
Towards Effective User-Controlled Scheduling for
Microkernel-Based Systems

Jan Stoess
University of Karlsruhe

Germany
stoess@ira.uka.de

ABSTRACT
With µ-kernel based systems becoming more and more preva-
lent, the demand for extensible resource management raises
– and with it the demand for flexible thread scheduling. In
this paper, we investigate the benefits and costs of a µ-kernel
that exports scheduling from the kernel to user level. A key
idea of our approach is to involve the user level whenever
the µ-kernel encounters a situation that is ambiguous with
respect to scheduling, and to permit the kernel to resolve
the ambiguity based on user decisions. A further key as-
pect is that we rely on a generic, protection domain neutral
interface between kernel and applications.

For evaluation, we have developed a hierarchical user level
scheduling architecture for the L4 µ-kernel, and a virtualiza-
tion environment running on its top. Our environment sup-
ports Linux 2.6.9 guest operating systems on IA-32 proces-
sors. Experiments indicate an application overhead between
0 and 10 percent compared to a pure in-kernel scheduler so-
lution, but also demonstrate that our architecture enables
effective and accurate user-directed scheduling.

1. INTRODUCTION
With the regained interest in µ-kernel based systems from
academia and practitioners there today exist a wide range
of application scenarios, where µ-kernels are being deployed
successfully. That diversity in fields of application is in-
evitably reflected by a variety of requirements placed on µ-
kernel resource management and scheduling. The following
collection of examples – which by no means claims compre-
hensiveness of coverage – points out some of the demands
typically placed on today’s µ-kernel schedulers:

• Virtualization environments, where µ-kernel-like oper-
ating system kernels are employed as hypervisors [26,
3, 10, 4], generally demand a hierarchical scheduling
scheme with a hypervisor, guest-kernels, and appli-
cation schedulers being stacked on top of each other.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGOPS Operating Systems Review Volume 41, Issue 4 (July 2007)
Copyright 2007 ACM ...$10.00

Preferably, the scheme is orthogonal to the policies ac-
tually implemented, and permits virtual components
to recursively implement their own strategy.

• Embedded systems, another key application of µ-kernel
technology [7, 16], demand the scheduler to obey hard
or soft real-time constraints in addition to function-
alities of desktop or server systems. Embedded sys-
tems usually express such constraints in form of soft
or hard priorities, or timing conditions of individual
applications.

• Multi-core environments, an emerging technology be-
coming prevalent in computing systems, make it essen-
tial to provide light-weight, fine-grained, and efficient
scheduling abstractions, which allow to dynamically
exploit available parallelism as much as possible [8,
18, 25].

• Power-sensitive computing deployments, like data cen-
ters or mobile computers, reposition the traditional
performance orientation of scheduling by adding en-
ergy and thermal constraints to the objectives to be
adhered to by the scheduler [21].

In summary, a qualified modern µ-kernel scheduler should
provide recursive, user-controlled, priority-driven, real-time
capable, efficient, generic, and flexible scheduling. Moreover,
real application scenarios often turn out to be complex com-
binations of the aforementioned pure examples: Consider,
for instance, a mobile appliance, sometimes plugged into a
power connector, sometimes running on batteries, which ex-
ecutes a virtualized legacy operating system together with a
set of dedicated µ-kernel threads implementing special ser-
vices. The scheduler of such a system must fulfill some or
all requirements at the same time.

The µ-kernel answer to that requirement is its core design
principle: Minimize the kernel part of the operating system,
in order to permit modularity, flexibility and tailorability
of the rest. In providing the notion of kernel scheduling,
a µ-kernel would principally contradict to that principle:
Kernel-managed scheduling requires a kernel policy that al-
locates threads to processors. As long as user level resource
management conforms to that kernel policy, kernel schedul-
ing is convenient, and enables development of concurrent
programs or overlapping computations. However, as soon
as user level management claims freedom in scheduling, the
kernel policy bars the way to the flexibility the µ-kernel ulti-
mately strives to provide. User-directed scheduling, in turn,

1

exports the control over resource management to applica-
tions, allowing them to develop domain-specific solutions.
It also removes policy from the kernel, rendering the system
more generic and extensible.

In fact, however, scheduling is widely regarded as too en-
tangled with other operating system concepts – control flow,
communication, accounting, interrupt handling, to name a
few – to be easily removed without degradinng efficiency.
For that reason, virtually all µ-kernels that are of practi-
cal relevance employ a kernel scheduler, with the rationale
that a µ-kernel must be efficient to be usable at all. Besides
arranging oneself with the kernel scheduler, the traditional
approach to enable flexibility and tailorability has therefore
been to leverage application-level thread packages.

In this paper, we explore the design of a µ-kernel architec-
ture that strives to export all scheduling from the kernel to
user level. The key idea of our approach is simple: Involve
the user l evel whenever the µ-kernel encounters an situation
that is ambiguous with respect to scheduling. For that pur-
pose, we enhance all kernel operations with an additional in-
terface that allows the kernel to resolve the ambiguity based
on the user’s decision. While the general idea of exporting
kernel scheduling to the user is not new, existing approaches
are limited to single protection domains. In contrast, our ap-
proach relies on a generic scheme that is neutral to address
spaces or other protection mechanisms.

The advantage of user level scheduling is obvious: It permits
flexible definition of the systems’ scheduling behavior. The
potential drawback is evident as well: It increases kernel-
user interaction and thus potentially reduces efficiency. Ad-
ditionally, given the complexity and entanglement of schedul-
ing, any effort to export scheduling to user level is likely to
reveal unforeseen problems impairing or undermining its vi-
ability. However, as µ-kernels and systems built on their top
are becoming more prevalent, the overall demand for flexi-
ble resource management raises, and with it the demand for
true user-controlled scheduling. We expect our work to be
an insightful step towards the development of more generic
and flexible µ-kernel scheduling schemes.

Rather than proposing a radical new µ-kernel design – and
potentially throw away years of research on and experience
with µ-kernel based systems –, we strive to explore if user-
based scheduling can be developed in a manner that is com-
patible to existing µ-kernel designs. In particular, we are in-
terested if a µ-kernel can support user level scheduling while
maintaining generic and efficient communication as its most
important mechanism. We have therefore based our new ar-
chitecture on the L4 µ-kernel. While such a decision closely
ties some of our design choices to L4, we believe that our
findings still apply to µ-kernel architectures in general.

