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Abstract

This document describes dm_phys, a dataspace manager for physical random-access
memory within the experimental L4/SawMill operating system environment.

The study thesis includes a brief introduction to SawMill’s dataspace model and an
overview of existing memory allocation and release strategies. Furthermore, the principal
design requirements and model constraints for dm_phys are considered, after which the
design decisions used in dm_phys are discussed.

Finally, implementation details as well as testing setup, results and interpretations
are given.
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1 Introduction

Currently, the dominant approach to operating systems is to create a single, monolithic
kernel, with virtually all lower-level system services provided by the operating system
kernel itself. With this design, it is necessary to include all those services in the kernel,
where they are executed in kernel mode, which introduces some unnecessary degree of
insecurity into the system.

On the other hand, there are operating system design patterns that implement so-
called microkernels. Microkernels offer very few operating system services themselves;
the idea is to restrict the amount of code executed in kernel mode as much as possible.
Any service that does not absolutely need to be run in kernel mode is removed from the
kernel and therefore run in non-privileged mode, also known as user mode, thus offering
a higher degree of security for the system as a whole.

One class of services that can partially be transferred from kernel to user mode is
resource management in general, and — with some restrictions — management of the
physical RAM installed in the system in particular.

This thesis is based on the L4KA microkernel and the SawMill operating system
that is built around it. Since SawMill is relatively new, there is no memory management
facility consistent with the philosophy found in SawMill; so far, physical memory can
only be allocated to certain tasks at boot time, which is clearly unsatisfactory.

1.1 The SawMill Dataspace Concept

Throughout SawMill, the concept of dataspaces is used. A dataspace is an abstract,
unstructured entity containing data. A dataspace may be a file, a whole disk, a frame
buffer, physical memory, virtual memory, and so on.

Dataspaces, being abstract objects, do not necessarily have an intrinsic size, but may
contain other data-containing objects partially or entirely. For instance, a dataspace may
be attached to a region of a task’s address space, or it may be attached to a consecutive
block of physical memory.

Each dataspace is provided by a dataspace manager (although, of course, each datas-
pace manager may provide multiple dataspaces). The dataspace manager controls access
to the dataspaces it manages. For example, the dataspace manager may grant read/write
access to part or all of one of its dataspaces to a client task, or it may only grant read
rights, and so on. The exact semantics of a particular dataspace are entirely depen-
dant on the nature of the underlying storage facilities: a dataspace that contains (“is
backed by”) disk files may offer write operations, while a dataspace that offers access to
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a PCI card ROM naturally cannot perform writes. Therefore, the semantics are mostly
left to the dataspace manager, albeit some operations (for example, open or close) are
mandatory for all dataspace managers, while others (for instance, share or transfer) are
optional but strongly encouraged.

Dataspace managers may be stackable on top of each other, so that one dataspace
manager exports a dataspace to another dataspace manager, which in turn provides some
access service backed by the dataspace from the first dataspace manager. A possible
scenario for this is the physical memory dataspace manager dm_phys, which may export
a block of physical memory to a virtual memory dataspace manager, which in turn
provides virtual memory by using standard paging techniques on the physical memory.
Thus, a user task may request, for instance, 512 megabytes of memory from the virtual
memory dataspace manager and receive it even though the virtual memory dataspace
manager has been given access to only 256 megabytes of memory by the underlying
dm_phys. In this example, the virtual memory dataspace manager may provide the
missing 256 megabytes of memory by swapping to secondary storage.

Further introduction to SawMill’s virtual memory concept can be found in [APJ+99].

1.2 Thesis Contributions

It is the aim of this thesis to provide a reasonable facility for management of physical
memory that is consistent with SawMill’s dataspace model. In accordance with the
philosophy that each dataspace manager should be as specialized as possible and serve
only one basic function, the resulting dataspace manager for physical memory (which
shall be referred to as dm_phys further on) should only manage physical memory. In
particular, services that should be provided by other dataspace managers — which may
be stacked on top of dm_phys — include:

• virtual memory services, i. e. swapping, paging, and similar activities, and

• compaction, i. e. relocation of used memory blocks to improve overall memory
utilization.

To begin, we will restrict ourselves to the management of the RAM installed on the
system’s mainboard. Physical memory in general would include such instances as PCI
card ROMs is too broad a basis for dm_phys as presented in this study thesis. Simply
speaking, the goal is to provide a memory allocation/release method within SawMill that
is comparable to standard Unix malloc/free calls.

Thus, the key properties of dm_phys are:

• memory allocated to a client is guaranteed not to be taken away from the client
later without its agreement,

• memory allocated to a client is also guaranteed not to be paged out to secondary
storage at any time, and finally
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• memory allocated to a client is guaranteed not to be relocated within the physical
memory. Thus, it is possible for a client to request memory at a certain physical
address in order to communicate to peripherals, for instance.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 gives an overview over
common memory allocation strategies and implementation techniques. Furthermore,
existing SawMill dataspace managers are presented.

Chapter 3 addresses the specific requirements and constraints for the given scenario.
Chapter 4 explains the design decisions and describes some actual implementation de-
tails. Testing and measuring is found in chapter 5. Finally, Chapter 6 gives the conclusion
of the results found.
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2 Background and Related Work

This chapter presents an overview over common memory management strategies as well
as a brief introduction into two implementation techniques. Additionally, a presentation
of the existing dataspace managers for SawMill is given.

2.1 Memory Allocation Strategies

Although there are a number of memory allocation strategies, all techniques can coarsely
be classified into three categories: Linear fit, segregated fit, and buddy system.

An excellent, more in-depth description of many of the strategies presented in this
section can be found in [Sta98]. [Knu97a] does not feature many of the strategies, but
covers first fit and buddy system algorithms with great mathematical detail. For an
in-depth, comprehensive literature review and strategy comparison, see [WJNB95].

2.1.1 Linear Fit

This is probably the most common class of memory management techniques. Linear fit
strategies keep a single linked list of the memory available in the system. Whenever a
request for a memory block is issued, the memory manager linearly searches through the
entire list of available memory blocks until it finds a suitable region. At startup time,
there is just one large chunk of memory available, of course, but each time a region of
memory is handed out to a client task, that memory block needs to be removed from
the available list.

As long as memory is only requested, then everything is straightforward. As soon as a
block of memory is released by a client, however, then that memory is available for other
client tasks again, and therefore needs to be re-introduced into the available list. At this
point, external fragmentation may occur: it is unlikely that the released block of memory
happens to be directly adjacent to one of the blocks that are in the available list. This
means that even though, for instance, there may be a total of 128 megabytes of memory
in the available list, stored in two separate, non-adjacent chunks of 64 megabytes each,
a client request for 128 megabytes of memory will fail.

