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1 Introduction

Multiserver systems, operating systems composed from
a set of hardware-protected servers, initially generated
signi�cant interest in the early 1990's. If a mono-
lithic operating system could be decomposed into a
set of servers with well-de�ned interfaces and well-
understood protection mechanisms, then the robust-
ness and con�gurability of operating systems could be
improved signi�cantly. However, initial multiserver
systems [4, 14] were hampered by poor performance
and software engineering complexity. The Mach mi-
crokernel [10] base su�ered from a number of perfor-
mance problems (e.g., IPC), and a number of diÆcult
problems must be solved to enable the construction of
a system from orthogonal servers (e.g., uni�ed bu�er
management, coherent security, exible server inter-
face design, etc.).

In the meantime, a number of important research
results have been generated that lead us to believe that
a re-evaluation of multiserver system architectures is
warranted. First, microkernel technology has vastly
improved since Mach. L4 [13] and Exokernel [6] are
two recent microkernels upon which eÆcient servers
have been constructed (i.e., L4Linux for L4 [12] and
ExOS for Exokernel [9]). In these systems, the servers
are independent OSes, but we are encouraged that
the kernel and server overheads, in particular context
switches overheads, are minimized. Second, we have
seen marked improvements in memory management
approaches that enable zero-copy protocols (e.g., fbufs [5]
and emulated copy [3]). Other advances include, im-
proved kernel modularity [7], component model ser-
vices [8], multiserver security protocols, etc. Note that
we are not the only researchers who believe it is time
to re-examine multiservers, as a multiserver system is
also being constructed on the Pebble kernel [11].

In addition, there is a greater need for multiserver
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architectures now. Consider the emergence of a va-
riety of specialized, embedded systems. Traditionally,
each embedded system includes a specialized operating
system. Given the expected proliferation of such sys-
tems, the number of operating systems that must be
built will increase signi�cantly. Tools for con�guring
operating systems from existing servers will become
increasingly more valuable, and adequate protection
among servers will be necessary to guard valuable in-
formation that may be stored on such systems (e.g.,
private keys). This is exactly the motivation for mul-
tiserver systems.

In this paper, we de�ne the SawMill multiserver ap-
proach. This approach consists of: (1) an architecture
upon which eÆcient and robust multiserver systems
can be constructed and (2) a set of protocol design
guidelines for solving key multiserver problems. First,
the SawMill architecture consists of a set of user-level
servers executing on the L4 microkernel and a set of
services that enable these servers to obtain and man-
age resources locally. Second, the SawMill protocol
design guidelines enable system designers to minimize
the communication overheads introduced by protec-
tion boundaries between servers. We demonstrate the
SawMill approach for two server systems derived from
the Linux code base: (1) an Ext2 �le system and (2)
an IP network system.

The remainder of the paper is structured as fol-
lows. In Section 2, we de�ne the problems that must be
solved in converting a monolithic operating system into
a multiserver operating system. In Sections 3 and 4, we
de�ne the SawMill architecture and the protocol design
approach, respectively. In Section 5, we demonstrate
some of these guidelines in the �le system and network
system implementations. In Section 6, we examine the
performance of the current SawMill Linux system.

2 Multiserver Issues

An e�ective multiserver system must: (1) protect its
servers from errors or malice in other servers; (2) im-
plement coherent system semantics; and (3) incur min-
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imal performance overhead. We de�ne these require-
ments more precisely in this section.

2.1 Protection

Multiserver systems must preserve the integrity of each
server's execution (i.e., protect servers from one an-
other) and protect the integrity and secrecy of the data
processed by each server (i.e., ensure the protection of
user data). Speci�cally, we list the following protection
requirements:

� Protect the execution integrity of each server:

{ Prevent modi�cation of another server's code

{ Prevent modi�cation of another server's 'con-
trol data' (i.e., data that is interpreted for
execution, such as the stack)

{ All code and control data must only be ob-
tained from a trusted source

� Protect the secrecy and integrity of user data:

{ Prevent leakage of data to unauthorized sub-
jects

{ Prevent modi�cation of data by unautho-
rized subjects

{ Protect data from accidental modi�cation
by other servers

The �rst set of requirements prevents malicious or
buggy servers from crashing other servers (i.e., protects
server integrity). A malicious or buggy server can only
cause another server to crash if it modi�es the data
interpreted by the server in its execution: code, stack,
and 'control' data (i.e., memory references and meta-
data). We distinguish between control data, the data
interpreted by the server during execution, and user
data, the data being being transferred from the users
to the devices or vice versa via the operating system.
The server must obtain its code, stack, and control
data from a trusted source and limit modi�cation of
this data to veri�ably correct protocols.

The second set of requirements is designed to pro-
tect the user data being processed by the server. In
general, there are two types of requirements embod-
ied here. The �rst two requirements embody tradi-
tional access control, including control over overt and
covert channels. The third requirement implies that
user data transferred among servers must be protected
e�ectively from accidental server modi�cation. That
is, as user data is being transferred from one server to
another, there must be some protocol to prevent the
�rst server from modifying this user data.

Code Data
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Server

Code Data

New Code Common Data

Figure 1: Decomposing a monolithic operating system into a
multiserver operating system involves: (1) additional commu-
nication between between servers; (2) bu�er management for
common data in multiple tasks; and (3) the addition of new
code to compose a system from independent servers.

2.2 Semantics

In general, the problem of decomposing a monolithic
operating system into a multiserver operating system
is shown in Figure 1. In a multiserver system, the
monolithic system is implemented by a set of user-
level system tasks upon a microkernel (not shown).
The combination of these tasks de�ne the semantics
seen by the user tasks. We de�ne how a multiserver
must preserve these semantics below.

� Each system call in the monolithic system must
be supported by one or more servers in the mul-
tiserver system 1.

� Each system call must be processed as restricted
by its atomicity requirements.

� Any server must be able to obtain and enforce
system policies (e.g., for security, resource man-
agement, etc.).

First, a semantically-equivalent multiserver system
must provide the same functionality as the original sys-
tem. Thus, the decomposed system must be able to
respond to all the same system calls as the monolithic
system. Second, the atomicity requirements of system
calls in the monolithic system must be enforced in the
multiserver system. If system call data is distributed
among multiple servers, concurrency control mecha-
nisms must account for all those servers to prevent
race conditions. Third, a coherent system composed
of a set of servers requires that any server be able to
obtain and enforce system-wide policies, such as access
control and resource management.

1In an embedded system, only a subset of the system calls
may be necessary, so only these must be supported.

110



2.3 Performance

The goal of the SawMill multiserver design is to achieve
the protection and semantic requirements with no sig-
ni�cant performance degradation. Maintaining perfor-
mance in a multiserver system is non-trivial. Consider
Figure 1, in which a single-threaded, monolithic op-
erating system is broken into two single-threaded sys-
tem tasks. This decomposition creates the potential
that local operations in the monolithic system are dis-
tributed operations in the multiserver system. Thus,
some local operations may now be implemented as
IPCs. In order to maintain monolithic system per-
formance, we must reduce both the frequency of IPC
operations and the cost of each IPC.

� IPC Frequency:

{ IPCs (i.e., context switches) replace proce-
dure calls

{ Additional IPCs may be necessary to main-
tain the consistency of replicated data

{ Additional IPCs may be necessary to syn-
chronize access to shared data

{ Additional IPCs may be necessary to nego-
tiate resource allocation

{ Cache and TLB locality are reduced by ad-
ditional context switches

� IPC Overhead:

{ Parameters must be marshalled and unmar-
shalled between servers

{ Parameters need to be transferred between
the servers

First, each procedure call that crosses a server bound-
ary in now convert to an IPC, which consists of con-
text switching, marshalling, unmarshalling, copying,
and mapping overheads. Clearly, the number of IPCs
should be minimized, and the overhead of each IPC
and related functionality must be minimized. Also, de-
pending on the protocol chosen, additional IPCs may
be necessary to maintain data consistency, synchronize
access, and obtain resources. Second, data may need
to be transferred across these protection boundaries.
While control data transfer can be limited to e�ective
partitioning and caching, signi�cant amounts of user
data will be transferred through the servers. This data
may be copied, mapped, or shared depending on the
protection and protocol semantics.

