
Evaluating POSIX-Compatibility on Top of a

Component-Based Operating System

Studienarbeit

Stefan Götz
System Architecture Group

Universität Karlsruhe
sgoetz@ira.uka.de

2001.12.07

1

2

Abstract

This study thesis investigates how the GNU C library can be ported
to the SawMill operating system identifying and proposing solutions for
relevant design issues, and describing details of their implementation.

CONTENTS 3

Contents

1 Introduction 5
1.1 Motiviation . 5
1.2 Goal . 5

1.2.1 The POSIX Emulation 5
1.2.2 Specific Objectives 6
1.2.3 Summary . 6

2 Related Work 7
2.1 POSIX Emulation on Micro Kernels 7

2.1.1 The GNU Hurd . 7
2.2 POSIX Emulation on Windows Systems 7

2.2.1 Emulation Libraries 7
2.2.2 Emulation Subsystems 8

3 Basics 9
3.1 POSIX . 9

3.1.1 Files . 9
3.1.2 Processes . 9
3.1.3 Address Spaces and Memory Management 9
3.1.4 Communication . 10
3.1.5 Security . 10

3.2 The GNU C Library . 10
3.3 L4 . 11
3.4 SawMill . 11

3.4.1 Dataspaces . 11
3.4.2 Threads and Tasks 12
3.4.3 System Services . 12

4 Design 14
4.1 The Emulation Approach 14

4.1.1 Decentralization of Data 14
4.1.2 Atomicity . 15

4.2 Focussing our Goal . 15
4.3 Emulation Strategies . 16

4.3.1 Processes . 16
4.3.2 Files . 16
4.3.3 File Operations . 16
4.3.4 Signals . 17
4.3.5 Copy-on-Write . 18
4.3.6 Loading and Linking 18

4.4 Required Base Services . 18

5 Implementation 19
5.1 Files . 19
5.2 Memory Management . 20
5.3 Signals . 20
5.4 The Copy-on-Write Server 21

6 Conclusions 22

CONTENTS 4

7 Future Work 23
7.1 The fork() and exec() Functions 23
7.2 The select() Function . 23
7.3 Resource Management . 23
7.4 Process Management . 24
7.5 Terminal I/O . 24
7.6 Additional POSIX Features 24
7.7 Performance Evaluation . 25

8 Appendix A: The Start-up Environment 26

9 Appendix B: Installation and Usage 27
9.1 Installing SawMill . 27
9.2 Installing the GLIBC . 27
9.3 Compiling and Linking Applications 27

1 INTRODUCTION 5

1 Introduction

SawMill is a multi-server operating system based on the L4 micro kernel.
Currently, there is a small number of applications available. It is desirable
to support a wide variety of applications, both to establish SawMill as
a productive system and to evaluate the system. When using existing
applications for this purpose we can benefit from a significantly reduced
implementation effort, and the possibility to directly compare application
performance of SawMill and other systems.

Running existing applications on top of SawMill requires an emulation
layer which maps SawMill’s component based services to the application’s
native operating system interface. We aim to create a POSIX layer on
top of SawMill by modifying the GNU C library, which itself is designed
as a POSIX interface on top of underlying operating systems.

This thesis investigates how the GNU C library can be ported to
SawMill. This includes identifying the relevant design issues and propos-
ing solutions for them as well as a description of how the changes to the
GNU C library were implemented.

1.1 Motiviation

One goal of SawMill is to run existing standard applications on top of it.
Such a setting would allow us to examine the employed concepts from an
architectural point of view as well as their implications on performance.
This can tell us, how applications need to be designed or modified so they
can benefit most from SawMill’s component structure.

1.2 Goal

Our basic goal is to create a – initially partial – POSIX emulation envi-
ronment on top of SawMill.

1.2.1 The POSIX Emulation

We chose POSIX as the platform to emulate for the following reasons:

• POSIX is both a well established and widely used standard. A large
application base is available.

• Many applications are open source allowing us to inspect and modify
them where necessary.

• The POSIX interface is usually provided via a C library instead of
beeing fully implemented in the operating systems. This gives us the
opportunity to use the C library itself as an emulation layer instead
of creating one from scratch.

The GNU C library was chosen for similar reasons: it is very commonly
used by the programs we are interested in, published as open source and
its structure is well-suited for porting to new operating systems.

It is clearly beyond the scope of this thesis to provide propositions or
implementations for all GLIBC features on top of SawMill. Therefore,
we narrowed our focus on a subset of its functionality which supplies a
reasonable feature base for applications and reduces the implementation
effort to a manageable amount.

In order to reach a very basic level of functionality the following GLIBC
mechanisms need to be implemented: support for the POSIX memory

1 INTRODUCTION 6

model and basic file and terminal I/O. This feature set gets a simple
’Hello World’ program up and running.

Dynamic linking and loading is interesting for us as we want to learn
about the effects of code sharing on native SawMill programs. Since this
functionality can be achieved with an acceptable amount of extra work
based on the features mentioned before, we decided to support it both
for standard programs linked with the modified GLIBC and for SawMill
components.

To provide the basic interface the emulation also needs to include pro-
cess management, process creation via fork, signals and terminal related
functions. We decided to flesh out the emulation to the extent that a
simple shell can be linked and run with the modified library and users
can start other applications linked with it.

1.2.2 Specific Objectives

We aim at emulating the following features:

• Memory Management: malloc() via brk()

• File and Terminal Access: file name resolution, open(), close(),
read(), write(), mmap(), select()

• Signals: raise(), kill() and all other signal related POSIX func-
tions

• Application Execution: fork(), exec()

• Dynamic Linking and Loading

1.2.3 Summary

Based on the GLIBC, our primary goal is an emulation framework for
fundamental POSIX facilities, which relies on SawMill’s system services.
The interfaces to the SawMill services need to be designed in an extensible
fashion so the implementation can initially cover the most relevant aspects
and later be enhanced step by step.

We expect that this process leads to a re-evaluation of existing SawMill
component interfaces and yields valuable insights for future component
design.

2 RELATED WORK 7

2 Related Work

The importance of the POSIX standard is underlined by the number of
solutions developed to achieve POSIX compatibility on top of non-POSIX
systems. This chapter gives a brief overview of the different approaches
that have been implemented to achieve this goal.

