
Irreproducible Benchmarks Might Be Sometimes
Helpful

Jochen Liedtke Nayeem Islam Trent Jaeger Vsevolod Panteleenko
Yoonho Park

Thomas J. Watson Research Center
IBM

Hawthorne, NY 10532
fjochen,nayyem,jaegert,vvp,yoonhog@us.ibm.com

1 Why Benchmarks?

Historically, benchmarks have been used for com-
mercial purposes. A customer develops or selects a
benchmark that generates a load that is considered
to be typical for her/his applications. The bench-
mark is executed on various machines to find the
most appropriate vendor and machine.

In OS research, we use benchmarks for com-
pletely different purposes that can be subsumed
under the headline “understanding a complex sys-
tem”:

1. Rating:
We run a benchmark, then we modify some-
thing in the examined system (hardware or
software), and run the benchmark a second
time. We use the observed performance differ-
ence between both benchmarks as a measure
characterizing the effects of the modification.

2. Discovering experiments:
We run a benchmark and trace, count, or mea-
sure certain events, e.g. cache misses, system
calls, hits in the file cache, etc.
With such experiments, we try to “understand”
a system and to find a more or less sophisti-
cated model for it. In the most ambitious case,
such a model would allow us to predict the ef-
fects of modifying the system; in the simplest
case, it should at least help us to identify bot-
tlenecks.

3. Validating experiments:
Once we have a model or theory, we use

benchmarks to validate or invalidate our the-
ory. If the results we get are in accordance
with our predictions, the theory might be right.
Otherwise, we have to modify our model,
since we still do not understand what is going
on.

Rating (1), a typical engineering method, gives
us first hints to guide our research; however, it
needs to be substantiated by understanding (2,3),
a typical method of science. Without this under-
standing, benchmarks can be useless because they
then can suffer from ugly “nonfeatures”:

� Non-Transitivity:
Combining two non-unerstood optimizations
that both have proven their value by bench-
marks may result in the opposite effect.

� Instability:
Even though an optimization improves one
benchmark, it might have no positive effect on
applications that are considered to be very sim-
ilar to said benchmark.

� Non-Linearity:
Executing n benchmarks concurrently can
show a completely different behaviour.

We use microbenchmarks to analyze effects in iso-
lation. Although in many cases we have a better
understanding of microbenchmarks than of mac-
robenchmarks, we need macrobenchmarks to ana-
lyze effects in the complex context of a “realistic”
system. Then, the realism, the analyzability and our
understanding of these macrobenchmarks is crucial
for their relevance.



Generating such realistic, analyzable and un-
derstandable benchmarks for batch-type scenarios
(few, long-running, non-interactive jobs) or for
mono-server scenarios (one server, incoming re-
quests more or less randomly) seems to be under-
stood to a certain degree. However, it is hard to gen-
erate a realistic benchmark for an interactive sys-
tem like a workstation. Assume you have recorded
a complete user interaction sequence with the sys-
tem. The two most critical problems for replaying
this recording are:

a) It is not obvious when to trigger the next user
action. You need a very sophisticated external
system that synchronizes the virtual user with
the system to be measured: The virtual user
should move the mouse to a button and click
on it when the button is displayed, not before
and not long after.

b) Even worse, not only the time but also the se-
quence of user actions is influenced by the sys-
tem’s behaviour. Assume a user compiles a
program in one window and types a letter in
another one. If in a later experiment, the com-
piler executes faster, the virtual user could re-
alistically stop typing earlier (when the com-
pilation finishes), switch back to the first win-
dow, do some work, and then finish the letter.
In the original experiment, the user could fin-
ish typing the letter before the compilation was
ready.

Classic Benchmarks

A classic benchmark has a fixed set of source pro-
grams as input. They are compiled and then exe-
cuted under an OS on a hardware system:

�

�

�


source - compiler -

app 2

app 1

OS
- hardware

?�

�

�

�
performance

data

The immutability of the source ensures the repro-
ducibility. Thus any experiment with a modified
compiler, operating system, or hardware, measures
the performance effects of the modifications rela-
tive to the benchmark.

2 Stochastic Benchmarks

When we extend the system by a human user or a
similar source of unpredictable and irreproducible
inputs, we loose the strict reproducibility:

�

�

�


source - compiler -

app 2

app 1

OS u u
- hardware

?#

"

 

!

traces +
performance

data

�
�
�
user �

?