3 SawMill Architecture

The SawMill architecture for multiserver operating sys-
tems is shown in Figure 2. The SawMill architecture
consists of three types of components:

cache cache cache cache

server code server code

Access Policy Server Dataspace Server

ubiquitous service:

access policy

ubiquitous service:

memory mgmt

ubiquitous service:

access policy

ubiquitous service:

memory mgmt

ServerServer

malloc mallocauthorize authorize

access policy fault
page fault

Figure 2: The SawMill approach enables the decomposition
of monolithic operating systems into individual system servers

where ubiquitous services manage server data obtained from re-

source servers locally.

� System servers: These tasks provide the main
functionality of the operating system (e.g., net-
work systems, �le systems, etc.)

� Ubiquitous Services: These components pro-
vide general functionality that may be of use to
any system server (e.g., synchronization, access
control, naming, communication, etc.).

� Resource Servers: These servers manage the
core resources for distribution to the system servers
(e.g., memory, IRQs, security policy, etc.).

System server code is augmented by libraries, called
ubiquitous services, that provide multiserver-awareman-
agement of system data. In general, a ubiquitous ser-
vice obtains resources from the appropriate resource
servers which control the distribution of resources among
servers. Ubiquitous services manage these resources
locally (e.g., caches) to limit communication overhead.

The basic protocol is as follows for memory man-
agement [2]. First, the server requests that its mem-
ory service library obtain access to its dataspaces (i.e.,
memory objects). The memory service library then
opens the appropriate dataspaces on the appropriate
dataspace managers (i.e., resource server). When the
server attempts to access this memory, the page fault is
directed to memory service library which requests that
appropriate dataspace manager service the page fault.
Notice that dataspace managers may be stacked, such
that a dataspace manager may need to obtain the page
from its dataspace manager, and so on. Similar re-
source faulting approaches are also used for obtaining
access control data, names, tasks, and mount points.
Other ubiquitous libraries provide multiserver-speci�c
functionality, such as Flick's cross-domain procedure
call stubs [8] and synchronization.
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4 SawMill Protocols

In order to build an eÆcient multiserver, system pro-
tocols must designed to minimize IPC frequency and
overhead (see Section 2.3). We identify these principles
for designing eÆcient multiserver protocols:

� Make system calls directly to the processing server

� Partition server-speci�c control data

� Share data as widely as possible

First, to reduce the number of IPCs that are neces-
sary to implement a performance-critical system call,
clients should communicate directly to the servers that
process the system call, where possible. Second, server
control data should be partitioned where possible. In
cases where the data is shared (i.e., cached read-only in
multiple servers), few update messages should be nec-
essary (i.e., few writes or weak consistency). Third,
data sharing should be utilized as widely as protection
requirements can allow. In particular, the mapping of
user data can be avoided in system servers, because the
same bu�ers can be reused for the same user. Also, it
may be desirable to share control data read/write be-
tween drivers and servers, as long as each can prevent
themselves from crashing due to errors or malice.

5 Some Implementation Details

We now examine some interesting examples of apply-
ing these concepts to the implementation of the �le
system and network system. This implementation is
based on Linux 2.2.1 code and preserves Linux seman-
tics.

5.1 Protocol Options

First, each system protocol should be designed to re-
quire as few IPCs as possible. Consider the protocol
options for a multiserver �le system in Figure 3. The
�rst protocol simply replaces the inter-server proce-
dure calls with IPCs. In this case, the VFS is called on
open to obtain a �le handle. On subsequent read/write
calls, the client calls the VFS which authorizes the han-
dle and forwards authorized requests onto the PFS. In
the second protocol, the VFS obtains a handle from
the PFS that the client can use on the PFS directly.
Therefore, only the open call is sent to the VFS, but
there are potentially several IPCs between the VFS
and PFS for name resolution. The third protocol op-
tion considers the VFS only as a store for mount point
and access control information. This is typical of the
resource faulting protocols described in the previous
section. In this case, a client emulation library obtains
the PFS-mount point mapping, so it only needs to call

the VFS for each new mount point it uses 2. Also,
the PFS caches access control data, so it only needs to
call the VFS when a request does not hit in the access
control data cache.

