Process Cruise Control

Event-Driven Clock Scaling for Dynamic Power Management

Andreas Weissel
University of Erlangen

weissel@cs.fau.de

ABSTRACT

Scalability of the core frequency is a common feature of
low-power processor architectures. Many heuristics for fre-
quency scaling were proposed in the past to find the best
trade-off between energy efficiency and computational per-
formance. With complex applications exhibiting unpredict-
able behavior these heuristics cannot reliably adjust the op-
eration point of the hardware because they do not know
where the energy is spent and why the performance is lost.

Embedded hardware monitors in the form of event coun-
ters have proven to offer valuable information in the field
of performance analysis. We will demonstrate that counter
values can also reveal the power-specific characteristics of a
thread.

In this paper we propose an energy-aware scheduling pol-
icy for non-real-time operating systems that benefits from
event counters. By exploiting the information from these
counters, the scheduler determines the appropriate clock fre-
quency for each individual thread running in a time-sharing
environment. A recurrent analysis of the thread-specific en-
ergy and performance profile allows an adjustment of the fre-
quency to the behavioral changes of the application. While
the clock frequency may vary in a wide range, the applica-
tion performance should only suffer slightly (e.g. with 10%
performance loss compared to the execution at the highest
clock speed). Because of the similarity to a car cruise con-
trol, we called our scheduling policy Process Cruise Control.
This adaptive clock scaling is accomplished by the operating
system without any application support.

Process Cruise Control has been implemented on the In-
tel XScale architecture, that offers a variety of frequencies
and a set of configurable event counters. Energy measure-
ments of the target architecture under variable load show
the advantage of the proposed approach.

Categories and Subject Descriptors

D.4.1 [Software]: Operating Systems—scheduling / process
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1. INTRODUCTION

Without energy the processing and transport of data is
impossible. Nonetheless the measurement, accounting, and
management of energy has been widely neglected in the field
of systems research. With the emergence of portable and
wireless devices and with the energy crisis that affected data
centers and server farms in many parts of the United States
a few years ago we are suddenly facing a rising awareness
for the topic of energy management.

This paper contributes to this awareness and initiates a
new approach in system software: the on-line evaluation
of counters that register performance- and energy-critical
events. We will show that there is not only a correlation
between events and performance but also between events
and power consumption. By exploiting these counters the
operating system has the complete knowledge

e where the energy has been consumed
e where the time has been spent, and

e who has been responsible for the use of energy.

According to the individual demands of each application,
power management can find a trade-off between energy con-
sumption and quality of service demands. To fulfill this
task an operating system has a variety of options for the
activation and configuration of hardware components. Not
only the time of activity, but also the degree of activity can
be controlled. Our approach to an integrated energy moni-
toring system respects these power states and provides the
essential information for advanced power management poli-
cies.

In this paper we focus on two energy-critical hardware
components, the CPU and the memory, because the use
of both components can already be monitored by the per-
formance monitoring counters found in many contemporary
processor architectures. To demonstrate the energy sav-
ings possible with Process Cruise Control we chose the Intel
XScale architecture as our target platform. The Intel XScale
supports dynamic frequency scaling which can be used to



save energy. Other architectures like Intel Speedstep-M and
AMD Mobile Athlon are ready for Process Cruise Control.
With the acceptance of event counters as a prerequisite
for reliable power-management decisions we expect more
low-power architectures to offer event-counters, some of the
counters even specially dedicated to energy profiling.

This paper is organized as follows: In the next section, we
investigate the energy characteristics of advanced processor
architectures. This motivates our scheduling approach Pro-
cess Cruise Control that is presented in section 3. In Section
4 we describe the implementation in an embedded Linux
operating system and we exhibit energy measurements that
validate the benefits of our approach. Finally in section 5,
we propose further architectural innovations advantageous
for Process Cruise Control.

2. ENERGY CHARACTERISTICSOF PRO-
CESSOR AND MEMORY

2.1 Characteristics of I nterest

In semiconductor technology, energy is used whenever cur-
rent is flowing due to leakage or due to loading/de-loading
of capacitors triggered by transistor switch operations. The
leakage current depends on static parameters like time, volt-
age and properties of the semiconductors. In addition to
these static parameters the dynamic energy consumption
depends on the switching frequency of the gates.