However, we can record the system’s behaviour in-
side the operating system and at the interface be-
tween software and hardware (denoted by the bul-
lets). Although the real benchmark input is not re-
producible, the recorded traces are. So we could
at least replay them against modified hardware and
get a more realistic benchmark for hardware sys-
tems. In Section 3, we will discuss further potential
applications.

To get realistic and representative data, we would
have to record hours, perhaps even days or weeks
of workstation usage. The according traces would
be huge: in one hour, about one trillion (1012) in-
structions can be executed. Even the best com-
pression algorithm cannot manage this amount of
data. Even worse, we would need very expensive
logic-analyzer hardware to get these traces. Any
software-implemented system-global tracing at the
instruction level would slow down the system dra-
matically and thus heavily distort the interactive be-
haviour of a human user.

Stochastic Probing

Both difficulties can be overcome by random sam-
pling.

In OS research, random sampling techniques
have been used for minimally-invasive measure-
ments, e.g. for continuous profiling [1, 4, 5] and
for cheap fine-grained time measurements [3]. Be-
cause of its low costs and it stochastic nature, ran-
dom sampling is well suited for measuring real sys-
tems realistically.

Stochastic benchmarks try to apply this princi-
ple to benchmarking: For stochatically distributed



monitoring intervals, the entire system is moni-
tored. Depending on the benchmark, low-level or
high-level events may be traced: memory accesses,
or instructions executed, or file accesses, or disk
read/writes, or ethernet packets, etc. In essence, the
recorded traces are the stochastic benchmarks.
Four properties are important:

1. The intervals must be selected at random to
exclude systematic influences. Nevertheless,
systematic restrictions are possible; e.g. one
could exclude all low-activity intervals from
monitoring.

2. The system in its entirety is traced during a
monitoring interval, including kernel and de-
vice drivers.

3. The intervals have to be contiguous and long
enough so that their analysis delivers valuable
information. Monitoring 100,000 memory ac-
cesses, for example, is probably sufficient to
run it against a different L1-cache architec-
ture; monitoring 1,000 instructions may be
sufficient to see the effect of a different code-
generation technique.

4. The intervals have to be short enough to pre-
vent the user from noticing them. In particular
instruction-level tracing slows a system dra-
matically down. However, if this happens only
for 1/20 second, a human user will probably
not realize it.

Dropping the reproducibility automatically elimi-
nates the above mentioned problem (a). To a certain
degree, the short monitoring intervals also make
the benchmarks robust against (b). The random-
ization of monitoring intervals hides changes in the
sequence of user actions as long as the overall be-
haviour of a human user remains basically the same.
(Of course, dramatic improvements in performance
will change a user’s behaviour. Probably the user
will even change its favorable applications. But
then, we need to draw a new benchmark anyhow,
since the old one becomes unrealistic.)

3 Potential Applications

On the one hand, dropping the reproducibility in-
creases realism and widenes the applicability of
benchmarks. On the other hand, the replay-only

feature of a stochastic benchmark severely restricts
the possible experiments. For instance, due to their
different APIs, there is no simple way to replay
something generated on an NT system against a
Unix system. What replay experiments are possi-
ble?

Architecture Experiments

Architecture experiments are good candidates for
stochastic benchmarks. For instance, we can run
stochastic traces against various cache or TLB ar-
chitectures. Page-table schemes, second-level soft-
ware TLBs, etc., can be evaluated in a similar way.
Years ago, Hill and Smith [2] found that direct-
mapped cache architectures perform well enough
for many batch-type applications. Newer proces-
sors, with their multi-level caches and dramati-
cally increased cache penalties might behave sub-
stantially different. In particular, it is not clear
how object-oriented programming, fine-grain mul-
tithreading, increased interactivity with users and
increased use of libraries affect the cache perfor-
mance in real life.

Code-generator experiments might also to a cer-
tain degree be possible. Once we have random in-
struction traces for a known set of programs and a
specific compiler, we can translate the traces against
a modified code-generation policy and run the mod-
ified traces against a simulation of the original hard-
ware.

Interpreting Traces Semantically

For higher-level experiments, it is essential to in-
terpret the traces by labeling the traced instructions
with higher-level semantical information. This can
be done by using our knowledge (i.e., the binaries
and sources) of the operating system and perhaps
even of some applications that were used to produce
the traces. We can identify semantic points like
“enter kernel”, “context switch to thread x”, “read
n bytes from file y”, “exit kernel”, etc. When we
keep binaries and sources together with the traces,
we can refine such an interpretation or even reinter-
pret it at a later time.

The information about context switches, inter-
rupts, page faults, etc. that is part of such an in-
terpreted trace permits us to disentangle the traces
and get per-thread views of them.