Different approaches have been tested to minimize the external fragmentation. The
most common algorithms are first fit, next fit, and best fit.

First fit simply iterates through the list of available memory until it encounters a block
of memory large enough to satisfy the request. While this may sound näıve, it
turns out that this approach is on average the fastest linear fit strategy.
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Next fit is a derivate of the first fit approach. Since first fit always uses the first suitable
memory region it finds, it tends to produce more cluttered memory at the beginning
of the memory. While this in itself is not a problem, it does introduce a possible
disadvantage: if the clutter is very intense, and if there are relatively many requests
to be processed, then first fit suffers because it needs to search through all the very
small memory blocks left over at the very beginning of the available list. Next fit
tries to face this disadvantage by not using the first memory block that is large
enough, but rather starts the list iteration at the block that was last given to a
client. Although the approach may sound promising, it does not quite reach the
performance of first fit, because it tends to break up memory blocks at the end of
the memory list, where usually the largest blocks can be found, and thus may lead
to greater external fragmentation.

Best fit, despite its name, turns out to be the worst-performing approach presented.
This algorithm always scans over all memory blocks available and uses the one
that is closest in size to the request. Therefore, it guarantees that the memory
fragment left over by the request is as small as possible, and thus minimizes the
chance that a subsequent request will be able to make use of the fragment.

All of the above approaches have in common that whenever a memory block is
released and added to the available list, then sooner or later adjacent available blocks
of memory are coalesced into a single larger block. Obviously it is beneficial to merge
adjacent blocks as soon as possible, but doing so takes time, while processing the whole
available list at certain time intervals in order to perform such merging can be performed
more efficiently. However, delayed coalescing has the drawback that between insertion
and coalescing any request that may require a block of the size of the two regions to be
merged will fail. Which technique is more advisable depends on the circumstances. In
the dm_phys context, the relevant factors for this decision are the frequency of allocations
and, even more importantly, deallocations. The sizes of the memory blocks involved do
not matter as much, because it is expected that dataspaces managed by dm_phys will
be relatively large.

2.1.2 Segregated Fit

While linear fit techniques store the available blocks of memory in a single linked list,
segregated fit strategies maintain multiple lists of available memory blocks, each list
being reserved for block of a certain size. (Usually, there is not one list for each possible
block size, but rather one list for a range of block sizes.)

Within each block size category, the available memory chunks are maintained in
linked lists. Basically, all fitting strategies described above for linear lists apply here,
too, only they are applied separately for each list.

Upon insertion of a released block of memory into the appropriate list, no coalescing
is performed whatsoever. More sophisticated approaches, however, allow for passing two
adjacent smaller blocks up into a list of larger regions by merging them together, or vice
versa, by splitting a region.
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With segregated fit, memory blocks that are given to clients are usually larger than
the requested memory size, because the blocks of available memory are not split up
again. When a request for memory comes in, the block list with blocks of the smallest
possible size that is still large enough is used, and one block simply handed out. Thus,
block sizes are usually fixed.

2.1.3 Buddy System

The buddy system is a meet-in-the-middle approach between the fixed-size system of
segregated fits and the variable-size system of linear fits. With this strategy, all blocks
are of size 2k. Initially, the entire memory available in the system is a single block of
size 2n for some n. The system maintains an available list for every size 2k for all k ≤ n.

Whenever a request comes in, the available list is used whose blocks are just large
enough to hold the request. For an example, let the request ask for a memory chunk of
255 bytes. Then the available list of size 256 bytes (= 28) is used. If there is a block of
size 28 available, then that block is handed out. Otherwise, the next-larger block size is
considered; in out example, 29 bytes. If there is such a block available, then that block is
split up in half to form two blocks of half size, the so-called buddies. One of those blocks
is handed out to the request, the other one is inserted into the smaller-size available list.
The cascading goes up until either 2n is reached or an available block is encountered,
which is then split up.

On the other hand, when a memory block is released again, then it is inserted into
the appropriate available list. If its buddy is also in the available list, then the two
buddies are coalesced and the larger block is inserted into the next-higher available list.
The advantage here is that it is very easy to check whether a memory block’s buddy is
available or not, because buddies of size 2k in a system with 2n share their upper n−k−1
base address bits. This means that in a system with 28 bytes of memory, the buddy of
a block of size 16 = 24, starting at address 10110000, is a block of size 16, starting at
address 10100000. The two buddies share the upper 3 bits of their base addresses, which
happen to be 101 in this example.

2.2 Memory Release Strategies

This section of the thesis presents a short overview of the most common techniques used
for efficient release of memory blocks.

Coalescing of freed memory blocks is not always necessary. The necessity of coalescing
depends on the memory allocation strategy used. If, for instance, segregated lists of free
memory blocks are used, with a fixed block size within each list, and only whole blocks
are handed out, then no coalescing whatsoever is needed: whenever a memory block is
freed, then it merely needs to be reintroduced into the proper available list. (Note that
finding out which list is the appropriate one is not necessarily trivial either. Typically,
the release of a block of memory consists of a call to the free function or an equivalent,
which usually takes a pointer to the block’s base address as an argument, but not the
block’s size. This means that the block’s size needs to be deduced from other sources.
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We will not address the problem in this section, though, as we regard this more an
implementation problem than a design decision.) If, on the other hand, the buddy
system is used, then every block that is freed should be coalesced with its buddy if the
buddy is available also.

In principle, there are two coalescing strategies, instant and delayed, also known as
deferred, coalescing. The difference between those two principles will be shown here.

2.2.1 Instant Coalescing

With instant coalescing, whenever a memory block is released, the block is immediately
reintroduced into the appropriate available pool. If under the general memory man-
agement strategy coalescing with another block or other blocks in the available pool is
appropriate, then the coalescing is performed immediately, without further delay.

The advantage of this strategy is that whenever two blocks of memory can be coa-
lesced, they are coalesced at once. Therefore, it is guaranteed that at any time every
free block of memory in the system is as large as it can be, given the external fragmen-
tation of the memory at that instant. Specifically, it can never happen that there are
two adjacent blocks of memory of sizes s1 and s2 available, but a request for a block of
memory of size s1 + s2 fails. This could only happen if the two adjacent blocks are not
coalesced and thus recognized as a single free block of memory of size s1 + s2.

The major drawback of this approach is its increased effort. Under certain circum-
stances, a coalescing attempt may be a very expensive thing to do. This is especially the
case if the pool of free memory blocks is not ordered by base addresses and no structure
whatsoever is imposed on the memory blocks, for example. In this situation, whenever a
block is to be coalesced with its neighboring blocks — if there are any —, it is necessary
to perform an exhaustive search through all memory regions in the available queue. If
this queue is well-filled, then the search may be quite extensive, and the immediate coa-
lescing of the freed block of memory rather costly. Furthermore, instant coalescing very
much increases the workload whenever a block of memory is allocated and deallocated
again, then perhaps being reallocated soon, and so on.