If we want to identify those parts of the CPU/memory
complex which contribute significantly to the total energy
consumption, we have to look at those parts containing most
of the capacitors and those with the highest switching fre-
quencies:

e The processor core executing algorithmic, logical, or
control flow operations consumes energy depending on
the switching activity within the essential functional
units. We expect some relation between energy con-
sumption and clock frequency. However, a major part
of the activity and thus energy consumption depends
on the type of instructions and their operands. There-
fore, we have to keep an eye on the activity of each
functional unit.

e If a memory management unit (MMU) is used in a
computer architecture for reasons of mapping and pro-
tection, the MMU will contribute significantly to the
energy consumption as it is built-up from full asso-
ciative memory that is accessed whenever memory is
referenced. Therefore, the energy consumption might
depend on the memory-reference patterns of the exe-
cuted software.

e Caches contribute to static energy consumption de-
pending on their size but also to dynamic energy con-
sumption depending on the frequency of cache refer-
ences and the associativity of the cache indexing algo-
rithm. The higher the associativity, the more cache-
tags have to be compared at each cache reference.

e Dynamic random access memory (DRAM) is build up
of capacitors to store information. As these capacitors
have to be recharged to keep their information, we ex-
pect a significant contribution of memory to the static
energy consumption depending on the size of memory.

Due to several decode and multiplex stages and the
complex transfer and switching activity, we should see
a high dynamic energy consumption of DRAM.

To satisfy memory requests, data has to be transferred
between the data-rows which make up a memory bank
and the sense amplifiers. Several decode and multi-
plex stages have to be passed to move data to the out-
put drivers and from the receiver registers. Because
of this comprehensive transfer and switching activity,
we should see a high dynamic energy consumption of
DRAM.

Advanced memory modules (e.g., RDRAM) also offer
several low-power states which differ in the latency to
re-activate the memory module again. In a low-power
state some parts of the address-logic and the bus con-
nectors of the module are shut down. This saving in
passive energy consumption has to be paid by a higher
access latency.

e The interconnection network (e.g., the bus system)
contributes mainly to the dynamic energy consump-
tion as the capacitance of the bus-lines has to be loaded
(unloaded) at each bus cycle. Therefore, we expect an
energy consumption which is related to the activity
level of the interconnect.

As we want to influence the energy efficiency of a system
by a task specific clock frequency we have to identify

e which components benefit from clock scaling and those
which do not.

e which components are used by a specific task.

e which consequences on the speed of executions a vari-
ation in clock speed will entail.

To identify the energy-specific characteristics of a system
with configurable clock speed that also offers the oppor-
tunity for performance analysis and event-driven energy-
accounting, we explored the energy consumption of an Intel
1Q80310 system [14].

The Intel XScale 80200 processor used in this system can
operate at clock speeds from 333 MHz to 733 MHz [12],
[11], [13]. The high-speed core clock is produced by a pro-
grammable clock multiplier. Changing the clock frequency
is done by writing the multiplication factor into a configura-
tion register. Although the processor can operate at differ-
ent core voltages depending on the selected core frequency,
we could not scale the voltage when modifying the clock fre-
quency (dynamic voltage scaling DVS), because the voltage
could not be adjusted with the IQ80310 evaluation board.
To get an idea of how much additional energy can be saved
by voltage scaling, we calculated the minimum possible en-
ergy savings which can be achieved by reducing the core
voltage to the values given in the Intel 80200 datasheet [13].

The processor instruction set is compliant to the ARM
V5TE instruction set. It implements a 32-KByte, 32-way
set associative data- and instruction cache with a line size
of 32 bytes. The policy of the data cache is configured to
write-back. The instruction and data MMU implements a 32
entry full associative TLB. The processor offers performance
monitoring counters to register events like executed instruc-
tions, cache references & misses, and memory requests.



Currently several microprocessor architectures support dy-
namic frequency scaling and performance monitoring. Some
offer a wide variety of selectable speeds as for example the
Athlon 4 PowerNow! and the Alchemy Aul100 from AMD.
Others like Intel’s Pentium III and 4 with Speedstep Tech-
nology at the time just distinguish slow and fast modes.
Transmeta’s Crusoe Processor is not a candidate for Pro-
cess Cruise Control because frequency and voltage scaling
(LongRun Power Management) is performed internally as
part of the code morphing engine [5].