2.1 POSIX Emulation on Micro Kernels

Component based and multi server operating systems like SawMill can-
not rely on a well-established interface tailored to their demands and
strengths. To run standard applications they need to emulate more tradi-
tional OS interfaces like POSIX or they are explicitely designed to provide
a UNIX like interface to applications.

2.1.1 The GNU Hurd

The GNU Hurd is a multi-server operating system based on the Mach
kernel. The GNU C library serves as an intermediate layer between the
Hurd system components and applications providing a POSIX compatible
operating system interface. It is to be regarded as part of the operating
system with fundamental POSIX semantics (e.g. users) being integral to
Hurd components.

The Hurd allows users to exchange certain system components with-
out compromising the security and stability of the complete system. It
extensively follows the UNIX concept of mapping all system objects into
the global file name space.

The performance of the Hurd is substantially impacted by Mach’s slow
user-to-user IPC and expensive user-level page fault handling [CB93][Lie95].

2.2 POSIX Emulation on Windows Systems

The attempts of emulating the POSIX interface on Windows are mainly
targeted at reducing the effort necessary for porting existing programs
from UNIX to Windows systems and have thus yielded a variety of prod-
ucts based on two fundamentally different emulation concepts.

2.2.1 Emulation Libraries

RedHat’s Cygwin [Noe98] and UWin [Kor97] developed by AT&T as well
as NuTCracker from Datafocus and Portage from Consensys are similar
in their basic design. They mainly consist of a dynamic link library which
emulates the POSIX functions. Applications that are linked against it
execute in the standard Win32 environment thus also allowing the invo-
cation of Win32 functions from such applications.

The basic emulation strategy is similar to our concept of implementing
system services in a library which makes use of system components. These
products therefore face similar problems as our approach and it should
prove useful to investigate their design choices for specific emulation issues.

Files are emulated based on the underlying Windows file system. Apart
from problems like the different name space layouts and different line
termination characters the emulation is straight forward.

2 RELATED WORK 8

Signals are emulated via a signal thread running in the address space
of the application. The library’s emulated system calls are protected by
synchronization mechanisms to detect or prevent the occurrence of signals
in these functions.

The fork() Function is implemented by creating a new address
space and the management data structures for the child in the emula-
tion library, copying the contents of the parent’s to the child’s address
space and restoring the parent’s execution context in the child. Since
this approach is inefficient due to the lack of copy-on-write semantics and
multiple task switches between the parent and the child, and the emula-
tion of the exec() function is faced with similar problems, both Cygwin
and UWin implement a spawn family of functions which resemble task
creation on Win32 system much closer and perform considerably better
than the fork()/exec() function pair.

The select() Function in Cygwin relies on a Win32 equivalent for
sockets. When applied to file descriptors, a thread is created for each de-
scriptor polling for activity. This causes considerable resource consump-
tion and a more efficient method should be implemented in SawMill.

2.2.2 Emulation Subsystems

On WindowsNT, a kernel provides essential hardware independent ser-
vices to functional subsystems (like security and I/O) and environment
subsystems (e.g. Win32, Microsoft POSIX, OS/2) which implement higher
level functionality accessible to applications. Since the POSIX subsystem
implemented by Microsoft is very restricted, OpenNT [Wal97] was devel-
oped by Softway Systems to create a more complete UNIX environment
on top of the WindowsNT kernel.

OpenNT mainly consists of the UNIX subsystem itself, a terminal
session manager for each terminal group and a dynamic link library inter-
facing to the UNIX subsystem and handling some system service requests
directly.

Unfortunately, there is no detailed information on the actual imple-
mentation. It can be assumed though that most services are provided by
the UNIX subsystem and OpenNT is effectively similar to a monolithic
kernel in contrast to the libary approach.

3 BASICS 9

3 Basics

This chapter covers the fundamental paradigms of the systems involved
in our emulation goal: POSIX, the GLIBC, L4 and SawMill, .

3.1 POSIX

The POSIX standard defines a portable operating system interface. Com-
pared to L4 and SawMill, it mainly covers higher level concepts which are
described in this chapter.

3.1.1 Files

POSIX characterizes files as objects that can be written to or read from or
both. Files have certain attributes, including access permissions and type
and are usually named. File types include physical files, IPC facilities and
devices.

Depending on the file type, files can only be accessed via a handle
returned by the open() function which performs access control. After
opening a file, applications use the read() and write() functions to access
the file’s contents. The operating system copies the data to be read from
the file to a memory buffer specified by the application (for write, the
data is copied from the buffer). Depending on the file type, the mmap()

function allows mapping a file into virtual memory so the application can
access it by directly reading from or writing to memory.

3.1.2 Processes

POSIX calls an execution context a process. A process executes in an
address space. Originally, address spaces held only one process. The
pthreads (POSIX-threads) specification introduces the thread as execution
context. A single address space can be occupied by multiple threads.
Linux on the other hand allows processes to share page tables, i.e. address
spaces. These extensions are not covered here, we deal with one process
per address space.

New processes can be created by any existing process via the fork()

function. An execution environment for the new process is created by
duplicating the address space contents of the creator so that the states
of parent and child process are largely identical when the fork() returns.
The new process starts to execute as if itself just returned from fork().

The exec() function allows processes to discard the contents of their
address spaces to load and run a specified executable.

3.1.3 Address Spaces and Memory Management

POSIX specifies a flat address space model. Address spaces are created
together with new processes by calling the fork() function. The new
address space is initially constructed as a duplicate of the invoker’s address
space.

POSIX address spaces are described by file mappings. A file mapping
is an association of a part of an address space with a portion of a file.
Accesses to virtual memory are effectively accesses to the associated file’s
contents. File mappings with special semantics, e.g. a mapping that is
backed by anonymous memory, are provided by operating systems via
special files that are not represented as physical files.

3 BASICS 10

3.1.4 Communication

POSIX defines the following mechanisms for communication between pro-
cesses, tailored for notification, synchronization or data exchange.