In the normal case, the third option will result in
fewer IPCs. However, due to the complexity in modi-
�cations necessary to implement it, the second option
is being used currently. Overhead for read/write is the
same for both the second and third case, however (see
Section 6).

For the network system, an option analogous to the
third option is implemented. In this option, a network
manager performs the role of the VFS in naming stacks
and devices and providing access control information.
The network stack corresponds to a PFS.

5.2 Data Partitioning

Fortunately, a signi�cant amount of control data can
be partitioned between the servers in both the �le sys-
tem and the network system. However, user data must
ow (not necessary be copied) through the servers to
reach its destination, so it cannot be partitioned. In
the �le system, the main control data are the superblocks
and the inodes. Superblocks change very infrequently,
so caching is not a problem. Inodes are provided by
the driver and used read/write by both the PFS and
the VFS. However, the inode data used and updated
by the VFS and PFS are orthogonal. So, the mas-
ter copy is stored by the PFS, and the VFS caches its
copy and sends updates to the PFS. The PFS does not
send updates to the VFS. If the third protocol option
were used, little or no sharing of inode data would be
necessary between the VFS and PFS.

A problem is that the bu�er cache is shared among
the PFSs in Linux. Thus, one PFS could disrupt the
inode data of another PFS. Clearly, in order to prevent
this, a trusted entity (either a bu�er cache server or a
driver) must partition the bu�er cache among PFSs.
Since the bu�er cache usage of the di�erent PFSs may
vary over time, this server will need signi�cant resource
management abilities. Currently, our decomposed PFS
and driver share their own separate bu�er cache, but
this is still an open problem.

The network system control data includes device
structures, bu�er lists, and sk bu�s. Since the device
structure is used read-only by the network stacks, the
drivers maintain the master copy. The network stacks
get a copy when they open the device, and the driver
noti�es them of any changes. There are function point-
ers in the structure, so these pointers are localized at
load time. The bu�er lists are partitioned between

2An exception is on the processing of symbolic links between
�le systems, but these can be handled by having each PFS
provide the client with the PFS to which its part of the path
resolves.
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Figure 3: The communication requirements for three �le system protocol options. Dashed IPCs are optional. For example, a PFS
lookup may not be necessary because the appropriate inodes may be present in the directory cache.

the driver and the stack. For example, when a stack
wishes to send a packet, it sends the driver a reference
to an sk bu� which the driver can queue on its own
list. There is no sharing of bu�er lists between the
stack and driver. sk bu�s and packet data are shared
as discussed below.

5.3 I/O Management

There are two important issues in I/O management:
(1) the protection boundaries that the I/O data crosses
(usersystem or server-server within the system) and
(2) the type of the data being transferred (user or con-
trol data). First, in a traditional UNIX system such
as Linux, data is typically copied between the user
and the system. In a multiserver system, we have this
type of data transfer as well as data transfer between
servers in the system. System servers originally shared
this data in the monolithic system, so sharing seman-
tics are more natural. Second, we must consider the
protection requirements of the type of data that is be-
ing transferred. Protection requirements permit user
data to be shared among multiple servers, as long as
suÆcient copy semantics are enforced between the user
and system (some form of copy-on-write), but servers
must protect themselves from the generation of illegal
control data.