2.2 Measurement Set-Up

The 80200 processor is available with the Intel IQ 80310
evaluation platform. The IQ80310 system is built up as a
PCI board plugged into a PCI slot of a host PC or PCI
backplane. The power is supplied by the 3.3 V supply volt-
age pins of the PCI slot. This modular form, in contrast
to closed systems like laptops or notebooks, makes power-
measurement possible.

To measure the energy consumption, a sense resistor of
low resistance (0.02 ) is placed in series with the power
supply for current measurement. A data acquisition system
with a sampling frequency of up to 3000 KHz guarantees
a high temporal resolution of the measurements. To sep-
arate the static (idle) power of the processor, chip-set and
memory from the dynamic (active) power, we measured the
power consumption when the processor is in the idle-state
and the dynamic part when the CPU is busy. Just the dy-
namic power consumption is essential for further investiga-
tions in this paper. The idle power is constant for all clock
frequencies.

Apart from the dynamic energy consumption of the CPU
and memory, our measurements also comprise the dynamic
energy consumption of the voltage regulators and the chip
set.

2.3 Basic System Energy Characteristics

Goal of the basic measurements is to determine the vari-
ation in the power consumption of the processor and the
memory. We executed several simple micro-benchmarks that
involve different sets of functional units. During all the runs
the processor was constantly busy. For the presentation in
this paper we selected some micro-benchmarks which exhibit
interesting characteristics of today’s computer architectures
(see figure and table 1).

First, we ran an arithmetic test (add reg) doing arith-
metic operations with all operands in registers, followed by
a synthetic application (goto label) to investigate the in-
fluence of branches on the energy consumption. One of the
tests (call function) passes parameters to subroutines. As
the stack is used to pass parameters we see a mix of nor-
mal operations on registers, branches and cache references.
Finally several tests were executed that trigger read and
write cache- and memory-operations (read, read/write L1
cache and memory).

The dynamic power consumption of the low-power XScale
system (see figure 1) is quite stable for CPU intensive ap-
plications without main memory requests. Here the power
drain ranges between 570 mW and 800 mW at a clock fre-
quency of 733 MHz. As soon as the main memory serves
requests, the memory controller and the SDRAM module
are involved. This leads to a boost in energy consumption
up to 1220 mW.

Figure 1: 1IQ80310 board power breakdown (dy-
namic CPU & memory power consumption)

benchmark instr. | branches | L1 ref. | mem.req.
per us | per us | per us per us

add reg 680 12 0 0
goto label 313 104 0 0
call function 379 52 143 0
read L1 cache 548 46 182 0
r/w L1 cache 578 38 307 0
read memory 85 7 28 3.7
r/w memory 43 3 23 4.3

Table 1: rates of characteristic events

Four factors which can be monitored with the performance
monitoring counters seem to influence the energy consump-
tion (see table 1): the rate of executed instructions, of ex-
ecuted branches, of data cache references and the rate of
memory requests. While the number of executed instruc-
tions seems to have no impact on energy consumption, the
frequency of branches (when executing goto label), the ac-
tivity of the MMU and the caches (call function, read,
read/write L1 cache) increases the energy needs of the
processor core.

The values of the typical power dissipation given in the
datasheet of the Intel 80200 processor [13] coincide with our
measurements of the benchmarks call function and goto
label.

2.4 Energy/Performance Characteristics

The effect of frequency scaling on the performance and
system energy consumption is demonstrated in figures 2 and
3.

Figure 2 shows a linear increase in performance for all
CPU- and cache intensive applications. Doubling the clock
speed results in twice the performance. In the same way
the dynamic energy consumption rises linear with the clock
frequency for those applications (see Figure 3).

While memory intensive applications show the same lin-
earity in energy consumption they suffer in performance be-
cause the processor stalls in a busy mode while waiting for
memory requests to be served. Up to four 32 byte read re-
quests can be outstanding in a fill buffer before the XScale
80200 needs to stall. Furthermore 8 write buffers of 16
bytes help to buffer data while the bus is not available. The
read memory application can tolerate the memory latency
to a certain degree because of the fill buffer, whereas the
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Figure 2: relative application performance at vari-
ous clock speeds
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Figure 3: power consumption of the IQ80310 board
(XScale 333-733 MHz) at various clock speeds

read /write memory application stalls for each new allocated
cache line because a dirty cache-line has to be written back
to memory before a new one can be stored.