2.2.2 Delayed Coalescing

In the view of the considerations of the previous section, the other approach presented
here can immediately show its benefits.

If coalescing is not done immediately when a block of memory is released, but delayed
to a later point in time, then the costs for recoalescing may be dramatically reduced.

Consider the example from the last secion. In that scenario, free memory blocks are
stored in such a way that their respective base addresses cannot be deduced quickly, but
need to be found by an exhaustive search. The problem was that doing an exhaustive
search for each coalescing is very expensive: the costs for this näıve approach are O(n)×
O(m), with n being the number of free blocks in the ready queue and m being the
number of memory blocks that are released.
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Now let all freed memory blocks are be immediately recoalesced with their appro-
priate neighbors, but rather be stored in a separate ready queue, which is sorted by the
memory blocks’ base addresses. Then, whenever the queue has reached a threshold size,
the coalescing procedure could be triggered, which could, for example, loop sequentially
over all available memory blocks in the ready queue and perform a binary search on the
(sorted) list of released memory blocks in order to find any partner memory blocks appro-
priate for coalescing. Even this simple approach already reduces the cost for coalescing
significantly: while with the immediate coalescing strategy the cost was O(n) × O(m),
the deferred coalescing approach reduces the cost to O(n)× logO(m).

Of course, this approach also has a drawback, which is exactly the strength of the
immediate coalescing method: with delayed coalescing, there may be two adjacent blocks
of memory of sizes s1 and s2 available in the system, but no block of size s1 +s2, because
the two adjacent blocks are not recognized by the memory manager as a single block of
larger size, since coalescing has not yet been performed.

Which of the two approaches is more favorable depends strongly on the circumstances
and the system behavior. It may even turn out to be most beneficial to employ delayed
coalescing and let a non-fulfillable memory allocation request trigger the coalescing pro-
cess. With this strategy, coalescing is delayed as long as possible. Yet, in general it is
not trivial to predict whether it is beneficial to use this coalescing technique.

2.3 Linear-Linked Lists Versus Binary Trees

In this section, a brief comparison between linear lists and binary trees is presented.
The traditional and intuitive approach to use for maintaining sets of available memory
blocks is the use of linked lists, as has been used in the description of the various memory
allocation strategies in the previous section.

Recent developments have shown, however, that binary-tree representations can also
be used for this purpose. Indeed, large improvements can be accomplished, as would be
expected, by the use of binary trees instead of linked lists. Very promising details can
be obtained from [RK00].

The basic idea is to use binary tree structures instead of linked lists for managing
available blocks of memory. Since searching for a particular element in a linked list of
length n costs about O(n), a great benefit can be drawn if binary trees are used instead:
searching a particular element in a binary tree with n nodes takes O(l) operations, with
l being the height of the tree, so that log(n) ≤ l ≤ n. The authors of the quoted paper
come to the conclusion that according to empirical results, it can safely be assumed that
in practice the binary trees do not degenerate very easily into linear lists, so that usually
log(n) ≤ l ≤ 2 log(n). This, of course, is a significant improvement. The proof-of-concept
and test implementations of this idea use the base address of the memory blocks as an
ordering base for the binary tree; additionally, the size of the largest blocks in the left
and right subtrees are tracked in each node. These implementations indeed show the
speedup that is expected due to the above considerations.
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3 Design

In the first section of this chapter, we will present the initial requirements that have
triggered design decision considerations. The second section features the actual design
decisions as well as some considerations on how the decisions were reached.

3.1 Prerequisites

In order to be of use within the SawMill environment, a physical dataspace manager
needs to meet certain requirements. Some of these requirements are imposed by the
nature of the memory that is to be managed, others are introduced by the SawMill
dataspace concept. Constraints of the latter type are described in section 3.1.2, while
those of the first type are presented in section 3.1.1.

3.1.1 Requirements

The primary task of a physical dataspace manager within the SawMill operating system
environment is to keep track of physical memory and to provide easy access to physical
memory pages for higher-level applications. In particular, it may be necessary for some
task to access a well-defined page in physical memory, for instance for DMA transfers
from or to an I/O extension in the system, such as a sound card or a networking card.
This leads to the first requirements for the dataspace manager:

• It should be possible for a client task to request and get any particular, but client-
defined memory page, and

• once a client task has been given access to a particular dataspace, which is backed
by a set of particular pages of physical memory, then the dataspace should not be
moved to another physical memory location.

Additionally, it may be important for some client tasks to have access to memory
that is guaranteed by the system, in other words, that is not taken away from the client
later on. For some client tasks, however, it is not sufficient to guarantee that memory will
not be taken away permanently, but it is necessary that the entire dataspace remains in
physical memory all the time. Typically, this is a property that is desirable for security-
relevant applications: Any program that needs access to temporary storage in order to
keep deciphered data or deciphering keys or the like requires those storage facilities to
be safe in the sense that their whereabouts are well-known all the time. In order to
maintain security, it is very important, for instance, that cryptographic keys or plaintext
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never be stored in permanent storage such as magnetic disks. Therefore, it is necessary to
ensure that memory used for storing such sensitive material is never written to secondary
storage for paging purposes. Owing to the above considerations, further requirements
for the physical dataspace manager follow:

• Once a client task is given access to a dataspace backed by physical memory, those
memory pages used to back the dataspace must never be taken away from the
client, and

• any memory page contained in a physical dataspace must never be written to
secondary storage.

Fortunately, these requirements are easy to follow, since they essentially prohibit
more complex functionality. Thus, the requirements can be met by keeping the dataspace
manager simple.

Some of the functionality that is prohibited by the above requirements for the physical
dataspace manager may be desirable in other parts of the system, however. In order to
provide more virtual memory than the physical memory installed in the system allows
for, paging may be desirable, for instance. Such features must be implemented by higher-
level dataspace managers. For example, it is thinkable to have a swap dataspace manager
that is backed by the physical dataspace manager, but offers virtual memory to higher-
level applications by use of paging techniques.

3.1.2 Model Contraints

In addition to the requirements outlined in the previous section, there are some more
constraints that are imposed by the SawMill dataspace model.

Mandatory Functions

In the SawMill concept, there are functions that every dataspace manager must provide.
These functions are:

Open: Obviously, it is necessary that every dataspace manager provides a method to
open a dataspace.

Close: It is obvious that there must be a method to close an open dataspace again.