To evaluate our architecture, we have developed an L4-based
virtualization environment that supports user level sched-
uling. The environment runs Linux 2.6.9 guest operating
systems on IA-32 processors. Our experiments indicate an
application overhead between 0 and 10 percent compared
to a solution involving a kernel-scheduler, but on the other
hand, demonstrate that our architecture also enables effec-
tive and accurate user-directed scheduling.

Since our evaluation presently focuses on a single scenario,
the question is still left unanswered whether our approach is
generic enough to perform effectively in different application
domains. We present an analysis of potential limitations, as
they may occur when trying to apply our scheme to other
problem domains. We also reason about ways to overcome
those limitations.

In the remainder of the paper, we first present our general
design principles for user-based scheduling in µ-kernels in
Section 2. We then present the application to L4 in Section
3, and a performance evaluation in Section 4. We present
insights and limitations in Section 5, and discuss related
approaches in Section 6. We finally conclude in Section 7.

2. USER LEVEL SCHEDULING
FOR µ-KERNELS

The basic idea of our new architecture is a very simple one:
The µ-kernel does not pursue any kernel scheduling any-
more. It jettisons all scheduling-related context information
such as time-slices, priorities, or run queues, and reduces
thread semantics to the notion of execution state. The timer
interrupt becomes a ”normal” interrupt again, treated like
all other external interrupts; other timing semantics vanish
from the kernel as well.

Lacking in-kernel scheduling, our new µ-kernel will execute
the currently running thread (in its notion of execution con-
text) unconditionally, until a blocking kernel event or opera-
tion occurs. A design choice of our scheduling architecture is
that it defines operations where a thread blocks on a specific
destination thread to be implicit and unconditional proces-
sor time transfers; that is, the current thread transfers both
control and processor time to the destination. As an exam-
ple, a thread waiting to communicate with another thread
will implicitly donate its processor time to the destination.

Blocking System Call

dest

Preemption OS

User

Level

System call

destinations

Invoker

thread

Preempted

thread
Scheduler

CPUCPU CPUs

Figure 1: User-Level Scheduling Design. The kernel
treats blocking system calls as implicit control trans-
fers; the invoker resolves scheduling ambiguities by
selecting the destination thread. Preemptions trans-
late into notifications of a user level scheduler.

Obviously, such a design does not resolve the ambiguity of
kernel operations that unblock multiple threads. In case the
reason of the operation is an exception or interrupt – an
in-kernel event, in other words – the kernel may resolve the
ambiguity itself. For all user-initiated operations, however,
the kernel must provide an interface that hands over the
control over the ambiguous situation to the invoker thread
(Figure 1). Such an interface must allow the invoker of a

2

blocking kernel operation to designate, among those threads
that are runnable afterwards, the destination thread to be
granted the processor. Furthermore, as there can be only
one runnable thread at a time, the interface must translate
the semantics of a “runnable” thread that is not granted the
processor into a notification of a user level scheduler compo-
nent; the thread itself must be blocked until the scheduler
entity has handled that event.

3. APPLICATION TO L4
We have developed a user level scheduling architecture based
a recent implementation of the L4 µ-kernel, code-named
L4Ka::Pistachio (We will hence use the term L4 for both
the abstract kernel and our concrete implementation). L4
is a state-of-the-art µ-kernel, which provides a minimal set
of abstractions designed to build extensible systems on top
[11]. It has three core abstractions: threads, address-spaces,
and inter-process communication (IPC). In the following sec-
tion, we first describe the scheduling-relevant aspects of the
original L4 version. We afterwards present the changes we
have made in order to provide effective user level schedul-
ing. In particular, we elaborate on the mutual implications
of scheduling and IPC.

3.1 Original L4 Behavior
In the following, we describe the original functional behav-
ior of L4 with respect to threading, communication, and
scheduling, as they are all important to understand the na-
ture of scheduling and its implications to µ-kernel opera-
tions. We then analyze the original L4 model with respect
to its deficiencies to provide full user level scheduling.

3.1.1 Threading
In the original L4 implementation, threads provide the con-
text for three different operating system concepts: execu-
tion, communication, and scheduling. In their first role, they
serve as the basic abstraction of user level control flow, by
referring to execution state such as instruction and stack
pointer, or general purpose registers. In their second role,
threads serve as endpoints for the kernel IPC primitive. L4
therefore associates IPC state with each thread, which keeps
track of attempted or ongoing IPC operations and their par-
ticular form and content. In their last role, L4 associates
information such as time slice lengths, time quanta, or pri-
orities with each thread, and employs an internal scheduler
that dispatches the threads using a default policy.

3.1.2 Communication
L4 IPC is a rendezvous-based, synchronous communication
mechanism. L4 offers both a send and a receive operation;
while L4 permits sending to unique destinations only, it al-
lows the use of wild-cards as receive destination. As system
calls are expensive, and for reasons of atomicity, L4 also
offers coalesced send and receive operations. We can distin-
guish four types of IPC operations: i) send(to), a single send
operation to a specified destination, ii) receive(from), a sin-
gle receive operation from a specific or an arbitrary thread,
iii) call(dest), a coalesced send and receive to the same des-
tination, iv) send_and_receive(to, from), a coalesced send
and receive operation with different destinations. If the re-
ceive destination is a wild-card, the operation is dubbed re-

ply_and_wait(to).

L4 supports message contents of different complexity, with
registers, strings, and virtual memory mappings as trans-
ferable objects. Finally, L4 supports the specification of
timeouts for blocking IPCs.

3.1.3 Scheduling
L4’s kernel scheduler resembles traditional process sched-
ulers of monolithic operating systems. All runnable threads
are enqueued into a processor-local ready queue. Timer in-
terrupts, blocking kernel operations, and user-initiated thread
switches trigger the invocation of the L4 kernel scheduler,
which chooses the next running thread based on the ker-
nel policy. For reasons of efficiency, L4 does not invoke the
scheduler during IPC calls; instead, it employs a time dona-
tion model, where the blocking thread passes its remaining
time slice to the partner [16].