Signals are software interrupts notifying processes of internal or external
events, such as program errors, asynchronous I/O events or process
control events. The majority of signals can be caught and processed
in handler functions provided by the application.

Pipes allow two processes to exchange data in a first-in first-out fashion
via the read() and write() functions. Anonymous pipes connect a
parent and a child process, named pipes can be accessed like files by
unrelated processes.

Sockets form an advanced and more generalized communication channel
between possibly unrelated processes. Sockets support addressing
in different name spaces and different protocols for data exchange.
Sockets are accessed via the read() and write() functions. Oper-
ating systems usually map their network subsystem functionality to
the socket interface.

Message Queues allow one or more processes to write messages, which
will be read by one or more reading processes. The operating sys-
tem is responsible for synchronizing applications that access message
queues.

Semaphores provide a synchronization point for processes.

Shared Memory multiple processes can share memory in their virtual
address spaces for communication, synchronization and data sharing.

All these mechanisms are protected from processes via POSIX access
rights described next.

3.1.5 Security

POSIX introduces the concept of users classified into groups. They are
identified by unique user IDs and group IDs respectively. All files and
processes are associated with a user ID and one or more group IDs. Access
control is performed by comparing these IDs when processes try to access
files or interact with other processes. Note that this protection scheme
applies to all objects that are represented as files, e.g. devices.

3.2 The GNU C Library

The GNU C-Library provides such common operations as input/output,
dynamic memory allocation or string manipulation as well as a POSIX
interface implementation to applications. It is based on a low-level inter-
face consisting of POSIX core functionality and other basic features (e.g.
for synchronization).

GLIBC’s exposes an architecture-dependent interface which needs to
be implemented on new architectures. Stubs are provided for all func-
tions that are part of this low-level interface. Architecture-dependent
implementations of the functions are grouped per architecture. Together
with the build mechanisms, this increases GLIBC’s portability to new
UNIX-like platforms.

The build process takes the base architecture as an argument and
links the library with the corresponding function implementations. If

3 BASICS 11

such an implementation is not available for the specified platform, the
corresponding generic stub is used. This mechanism allows to build the
library with a narrow interface to the base platform while applications
can access all GLIBC features this interface is sufficient for.

3.3 L4

On the L4 micro kernel, a task represents a set of threads running in an
address space; tasks are structured flatly.

The threads in different tasks can communicate with each other via
IPC. L4 IPC is synchronous, blocking and unbuffered.

The hierarchical L4 address space concept follows a map-grant model
based on user-level pagers.

For more detailed descriptions, see [Lie99, Lie98].

3.4 SawMill

SawMill represents a configurable multi-server operating system frame-
work. It aims at de-composing complex systems into sets of components
with well-defined interfaces and well-understood protection mechanisms
([GJP+00]). The basic framework consists of and utilizes a number of
system services implemented by libraries and system components which
are covered in this chapter.

3.4.1 Dataspaces

The virtual memory model of SawMill is based on the notion of dataspaces
([ALP+01]). A dataspace is a logical unstructured data container and can
be used to abstract files, frame buffers, anonymous or physical memory
and so forth.

Applications can access dataspaces via virtual memory by attaching
them to a region of their address space. Figure 1 illustrates a scenario
where dataspaces D1 and D2 are rooted in address space A0 and attached
to regions in the address spaces A1 and A2. D2 is additionally attached
to a region in A2.

� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �

� �� �� �� �� �
� �� �� �� �� �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �

� � �� � �� � �� � �
	 	 		 	 		 	 		 	 	

� �� �� �� �� �

� �� �� �� �

� �� �� �� �
� �� �� �� �

DSDS

A 2A1

Dataspaces1 2

Manager’s
Address Space

Region

Figure 1: Relationship between address spaces, dataspaces, and regions

3 BASICS 12

Dataspaces are implemented by dataspace managers which determine
the semantics of their hosted dataspaces. In Figure 1, the application
running in address space A0 might represent a dataspace manager.

The region map is a address space specific object that manages the
association of virtual addresses with regions and the attached dataspaces.
It is implemented by a region mapper thread, usually running in the ad-
dress space the managed region map describes. Region mappers act as
L4 pagers for other threads running in the address space. When such a
thread causes a page fault, the region mapper receives a page fault IPC
and translates it into a map request. The request is sent to the dataspace
manager associated with the region that covers the faulting address. Both
the region mapper and the dataspace manager are free to apply any policy
for page fault resolving. A standard implementation of the region mapper
is provided by the SawMill environment.

Dataspace managers must support a standard set of operations. Ex-
cept for open, the operations are accessible through a common interface.

Open Opens a dataspace for access. The request provides name resolu-
tion (e.g. for files) and can support open modes such as read-only
and read-write. After calling Open, a client is authorized to access
the dataspace identified by the returned ID.

Close Makes the dataspace inaccessible. All virtual memory pages mapped
to the application are revoked. The dataspace ID can optionally be
invalidated.

Transfer The authority over the dataspace is moved to another client.
The new owner can perform any operation on the dataspace as if
it had opened it. The former owner loses any authority over the
dataspace as if it hat closed it.

Share The authority over the dataspace is shared with another client.
The new owner can perform any operation on the dataspace as if it
had opened it. The dataspace is closed after all share-holders have
invoked the close operation.

Map Requests a mapping from the dataspace manager at an offset in the
dataspace. This operation is used to resolve page faults.

Currently, existing SawMill servers do not fully comply with this stan-
dard due to ad-hoc implementations. Also note, that the described oper-
ations reflect the semantics of the current implementation and differ from
[ALP+01].

3.4.2 Threads and Tasks

SawMill provides a flat view onto tasks, parent-child relationships are
not explicitly maintained. Applications can freely create new threads
in their address spaces without the interference of any SawMill system
entity. L4 allows only a privileged component to create and delete tasks.
Conceptually, this role is played by the SawMill task server.

3.4.3 System Services

Resource Management L4 restricts certain operations to a privileged
thread which is the resource manager in SawMill. It provides ac-
cess to interrupts, physical memory and task creation and deletion
functionality.

3 BASICS 13

Task Management The SawMill task server exports task management
functionality to the rest of the system.

