor
may only modify its own task’s permissions (in which
case locking is required). References to the principals in-
volved are provided to the callee’s monitor at load time.

Transforms are unchanged by the composition, but
assignment limits may either be set to null or combined



using the same mechanism as the capabilities. Also,
like the assignment limit capability set described above,
capabilities are hashed by OID, task/thread, component
instance, and interface for efficient retrieval from multiple
capability sets and object ancestor lists are stored with
capabilities to enable retrieval of other capabilities that
may authorize operations.

5 Conclusions

We have presented a security architecture for component-
based systems. It is designed to support the dynamic
composition of systems and applications from individual
components. Components are analogous to dynamically-
linked libraries in that they may be loaded into any con-
text chosen by the requesting component. This leads us
to two key conclusions: (1) a component’s permissions
may be restricted relative to the context in which it is
loaded and (2) a component cannot be expected to un-
derstand such system contexts, so the system must be
able to authorize object accesses. Components must be
allowed to create their own object spaces, so this informa-
tion must be transferred to the system security modules.
Additionally, traditional problems with operating system
security, such as control of delegation and object-level
authorization must be supported by the system. Lastly,
as a consequence of componentized model itself, the se-
curity architecture can support multiple authorization and
permission management mechanisms easily. Since many
different policies for permission management have been
employed over the years, from various protected proce-
dure calls of Dennis and Van Horn [4] and CAP [23]
to protection domain extensions of Mungi [21] to Java
policies such as stack introspection [22], it appears bene-
ficial that different combinations of rights may apply for
different components.

The security architecture consists of a security archi-
tecture interface (SAI) which loads components on be-
half of requestors and derives permissions for the tasks
in which they are loaded. Security policy describes ser-
vices and the permissions associated with objects (in-
cluding groups), so the security architecture maps com-
ponents to services and the permissions that they may
possess. Permissions are enforced and managed by ref-
erence monitors. Each task may be assigned a reference
monitor which authorizes object operations and delega-
tions of capabilities. The reference monitor must collab-
orate with servers to map object requests to locations in
object spaces and their commensurate rights. Object hi-
erarchies rooted by the owner of the object are currently
used because they can directly indicate how objects are
shared. However, experience with these hierarchies are
limited, so some problems will likely occur or some poli-
cies may not be effectively handled.

References
[1] J. P. Anderson. Computer security technology planning study.

Technical Report ESD-TR-73-51, James P. Anderson and Co.,
Fort Washington, PA, USA, 1972.

[2] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A.
Haghighat. Practical domain and type enforcement for UNIX. In
IEEE Symposium on Security and Privacy, pages 66–77, 1995.

[3] M. Bishop and M. Dilger. Checking for race conditions in file
accesses. Computing Systems, 9(2):131–152, 1996.

[4] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. Communications of the ACM,
9(3):143–155, March 1966.

[5] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The Flux OSKit: A substrate for kernel and language research.
In Proceedings of the 16th Symposium on Operating Systems
Principles, 1997.

[6] F. S. Gallo. Penguin: Java done right. The Perl Journal, 1(2):10–
12, 1996.

[7] L. Giuri and P. Iglio. Role templates for content-based access
control. In Proceedings of the Second ACM Role-Based Access
Control Workshop, November 1997.

[8] L. Gong. Java security: present and near future. IEEE Micro,
17(3):14–19, 1997.

[9] T. Jaeger, F. Giraud, N. Islam, and J. Liedtke. A role-based access
control model for protection domain derivation and management.
In Proceedings of the Second ACM Role-Based Access Control
Workshop, November 1997.

[10] T. Jaeger, J. Liedtke, and N. Islam. Operating system protection
for fine-grained programs. In Proceedings of the 7th USENIX
Security Symposium, pages 143–156, January 1998.

[11] P. A. Karger. Improving Security and Performance for Capability
Systems. PhD thesis, University of Cambridge, 1988.

[12] J. Liedtke. Improving IPC by kernel design. In Proceedings
of the 14th Symposium on Operating Systems Principles, pages
175–187, 1993.

[13] E. C. Lupu and M. Sloman. Reconciling role-based management
and role-based access control. In Proceedingsof the Second ACM
Role-Based Access Control Workshop, November 1997.

[14] D. Mazieres and M. F. Kaashoek. Secure applications need flex-
ible operating systems. In Proceedings of the Sixth Workshop on
Hot Topics in Operating Systems, pages 56–61, May 1997.

[15] S. E. Minear. Providing policy control over object operations in
a Mach-based system. In Proceedings of the 5th USENIX UNIX
Security Symposium, 1995.

[16] J. G. Mitchell and et al. An overview of the Spring system. In
Proceedings of Compcon, February 1994.

[17] J. K. Ousterhout, J. Y. Levy, and B. B. Welch. The Safe-Tcl secu-
rity model. In Proceedings of the 23rd USENIX Annual Technical
Conference, 1998.

[18] R. Rashid, A. Tevanian Jr., M. Young, D. Golub, D. Baron,
D. Black, W. J. Bolosky, and J. Chew. Machine-independent
virtual memory management for paged uniprocessor and mul-
tiprocessor architectures. IEEE Transactions on Computers,
37(8):896–908, August 1988.

[19] M. Rozier and et al. Overview of the Chorus distributed operat-
ing system. In USENIX Symposium on Micro-kernels and Other
Kernel Architectures, pages 39–69, 1992.

[20] G. van Rossum. Grail – The browser for the rest of us (draft),
1996. Available at http://monty.cnri.reston.va.us/grail/.

[21] J. Vochteloo, K. Elphinstone, S. Russell, andG. Heiser. Protection
domain extensions in Mungi. In Proceedings of the Fifth Inter-
national Workshop on Object Orientation in Operating Systems,
pages 161–165, October 1996.



[22] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Exten-
sible security architectures for Java. In Proceedings of the 16th
Symposium on Operating Systems Principles, 1997.

[23] M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer
and Its Operating System. North Holland, 1979.

[24] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,
and F. Pollack. HYDRA: The kernel of a multiprocessoroperating
system. Communications of the ACM, 17(6):337–345, June 1974.