To show the relation between application performance and
energy consumption, the energy consumption is divided by
the application performance and normalized relative to the
value at 733 MHz (see figure 4). We call this value the
energy performance ratio. An energy performance of ep at a
certain clock speed cs means that running at ¢s MHz needs
ep% of the energy to fulfill the task at 733 MHz.

CPU intensive applications operate energy efficiently at
all clock speeds. They are even a little bit less efficient (ep
= 105%) at lower clock speed. The reason is the constant
overhead of periodic kernel activities (e.g., timer interrupt
processing). The percentage of cycles for these operating
system activities rises with slower clock frequency and fewer
cycles remain for the execution of the applications. Conse-
quently it requires slightly more energy to execute the ap-
plication at low speed.

From the point of energy efficiency it does not pay off
to run the CPU and cache intensive applications at lower
clock speed. Therefore we can run those applications at the
highest speed.
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Figure 4: relation between application performance
and energy consumption

The more memory requests are issued by an application
the more it pays off to drive the application at low speed.
Energy savings of 22% (ep = 78% for read/write memory at
333 MHz) to complete the same task are possible without
a substantial reduction in application performance (4% per-
formance loss for read/write memory at 333 MHz as shown
in figure 2).

Depending on the memory reference characteristics of an
application we can save a significant amount of energy with-
out severe losses in performance by running the application
at the suitable clock speed.

3. PROCESS CRUISE CONTROL

Performance and energy consumption at variable speeds
are two characteristics which are correlated, but the de-
gree of correlation depends on the use of performance- and
energy-critical hardware components. Only if the operating
system knows the component-specific usage patterns of each
of the managed execution entities (threads or processes), it
can find the best energy/performance trade-off and select
the right speed of execution.

3.1 ThePolicy Model

Our approach to find the patterns is the on-line evaluation
of event-counters. For a specific architecture we have to find
a set of countable events that characterize the behavior of
a thread concerning performance and energy consumption
when the thread is executed at various clock frequencies.

The rates at which these events can happen at a cer-
tain clock frequency span a multidimensional space which
describes all the potential patterns a thread could exhibit.
For each point in the space we can find the proper clock fre-
quency that minimizes the energy consumption for a given
performance requirement (the optimal (clock) speed).

We are facing the challenge to partition this space into
domains with equal clock frequency and to describe these
partitions (frequency domains) in a way that the scheduler
of the operating system can determine the clock speed of a
specific thread by a fast mapping from event rates to clock
frequencies. The optimal speeds for the various event rates
and, consequently, the resulting partitions depend on the
restriction in performance loss. The current set of partitions
defines the model policy.
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A scheduler implementing Process Cruise Control adapts
the clock speed when switching from one thread to another.
The new frequency is determined by a periodic evaluation of
the event rates in the latest history of the thread. Therefore
the scheduler has to find the frequency domain that matches
all the event rates of the thread.

We saw that while the energy specific characteristics of a
single thread change only slowly over time, the character-
istics of concurrently running threads alter frequently and
show a wide variation. For a single thread it is sufficient to
analyze the behavior of this thread at each context switch.
Our approach respects the variation in behavior by adapt-
ing the clock speed at each thread switch according to the
characteristics of this thread. This guarantees an optimal
speed adaptation.

The data flow in figure 5 shows the relation of the Pro-
cess Cruise Control model to a car cruise control or any
other controlled system. Sampled event rates along with
corresponding execution speeds run into the model policy.
An optimal speed prognosis is made and applied to the ap-
plication. Again, the new CPU speed is fed into the model
along with newly measured event rates closing the loop of
control.

To summarize, our approach can be outlined as follows:

1. Determine the correlation between the rates of differ-
ent events and both performance and energy consump-
tion.

2. Identify the lowest possible clock frequency (the op-
timal speed) for a certain combination of event rates
under an user-specified upper bound for performance
degradation.

3. On each task-switch, scale the clock frequency accord-
ing to the pre-computed optimal speed for the thread-
specific event rates.