Name Resolution The root name server provides a hierarchical name
space for the system. Names can be associated with a tupel [server,handle]
identifying an object in a server. The name resolves a given name
either to such a tupel or to a server ID and a remaining name that
has to be further resolved by the indicated server.

Anonymous Memory A dedicated dataspace manager provides anony-
mous memory as dataspaces.

Copy on Write Facility Copy on write functionality can be achieved
with a library or with a specific dataspace manager. See the Design
section for more details.

Region Mapping Each address space contains a standard region map-
per resolving page faults. The region mappers themselves are paged
by a central region mapper component.

File Access Files can be accessed as dataspaces at the file provider.

4 DESIGN 14

4 Design

This chapter explains the basic concept of our POSIX emulation, the
fundamental problems caused by that concept and the strategies employed
to reproduce specific POSIX functionality on SawMill.

4.1 The Emulation Approach

Using GLIBC, there are two options to achieve a POSIX emulation on
top of SawMill - an additional support layer between SawMill and GLIBC
and directly integrating the emulation in GLIBC:

The first alternative requires building a component that offers the low-
level functionality required by GLIBC. The C-library itself only needs to
be linked directly with that component. It integrates all necessary fea-
tures (like the POSIX read/write file interface) centrally. This component
relies on SawMill system services e.g. to provide file access. All low-level
features necessary for GLIBC that do not correspond to SawMill abstrac-
tions are handled inside this component.

In the second approach, the functionality required by GLIBC’s low-
level interface is implemented directly in the corresponding function stubs
of GLIBC. Thus, the layer of POSIX compatibility is established inside
and on top of GLIBC but not below.

Disadvantages of this solution:

• POSIX compatibility is only given after GLIBC is initialized. During
the start-up phase of a process the implementation must take care
of this fact.

Advantages of this solution:

• Due to the library concept, the emulation executes inside the client
application’s address space; therefore it can operate on native SawMill
objects (e.g. dataspaces) yielding better flexibility and performance.

• A central component providing POSIX semantics would penalize ap-
plications with the IPC overhead caused by communication between
the application and that component.

• A component for POSIX emulation represents both a performance
bottleneck and a single point of failure.

4.1.1 Decentralization of Data

When moving from a monolithic to a multi-server system, formerly cen-
trally handled data is distributed among components. In our scenario,
data is kept inside the process’s address space instead of being adminis-
tered in a central component. This has implications on how the data is
accessed, shared and managed.

The removal of a protection boundary between the application and its
related data improves access time as no IPC or mode switch is necessary.
Sharing of this data between multiple tasks becomes more complex. Tasks
either have to arrange for an adequate sharing scheme based on the avail-
able system primitives (e.g. shared memory on L4) or they use a central
component. Whether data is handled in a central managing component
or not depends on many factors, the most important being security and
performance.

4 DESIGN 15

For example, in our GLIBC emulation file descriptors identify datas-
paces or devices managed by system components. Since these compo-
nents perform the necessary access control operations based on the native
SawMill objects, the file descriptor data can be safely handled in the
client’s address space.

4.1.2 Atomicity

Many POSIX functions need to be performed atomically. If such a func-
tion is performed as a system call in a monolithic system, this atomicity is
implicitly given (on single-processor machines). Our emulation approach
involves the multiplexing of POSIX functions to possibly multiple accesses
to SawMill system servers and the handling of data in user space instead
of kernel space, thus the atomicity of such functions is generally lost. The
implementation has to re-establish pseudo-atomicity of emulated func-
tions through adequate locking and synchronization protocols to retain
their semantics.

As an example, POSIX demands that two semi-concurrent invocations
of the write() function on the same file contents are executed atomi-
cally and the file completely reflects the modifications incurred by one of
the write() calls. When a monolithic system implements write() in a
blocking fashion this property is implicitely given. With a non-blocking
write(), it has to be ensured explicitely by the kernel which has full
control over the operation.

In our emulation, the write() function performs an in-memory copy of
data with no system servers being involved (except on page faults). Thus
the atomicity property of write needs to be achieved explicitely within
the write() function executing inside the caller’s address space. How
atomicity is established in this case is a design issue of the file operations.

4.2 Focussing our Goal

The GNU C library is by now very rich in its concepts and its functionality
reaching from extensions like thread packages to application programs. It
is clearly beyond the scope of this thesis to provide propositions or imple-
mentations for an emulation support of all GLIBC features. Therefore,
we have to narrow our focus on a subset of its functionality which sup-
plies a reasonable base of features for applications and keeps the involved
implementation effort in a manageable range.

In order to reach a very basic level of functionality the following GLIBC
mechanisms were obviously necessary: supporting the POSIX memory
model and basic file and terminal I/O. This feature set will get a simple
’Hello World’ program up and running.

To provide the essential POSIX interface, the emulation also needs to
include process management, process creation via the fork() function,
signals, advanced I/O functionality like the select() function and termi-
nal related functions.

This set now allows running simple POSIX programs and serves as a
fundament for further development to enhance and enrich the functional-
ity offered by the GLIBC port.

To illustrate the feasibility of this task, we decided to flesh out the
emulation to the extent where a POSIX shell program can be linked and
run with our modified GLIBC, allowing users to use the shell for starting
other applications linked with the library.

4 DESIGN 16

Dynamic linking and loading is also interesting for us as we want to
learn about the effects of code sharing on native SawMill programs. Since
this functionality can be achieved with an acceptable amount of extra work
based on the features mentioned before, we decided to support it both
for standard programs linked with the modified GLIBC and for SawMill
components.

4.3 Emulation Strategies

The following chapter describe which strategies were chosen to emulate
specific aspects and features of GLIBC based on our underlying emulation
approach.

4.3.1 Processes

To protect POSIX processes from each other, each process is emulated by
an L4 task. Thus, existing SawMill concepts and components can be used
easily (e.g. the management of dataspaces via a region mapper thread).

The association between POSIX process IDs and L4 thread IDs needs
to be managed within the trusted computing base and be accessible by
system servers to prevent client tasks from abusing their POSIX identity.
A possible solution would be a process server keeping track of this in-
formation as well as providing access to other data related to a POSIX
process like user and group ID. For more details see the chapter on future
work. The remaining part of this chapter assumes that a service providing
this information is available.