L4 provides an interface that allows user level programs to
adjust scheduling parameters. For that purpose, L4 arranges
threads into a hierarchy, by associating a scheduler thread
with each thread. In the current implementation of L4, the
hierarchy is not required to be strict; for instance, a thread
may act as its own scheduler. L4 permits schedulers to freely
set the parameters of their subordinate threads, with the
restriction that priorities may not exceed the own priority
of the scheduler.

3.1.4 Analysis
While user level schedulers can tweak the kernel schedul-
ing policy, core scheduling behavior such as the policy itself
cannot be changed. As a result, a scheduler that requires a
policy different to the default kernel policy needs to pursue
complicated steps to implement it. The root cause is that
there is no visible difference between the thread currently
running and other runnable threads. For a user level sched-
uler, all its subordinate threads appear to be running at the
same time. To implement its own strategy, a scheduler must
thus prevent L4 from selecting the “wrong” thread, by mak-
ing sure that all threads except the one it itself designates
to run are not runnable. Assuring that is awkward and in-
efficient; threads may change their own state when invoking
kernel operations, and the scheduler requires a complex state
machine to ensure correct states while on-going operations
are handled gracefully.

L4’s hierarchical scheduling design even fortifies that defi-
ciency: Since L4 does not allow a high-level scheduler to
control whole scheduling subtrees, and since threads may re-
side in various states depending on their own behavior and
on external events, high-level schedulers need to either trust
their successors that they have taken care of well behaving
thread scheduling, or they need to ensure the behavior itself,
per thread. Both cases are unsatisfying: The former is un-
safe and contradicts the trust chain, while the latter burdens
all levels of scheduling with the same redundant complexity.

To summarize, the effects and decisions of the kernel sched-
uler are intransparent and opaque for user level schedulers,
despite their nominal status as schedulers.

3.2 Preemption Messages –
User Level Scheduling for L4

3

To overcome the scheduling deficiencies of L4 we have de-
veloped an L4 version that supports user-based scheduling.
Our new version uses threads as a container for execution
and communication, stripping away the notion of scheduling.
There is no scheduling state or policy in the kernel anymore;
instead, L4 runs the current thread unconditionally until the
next event occurs that causes its preemption. To give user
level schedulers full control over the dispatching, L4 vectors
out the preemption of a thread to its associated scheduler
thread, by means of a preemption IPC (Note, that the notion
of preemption IPC already exists in the original L4 kernel,
but with different semantics related to time-quanta [23]). A
preemption IPC is a coalesced send and receive operation
to the scheduler, where the preempted sender automatically
blocks waiting for a reply message. To re-grant processor
time, the scheduler responds by sending back an IPC re-
ply message, which again results in the destination thread
running until the next preemption occurs (see Figure 2).

IP
SP

GPRegs
Time

Thread Scheduler

Preemption IPC

Scheduler

IPC Reply

Thread

CPUCPU

OS

User

Level

CPUs

IP’
SP’

GPRegs’

Figure 2: Preemption IPC and reply

For reasons of convenience, a preemption IPC contains the
thread’s current execution state such as instruction and stack
pointer and general purpose registers. A reply may contain
updated state, which is then transparently installed into the
thread’s user frame. Transferring the whole execution state
allows the schedulers to inspect thread execution context;
updating the state with the reply eases typical scheduler op-
erations such as sending signals or switching to a different
user level thread.

A principle of user-controlled scheduling is that there is only
one thread running at a time per processor. This is reflected
in L4 in that all other threads are blocked in a kernel op-
eration waiting for a time donation. The current thread
is allowed to run until it deliberately blocks, or until it is
forcedly preempted by an external event. Forced preemp-
tions occur whenever a thread would stay runnable but is
preempted without its own agreement. L4 then synthesizes a
preemption message on behalf of the thread sent to its sched-
uler. Deliberate preemptions occur whenever the thread in-
vokes a blocking kernel operation. If the blocking operation
has a unique destination, L4 will treat the call as processor
time donation, where the current thread transfers its pro-
cessor time together with the call. As the invoking thread is
aware of its own blocking, L4 does not send any preemption
IPC. The typical such operation is a blocking IPC call, and
threads are expected to use IPC to donate processor time
among each other.

To resolve the ambiguity that arises when a kernel opera-
tion unblock multiple threads, the kernel allows the thread
that has invoked the operation to designate the destination

thread to be granted the processor. We therefore enhance
such kernel operations with a set of bits that permit the
invoker to specify the eventual processor owner.

3.3 Preemption and IPC
In the original L4 version, IPC involves threads in all their
roles: as execution, as communication contexts, but also as
scheduling contexts. Specifically, the transfer of an IPC re-
quires a scheduling decision to be made whenever it unblocks
a thread with a higher importance than the ones running, or
when it unblocks more threads than it blocks. The original
version of IPC either invokes the kernel-level scheduler when
a decision is required, or resorts to a simpler shortcut policy
that circumvents the potentially complex kernel scheduler.

We instead treat IPC according to our explicit model: All
cases that block the current thread and activate one desti-
nation become an implicit time donation. All other cases
are resolved based on the invoking thread’s decisions. The
implications of user level scheduling on IPC thus depend on
its type and are as follows:

blocking send or blocking receive In case of blocking send

or receive operations, the invoker immediately switches
to the idle thread, since no other thread is running.
Note, that our approach also changes the semantics of
the idle thread; see Section 3.4 for details.

send and blocking receive Here, the sender successfully
sends a message but is then blocked waiting for the
receive destination. The invoking thread grants the
processor to the destination.

non-blocking send or non-blocking receive After suc-
cessful single send or receive operations, the invoker
unblocks the destination thread while staying runnable
itself; the invoker decides if it wants to grant or retain
the processor; the losing thread sends a preemption
IPC.

non-blocking send and receive The successful coalesced
send and receive variants cause a situation where both
send and receive partner are runnable and the invoker
is waiting for the receive destination. The invoker
again designates the processor grantee among the two
IPC destinations, the other sends a preemption IPC.

3.3.1 Sender-based Message Transfer
For reasons of implementation, the kernel performs IPC mes-
sage transfers always from the sender to the receiver thread.
Since L4 also offers to coalesce operations, IPCs may become
nested into each other. A side-effect of the nesting is that
a thread, being unblocked by its send partner in order to
transfer a message, may immediately afterwards try to re-
ceive from – and switch to – a completely unrelated thread
(Figure 3).