The above methods are called by a client task. In contrast, there is another manda-
tory function a dataspace manager must provide which is not called directly by the client,
but by the instance that handles the client’s page faults, which in L4 is called the region
mapper:

Map page: This function is called whenever a client task generates a page fault on a
dataspace. The appropriate dataspace manager’s map_page function is then called
by the client’s region mapper. It is then the responsibility of this procedure that
the faulting memory page is actually mapped into the client task’s address space.
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Since the above functions are mandatory, it is clear that dm_phys has to implement
those. The only design decision associated with these methods are their respective
prototypes, in the sense that the number and semantics of the calling parameter of some
functions need to be defined.

Optional Functions

Additionally, there are some functions that a dataspace manager may offer, but is not
obliged to do so. These functions include:

Clone: With this function, an identical copy of the original dataspace is created.

Migrate: This function moves the dataspace to a different dataspace manager.

Copy: With this method, a dataspace copy is created in a different dataspace manager.
This function is semantically identical with calls to clone and migrate, in that
order.

Share: This procedure shares access to a dataspace with another client task. That access
right may subsequently be revoked with the function unshare.

Unshare: With this function, a client task is able to take away access rights from another
task with which it has shared the dataspace earlier.

Transfer: This method transfers ownership of a dataspace from one client task to an-
other. This is much like a share operation, except that if a client transfers a
dataspace to another client, it loses access rights to that dataspace. Incidentally,
a transfer operation cannot be revoked later on.

It is clear that some of the functions described above are sensible enhancements to
dm_phys, while other functions make absolutely no sense in the context of the design
targets outlined in the introduction.

3.2 Design Decisions

In this section, we will present considerations and decisions that the above requirements
and constraints have lead to.

3.2.1 Functionality Considerations

Decisions on which abstract functionality dm_phys should offer is fairly simple, since the
design goals introduce fairly tight limits. In particular, the following decisions regarding
the policy of dm_phys have been made:

• The dm_phys dataspace manager will try to acquire as much available physical
memory as it can for itself at start-up time. This is a direct consequence of the
vision that dm_phys should entirely replace all need for interaction between lower-
level resource management instances and higher-level user tasks.
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• In direct accordance with the requirements, once physical memory has been given
out to a client, that memory will not be taken away from the client by dm_phys
later on, nor will dm_phys relocate any dataspace in physical memory.

It is noteworthy, however, that there is no way that dm_phys itself can guarantee
that memory will never be taken away from a client. This is due to the fact that
the original resource allocator, for instance σ0, may only map the physical memory
pages to dm_phys. Thus, in the L4 design, the underlying resource manager could
at any time take any physical memory page away from dm_phys, and consequently,
from any dm_phys client. This can in no way be avoided by dm_phys. Yet, if the
original resource allocator actually transfers the physical memory to dm_phys so
that it cannot unmap the memory from dm_phys later on, then dm_phys can indeed
guarantee that no memory will be taken away from any client.

• Physical memory dataspaces will be handed out on a first-come, first-served basis.
Because of the requirement that once memory is handed out to a client task, that
memory may not be taken away from the client later on, the only alternative to
this is to keep lists which allow certain clients to acquire certain dataspaces or
amounts of memory under certain circumstances. While this may turn out to be
desirable for certain scenarios, such as real-time systems in which certain tasks
need to be guaranteed to have access to certain resources at certain times, we have
decided to keep the design simple for starters.

With the above considerations, it follows that dm_phys will support the mandatory
functions, with the following particulars:

Open: This function opens a new dataspace. In all cases, it is necessary to provide a
requested size of the new dataspace. This is obviously necessary.

Additionally, there are two optional parameters. The first parameter is concerned
with the requested page size. In other words, a client may ask for a dataspace
consisting of memory pages of a particular size only.

The second optional parameter carries the base address of the requested dataspace.
With this parameter, it is possible to ask for a certain physical page in memory.

If any of the optional parameters are left unspecified, then they are interpreted
as “arbitrary,” meaning that the corresponding values are completely up to the
dm_phys server.

Of course, for each open request a number of plausibility checks are performed,
such as alignment checks for both the requested size and base address, if any is
specified. Both of these values need to be aligned to at least the smallest page size
available in the system, and if another page size is requested in the open call, then
both values need to be aligned to that page size.

Note that this implies that it is not possible to open a dataspace of arbitrary size.
Instead, if a chunk of memory is required that happens to be not aligned with
the smallest page size available, so that the size is not an integer multiple of the
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available page size, then it is necessary to request a dataspace of the size of the
next-larger integer multiple of the page size. The same argumentation goes with
the base address, of course.

The open call also defines the owner of the newly-created dataspace, namely the
client task that actually called the open procedure. Ownership of a dataspace can
only be changed if the current owner task uses the transfer function to give up its
own rights of access to the dataspace and hands them over to another task, which
then becomes the new owner of the dataspace.

Close: This procedure returns all access rights to the dataspace it is used on. The
task calling the close operation tells dm_phys that it does not want to access the
dataspace any longer. Subsequently, dm_phys removes the access rights for that
dataspace-client combination.

The close call is transitive. This means that if a client task has shared access to
a dataspace with another task, and subsequently closes the dataspace, then the
dataspace is also closed for all tasks it has been shared with by the closing task.

Furthermore, if there are no client tasks that have access rights to a given datas-
pace, that dataspace is destroyed and the physical memory used for backing that
dataspace is freed and returned to the list of available memory blocks. This means
that a dataspace is destroyed if and only if the owner task calls the close procedure:
if the owner task does this, then access is taken away from all other tasks it has
shared the dataspace with too, and since the owner task by definition is the task
that all other tasks got their access rights from, there are no tasks left which still
hold access rights to the dataspace. If, on the other hand, some other task closes
its access handle to the dataspace, then there is always at least one task left which
still has access to the dataspace: namely, the owner task.

Map page: This procedure is not called by any client tasks directly, so the discussion
about it will be rather brief. This method is called whenever a client task triggers
a page fault, in other words, whenever a client task tries to access a memory page
that has not been mapped into its address space by the L4 kernel.

In general, this happens every time a memory page of a dataspace is accessed by
the client for the first time after creation (or sharing) of a dataspace, since dm_phys
does not map all memory pages of a dataspace to the client task at creation-time
or when a dataspace is shared or transfered to another task.

In such a case, all that dm_phys needs to do is to actually map the faulting memory
page to the client task. This is done only after due checking for proper access rights,
of course.

In addition to the required methods, dm_phys will support three optional functions.
These functions are their particulars are described in the following section.

Share: With the share function, a client task, the sharer, may share a dataspace with
another task, the sharee. The sharer may or may not intend to share the dataspace
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with the sharee indefinitely; in any case, it is possible for the sharer to use the
unshare method to take away access to the dataspace from the sharee.

If a complete hand-over of a dataspace to another task is desired, then the transfer
method should be used instead.