4.3.2 Files

The emulation provides access to files via the dataspace paradigm. A
file dataspace is mapped into the application’s address space for reading
and writing. This approach is natural as it gives us the full flexibility of
the SawMill dataspace concept allowing, for example, a conceptually very
simple integration of copy-on-write semantics or partial mappings of large
files.

In the current implementation, the file provider does not integrate with
SawMill’s name resolution scheme. It uses a separate name space for the
files it manages. A generalized approach should initialize the application
with a path prefix identifying the root of the application’s file name space
in SawMill’s global name space.

4.3.3 File Operations

The association of a memory region with a file dataspace and the corre-
sponding dataspace manager is established by the open() function. Access
control is performed on the server side as part this operation.

The read() and write() operations are emulated by copying memory
between the user buffer and the appropriate memory location where the
file is mapped. POSIX has very specific requirements about how these
functions handle blocking and non-blocking I/O, signals and what error
conditions can occur. Such aspects are currently not covered by our im-
plementation.

The mmap() operation closely resembles the attaching of a dataspace.
All mappings are located in a memory region reserved for this purpose.
Requests for mappings of large files can be satisfied by mapping a smaller

4 DESIGN 17

dataspace window whose offset is adjusted according to the accessed file
locations. If the application requests a private mapping, the emulation
uses SawMill’s copy-on-write service to establish private copy-on-write
access to the file dataspace. If an anonymous mapping is requested, the
emulation backs the mapping with an anonymous memory dataspace.

File operations depend on the file they are invoked on. E. g. file access
is performed as described above while terminal I/O might be based on
IPC communication with a server component. Thus, every file has to
be associated internally with its appropriate set of access function which
are used for demultiplexing when the generic version of these functions is
called by the application or GLIBC.

4.3.4 Signals

An implementation of POSIX signals must provide these fundamental
properties:

Signal Sources Signals can be generated synchronously, i. e. by the re-
ceiver itself, or asynchronously, by events outside the control of the
receiving process.

Signal Handling Signals cause either a registered handler function to
run inside the process’s address space or a default action to be per-
formed. Via a signal mask, a process can block or ignore specific
signals.

Transparency Signal handling is transparent to the process as long as
the handler function or default action do not modify its state explic-
itly.

Nesting Signal handler functions can be interrupted by signals in a hi-
erarchical nesting scheme.

These requirements are met by emulating inter-task signals via IPC.
A signal thread, which is introduced into every task, is responsible for
receiving IPC messages representing signals. When this happens, the
signal thread puts the main thread into a generic signal handler function.
That function is called directly when the process raises a signal to itself.
This allows for signal nesting, it is transparent to the main thread and
signal handler functions can be easily integrated.

The POSIX standard demands that a user program may not install
handler functions for certain signals. Our emulation keeps the signal han-
dler information completely under the control of user programs, so while
the emulation library functions do not permit to establish prohibited user
signal handlers, the user program is able to modify this data to circumvent
such restrictions.

Access control is performed on the receiver’s side in the signal thread
to prevent unauthorized processes from manipulating other processes via
signals. Signals that non-cooperatively delete a task need to be trans-
formed into a request to the task server. This scheme is to be regarded as
a temporary approach as it makes the signal thread vulnerable to denial
of service attacks. Instead, signals could for example always be delivered
via a signal or notification component.

Error signals caused by hardware exceptions can be emulated via ade-
quate exception handlers installed in the task’s interrupt descriptor table
(which is in turn emulated by L4).

4 DESIGN 18

4.3.5 Copy-on-Write

The copy-on-write technique allows reducing memory consumption and
copying overhead for memory copies on systems with shared memory.

Currently, there is a copy-on-write library available in SawMill. It
simplifies the implementation of this mechanism for dataspaces in datas-
pace managers. With a library, copy-on-write versions of dataspaces can
only be constructed if the corresponding dataspace manager implements
copy-on-write.

A different approach is to construct a copy-on-write dataspace from
the source dataspace with a copy-on-write dataspace manager. The re-
sulting dataspace is hosted by that dataspace manager and requires no
modifications in the source dataspace manager. In this solution the copy-
on-write handling is not optimized for each dataspace type. Its flexibility
though was our main motivation to implement such a component.

4.3.6 Loading and Linking

In the SawMill environment loading and linking can be performed either
internally or externally.

External loading makes use of a loader component which provides the
binary to be run as one or more dataspaces. After attaching them to a
new task it starts executing. Dynamic linking can also be carried out
by the loader component. Interpreters that may be specified in an elf
binary to prepare or undertake its execution cannot be run by the loader
component without additional security measures.

With internal loading, a new task starts executing a simple start binary
which loads and initializes the binary to be run inside the new task’s
address space. This process can also include dynamic linking and the
execution of elf interpreters.

In our scenario we can specifically benefit from the second approach:
with the basic GLIBC features available, existing elf interpreters can be
used, namely ld.so, the dynamic linker included in GLIBC.

4.4 Required Base Services

The implementation of the emulation strategies mentioned requires a set
of base services on which it can be founded. These services are:

1. name resolution: to dynamically access system components.

2. task management: for creating and deleting tasks.

3. anonymous memory dataspaces: to back memory for management
data and application memory requirements like the stack and the
heap.

4. copy-on-write for dataspaces: to provide copy-on-write semantics
where required by POSIX and to permit access control on dataspaces
for copy-on-write data.

5. external region mapper: to flexibly back internal region mappers as
part of address space initialization.

6. file dataspaces: to run executables and make files available to the
application.

These services are provided by generic SawMill components (see Ap-
pendix A for further details on system setup).

5 IMPLEMENTATION 19

5 Implementation

5.1 Files

By design files are emulated via SawMill dataspaces. The SawMill file
provider component supports resolution of file names and exports file
contents as dataspaces1. Advanced file system functionality like directory
handling is currently not supported. Such features require a full imple-
mentation of a file system under SawMill.

File Related Data The files opened by a process are represented by
file objects. They are created in the open call and describe the dataspace
they are associated with. A file object holds a set of pointers to the
operations which can be performed on that file. The state associated
with a file like the current read position or open time flags are also stored
in the file object structure.