With respect to user-directed scheduling, such a behavior
is undesirable, since it does not permit receiving threads to
retain the processor after the message was transferred. We
solve this problem by switching back from the sender to the
receiver of the first IPC rendezvous in those cases, regard-
less of the destination specified at the time of invocation.

4

OS

User

Level

Receive

Send

Send

Receive

Destination

thread

Invoker

thread

Unrelated

thread

dest =

receiver

dest =

sender

Figure 3: Nested IPC chains. To avoid activating
unrelated threads, the kernel always switches back
to the invoker of the IPC.

L4 therefore checks whether the send operation blocked, in
which case the sender switches back to the receiver.

3.3.2 Recursive Preemption
So far, we have discussed the implications of user-controlled
scheduling to IPC. However, as our architecture leverages
IPC to vector preemptions, IPC semantics affect user level
scheduling as well. The most important aspect of this dual-
ity is that a preemption IPC activates the waiting scheduler,
and leaves the kernel in a situation where two threads be-
come runnable, the thread having caused the preemption
(hence the preempter) and the scheduler.

The most intuitive solution to decide this ambiguity is to
give the preempter preference over the scheduler, since it was
the preempter that caused the situation in the first place.
However, as a result, the scheduler itself will generate a pre-
emption message to a higher-level scheduler, which will in
turn notify its scheduler, and so on, until either a scheduler
is not waiting for the message, or the top-level scheduler in
the hierarchy has been reached. The root-level scheduler, be-
ing non-preemptable by definition, eventually preempts the
original preempter, causing a chain of preemptions again.

Such recursive preemption may, at a glance, seem ineffective.
It is, in fact just a consequence of the hierarchical scheduler
arrangement in L4. Shortcutting any preemption IPC im-
plies that the kernel is left in a state where more than one
thread is runnable at the same time, and eventually needs
to decide which of the threads are dispatched. To permit
scheduling to be user-controlled, our approach prevents this
situation on principle.

Our new architecture implements hierarchical scheduling,
including recursive sending of preemption messages; how-
ever, we still found room for an important improvement.
Giving the preempter preference will result in the preemp-
tion logic always ascending to the root scheduler, while in
principle, ascending to the lowest common scheduler of the
preempter and the destination thread would be sufficient.
We can shorten the preemption chain by checking, during
preemption, the hierarchical scheduling relationship between
the preempter and the destination scheduler. By keeping
track of each thread’s scheduling hierarchy level, we can
cheaply determine relationships between the preempter and
the scheduler in most cases, without traversing the schedul-
ing hierarchy. By default, the logic will give preference to the
preempter; however, in case the scheduler thread turns out
to be a scheduler of the preempter as well, the logic will fa-

T1

T2 �

T3 T4

4

IRQ

2

1

3

5

1

2

3

S
c
h
e
d
u
lin

g
 H

ie
ra

rc
h
y

IPC

Figure 4: Recursive Preemption Message Chain.
While executing (1), T4 is preempted by an inter-
rupt delivered to T3 (2). It sends a preemption IPC
to its scheduler T2 (3); since T2 is a scheduler of T3
as well, T3 also sends a preemption IPC to T2 (4),
and T2 starts executing (5).

vor the scheduler (see Figure 4). In that case the preempter
itself initiates a preemption IPC chain, until the aforemen-
tioned scheduler is reached. Having received a message from
the original thread in the first place, the scheduler cannot
receive the second other message immediately. Nevertheless,
it is also the only thread running, and the whole hierarchy
is in a consistent state again. Note, that the scheduler needs
to take into account that there are potential pending pre-
emptions after having received a preemption message. It
can cater for that situation by receiving potential message
with a zero timeout IPC.

3.3.3 Timeouts and Wakeup Queues
L4 originally introduced timeout semantics for IPC, for dif-
ferent reasons: Timeouts prevent a thread from being blocked
infinitely by an untrusted IPC partner [11, 13]. Timeouts
further serve as means to implement error recovery; finally,
they simply keep a thread blocked waiting until a certain
period of time has elapsed. However, the benefits of time-
outs with respect to safety has been questioned recently [19];
some current L4 designs even refrain from providing timeout
logic at all [5].

Our new architecture also removes any timeout logic from
the kernel, allowing the user only to specify either never

and zero timeouts only. As a consequence, IPC is guaran-
teed to either block infinitely or to return immediately. Our
rationale to remove timeouts is obvious: Export all timing-
related handling to user level. Maintaining timeouts im-
plies that threads are potentially unblocked; and removing
timeouts relieves the kernel from having to decide the next
thread at such events. Moreover, kernel-based timeouts are
conceptually superfluous, since they can be implemented at
user level, via a third party that cancels operations after the
desired period of time has elapsed. At present, our approach
does not implement such a protocol, however; we leave the
question and potential performance problems as an area of
future work.

3.3.4 IPC Efficiency

5

IPC efficiency is widely regarded as the deciding factor for
a µ-kernel based system, and much effort of research on L4
has been dedicated to ensuring or improving its performance
[12, 14, 11]. It was one of the goals of this project to investi-
gate if developing effective user level scheduling was possible
without having to throw away all the findings of research on
efficient communication. The following paragraph is devoted
to a short discussion on that matter.

Since we treat blocking kernel operations that activate a des-
tination thread as implicit time donations, the consequences
of user-controlled scheduling on IPC are limited: All block-
ing IPC types with just one destination are unaffected and
retain their performance1.

Fortunately, the call() operation, which is probably used
most frequently in a RPC-based system, falls under the cat-
egory of implicit time donations. Its counterpart, the re-

ply_and_wait() operation, which sends a message to a spe-
cific thread and then waits for incoming messages, falls only
partly under that category: In case of no pending send re-
quest, the invoker immediately switches to the send des-
tination without additional preemption logic. In case re-
quests are pending, the invoker needs to decide between the
send and the prospective receive partner, which implies that
one thread is preempted. Finally, the send_to() and re-

ceive_from() operations requires the invoker to decide if it
wants to retain or grant the processor away its processor,
again with the result of preemption messages being gener-
ated.