It is also noteworthy that any task with access to a dataspace may share its access
with another task. In particular, it is not necessary that the task calling the share
function be the task that originally opened the dataspace. In other words, use of
the share method is not limited to the owner task.

Unshare: This function is the“antidote”to the share method. With the unshare method,
a task, the sharer, may revoke a previous sharing of access rights to a dataspace
with another task, the (former) sharee. For this procedure, it is not required
that the sharee signal its agreements with the sharer’s intention of unsharing a
dataspace. Therefore, it should be noted that the guarantee that a once-assigned
memory page is never taken away from the client is valid only with respect to
the actual dm_phys server and the dataspace-owning task, not with respect to an
arbitrary other task.

Furthermore, note that the unshare operation is transitive. This means that if
a task t1 shares a dataspace with another task t2, which subsequently shares the
dataspace with yet another task t3, then if t1 unshares the dataspace with t2, access
is also taken away from t3. This behavior is fairly obvious: if the unshare operation
were not transitive, then it would be completely pointless, because any client could
retain access to a dataspace by sharing it with itself, thereby avoiding the unshare
operation from the task from with it originally got access to the dataspace.

Transfer: This function is used to completely hand over a dataspace to another task.
All access rights are given from the transferring task to the transfer-receiving task,
which means that the transfer-originating task gives up all its access rights.

For this function, two annotations must be made. The first is that a transfer of
access rights also includes a transfer of shared-access sponsorships. Thus, if a task
t1 shares access to a dataspace with another task t2 and subsequently transfers
its access rights to yet another task t3, then from that point on effectively t2 will
have received its access rights from t3. Therefore, only task t3 can unshare the
dataspace from t2.

The other comment is that with the above remark, a transfer also includes transfer
of the ownership of a dataspace. Thus, if a task t1 owns a dataspace, meaning that
it has originally opened the dataspace, and transfers that dataspace to another task
t2, then as far as dm_phys is concerned, t2 owns the dataspace, and everything
appears as if t2 originally opened the dataspace. Of course, there is no way to
determine whether a task really was the original creator task of a dataspace or
whether it obtained ownership of the dataspace by the transfer of ownership from
the original owner task.
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In contrast, all of the functions clone, copy and migrate are absolutely senseless for
dm_phys: It is impossible to hand over control over a dataspace consisting of RAM pages
to another dataspace manager. Furthermore, it is equally impossible to create a clone of
the dataspace, since each dataspace is conceptually linked to the physical memory pages
it consists of.

The copy operation, however, may turn out to be useful. Even though, strictly
speaking, a dataspace exported by dm_phys cannot be moved to another dataspace
manager without losing some of its inherent characteristics, it is thinkable to include
support for opening a dataspace of the same size with another dataspace manager,
and then copying all of the contents of the physical dataspace into the newly-created
dataspace. Due to the philosophy that every system component should only provide
functionalities that are essential to its original task, it is not the responsibility of dm_phys
to mediate such an operation. If such a function is required, no further intervention of
the dm_phys server is needed; instead, the client task wishing to create a shadow copy
of its dataspace can perform all necessary tasks itself, since the desired operation can be
done by using only functions that are exported by dm_phys. Therefore, dm_phys does
not offer the copy operation.

3.2.2 Memory Allocation Strategy

The following section will describe the memory allocation strategy employed in dm_phys
and outline the argumentation in favor of the strategy used.

Within dm_phys, simple linear first fit allocation policy is used. The reasoning for
this decision is based on the goals of simplicity and compactness, both of which are
key concepts of SawMill policy. SawMill design is founded on the introduction and use
of many very small and simple but well-adapted server tasks. Each of these servers
is designed and implemented to perform a specific and simple job. The servers are
particularly optimized for their original tasks; they are not at all expected to serve other
functions.

With this in mind, it is very desirable to have an easy-to-understand, easy-to-
troubleshoot and easy-to-implement design. Since it is not envisioned that dm_phys
be used on a large scale by end-user tasks — there are many functionalities that need to
be added on top of dm_phys in order to make memory allocation as readily and easily
usable as that of existing operating systems, such as paging functionality in order to
provide more virtual memory than physical memory in the system —, it is expected
that as such dataspace managers become available, the majority of requests for physical
dataspaces will occur at system startup time when higher-level dataspace managers are
loaded.

Since linear first fit is usually among the top-performing memory allocation strategies,
it seems reasonable to trade in a little peak performance, which is expected to be rarely
made use of anyway, for the virtues of simplicity and compactness.
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3.2.3 Memory Coalescing Strategy

For coalescing policy decisions, the same reasoning holds true as for memory allocation
policy, as described in the previous section.

Again, it is expected that user tasks will very rarely request dataspaces from dm_phys
directly. Most programs do not need the guarantees that dm_phys is specifically designed
to offer, and indeed, most client tasks will find it desirable to not be bound to those guar-
antees, specifically when it comes to issues of virtual memory and providing additional
memory by employing secondary storage swapping methods. Instead, it is probable that
a few other server tasks, which implement exactly such desired functionality, will request
a large amount of physical memory from dm_phys at startup time in order to be able
to back their own dataspaces somewhat. By the same virtue, most dataspaces exported
by dm_phys are expected to be opened, but never closed until system shutdown time.
Therefore, it seems undesirable to add much complexity to the dm_phys server by al-
lowing for more complicated, albeit possibly asymptotically faster, coalescing strategies
that are not expected to be used very often anyway.

With this reasoning, it seems advisable to use straightforward immediate coalescing,
which is what is done in dm_phys.
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4 Implementation

This chapter describes some of the issues that arose during the implementation of the
dm_phys server. The issues addressed are

• notes on the data structures,

• notes on some interface functions, and

• miscellaneous notes.

4.1 Notes On the Data Structures

The three main data structures used in dm_phys are

• the memory region data type region_t,

• the dataspace data type dataspace_t, and

• the owner data type owner_t.

Each of these data structures is described in its own subsection.

4.1.1 The Memory Region Data Type

The memory region data type region_t is used for management of available blocks of
memory. In dm_phys terminology, a memory region is a block of consecutive memory
pages. Associated with each memory region are its base address and its size. Note that
both size and base address are always aligned to the smallest page size available in the
system; in other words, both the size and the base address are integer multiples of the
smallest available page size.

The pool of available memory regions is kept in a double-linked queue. Since dm_phys
supports requests for specific base addresses, the queue is kept sorted in ascending order
by the base addresses of the regions so that the search for the requested base address
is shortened. Therefore, the memory region data type needs to have another field that
allows for double-linked list support.
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4.1.2 The Dataspace Data Type

This data type is dm_phys’s internal representation of a dataspace handed out to a client
task. In accordance with the dataspace properties, the dataspace data type contains
variables that hold the memory region that is contained in the dataspace, the pagesize
that is used for the dataspace, and the owning task of the dataspace.