The files structure describes all files currently opened by a process. It
contains the process’s file descriptor tables and synchronization variables
which are used by all functions accessing the file management data to
prevent data corruption.

The operations which can be performed on an object identified by a
file descriptor depend on the object type and are associated with each
file object. In Linux they are retrieved from the underlying inode objects
which are currently not available in our emulation scheme. Therefore, the
file descriptors 0, 1 and 2 are initially associated with terminal opera-
tion functions, all others file descriptors are associated with file dataspace
operations on open.

File Operations The open operation is responsible for opening and
attaching a file dataspace for the specified file, allocating a new file object,
assigning it a new file descriptor and augmenting it with all file handling
data. These are the associated dataspace id and manager, the position of
the dataspace in the address space and all data necessary for implementing
the access operations. The close operation closes and detaches the file
dataspace and frees the management data structures.

The read and write operations retrieve the file object identified by
the specified file descriptor, look up the memory location of the associated
file dataspace and copy memory to/from the specified user buffer at the
current file position.

Calling mmap results in opening the specified file dataspace and attach-
ing it. Each address space contains a pool for such attached dataspaces.
Attaching smaller parts of large files is not yet implemented. The munmap

operation is mostly equivalent to the close operation.
If a private mmapping is requested the emulation opens and attaches

a copy-on-write version of the file dataspace via the copy-on-write server.
For anonymous memory mmappings, instead of a file dataspace a anony-
mous memory dataspace from the dm anon SawMill server is used. Read
or write access control to mmapped memory is currently not supported.

1Although file dataspaces are writable, the modified data is not written back to disk by
the file provider, i. e. writing to a file is not supported.

5 IMPLEMENTATION 20

5.2 Memory Management

Application Heap The application’s heap is managed by GLIBC’s
malloc() and free() functions. These functions require the functions
brk(), sbrk() and getpagesize() to be implemented.

The getpagesize() function referenced by malloc() currently returns
a fixed value of 4096 bytes representing the default page size on the x86
architecture.

The brk() function, responsible for resizing the data segment, is em-
ulated by adjusting a break value in a anonymous memory dataspace.
Currently, a fixed size area in the task’s address space is reserved for this
dataspace. The break value can range between its lower and its upper end
as requested by GLIBC. This scheme can be improved by extending this
range dynamically to keep the reserved but unused space in the address
space and region map respectively small.

The sbrk() function, which is equivalent to brk() except using a rel-
ative instead of an absolute value, wraps brk() in a straightforward man-
ner.

Application Stack The application’s stack currently resides in a fixed
memory range and is backed by an anonymous memory dataspace. This
solution is sufficient for the moment but needs to be improved by stack
overflow detection and handling.

5.3 Signals

Signals are emulated via IPC received by a signal thread which is run in
each task. When a signal IPC arrives, the signal thread puts the main
thread into a signal handler function. The previous execution context
as well as the signal ID make up the arguments of this handler function
which, after handling the signal, resumes to the code executed when the
signal arrived.

The signal handling function is responsible for managing signals in
a POSIX compatible fashion. It checks whether signals are ignored or
blocked or whether the application specified handler functions to be exe-
cuted. It also checks for pending signals (i. e. signals which were blocked
when they arrived and were unblocked later).

Signal-Related POSIX Functions

kill() Identifies the signal thread of the target process and sends a signal
IPC without blocking.

pause() Waits for an IPC from the nil thread effectively blocking the
main thread until the signal thread calls l4 thread ex regs(). If a
signal was handled successfully, pause() returns, else it blocks again.

sigsuspend() Works like pause except the signal mask is modified as
requested.

raise() Calls the signal handling function with the specified signal ID.

sigaction(), sigalstack(), signal(), sigprocmask(), sigstack() Modify
the signal handling data (signal masks, registered handlers etc.).

5 IMPLEMENTATION 21

5.4 The Copy-on-Write Server

Bull, the system server providing copy-on-write semantics for dataspaces,
is implemented as a dataspace manager. Clients can open a copy-on-write
copy of any existing source dataspace by providing bull with this source
dataspace and an anonymous memory dataspace. Bull then provides the
client with pages from the source dataspace as long as the client only
reads from these dataspace portions. On a write access, the contents of
the source page are copied to a page from the anonymous memory which
is handed to the client.

6 CONCLUSIONS 22

6 Conclusions

Based on decision to use the GNU C library for a POSIX emulation on
top of the SawMill multi-server operating system we investigated and
proposed strategies for implementing specific aspects of the emulation.
Also an implementation is provided that allows linking and running simple
applications with the modified library. The goal of a functional shell
application in the emulation environment has not been reached mainly
due to the underestimated implementational effort.

We marked out additional requirements for the SawMill dataspace
framework that we will bring in to the discussion about a generic L4 envi-
ronment specification. Other new frameworks and services were identified
from which the emulation library as well as future projects would benefit.

The implementation can serve as a basis for evaluating the interfaces of
SawMill components using POSIX compatible applications. As a platform
for performance tests and feasibility studies it can aid the design and
development of future components or services in SawMill.

7 FUTURE WORK 23

7 Future Work

7.1 The fork() and exec() Functions

The duplication of address spaces is required for emulating the fork()

function. Using a copy-on-write strategy to improve performance is a
must. An address space duplicate in the SawMill environment can be
achieved in two ways: either the parent creates copies of all its dataspaces
and installs a patched region map in the child or it installs a copy of its
region map in the child and grants it access to all its dataspaces.

The first approach is intransparent and demands that all occurrences
of dataspace IDs in the parents address space are changed in the child to
the IDs of the dataspace copies. Thus the emulation has to manage all
dataspace ID related data centrally.

The second approach is transparent, the parent’s dataspace IDs remain
valid in the child. After a parent shares its dataspaces with the child, the
dataspace managers have to provide copy-on-write semantics to the two
clients on these dataspaces.

In the current implementation, copy-on-write dataspace copies can
become inconsistent if the source dataspace is modified after the copy is
created. Inconsistencies can be prevented by introducing copy-on-write se-
mantics on the source dataspace, too. Depending on the address space du-
plication scheme, dataspace managers additionally need to do this trans-
parently.