We consider send_to() and receive_from() as unproblematic;
receive_from() only leads to problems if the partner does
not block itself, which is the unlikely case in a RPC-based
system; send_to(), in turn, can easily be replaced by appro-
priate substitutions: Sending and retaining the processor
with a shared user variable, and sending and granting the
processor with a send_and_receive() operation that blocks
waiting for a fresh time donation from the scheduler.

The reply_and_wait() operation, in contrast, implies inevi-
table overhead on loaded server systems with a backlog of
pending requests, since the user level scheduling logic gen-
erates preemption messages whenever two clients become
ready. Besides avoiding the backlogs via appropriate user
level design, we see two different ways out of that dilemma.
The first alternative is to construct a µ-kernel solely based
on procedure call semantics (as realized, e.g., in K42 [2]).
A second alternative would be to retain a recipient-based
communication scheme but to give user threads hints on the
state of their of wait queues. Our previous research indicates
that a simple mechanism such as event logging may be suf-
ficient to export such kernel data efficiently [22]. That way,
a server that has finished a request can inspect the state of
its send-queues before issuing a send_and_receive() opera-
tion. In case of a pending requests, it can either first receive
that request (via a single receive_from(), which does not in-
cur preemption, provided the client uses a blocking call()),
or skip the pending request, send the reply to the client,

1A side-effect of that model is that it leaves the scheduler
unnotified of deliberate blockings; it is up to – and in the
interest of – the user threads to agree on a protocol with the
scheduler to inform it about such preemptions, if necessary.

and then wait for a time donation from its scheduler using
send_and_receive(). We have not implemented a solution
yet, but are currently investigating the latter approach.

3.4 Other Kernel Operations
User level scheduling does not only change the semantics
of IPC, it also affects all other kernel operations that may
cause threads to become unblocked. Fortunately the num-
ber of such operations is very limited; effectively, there are
only three such operations in L4 besides IPC: The switching
to an idle thread, and the ThreadSwitch and ExchangeReg-

isters system calls. We will discuss them in the following
section. For the sake of completeness and importance, we
also present the new semantics of the exception and inter-
rupt handling, although all changes to their handling are a
direct consequence from aforementioned changes in the IPC
semantics.

3.4.1 Switch to Idle
As most other kernels, L4 features an in-kernel, per-processor
idle thread that is invoked when no other thread is runnable,
and runs until the next external interrupt occurs. In con-
trast, our modified L4 version does not contain such a special
idle thread anymore. Rather, it exports the idle transition
by means of a special IPC message sent to the root-level
scheduler of the respective processor. Sending such notifica-
tion is not strictly necessary, since our model allows current
thread to do whatever it wants to do with its processor time,
including “nothing”. We see our idle IPC message protocol
mainly as a convenient method that allows top-level sched-
ulers to determine idle processors. To allow switching to low
power modes, L4 additionally permits the top-level sched-
uler to execute special idle instructions such as hlt on IA-32
based processors.

3.4.2 Thread Switch
L4 originally offers a ThreadSwitch system call that donates
the current time slice from the caller to the callee; if no
destination is specified, the in-kernel scheduler selects the
next thread to run. For our new architecture, ThreadSwitch is
a bogus operation, since only the current thread is runnable;
for reasons of compatibility ThreadSwitch is still available,
but now sends a preemption IPC to the caller’s scheduler.

3.4.3 Exchange Registers
The ExchangeRegisters system call allows a thread to read
or modify parts of the execution and communication state of
another thread, provided both threads are executing within
the same address space. To that end, it also allows the in-
voker to suspend or resume other threads. Our new kernel
therefore allows the invoker of ExchangeRegisters to decide
if it wants to retain the processor or not. The kernel syn-
thesizes appropriate preemption messages on behalf of the
respective other thread.

3.4.4 Interrupts and Exceptions
L4 generally handles interrupts and exceptions by means of
IPC. For each external interrupt line, L4 creates an in-kernel
interrupt thread, which will send a special IRQ message to
an attached handler thread whenever the interrupt occurs.
Similarly, whenever a synchronous processor exception oc-
curs, L4 synthesizes an exception message on behalf of the

6

faulting user level thread to a designated per-thread excep-
tion handler.

The implications of user level scheduling on interrupts all
arise from the novel semantics of hierarchical scheduling
dealt with in the IPC path. Whenever a thread is preempted
by an external interrupt, L4 sends a preemption message to
its designated scheduler in addition to the original interrupt
message sent to the handler. Interrupts therefore trigger to
a chain of preemption messages according to the protocol
described in Section 3.3.2. In contrast to interrupts, excep-
tions are synchronous, and L4 delivers a blocking IPC to
the associated handler, with no additional preemption logic
being involved.

4. EVALUATION
To evaluate our novel user level scheduling model, we have
developed a virtualization environment with support for true
user level scheduling semantics, based on the existing after-
burner project. The afterburner is an approach to provide
virtualization on top of L4 [10]. Our new environment cur-
rently supports a modified version of Linux 2.6.9 on IA-32,
with support for both physical and virtual multi-processing.

Since user level scheduling incurs additional IPCs and po-
tentially additional protection domain switches, we consid-
ered the efficiency of our architecture as the most interesting
evaluation criteria. In the following section, we try to shed
some light on the performance of our new architecture. We
first describe the basic structure of our virtualization archi-
tecture, as it is relevant to user level scheduling. We then
present a set of micro- and macro-benchmarks intended to
show the overhead of effective user level scheduling in an
IPC-based µ-kernel.

4.1 Virtualization Architecture
The afterburner approach can be described as an interface
layer that translates sensitive guest operating system in-
structions into API invocations of the underlying virtualiza-
tion architecture. The afterburner environment consists of
the L4 µ-kernel as the hypervisor, and user level components
that implement the virtualization services. For performance
reasons, a large fraction of the user level code executes in-
place, within the address-space of guest operating systems.
If necessary, for instance for reasons of security, the in-place
part calls into an external module named resource monitor,
which runs in a separate address space and has extended
privileges.

4.2 Virtual Machine Scheduling
With respect to scheduling and threading, the original after-
burner implementation differs substantially compared to our
new version. The original afterburner spawns an L4 thread
per guest user thread. The threads are then scheduled in-
transparently, according to the internal round-robin strategy
of L4, and without the guest operating system taking notice.