The memory region and pagesize variables are straightforward, but the owner in-
formation is stored in a somewhat non-intuitive manner in order to allow for storing
of sharer-sharee relationships between tasks. This is necessary to provide the unshare
operation. The owner data structure is discussed in greater detail in the next section.

Dataspace structures in dm_phys are not stored by dm_phys directly, but rather by
SawMill’s handle library. The handle library allows for a very flexible management
of access right and security policies as well as quick changes in those policies. The
library takes a task ID and a dataspace structure, stores those pieces of information in
a rather complex manner, and returns a unique handle. Each handle is valid only for
the dataspace-client task ID combination it was generated with, and so implies access
control with the help of the handle library. Later on, dm_phys can provide the library
with a client task ID and its dataspace handle, and the handle library will return the
proper dataspace structure. Thus, there is no need to have dm_phys keep an additional
copy of the dataspace structure.

4.1.3 The Owner Data Type

This data type is used for storing sponsorship relationships between tasks. It consists of
fields containing the owner’s task ID, the owner’s sponsor task, the owner’s handle for
the corresponding dataspace, and the owner’s queue of subshares. Additionally, a queue
link field is necessary, because owners are stored in double-linked queues.

The sponsor task s of a client task t is the task that has granted t access to the
dataspace. Therefore, the owner task, meaning the task that has originally opened the
dataspace, is its own sponsor task. If it shares the dataspace with any other task, then
the owner task is the other task’s sponsor.

Despite the name of the data structure, every task that has access to a given datas-
pace gets its own owner structure. This means that for every dataspace there possibly
exist more than one owner structures. Therefore, these structures need to be organized.

In dm_phys, the owner structures are organized in the following fashion. The actual
owner task, i. e. the task that originally created the dataspace, has its own owner
structure entry in the dataspace data structure. All other tasks are stored in the owner’s
subshare queue, which is contained in the owner structure. Each of those tasks, having its
own owner structure, also has its own subshare queue. If any task shares the dataspace
with another task, then that other task’s owner structure, in turn, gets inserted into
the subshare queue of the sharer task. Thus, a tree-like structure is created. This is
discussed in more detail in the next.
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4.2 Notes On Some Interface Functions

In this section, some notes on the implementation of some of the interface functions are
presented. These are mainly related to the treatment of shared dataspaces.

4.2.1 The Share Function

The share function’s aim is straightforward: it provides a method for a task with access
to a dataspace to grant the same access to another task. As indicated in section 4.1.3, in
order to provide reasonable unshare functionality, it is necessary to store some informa-
tion about sponsorship, or sharer-sharee, relationships. In dm_phys, this is done within
the owner data structure.

The owner data structure provides a subshare queue and a pointer to the sponsoring
task’s owner structure. Abstractly speaking, the subshare queue is one level deeper than
the owner data structure, while the pointer to the sponsor provides a pointer to the
next-higher level. Furthermore, the highest level in this tree structure is the original
owner task, i. e. the task that opened the dataspace. Therefore, the sponsor pointer is
useless for the owner task, as it cannot point to a higher level. For the owner task, it is
set to point to the owner task’s owner structure, so in a way the pointer points to itself.

Whenever the share function is called, a new dataspace structure and, subsequently,
by registering the dataspace structure and the share-receiving task ID with the handle
library, a new dataspace handle are created, regardless of whether or not the receiving
task does already have another handle for, and thus access to, the dataspace!

4.2.2 The Transfer Function

The transfer function is conceptually related to the share function discussed above. The
main difference between those two functions is that while both hand over access rights
to a dataspace to another task, the share method additionally retains these rights for
the originating task, while the transfer function releases the dataspace handle, and thus
gives up all access rights, for the sharing task. At the same time, the receiving task also
acquires the sponsorship relationships of the originating task.

The implementation of this is fairly simple, if not obvious. When the transfer function
is called, the only thing that is actually newly created is the dataspace handle for the
receiving task, which is done by the handle library. Then the originating task’s dataspace
handle is deleted, and the new task’s ID and dataspace handle is inserted in place of the
old task’s ID and handle in its owner structure. With this move, the owner structure
that was originally created for the old task is recycled for the new task. The benefit
of this is that no further variables or fields need to be changed, since all pointers to
potential higher-level owner structures as well all pointers from owner entries in the
subshare queue are still valid, because the owner structure itself has not changed.
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4.2.3 The Unshare Function

The unshare function, as the name suggests, performs the inverse task to the share
function. That means that while the share function gives access rights to other tasks,
the unshare function takes away those access rights.

Its implementation is fairly simple. Each owner structure contains a subshare queue,
which in turn contains a reference to every task that this task has shared the dataspace
with. Thus, all that needs to be done is to step through the queue of subshares and
subsequently take away the other tasks’ access rights by destroying their respective
dataspace handles and removing their owner structures. This, of course, is no guarantee
that all access rights to the dataspace are actually revoked from all tasks: it is still
possible that a task has been granted access rights to the dataspace not only by this
task, but by yet another, completely unrelated task that did not receive its access rights
from this task. Since the unshare function is supposed to be transitive, it needs to
recursively step through the subshare queue, of course.

4.2.4 The Close Function

The close function is used for returning, or giving up, access rights to a dataspace.
Just as the unshare function, the close function is transitive, so that if a task closes its
access rights to a dataspace, then access is also taken away from all those tasks that the
dataspace has been shared with by this task.

The implementation of the close function is as simple as that of the unshare function.
In fact, the very same code is used, with the exception that at the end of the close call, the
owner structure and dataspace handle for the closing task are also revoked. Furthermore,
if the closing task is the owner task of the dataspace, then the dataspace structure itself
is destroyed, and the memory region used for the dataspace is returned to the queue of
available memory regions and, in accordance with the coalescing policy described above,
immediately coalesced with the adjacent memory blocks if those are available.

Since a memory region carries its own base address and size, coalescing of two con-
secutive blocks is very simple: all that needs to be done is to increase the size of the
memory block with the lower base address by the size of the other block, remove the
latter block from the ready queue, and free its memory region structure.

4.3 Miscellaneous Notes

This section presents notes on miscellaneous topics that cannot gracefully be fit into any
of the other sections. The topics described below are

• portability with regard to pagesizes, and

• memory acquisition at startup.
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4.3.1 Portability With Regard To Pagesizes

Within each given hardware system, there is a well-defined set of pagesizes that the
system supports. This set is entirely hardware-dependant, and handling of this set is
therefore subject to portability considerations.