With the exec() function a process discards its current execution con-
text and requests to load and run a specified program. While our current
tools can be used for loading and linking the new program, freeing all
resources, mainly dataspaces, no longer accessed by the process has to
be performed in a systematic and reliable manner. What this procedure
looks like in detail needs to be revealed by further investigation.

7.2 The select() Function

The POSIX function select() serves for blocking on a set of file descrip-
tors until activity is detected on one of them or until a timeout occurs.
The multi-server approach of SawMill presents a fundamental problem
when emulating such a functionality. Since the specified file descriptors
might identify objects in a large number of system components, the event
notification scheme possibly involves a large amount of communication.
Thus, an approach needs to be devised that optimizes the number of IPCs
for registration and notification, scaling well with the amount of clients,
servers and invocations of the select() function. Results in this area
could then contribute e.g. to a generic event notification framework for
SawMill.

7.3 Resource Management

A framework for resource management in SawMill would be desirable, not
only for POSIX emulation but also for other scenarios where excessive
usage of resource has to be prevented.

SawMill’s component structure particularly demands scalability for
systems with large amounts of servers and clients from such a framework
but it also has to regard many other aspects like resource representation,
allocation or control schemes and security.

7 FUTURE WORK 24

Reclaiming Resources One aspect of resource control important
for task management in SawMill is the non-cooperative de-allocation of
dataspaces after a task stops executing. It needs to be robust against
broken or malicious tasks and scale well with the number of involved
dataspace managers and clients.

One possible solution centers around a component in the operating
system’s trusted computing base responsible for task creation and deletion
which is the task server in SawMill. From this component dataspace
managers learn of a task’s death and de-allocate resources associated with
dataspaces still held by the dead task. They can either receive death
notifications about dead clients from the task server or poll it for this
information.

Polling Depending on the implementation, the IPC load grows with
the number of clients, of dataspace managers and with a reduction of the
polling interval. The polling interval is a major weakness of this concept
because a fair trade-off between vulnerability in the form of unnecessary
resource allocation and excessive IPC usage has to be found.

Death Notifications Death notifications are sent by the task server
to all dataspace managers that registered with it. Dataspace managers
can either register once with the task server and receive messages on any
client’s death or register and de-register for each client trading registration
IPCs against notification IPCs.

Which scheme is appropriate under which circumstances has to be
determined by an in-depth evaluation.

7.4 Process Management

Emulated processes and system servers require information about other
processes e.g. for communication or authentication. Such a lookup scheme
has at least to export the mapping from POSIX process IDs to L4 thread
IDs and vice versa, the persona of a process, i.e. the user and group
impersonated by the process, and parent-child relationships. One possible
solution would be to collect this data in a central system component from
which it can be retrieved.

7.5 Terminal I/O

An emulation of terminal input and output still needs to be integrated into
the POSIX emulation. It could be based on existing SawMill emulations
of a character device or the I/O server. The implementation would be
simplified since the interfaces of these components are POSIX oriented.
Yet a systematic investigation should reveal whether such an interface is
efficient and flexible in the SawMill environment.

7.6 Additional POSIX Features

The potential and usefulness of the limited POSIX emulation created in
the course of this project is obviously increased by adding more emulated
features. Existing SawMill components like a network stack or a file sys-
tem are one set of possible choices. New functionality could be added
both to SawMill and the emulation e.g. in the form of a thread package.

7 FUTURE WORK 25

The motivation for such efforts is not only the support of a larger
application base by the emulation. Again, new insights on component
interface design and its impact on application performance are expected.

7.7 Performance Evaluation

Performance tests of the modified GLIBC and the involved SawMill com-
ponents in part motivated this project but are yet outstanding due to the
unfinished implementation status.

Based on performance numbers we can judge the presented design de-
cisions, identify flawed concepts and get hints about superior alternatives.
Comparisons against L4Linux can reveal architectural costs imposed by
our design and indicate its competitiveness. Of particular interest might
be how the overall application performance is affected by the emulation.

8 APPENDIX A: THE START-UP ENVIRONMENT 26

8 Appendix A: The Start-up Environment

In our design we decided for internal loading of applications. This section
describes which concepts and components are involved when starting an
application from scratch, i. e. in the standard SawMill environment and
not via a combination of the emulated fork() and exec() functions.

The Start-up Components The following components implement
our loading and linking scheme:

runl4 serves as a front end to the loading library and allows to run ap-
plications from L4Linux.

The loading library is responsible for starting the startup binary in a
new task.

The startup binary loads and relocates the application to be run. It
also contains the internal region mapper.

The external region mapper is the L4 pager of the new task’s internal
region mapper.

ld.so is GLIBC’s dynamic linker and is run by the startup binary if
specified as an interpreter in the application’s elf image.

The Start-up Procedure

1. runl4 opens a file dataspace for the startup binary and passes it to
the loader library along with the IDs of system server to be user by
the new task.

2. The loader library parses the elf image of the startup binary and
pokes the system server IDs and the name of the application to be
run into the environment section of the startup binary. It registers
the file dataspace of the startup binary with the external region
mapper and starts the startup binary in a new task with the external
region mapper as its pager.

3. The internal region mapper included in the startup binary starts and
pages the main thread with the loading code.

4. The loader code reads the data contained in the environment sec-
tion. It opens a file dataspace of the application to be executed,
scans the elf image and relocates it. Then it puts environment infor-
mation (system server IDs, program arguments, environment strings
etc.) on the application’s stack and runs the application code or an
interpreter if specified in the elf image.

5. ld.so, the interpreter of dynamically linked applications from GLIBC,
performs the necessary runtime linking and finally starts the appli-
cation code.

9 APPENDIX B: INSTALLATION AND USAGE 27

9 Appendix B: Installation and Usage

9.1 Installing SawMill

The installation of SawMill is described at http://i30www1.ira.uka.de/ sawmill/.
Before building SawMill, make sure you use the new loading scheme

of SawMill by updating the makefiles after checking out the sawmill CVS
module: cvs update -r RM2 sawmill/sawmill/Makeconf sawmill/sawmill/pkg/Makefile

sawmill/sawmill/pkg/Makefile.tmpl.