Our new architecture, in contrast, uses a completely re-
designed threading model, which enables scheduling that is
fully directed by guest operating system kernel. The ar-
chitecture constitutes a three-level scheduling hierarchy (see
Figure 5). At the highest level, a per-processor top-level

Top Level Monitor /

Main
User

Guest Kernel Guest User Applications VM Mgmt.

UserUser

Scheduler

relationship

Figure 5: 3-Tier Virtualization architecture

scheduler thread runs in the address space of the privileged
resource monitor and serves as scheduler for virtual proces-
sors. At the second level, each virtual processor is repre-
sented by two threads representing the guest kernel. One
guest kernel thread, named main, serves as the execution
context for the virtualized guest operating system code; the
other thread, named monitor, acts as the in-place resource
manager and scheduler of main. Finally, at the third and
lowest level, the afterburner spawns a thread per user level
address space and virtual processor, to execute guest user
code. Each user thread on a virtual processor is scheduled
by the main thread on that processor.

Our new scheduling model dictates that all user threads ex-
cept the one currently running are waiting for their main
thread, either for a preemption reply, or for a reply to an
exception or page fault. The virtualization logic translates
the iret instruction, issued by the guest operating system on
the main thread to transfer control to a user level program,
into an IPC reply to the waiting user level thread represent-
ing that program. Preemptions of the main thread, in turn,
are serviced by the monitor thread. The monitor itself is fi-
nally scheduled by the privileged top-level scheduler, which
associates itself with all interrupts and dispatches them ap-
propriately to the guest operating systems.

To illustrate the procedure of hierarchical scheduling, let
us consider the handling of the timer interrupt: At each
timer tick, the current user program thread is preempted
by the L4 kernel thread representing the hardware timer
interrupt. Thus it sends a preemption message to its cor-
responding main thread. According to the hierarchical pro-
tocol, the activated main thread is preempted itself by the
interrupt thread, and sends an IPC to the monitor thread.
The monitor finally sends a preemption message to the top-
level scheduler, where the chain ends. The activated top-
level scheduler receives both the interrupt message from L4
and the preemption message from the monitor thread, be-
fore it selects the next virtual processor to be granted the
processor. It then dispatches the next virtual processor by
sending an IPC reply to the corresponding monitor thread,
which was blocked waiting in the same manner as the mon-
itor thread preempted now.

4.3 Performance
We deemed several questions as relevant with respect to per-
formance: How expensive is preemption in terms of the basic
absolute overhead? How often does preemption happen in
a realistic scenario? Are the costs of the preemption logic
reflected in overall application performance? In the follow-
ing, we present measurements to answer those questions. We

7

conducted all measurements on a 3 GHz Pentium D830 with
2 GByte memory and an attached Intel E1000 Gigabit net-
work interface. Since the original afterburner version does
not support multi-processing, we used only one of the two
cores to ensure fair comparison.

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60

inter-AS
inter-AS ULS

 400

 600

 800

 1000

 0 10 20 30 40 50 60

Ti
m

e
(c

yc
le

s)

intra-AS
intra-AS ULS

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60
Message size (number of registers)

XCPU
XCPU ULS

Figure 6: IPC costs of L4 with support for user level
scheduling compared to the original version.

To quantify the basic overhead of adding user level schedul-
ing logic to the IPC path, we compared the call()-type IPC
of the original version against the same operation on our new
L4 version. We leveraged a ping-pong IPC micro-benchmark
that creates a pair of communicating threads that perform
message transfers back and forth. The benchmark measures
round-trip time for different message sizes; since transfer
times are short, the benchmark conveys messages repeat-
edly. Figure 6 lists the results in cycles, for inter- and intra-
address space, and for cross-processor IPC. The results state
the costs of additional scheduling logic to be at most about
50 percent of the native IPC costs. Since our design does
not change the call()-type IPC semantically, we attribute
the performance degradation of the single-processor IPC to
the increased complexity of the IPC code path and to under-
optimized code. We currently have no explanation for the
performance improvement of the cross-processor IPC. Alto-
gether, we consider the results to be not negligible, but still
tolerable.

In the next experiment, we determined frequency and direct
costs of hierarchical preemption in our three-tier scheduling
environment, as well as the overhead of the preemptions on
some selected benchmark applications. To measure direct
preemption costs, we measured the latency between the ac-
tivation of the L4 kernel interrupt handler and the actual
execution of the user level root scheduler thread associated
with the handler.

Since our environment does not trigger preemptions during
synchronous execution, the preemption frequency solely de-
pends of the number of interrupts and the levels in schedul-

ing hierarchy. To determine realistic values for the fre-
quency, we generated I/O load by executing the netperf

benchmark on a uniprocessor Linux guest operating system
installation, from the Gigabit NIC to an external client. We
also generated processing load, using two different applica-
tions. Firstly, we ran cpu, a small user program that loops
forever counting bits of a dummy value, which results in
guest application code being executed permanently. Sec-
ondly, we ran the Apache ab server benchmarking tool with
a concurrency level of 128, and with the 16 clients and the
server residing within the guest, resulting in substantial pro-
cessor load to handle the traffic on the loop-back device.

Workload F L Workload F L
IDLE 0 1.15 NET+CPU 48 3.26
CPU 3 2.78 AB 2 4.26
NET 16 2.22 NET+AB 38 3.39

Figure 7: Preemption frequency F [#
tick

] and inter-
rupt latency L [µs], under different workloads.

Figure 7 lists the results per timer tick (currently 2 ms). In
case of an idle processor, no preemption occurs; the inter-
rupt latency reflects the basic costs of delivery. In the case
of cpu running, the number of preemptions per tick is equal
to the number of hierarchies up to the guest user applica-
tions (i.e., 3); the interrupt latency raises accordingly. With
netperf running, the number of interrupts raises, but given
netperf is mostly I/O-bound and no other application are
running, interrupts often occur when the processor is idle;
thus the number of preemptions is equal to the number of
interrupts, but the interrupt latency drops. Accordingly, in
the next case where netperf and cpu execute concurrently,
the preemption frequency is three times as high, and the in-
terrupt latency raises again. In the last two cases ab causes
execution of a large amount of guest kernel; the guest is
therefore often preempted at level 2 in the scheduling hi-
erarchy. We attribute the higher interrupt latency to the
increased workload size of ab compared to cpu.