In order to keep portability at a maximum without giving up any comfort in imple-
mentation, the set of available pagesizes is organized in two constant arrays. One array
contains the actual pagesizes, while the other array contains the logarithms to the base
of two of the corresponding pagesizes. Both arrays are located in a header file and can
easily be found and modified. Upon portation to another system with different pagesizes,
all that needs to be done is adjustment of these arrays. All references to these constant
arrays are dynamical.

In order for the dynamical access of pagesizes to work properly, the array of pagesizes
needs to meet certain criteria. In particular, the following assumptions are made about
the array:

• the first, i. e. zero-eth, entries of both arrays are marker entries and set to zero,

• the pagesize array is sorted in ascending order so that the zero-eth element is equal
to zero, the next element is the smallest actual pagesize available in the system,
and the last element is equal to the largest available pagesize,

• the pagesize logarithm array is also sorted in ascending order so that the zero-eth
element is equal to zero, the next element is the logarithm of the smallest pagesize,
and so on.

4.3.2 Memory Acquisition At Startup

This section briefly describes how dm_phys acquires memory at startup time.
At this point, dm_phys is loaded as a standalone server task at system boot-time. This

means that it gets its resources from the resource manager, which in turn is controlled
by its configuration file. In this configuration file, the resource manager is told which
resources to give to which tasks. Among these resources is the range of memory that
may be granted to each task by the resource manager.

Because of this mechanism, dm_phys has no way of knowing which pages of memory
it is free to use. Therefore, it is necessary to either hard-wire this information into the
dm_phys source code, which is clearly unfavorable, or have dm_phys scan the entire range
of memory, trying to obtain every single page from the resource manager.

The latter approach is what is being done in dm_phys. At startup time, the entire
range of memory — with the exception of the first megabyte of memory — is scanned for
availability. The lower 1024 kilobytes contain memory designated for special purposes
and accessible for all tasks, but since this range is special-purpose, dm_phys should not
manage it as if it were regular memory. The upper limit of the memory range being
scanned is not the upper limit of the physical memory installed in the system, but a
constant hard-wired in the dm_phys header file, and taken from the resource manager
source. Currently, the high memory limit is 128 megabytes.
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dm_phys steps through the memory range specified above at steps of the smallest
available pagesize, which is the entry at index one of the constant array of pagesizes, as
discussed above. At every step, dm_phys checks the alignment of the memory address
and requests from the resource manager the largest page size that is available in the
system and aligned to the current address. If it gets the requested memory page, then
it skips directly to the next address aligned to that pagesize. If not, then the next-
smaller page size is tried, and so on, until finally either a page of some size is obtained
or index zero is reached in the array of pagesizes. In that case, dm_phys again steps by
the smallest pagesize.
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5 Validation

In order to confirm both the functioning and the desired performance of the dm_phys
dataspace manager implemented for this study thesis, a series of tests has been per-
formed. These validation and timing tests are described in this chapter.

5.1 Test Setup

It can quickly be seen that it is not trivial to devise a test that performs a meaningful
comparison of the Linux memory allocation/deallocation procedures and the dm_phys
dataspace management system. The reason for this is the entirely different structure
of the underlying operating systems: while Linux consists of a monolithic kernel that
does not offer a concept comparable to dataspaces, SawMill is based on the microkernel
operating system L4. The Linux malloc/free operations are therefore not entirely
comparable to SawMill dataspace open and close operations. It is even more difficult
to come up with a memory allocation/deallocation scheme that is actually significant in
terms of performance measurements: simply repeating the same allocation/deallocation
sequence obviously is not enough, and it is clear that in order to obtain significant data,
random allocations and deallocations need to be performed in some arbitrary order.

Furthermore, matters are complicated by the fact that SawMill/L4 is an operating
system that is still in the development stage. Thus, only a fraction of the functionality
desired for more in-depth testing is available.

The test used for validation consists of five steps.

1. Allocate n dataspaces (for SawMill) or blocks of memory (for Linux) of size si, i ∈
{1, . . . , n} one after the other without deallocating any of these blocks. Thus,
after this step, a total of n dataspaces or memory blocks are allocated, consuming∑n
i=1 si bytes of memory.

It can be assumed that all allocated memory is consecutive.

2. Shuffle the pointers to the dataspaces/memory blocks.

3. Deallocate the first m dataspaces/memory blocks.
Since the pointers to the dataspaces/memory blocks have been shuffled, essentially
m randomly-positioned dataspaces/memory blocks are now deallocated, thus in-
troducing (external) fragmentation.

4. Deallocate the next dataspace/memory block, then reallocate one memory block.
Repeat n times.
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This loop keeps deallocating randomly-placed dataspaces/memory blocks, while
at the same time allocating a new dataspace/memory block for each deallocated
one. Thus, after any loop iteration, there are exactly n−m dataspaces/blocks of
memory still allocated, while their base addresses are more or less random.

5. Deallocate the remaining n−m dataspaces/memory blocks.

Throughout the whole procedure, the number of processor cycles used by each alloca-
tion or deallocation call is tracked and the corresponding minima, maxima and averages
are updated.

The sizes si of of the dataspaces/memory blocks should obviously be random, for if
all dataspaces/memory blocks were of the same size, then no fragmentation would ever
occur. This is not a very realistic condition, and figures resulting from such a setup would
not be very convincing. For the tests performed, the sizes si are random values from
the set {i × 4096|i ∈ {1, . . . , 10}}. In other words, the block sizes are integer multiples
of 4096 bytes, the smallest L4/Intel pagesize available, and the maximum block size is
40960 bytes.

Obviously, the whole test is parametrized by two variables: the number of simulta-
neously allocated dataspaces/memory blocks, n, and the number of dataspaces/memory
blocks deallocated before reallocating further blocks, m. For the validation process,
a series of tests have been conducted. The test process has been performed for each
combination of m and n, where n ∈ {100, 500} and m ∈ {m× (i÷ 20)|i ∈ {1, . . . , 19}}.

The test series were conducted both for dm_phys on SawMill/L4 as well as for
plain Linux on the same machine, an Intel Pentium 2 with 300 MHz and a total of
128 megabytes of physical memory installed. dm_phys was compiled using the IDL 4
compiler.

5.2 Measurements

This section gives the results of the test series conducted for validation and performance
measurement, as explained in the previous section.

For each combination of (n,m), the minimum, average and maximum number of
processor cycles used for both an open and close call are presented. As the minimum,
maximum and average numbers of cycles are apart by orders of magnitude, there is a
separate graph for each set of values. This makes the graphs easier to read.