3.2 XScale Frequency Domains

The Intel XScale 80200 processor implements one clock
and two event counters. Under these restrictions, and con-
sidering the energy/performance characteristics of section
2.4 and table 1, the selection of the following events is rec-
ommended:

e The memory requests per clock cycle clearly indicate
the degree of memory use. The higher the rate of
memory requests the more the energy performance will
benefit from a reduction in clock speed.
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2.5%|--

N
3
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Figure 6: XScale frequency domains

e The instructions per clock cycle indicate the sensitiv-
ity for a performance loss due to speed reduction. The
lower the rate of executed instructions the less the per-
formance of a thread will suffer from a reduction in
clock speed.

Cache misses as an indicator for energy consumption can
not be used because several event counters for all types of
energy-relevant cache events are not available on the tar-
get architecture. Furthermore several counters for different
cache events would have to be monitored in parallel. There-
fore we used the counter for memory requests because they
showed the best correlation to energy consumption.

To span the space of both event rates we constructed mi-
cro benchmarks producing various event rates. For each
clock speed, we determined the event rates for each of these
benchmarks.

The next step is to find the minimal clock speed which
can be tolerated for given performance requirements. For
our tests we chose 10% as an acceptable performance loss.

The last step is to partition the two-dimensional space
into frequency domains.

We chose a simple approach with matrices that define the
frequency domains (for an example see figure 6). The di-
mensions of the matrix are the event rates, the percentage
of instructions per cycle, ranging from 0% to 100%, and the
percentage of memory requests per cycle, ranging from 0%
t0 3% (this is the maximum value achievable by artificial mi-
cro benchmarks). A simple matrix look-up operation yields
the optimal clock speed.

4. PROCESSCRUISECONTROL INLINUX

4.1 Implementation

The enhancement of Linux 2.4.18 to support event-driven
frequency scaling comprises several modifications, summing
up to almost 1000 lines of code:

e Context switch routines and kernel data structures are
modified to collect and hold, for each thread, the val-
ues of the two available performance-monitoring event
counters and the clock speed. Thread-specific event



| modules | overhead in cycles |
Linux scheduler > 26000
Process Cruise Control 3000 — 4000

- read perf. counter 200
- switch frequency 1000 — 2300 (= 3.1 ps)

Table 2: overhead of Process Cruise Control

counters are updated within the timer interrupt pro-
cessing.

e The computation of the event ratios and the determi-
nation of the optimal clock frequency of the current
thread as well as the speed adjustment for the next
thread to run is performed in the main task switch
routine (schedule()).

e FEach thread can be configured to run at a thread-
specific fixed speed or to run with dynamic event-
driven clock-scaling. We extended the context switch
routines for thread-specific speed tuning and offer the
necessary user-interfaces (/proc/scale).

e The determination of the optimal clock frequency with
respect to the thread-specific event rates is done by
look-up tables (matrices) in the Linux scheduler. The
content of these tables can be set during runtime by
the module policy which provides an interface in the
/proc-filesystem. A default model policy is provided.

With all these modifications to the Linux scheduler there
arises the overhead question. Two modifications contribute
to the overhead (see table 2):

e the determination of the optimal clock frequency (at
every thread switch)
Division operations are necessary to obtain event rates
from the performance counter values and offsets into
the policy-matrix from event rates.

e the frequency switch

Our initial implementation increases the overhead of the
scheduler by approx. 15% with a high variation due to a
variable number of compulsory cache misses.

4.2 Measurements

To show the benefits of event-driven clock scaling we mea-
sured the energy consumption and performance of four sim-
ple applications to find the optimal clock speed according to
external energy measurements. Figures 7 and 8 show the en-
ergy /performance characteristics of these applications which
exhibit different behavior. find|grep searches for a string
in the RAM file system, gzip compresses a shared library,
djpeg decompresses a JPEG file to an image file and finally,
factor factors a number. We ran the four applications at
all possible clock frequencies to determine the energy con-
sumption, performance and the optimal speed according to
the allowed penalty of 10% performance loss.

Furthermore Process Cruise Control determined the rate
of memory requests and executed instructions. Table 3 sum-
marizes the results. For three tests (find|grep, gzip and
factor) Process Cruise Control comes to the same clock
speed as the external measurements. One application djpeg

Process Cruise Control
application | optimal speed clock energy
scaling savings
find|grep 400 MHz 400 MHz 15%
gzip 466 MHz 466 MHz 10%
djpeg 600 MHz 533 MHz 8%
factor 600 MHz 600 MHz 4%

Table 3: Process Cruise Control clock speed and
energy savings
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Figure 7: findl|grep (left) and gzip (right) energy/
performance profile

is scheduled with a speed that is one step to low. The ap-
plication would suffer a performance loss of 12% which is
below the tolerated limit of 10%. In almost all cases the
optimal clock speed is reached after one or two iterations.