Figure 8 shows the throughput of netperf and the request
rate of ab compared to the original infrastructure and to
a native Linux installation. The throuhgput of netperf is
roughly comparable to the original architecture, while the
rate of ab drops by about 10 percent to 28 request per ms.

ULS Original Native
Workload T R T R T R
NET+CPU 933 - 930 - 940 -
AB - 27.8 - 31.3 - 146.2
NET+AB 934 13.4 151 29.6 940 97.0

Figure 8: NetPerf throughput T [MB
sec

] and Apache

request rate R [#req
ms

] of our architecture, compared
to the original infrastructure and to native Linux.

The benefits of user level scheduling are most evident when
netperf and ab run concurrently: With our new architec-
ture, ab throughput drops by 50 percent, while netperf stays
undisturbed. This is conforming to the outcome of the na-
tive installation, where ab throughput drops while netperf

performs alike as well. However, in the original version,
ab throughput stays equal, while netperf throughput drops

8

dramatically by 84 percent! We can clearly attribute that
behavior to the L4 kernel scheduler counteracting the inten-
tions of the Linux guest scheduler.

Altogether, the results lead us to the following conclusions:
hierarchical preemption incurs between 1.4µs and 2.1µs over-
head per level; in a realistic three-tier hierarchy the average
overhead amounts to about 156 µs per timer tick of 2 ms
maximum overhead under high I/O load, or 7.8 percent.
At application level, our architecture performs between 0
and 10 percent worse to the original in-kernel solution, but,
on the other hand, permits true and accurate user-directed
scheduling.

5. INSIGHTS AND LIMITATIONS
So far, we have evaluated our user level scheduling approach
solely for a virtual machine scenario. We have demonstrated
that the approach permits flexible, and completely user-
defined scheduling, provided the user application and com-
munication model is similar to the one presented. However,
the question whether our approach performs equally effec-
tive in a different scenario is still left unanswered. Given the
wide range and technical complexity of application scenarios
and of a modern µ-kernel, it was impossible for use to sub-
stantiate that our approach is generic and flexible enough to
fit every imaginable requirement. In the following section,
we therefore stick to a theoretical analysis of potential limi-
tations, as they may occur when trying to apply our scheme
to other problem domains. We also reason about ways to
overcome those limitations.

One of the key design decisions of our approach is that it
leaves the decision how to use processor time completely up
to the thread currently executing, rather than to its sched-
uler. Furthermore, the approach strives to render all kernel
primitives scheduling neutral in that it allows the sender to
specify the grantee of the processor at its own will. The
reasoning behind that decision is that the current thread
owns the processor until the next preemption; it could even
use its time for performing useless computation during that
time. However, our model implies that, for global schedul-
ing policies to work, each thread must implement parts of
the scheduling policy when activating other threads via sys-
tem calls. Also, in case there is no control over the exe-
cution of system calls, any scheduling policy may easily be
undermined. Consider, as an example, a scheduling pol-
icy with fixed priorities; with our scheme, nothing prevents
a high priority thread to activate a low priority thread via
IPC, even in presence of preempted medium priority threads
waiting for processor time.

From a resource management point of view, our user level
solution is not very different to an in-kernel solution, since
latter needs to track and schedule the correct thread af-
ter system call executions as well. In our eyes, there is no
general problem in shifting that task to a scheduling library
running at user level – apart from potential performance im-
plications, which we already have discussed. Still, our sys-
tem presently lacks appropriate control over arbitrary con-
trol transfers and their implications on priority inversion and
time isolation. Priority-based real-time scheduling schemes
hence remain an open problem not addressed by our current
approach.

A further implication arises from the recursive scheme dic-
tating the order of preemption messages generated when a
hardware preemption occurs. That scheme may be, to some
extent, considered as kernel scheduling policy – something
that we originally strived to remove from the kernel. Simi-
larly, the decision to treat blockings on destination threads
as implicit processor grants may be viewed as a default ker-
nel policy. However, we see those design decisions uncrit-
ical: The special semantics of blockings on single threads
solely stem from performance considerations; we see no de-
sign limit that hinders application of our scheduling inter-
face extension also for those types of calls. Our recursive
scheduling, in turn, merely reflects the hierarchical scheduler
arrangement intrinsic to L4. The scheme, however, is still
generic in that it allows user level components to arrange the
scheduling hierarchy according to their demands. To give an
example, a global in-kernel scheduler could be simulated at
user level, using a flat hierarchy with one global scheduler
per processor.

6. RELATED WORK
There exists a considerable body of research on the problem
of directing kernel scheduling from user level [2, 24, 1, 15, 9,
6]. To our best knowledge, none of the approaches has pro-
posed and evaluated a µ-kernel-based scheduling approach
that relies on a single communication primitive neutral to
protection domains for propagating scheduling information.

Two-level scheduling schemes are perhaps the most known
effort to user level scheduling. They employ both a kernel-
and a user level scheduler, and mechanisms allowing both
parties to propagate scheduling events and directions back
and forth [1, 15]. Two-level approaches typically require the
user level scheduler to reside within protection domain of
its threads; as a result, they must employ a residual ker-
nel scheduler and policy that “schedules the schedulers”. In
contrast, our solution provides a solution that is protection
domain neutral and does not require a kernel-level scheduler.

CPU inheritance scheduling very much resembles our ap-
proach in that it strives to overcome the rigidity of entan-
gled kernel scheduling in existing operating systems [6]. Like
our approach, CPU inheritance scheduling introduces a hi-
erarchical model, where threads wait for timing events and
schedule each other using a time donation primitive. CPU
inheritance scheduling differs to approach in two regards.
First, it employs separate kernel primitives to wait for and
donate processor time. We instead leverage a generic com-
munication mechanism, which simplifies the optimization
and allows to piggyback scheduling directions onto other ker-
nel operations. Second, CPU inheritance scheduling only
presents a preliminary evaluation; we have demonstrated
and evaluated our approach based on an existing and re-
alistic scenario.

Finally, there exist other approaches that directly address
the problem of scheduling on top of the L4 µ-kernel. The
reflective scheduling effort in [17] provides fine-grained real-
time scheduling on top of the original L4 kernel scheduler.
The Credo approach in [20] proposes a capacity-reserve do-
nation model and extension to the L4 µ-kernel to permit
proper resource accounting and real-time properties .