As can be seen in figures 5.2 and 5.2, Linux clearly outperforms dm_phys in best-
case scenarios. The minimum number of cycles used by a Linux allocation is about
180, without regard to the number of simultaneously allocated memory blocks. The
minimum for a deallocation operation in Linux is roughly the same. The same values
for dm_phys under SawMill are much greater: the minimum cost of an open operation
is around 3290 cycles for the 100-dataspace test and around 3480 cycles for the 500-
dataspace test, while the minimum cost of a close call is always about 2450 cycles. All
these values have a very small variance of less than five percent.
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Open Close
Minimum Average Maximum Minimum Average Maximum

100-Allocation Test

Sawmill
Minimum 3247 3467 4989 2412 5838 9493
Average 3290 3591 25791 2485 6034 13363
Maximum 3327 5294 346824 2570 6321 19965
Linux
Minimum 179 4111 9989 167 423 15206
Average 183 5342 17186 190 564 31035
Maximum 190 6022 47473 212 737 61448

500-Allocation Test

Sawmill
Minimum 3417 3481 7605 2409 3978 8714
Average 3479 3565 46296 2446 4059 13639
Maximum 3532 3842 349939 2490 4150 17231
Linux
Minimum 179 6013 18930 165 241 85491
Average 181 7128 36753 196 461 168765
Maximum 187 8269 92676 221 514 255727

Table 5.1: Measurement results for the 100-allocation and 500-allocation test series.

The respective maximum values show a much greater variance. This can be seen
in figures 5.2 and 5.2. The maximum number of cycles for a Linux open operation
range from about 10000 to around 48000 for the 100-allocation test; the average is
around 17000. For the 500-allocation test, the values are nearly doubled: the range is
from around 19000 to about 93000, with the average around 37000. Again, dm_phys is
outperformed: costs for the open operation ranges from about 5000 to around 350000 cy-
cles, with the average around 26000 for the 100-allocation test and around 46000 for the
500-allocation test. Looking at the graphs, it becomes obvious that those measurements
around 350000 cycles are very rare; the average value is much more accurate.

This picture is somewhat reversed when the maximum cycles for close operations
are considered. Now, dm_phys outperforms the Linux memory management: Both for
the 100-allocation and the 500-allocation tests, the maximum number of cycles used
by the close call ranges between around 9000 and 19000 cycles, with the average at
around 13500. Linux, on the other hand, requires between 15000 and 61000 cycles for
the 100-allocation test, with an average of 31000, and between 85000 and 255000 cycles
for the 500-allocation test, with an average of 170000.

Finally, when we regard the average case, dm_phys clearly outperforms Linux for
open operations, but is beaten by Linux for close calls. The graphs of these values can
be found in figures 5.2 and 5.2.

The measurements discussed above are compactly shown in table 5.2.
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Figure 5.1: Minimum number of cycles per open/close operation on a random-size datas-
pace/block of memory for a test set of 100 dataspaces/blocks.
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Figure 5.2: Average number of cycles per open/close operation on a random-size datas-
pace/block of memory for a test set of 100 dataspaces/blocks.
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Figure 5.3: Maximum number of cycles per open/close operation on a random-size datas-
pace/block of memory for a test set of 100 dataspaces/blocks.
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Figure 5.4: Minimum number of cycles per open/close operation on a random-size datas-
pace/block of memory for a test set of 500 dataspaces/blocks.
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Figure 5.5: Average number of cycles per open/close operation on a random-size datas-
pace/block of memory for a test set of 500 dataspaces/blocks.
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Figure 5.6: Maximum number of cycles per open/close operation on a random-size datas-
pace/block of memory for a test set of 500 dataspaces/blocks.
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5.3 Interpretation

In general, the measurements confirm that the dm_phys dataspace manager performance
is reasonably comparable with that of the Linux memory management subsystem.

The average cost for opening a dataspace is a little lower than for allocating a block
of memory in Linux. This was expected, as the SawMill dataspace model favors simple,
fast and lean solutions; dm_phys clearly falls in this category. The memory management
in Linux, on the other hand, has more tedious and time-consuming tasks to do than the
simple dm_phys model. Thus, Linux malloc calls tend to be more costly simply because
they do more work.

On the other hand, Linux clearly outperforms dm_phys when it comes to closing a
dataspace or deallocating memory. This is due to the delayed coalescion strategy used in
Linux, as in many unixoid systems. As described in the design section of this thesis, it
is envisioned that dataspaces managed by dm_phys are rarely closed, but rather kept in
use during the entire system uptime. Therefore, it was not a design goal for dm_phys to
be top-performing with regard to close calls. Instead, increased performance was traded
in for increased simplicity in order to keep things simple and less error-prone.

In total, the measurements show that the projected goals for the dm_phys project
have been reached.
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6 Conclusion and Future Work

There are quite a few tasks that can be turned to in the future. The following list is by
no means complete, but gives a feeling of the direction in which further effort could be
directed.

Performance improvement: While this probably is not the most important effort to
make, it may turn out to be good to have an even better-performing physical
dataspace manager. This is especially true if higher-level dataspace managers take
a while to be written: in that scenario, it might become important to at least
have reasonable dynamical access to physical memory, and the precondition that
certain performance aspects need not be as important to dm_phys design because
of relatively few open/close interactions may not hold. Therefore, it might become
desirable to trade in some of dm_phys’s simplicity in favor of better performance
parameters.

One very interesting and promising approach for performance improvement is the
use of tree structures wherever list or queue structures are used in the current
implementation. In particular, this concerns the queue of available memory blocks;
furthermore, a linear data structure can be found in the owner data type.

Higher-level RAM dataspace managers: This seems to be the most important future
project. In order to help SawMill develop into a more realistic, usable operat-
ing system, it is necessary to implement memory access with features that are
commonly present in today’s operating system. The canonical example for this
is swapping on secondary storage, but other tasks, such as avoidance of exter-
nal fragmentation, development and implementation of more complex allocation
and coalescing strategies optimized for frequent access within the SawMill environ-
ment, and implementation of support for memory compaction seem to be equally
important.

Extension of dm_phys’s domain: To this point, dm_phys is specifically designed to man-
age the RAM installed in the system. It is thinkable to extend dm_phys so that
it is also able to manage other forms of physical memory, such as the mainboard
ROM, video framebuffers, or PCI card ROMs or buffers.

Similar dataspace managers: Just as the previous example, it is possible to think of a
dm_phys-like but separate dataspace manager for tasks like management of ROMs,
framebuffers and other similar devices.
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Cryptographic dataspace manager: Finally, another potential future project is the de-
sign and implementation of a cryptographic dataspace manager. Such a dataspace
manager’s need for secure physical memory has originally lead to the implemen-
tation of dm_phys, so the originally envisioned dm_crypt seems to be a natural
follow-up project to dm_phys.

In any case, there is much work left to be done in the general domain of dataspace
managers in SawMill. The dataspace concept is a very flexible framework, and it is
certain that it has much potential left to be exploited.
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