Additionally we designed an inhomogeneous test applica-
tion which involves several subtasks (see table 4). The split
up savings of the individual tasks are shown in figure 9.

As expected, very memory intensive tasks like free db
and memcpy gain energy-efficiency from Process Cruise Con-
trol without losing measurable performance. Average mem-
ory access rates from fill string and file rw result in
energy savings with considerable but limited impact on per-
formance.

Tests with low memory access rates as read db, sort db
and search db become slowed down considerably. However,
constraints for maximum performance loss are satisfied. De-
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Figure 8: djpeg (left) and factor (right) energy/ per-
formance profile



| sub-task | description
loop simple for-loop
mult multiplication loop
primes Eratosthenes’ sieve
file rw write data to a file and verify
read db read word database into memory
sort db quick sort
search db full text search in database

fill string | dump word database using strcat
free db release memory
memcpy swap blocks of memory

Table 4: sub-tasks of the inhomogeneous application

20%— T T T

Il energy saved
15%|----| 3 performance lost

10%

5%

Figure 9: energy savings of the inhomogeneous ap-
plication

pending strongly on CPU speed, the performance of these
sub-tasks suffers most, compared to other tests.

Sub-tasks with very low memory access rates like mult,
loop and primes are not slowed down making performance
loss disappear.

In another test ghostscript was used to convert post-
script files to several different device formats. During pro-
gram run Process Cruise Control switches between clock
frequencies very often; the computed optimal speeds range
from 333 to 733 MHz. Overall energy savings of 4.5% are
achieved while not exceeding 10% performance loss. Fig-
ure 10 shows the clock frequency switches during a run of
ghostscript.

The runtime behavior of the postscript interpreter is influ-
enced by the content of the postscript file to convert. There-
fore the frequency switching pattern of the process run de-
pends on the content and structure of the input file. Figure
11 shows the frequency switches of two runs of ghostscript.

733
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8
o
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Figure 10: clock frequency switches for ghostscript
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Figure 11: ghostscript processing two similar files

clock frequ.
M) 333 | 400 | 466 | 533 | 600 | 666 733‘

min. core
1. 1.1 | 1.1 | 1.1 | 1. 1. 1.
voltage [V] 0 3 3 > ‘

Table 5: minimum core supply voltages for the Intel
80200 processor

The processed postscript files both contain one image and
text; the only difference is the position of the image in the
text. The patterns of the frequency switches reflect the dif-
ferent positions of the image in the source files.

We could prove that it is possible to come very close to
the optimal clock frequency by an on-line evaluation of event
counters. For the Intel Q80310 system energy savings of
15% are possible without severe performance impact. If we
tolerated a higher performance degradation, the energy effi-
ciency could be improved further.

To get an impression of how much energy can be saved by
frequency and wvoltage scaling, we calculated the minimum
additional energy savings which can be achieved by reduc-
ing the core voltage to the values given in the Intel 80200
datasheet [13] (see table 5). In previous measurements the
core voltage was fixed at 1.5 V.

As can be seen in figure 3, the energy values of the add reg
benchmark represent the lower bound in power consumption
of the active Intel 80210 processor. We used these values to
determine the minimum additional energy savings possible
with voltage scaling. Figure 12 shows the results for the ap-
plications gzip and factor. The steps in the figure between
333 and 400 MHz, 533 and 600 MHz and 666 and 733 MHz
reflect the different values for the minimum core voltages
(see table 5).
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Figure 12: gzip (left) and factor (right) energy/ per-
formance profile with voltage scaling



5. ENERGY MONITORING COUNTERS

The performance monitoring counters implemented in con-
temporary architectures hold a number of drawbacks:

e The selection of countable events was done to support

performance profiling and not energy profiling.
Several events which differ substantially in their en-
ergy consumption cannot be differentiated. An exam-
ple are move and arithmetic/logical instructions. Move
instructions need less energy, but is takes the same
amount of time.
Another example are read and write memory requests
which differ in their energy consumption [17]. Event
counters should register the type of memory request
and the number of row activations in the memory mod-
ules.