9

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel µ-kernel architec-
ture that strives to export the task of scheduling from the
kernel to user level. The key idea of the architecture is to
involve the user level whenever the µ-kernel encounters an
situation that is ambiguous with respect to scheduling, and
to allow the kernel to resolve the ambiguity based on user
decisions. A further key aspect is that our architecture re-
lies on a generic, protection-domain neutral mechanism to
vector scheduling state from the kernel to user level.

To evaluate our novel architecture, we have developed a hi-
erarchical user level scheduling architecture based on the L4
µ-kernel, and a virtualization environment running on its
top. Benchmarks indicate an application overhead between
up to 10 percent compared to a pure in-kernel solution, but
on the other hand, demonstrate that our architecture en-
ables effective and accurate user-directed scheduling.

While the question is still left unanswered whether our ap-
proach is generic enough to perform effective in different ap-
plication domains, we still our work as an insightful step to-
wards the development of more generic and flexible µ-kernel
scheduling schemes.

Acknowledgements
We would like to thank our shepherd, Michael Hohmuth,
and the anonymous reviewers for their in-depth comments
and helpful suggestions.

8. REFERENCES
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism.
In Proceedings of the 13th Symposium on Operating
System Principles. ACM Press, Oct. 1991.

[2] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn,
O. Krieger, M. Ostrowski, B. Rosenburg,
R. Wisniewski, and J. Xenidis. Scheduling in K42.
White Paper, Aug. 2002.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th Symposium on Operating
System Principles, Bolton Landing, NY, Oct. 2003.

[4] S. Biemueller and U. Dannowski. L4-based real virtual
machines - an api proposal. In Proceedings of the First
International Workshop on MicroKernels for
Embedded Systems, Sydney, Australia, Jan. 2007.

[5] Embedded Real-Time and Operating Systems Group.
NICTA L4-Embedded Kernel Reference Manual
(Version N1). Natioal ICT Australia, 2005.

[6] B. Ford and S. R. Susarla. CPU inheritance
scheduling. In Proceedings of the 2nd Symposium on
Operating Systems Design and Implementation,
Berkeley, CA, Oct. 1996.

[7] G. Heiser. Secure embedded systems need
microkernels. ;login: the USENIX Association
newsletter, 30(6), Dec. 2005.

[8] O. Krieger, M. Auslander, B. Rosenburg, R. W.
Wisniewski, J. Xenidis, D. D. Silva, M. Ostrowski,
J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig. K42: Building a complete operating
system. In Proceedings of the 1st EuroSys conference,
Leuven, Belgium, Apr. 2006.

[9] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T.
Barham, D. Evers, R. Fairbairns, and E. Hyden. The

design and implementation of an operating system to
support distributed multimedia applications. IEEE
Journal of Selected Areas in Communications, 14(7),
Sept. 1996.

[10] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb,
B. Leslie, and G. Heiser. Pre-virtualization: soft
layering for virtual machines. Technical Report
2006-15, Fakultät für Informatik, Universität
Karlsruhe (TH), July 2006.

[11] J. Liedtke. On µ-kernel construction. In Proceedings of
the 15th Symposium on Operating System Principles,
Copper Mountain, CO, Dec. 1995.

[12] J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig,
G. Heiser, N. Islam, and T. Jaeger. Achieved IPC
performance (still the foundation for extensibility). In
Proceedings of 6th Workshop on Hot Topics in
Operating Systems, Cape Cod, MA, May 1997.

[13] J. Liedtke, N. Islam, and T. Jaeger. Preventing
denial-of-service attacks on a µ-kernel for WebOSes.
In Proceedings of 6th Workshop on Hot Topics in
Operating Systems, Cape Cod, MA, May 1997.

[14] J. Liedtke and H. Wenske. Lazy process switching. In
Proceedings of 8th Workshop on Hot Topics in
Operating Systems, Schloß Elmau, Oberbayern,
Germany, May 2001.

[15] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos. First-class user-level threads. In Proceedings
of the 13th Symposium on Operating System
Principles. ACM Press, Oct. 1991.

[16] S. Ruocco. Real-time programming and L4
microkernels. In Proceedings of the 2006 Workshop on
Operating System Platforms for Embedded Real-Time
Applications, Dresden, Germany, July 2006.

[17] S. Ruocco. User-level fine-grained adaptive real-time
scheduling via temporal reflection. In Proceedings of
the 27th IEEE International Real-Time Systems
Symposium, Rio de Janeiro, Brazil, Dec. 2006.

[18] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum,
M. Rajagopalan, R. L. Hudson, L. Petersen,
V. Menon, B. Murphy, T. Shpeisman, E. Sprangle,
A. Rohillah, D. Carmean, and J. Fang. Enabling
scalability and performance in a large scale CMP
enviroment. In Proceedings of the 2nd EuroSys
conference, Lisbon, Portugal, Mar. 2007.

[19] J. S. Shapiro. Vulnerabilities in synchronous IPC
designs. In IEEE Symposium on Security and Privacy,
Los Alamitos, CA, May 2003.

[20] U. Steinberg, J. Wolter, and H. Härtig. Fast
component interaction for real-time systems. In
Proceedings of the 17th Euromicro Conference on
Real-Time Systems, Palma de Mallorca, Spain, July
2005.

[21] J. Stoess, C. Lang, and F. Bellosa. Energy
management for hypervisor-based virtual machines. In
Proceedings of the USENIX 2007 Annual Technical
Conference, Santa Clara, CA, June 2007.

[22] J. Stoess and V. Uhlig. Flexible, low-overhead event
logging to support resource scheduling. In Proceedings
of the Twelfth International Conference on Parallel
and Distributed Systems, volume 2, Minneapolis, MN,
July 2006.

[23] The L4Ka Team. L4 Kernel Reference Manual
(Version X.2). Universität Karlsruhe, 2004.

[24] A. Tucker and A. Gupta. Process control and
scheduling issues for multiprogrammed
shared-memory multiprocessors. In Proceedings of the
12th Symposium on Operating System Principles.
ACM Press, Dec. 1989.

[25] V. Uhlig. Scalability of Microkernel-Based Systems.
PhD thesis, University of Karlsruhe, Germany, May
2005.

[26] VMware Inc. ESX Server Data Sheet, 2006.

10