First, user data transferred between the user and
system is transferred with copy semantics. However,
user data bu�ers are shared among the servers. In
e�ect, the system servers are originators in the fbufs
sense [5] of the data, so they maintain write access until
the data is transferred to the user or to an untrusted
server. Then, a decision must be made whether to
downgrade the servers' access to the data to read-only
(e.g., using emulated copy [3] or fbuf semantics) and
apply copy-on-write for the user, permit the servers to
maintain read-write access (e.g., volatile bu�ers) with

copy-on-write for the user, or copy on transfer. Un-
fortunately, neither emulated copy or fbuf semantics
work for the Linux �le system. Bu�er cache bu�ers
may not be aligned as necessary for emulated copy and
Linux copy semantics does not enable the use of fbufs.
At present, data is copied between user tasks and the
SawMill Linux system servers, although further inves-
tigation is ongoing.

For control data, each server must trust the orig-
inator of the control data it uses to specify the nec-
essary data, but it must ensure that the control data
that it uses does not cause it to crash. For example,
the network stack speci�es sk bu�s for the network
driver which the network driver must assume refer to
the data that it is to send (if it is within the shared
user data region). However, if the sk bu� is erroneous
(i.e., refers to an illegal memory location), the network
driver must catch this. In this case, we prefer an op-
timistic approach where the network stack and driver
share sk bu� data and the driver uses the sk bu� di-
rectly. Any error in the sk bu� either results in the
wrong data being sent (which the network stack could
arrange regardless) or results in an illegal page fault.
Since the driver's page fault handler is a local thread,
it can recover the driver thread to a consistent state
on such an illegal page fault.

6 Performance Summary

In an initial experiment, we compare �le system per-
formance using the Iozone reread benchmark [1]. All
the data is from a 500 MHz, Pentium III with 64MB
RAM. Iozone was run on three systems: (1) Linux
2.2.1; (2) L4Linux derived from Linux 2.2.1; and (3)
SawMill Linux derived from Linux 2.2.1. For our anal-
ysis we have focused on reread throughput, in which
Iozone reads a �le twice and measures the through-
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Figure 4: Iozone performance comparison for rereads using
4KB record size on Linux 2.2.1, SawMill Linux (derived from
Linux 2.2.1), and L4Linux (derived from Linux 2.2.1)

put of the second read. For our purpose, reread is a
harder test than read because the reread operation is
faster and thus the componentization overhead is more
critical.

Figure 4 shows reread performance for various �le
sizes using a 4KB record size. For the smaller �le sizes
(64 and 128 KB), rereads copy data from the L2 cache
(�le bu�er) to the L1 cache (application bu�er). Be-
cause the copy time is lowest in this case, the perfor-
mance overhead of IPC is most signi�cant. Beginning
with �le sizes of 256KB, throughput decreases because
the copies are from memory to the L1 cache.

For each 4KB record in the reread, we measured ap-
proximately 3000 cycles for bare Linux, 4200 cycles for
L4Linux, and 3500 cycles for SawMill Linux. Although
the multiserver SawMill clearly performs better than
the monolithic L4Linux on the microkernel, SawMill is
still 500 cycles slower than bare Linux. We expected
an overhead of about 200 cycles: the kernel overhead
of the �rst IPC and the full cost of the second (i.e.,
including the kernel sysenter/sysexit call).

To our surprise, an important part of the problem
seems to be the generated stub code. We expected
cheap stubs since the Flick IDL compiler [8] generates
C code such that all its operations are inline generated
in the user program. However, the code e�ectively
generated by gcc uses about 150 machine instructions
for any client stub, mostly useless copies to and from
local variables. For the current measurements, we did
not hand code stubs but only improved the Flick/gcc
coding through simple specialization. However, it is
clear that an improved code generation facility has to
be developed that generates near-optimal code which
we found to be about 30 instructions.

7 Conclusions

In this paper, we describe the SawMill approach to
constructing multiserver operating systems. This ap-
proach consists of a set of services and design guide-
lines that enable the development of a multiserver from
an existing code base. We demonstrate this approach
on the Linux operating system by building multiserver
�le and network systems. The main complexity lies in
the eÆcient and secure management of data over the
disjoint servers, although we have a number of poten-
tially promising approaches. Also, initial performance
results indicate that the multiserver overhead is small
on the �le system and can be further optimized to
reduce the impact of multiserver protection barriers.
Soon, we will have the network system performance
measurements.
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