e Because we use the performance monitoring counters
for energy/performance characterizations of threads,
they cannot be used for application profiling. There-
fore an energy-aware system should implement two
sets of counters: a set of performance monitoring coun-
ters, and a set of energy monitoring counters.

e The value of the event counters is sampled at special

points in the operating system code. Sampling im-
plies some overhead, so we cannot afford to sample at
the beginning and at the end of interrupt service rou-
tines and other short running kernel activities. Con-
sequently, kernel activity is accounted to the currently
running thread which is not beneficial for a precise
characterization.
Therefore two sets of energy monitoring counters, one
for user- and another for kernel activity, is recom-
mended to reduce the number of sampling points and
to increase the accuracy of the characterization.

6. RELATED WORK

This research contributes to the work on system power-
analysis and dynamic clock-scaling for non-real-time sys-
tems. The innovative approach is the use of event-counters
to enable reasonable energy/performance tradeoffs in a time-
sharing scheduler.

Event-counters were explored extensively in the context of
static performance analysis (e.g., see [1]). The first on-line
evaluation of event counters for the purpose of scheduling
was reported in [4]. The focus of this work was on cache
affinity scheduling in NUMA architectures. Furthermore,
the operating system can manage the memory-bandwidth in
multiprocessors at run-time if counters provide information
about memory requests and memory stall cycles.

Recent work employs event counters for run-time power
estimations and energy accounting and throttling [2], [16],
13].

There is a rising number of papers which describe the
power measurement of systems which support dynamic clock
scaling, partly in combination with dynamic voltage scaling
(6], [7], [15], [20].

Several papers cover the topic of scheduling on systems
with variable speed. Most of them focus on real-time schedul-
ing [18], [10], [19]. Here the scaling factor is reduced as long
as the real-time requirements are fulfilled.

When clock speed becomes a novel system parameter,
there is a need for system interfaces to control this param-
eter. Unlike our simple architecture-specific /proc/scale
interface, the BUFScale API [8] offers an architecture inde-
pendent interface for power system tools and applications.

Gurumurthi developed a complete system power simula-
tor, called SoftWatt, that is built on top of the SimOS infras-
tructure [9]. As demonstrated in the previous section, the
performance monitoring counters of existing architectures
impose certain limits on event-driven power management
mechanisms like Process Cruise Control. With SoftWatt
it is possible to fully exploit the potential of event-driven
power management for a complete system.

7. CONCLUSION

In the past, scheduling had a single dimension. The sched-
uler had to decide which thread of control should run on
the CPU. With the emergence of power-sensitive devices
we enlarge the freedom of scheduling to a second dimension,
the speed of execution to control power-consumption effects.
Within the space of decision, the scheduler has to control the
execution in a way that the scheduling goals are achieved.

In this paper we have tackled the problem of finding the
optimal process-specific execution speed in a time-sharing
environment. The more the operating system knows what
is going on inside the hardware the better it can react on
changing usage patterns. We have identified event coun-
ters as the valuable source of information for the operating
system scheduler. The reading of event counters and the
processing of counter values does not imply a high overhead
so we have found a cheap and easy methodology to detect
thread-specific usage patterns for power characterization.

Once we have characterized a system according to cer-
tain performance requirements, Process Cruise Control de-
termines the optimal clock frequency of a thread according
to its patterns.

Our approach does not impose any hints on the applica-
tion. Process Cruise Control minimizes the energy consump-
tion while it schedules unmodified and uninstrumented code
with just minor performance penalties.

A prototype implementation on a low-power Intel XScale
evaluation system running Linux shows energy savings of
22% for memory intensive applications. We calculated the
minimum energy savings which would be possible with volt-
age scaling; in this case the energy consumption of memory
intensive applications could be reduced by at least 37% with
a performance loss of less than 10%. The current implemen-
tation can only use a small number of counters that were
intended originally for performance profiling. If the oper-
ating system technology is ready to deal with a variety of
counters it is just a small step to embed new counters which
are exclusively devoted to energy profiling.

We expect thread-specific speed settings in combination
with event-driven energy profiling to become an essential
element of future operating systems for power-sensitive de-
vices.
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