OS Experiments

The above mentioned techniques enable us to sim-
ulate binaries or sources that are to a certain degree
modified. Examples for fine-grain OS experiments
are:

– Run the traces against a different scheduling
policy, e.g. shorter time slices, different priori-
ties, modified scheduling of interrupt handlers.

– Modify the page-allocation policy of the OS
and see how the L2-cache misses and the ap-
plication’s execution time are affected.

– Optimize selected parts of the OS, e.g. change
the cache working set of the fast ipc path, and
analyze the resulting effects on the entire sys-
tem.

– Generate a synthetic real-time load and an-
alyze how it interferes with the stochastic
traces.

Instead of tracing all memory accesses, we can
apply the stochastic-benchmark techniques as well
on selected OS-internal events only. Since they oc-
cur with much lower frequency, we can trace them
for order-of-magnitude larger intervals than instruc-
tions. Combining of both types of traces could
enable experiments with coarse-grain OS policies,
e.g. modified paging policies.

Similar techniques can be used to measure and
compare application-specific policies and algo-
rithms. Monitoring could in this case be restricted
to the according application. However, monitoring
the entire system permits us to measure the interfer-
ence costs with the OS and other applications.

Furthermore, we could think about statistic ex-
periments that are inspired by medical studies and
are not really benchmarks: For comparing the orig-
inal hardware/software system S and the modified
system S , switch randomly between both systems
and stochastically monitor both systems. Of course,
the system switches must be invisible to the user.

4 Fundamental Problems

Uncertainty By Incompleteness

This problem is best illustrated using an n-way set-
associative cache. A monitoring interval gives us a
sequence of memory accesses which can be easily

mapped to the different sets of the cache. Unfor-
tunately, we cannot decide for the first n accesses
per set whether they are hits or misses. This un-
certainty comes from incomplete information: we
monitored only a limited interval and have no infor-
mation about the global system state (the hot cache
in this case) when the interval began.

One might propose taking a snapshot of the sys-
tem state at the beginning of each monitoring inter-
val. For a large L2 cache, this could be rather ex-
pensive. Sometimes, it is even technically impossi-
ble. However, the largest disadvantage of snapshots
is that they help to analyze the first measurement
but they do not help benchmarking. If we run the
recorded traces in a second benchmark experiment
against a different cache architecture, we cannot ex-
pect the same initial cache state per interval as we
found with the original cache architecture. So the
old snapshots are obsolete.

Similar problems come up for most of the pre-
viously mentioned experiments. Incomplete infor-
mation about the system’s state incurs uncertainty.
Therefore, we look for general methods to reduce
this uncertainty. Currently, the most promising
method is based on the following idea:

i) Divide each monitoring interval into two
halves.

ii) Count the events in the second half that would
be uncertain if you would not know the first
half.

iii) Find out how many of them have become cer-
tain (and whether they are hits or misses) if
you use the information of the first half. This
maps some originally uncertain events to hits,
some to misses and leaves some uncertain.

iv) With a high probability, the same percentages
apply to the uncertain events of the first halves
(which are real uncertainties). So the uncer-
tainty is probabilistically reduced.

A precise description of this method as well as a
discussion of why it works and why many simpler
methods do not work is beyond the scope of this
extended abstract.

A Probabilistic Theory of Feedback

Most of the experiments mentioned in Section 3 in-
clude feedback possibilities. For example, chang-
ing the page allocation might influence the cache



hit rate and therefore also change the preemption
points. It is not clear up to which degree the orig-
inal traces remain valid. We feel that we need a
probabilistic model of these feedbacks. Currently,
this problem is completely open.

References
[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.

Henzinger, S. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profil-
ing: Where have all the cycles gone? In 16th ACM Sympo-
sium on Operating System Principles (SOSP), pages 1–14,
St. Malo, October 1997.

[2] M. D. Hill and A. J. Smith. Evaluating associativity in CPU
caches. IEEE Transactions on Computers, 38(12):1612–
1630, December 1989.

[3] J. Liedtke. A short note on cheap fine-grained time mea-
surement. Operating Systems Review, 30(2):92–94, April
1996.

[4] S. E. Perl, W. E. Weihl, and B. Noble. Continuous monitor-
ing and performance specification. Technical Report 153,
DEC Systems Research Center, Palo Alto, CA, June 1998.

[5] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith.
System support for automatic profiling and optimization.
In 16th ACM Symposium on Operating System Principles
(SOSP), pages 15–25, St. Malo, October 1997.