9.2 Installing the GLIBC

To build the SawMill version of GLIBC follow these steps:

1. check out the CVS module glibc-2.2

2. create a build and an install directory

3. change into the build directory

4. run the configure script: ../glibc-2.2/configure --host=i386-sawmill

--enable-hacker-mode --disable-sanity-checks --disable-profile

--prefix=<installation directory (e.g. /home/foo/src/glibcinst)>

--with-sawmill=<sawmill directory (e.g. /home/foo/src/sawmill)>

5. run make and make install

During the build process you might encounter the following problems:

• If the build process aborts complaining about a missing sln program
you can generate it manually: gcc /src/glibc-2.2/elf/sln.c -o

elf/sln. Then restart the build process.

• If the build process aborts complaining about a missing iconv prog

program just do a touch iconv/inconv prog.

9.3 Compiling and Linking Applications

To compile an application with the SawMill GLIBC invoke gcc so that it
uses the include directory in the GLIBC installation directory and the in-
clude files of your gcc version instead of the standard include files. In our
setup this looks like: gcc -Wall -c -nostdinc -I /glibcinst/include

-I/usr/lib/gcc-lib/i486-suse-linux/2.95.3/include start.S <source

files>.
Linking the application with the modified GLIBC needs the following

options:

• library paths: the lib directories in the GLIBC and SawMill instal-
lation directories as well as your compiler libraries

• object files: start.o and crti.o providing the .ini elf section and crtn.o
providing the .fini elf section, all of which can be found in the ¡glibc
build dir¿/csu/ directory plus your application object files

• libraries: c, gcc, thread, semaphore, l4util, rm2, rm2-server, utils,
genericdm

In our setup the ld invocation looks like

ld -Bdynamic --dynamic-linker=~/glibcinst/lib/ld.so.1 \

-L~/gsm/glibcinst/lib -L~/sawmill/sawmill/lib \

-L/home/cross/gcc-2.95.2/lib/gcc-lib/i686-pc-linux-gnu/2.95.2 \

start.o ~/glibcinst/lib/crti.o ~/glibcinst/lib/crtn.o \

9 APPENDIX B: INSTALLATION AND USAGE 28

<application object files> \

-lc -lthread -lsemaphore -ll4util --start-group -lrm2-server \

-lrm2 --end-group -lutils -lgenericdm -lc -lgcc \

--rpath=/home/sgoetz/gsm/glibcinst/lib \

--rpath=/home/sgoetz/gsm/sawmill/sawmill/lib

REFERENCES 29

References

[ALP+01] Mohit Aron, Jochen Liedtke, Yoonho Park, Luke Deller,
Kevin Elphinstone, and Trent Jaeger. The SawMill
framework for virtual memory diversity. In Australasian
Computer Systems Architecture Conference, Gold Coast,
Australia, January 2001. IEEE Computer Society Press.

[CB93] J. Bradley Chen and Brian N. Bershad. The impact of op-
erating system structure on memory system performance.
In Symposium on Operating Systems Principles, pages
120–133, 1993.

[GJP+00] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphin-
stone, V. Uhlig, J.E. Tidswell, L. Deller, and L. Reuther.
The SawMill multiserver approach. In 9th SIGOPS Eu-
ropean Workshop, Kolding, Denmark, September 2000.

[Kor97] David G. Korn. Porting UNIX to Windows NT. In 1997
Annual Technical Conference, pages 43–57. USENIX,
January 1997.

[Lie95] Jochen Liedtke. On micro-kernel construction. In Sym-
posium on Operating Systems Principles, pages 237–250,
1995.

[Lie98] Jochen Liedtke. Lava Nucleus (LN) Reference Manual.
IBM T. J. Watson Research Center, 2.2 edition, March
1998.

[Lie99] Jochen Liedtke. L4 Nucleus Version X Reference Manual.
Universität Karlsruhe, x.0 edition, September 1999.

[Noe98] Geoffrey J. Noer. Cygwin32: A free Win32 porting layer
for UNIX applications. In 2nd USENIX Windows NT
Symposium, page 31. USENIX, August 1998.

[Wal97] Stephen R. Walli. OPENNT: UNIX application portabil-
ity to Windows NT via an alternative environment sub-
system. In USENIX Windows NT Symposium. USENIX,
August 1997.

	1 Introduction
	1.1 Motiviation
	1.2 Goal
	1.2.1 The POSIX Emulation
	1.2.2 Specific Objectives
	1.2.3 Summary

	2 Related Work
	2.1 POSIX Emulation on Micro Kernels
	2.1.1 The GNU Hurd

	2.2 POSIX Emulation on Windows Systems
	2.2.1 Emulation Libraries
	2.2.2 Emulation Subsystems

	3 Basics
	3.1 POSIX
	3.1.1 Files
	3.1.2 Processes
	3.1.3 Address Spaces and Memory Management
	3.1.4 Communication
	3.1.5 Security

	3.2 The GNU C Library
	3.3 L4
	3.4 SawMill
	3.4.1 Dataspaces
	3.4.2 Threads and Tasks
	3.4.3 System Services

	4 Design
	4.1 The Emulation Approach
	4.1.1 Decentralization of Data
	4.1.2 Atomicity

	4.2 Focussing our Goal
	4.3 Emulation Strategies
	4.3.1 Processes
	4.3.2 Files
	4.3.3 File Operations
	4.3.4 Signals
	4.3.5 Copy-on-Write
	4.3.6 Loading and Linking

	4.4 Required Base Services

	5 Implementation
	5.1 Files
	5.2 Memory Management
	5.3 Signals
	5.4 The Copy-on-Write Server

	6 Conclusions
	7 Future Work
	7.1 The fork() and exec() Functions
	7.2 The select() Function
	7.3 Resource Management
	7.4 Process Management
	7.5 Terminal I/O
	7.6 Additional POSIX Features
	7.7 Performance Evaluation

	8 Appendix A: The Start-up Environment
	9 Appendix B: Installation and Usage
	9.1 Installing SawMill
	9.2 Installing the GLIBC
	9.3 Compiling and Linking Applications

