
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Studienarbeit

Advanced SCSI Programming Interface

over Internet Protocol

Johannes Lieder

Betreuer: Prof. Dr. Frank Bellosa

Stand: 27. Februar 2006

I hereby declare that this thesis is a work of my own, and that only cited sources have
been used.

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Literaturhilfsmittel verwendet zu haben.

Karlsruhe, den 27. Februar 2006 Johannes Lieder

Abstract

The development of technologies facilitating spatial separation of storage
subsystems and their responsible computational resources is in increasing
manner subject to recent commercial and scientific research. While most
existing solutions relate to the SCSI (Small Computers System Interface)
standard, resulting in a high degree of universality, from an end-user’s point
of view there is, however, a lack of dedicated support for remote optical
storage. Although CD/DVD recorders typically behave as standard SCSI
multimedia device, specific requirements for this class of devices (e.g., timely
arrival of command blocks) have to be taken into account, especially when
considering scenarios of distributed deployment; that is, host computer and
target device reside in separate locations connected by a common network
interconnect. The objective of this work is to remedy missing support by the
development of a viable solution under the main premise of an inexpensive
application among end-users.

This thesis describes an approach, which allows the transmission of ASPI
(Advanced SCSI Programming Interface) requests across an IP-based net-
work. To accomplish transparent usage of remote devices, these request
blocks are tunnelled over a transport layer connection, which means being
serialized and enveloped by an appropriate packet header and trailer. In
addition to this functionality, the designed protocol includes supplemen-
tary mechanisms in respect of extensibility and future enhancements, turn-
ing it into a generic framework for the given task at the same time. The
solution’s accompanying implementation demonstrates feasibility (proof-of-
concept) in general and correct operation of the elaborated protocol design
in both single-threaded and multi-threaded application.

1

2

Contents

1 Introduction 5

2 Background and Related Work 11

2.1 Background . 11

2.1.1 SCSI Fundamentals 11

2.1.2 ASPI fundamentals 14

2.1.3 Sockets API . 15

2.2 Related Work . 16

2.2.1 SCSI . 16

2.2.2 Fibre Channel (FC) 16

2.2.3 iSCSI . 17

2.2.4 Serial Attached SCSI (SAS) 18

2.2.5 HyperSCSI/SCSI RDMA 18

2.2.6 NeroNET . 19

3 Design Considerations 21

3.1 Layered Solution . 21

3.2 Protocol Design . 22

3.3 Implementation Design . 31

3.4 Synchronous Implementation 39

3.5 Asynchronous Implementation 41

4 Evaluation 45

4.1 Synchronous Implementation 45

4.2 Asynchronous Implementation 46

4.3 Experimental Results . 47

5 Analysis 55

3

5.1 ASPI over IP . 55

5.2 Advantages/Drawbacks (ATP) 56

5.3 Outstanding Issues . 57

6 Conclusion 61

A Class Hierarchy 63

B Layered Architecture 65

C ASPI Tunnelling Protocol 67

D ATP Target Service 71

4

Chapter 1

Introduction

SCSI (Small Computers System Interface) comprises a common protocol
for personal computers, workstations and servers defining communications
between hosts and peripherals from a high-level command set down to the
physical layer where bits typically travel along a copper wire. Most current
operating systems use SCSI internally to abstract from many of the various
devices’ peculiarities (often accomplished by SCSI miniport drivers). Thus,
using a SCSI command set, virtually all types of devices like hard disk drives,
scanners, or jukeboxes can be accessed. This even applies to most ATA de-
vices today, due to the fact that the ATA command set has been extended
to support SCSI like command blocks (ATA Packet Interface [17]). To over-
come the distance between computing devices locally (i.e., within or aside
the computer’s case) often wired bus topologies are applied. Unlike SCSI
being constrained to relatively short distances, network topologies (e.g., Eth-
ernet) are much less limited in end-to-end diameter (meters in contrast to
centimeters). The broad deployment of Ethernet today makes it an ideal
low-cost replacement for local buses, but since utilizing completely different
layered architectures, a kind of tunnelling has to be performed where the
local high-level SCSI command blocks are encapsulated and passed to the
now underlying network stack.

Due to the recent need for separation of computing devices and storage
subsystems in large data centers, a variety of standards have been devel-
oped facilitating the paradigm of so called SANs (Storage Area Networks).
Only hardware solutions do not suffer from performance issues in these high-
demand environments, rendering this class of hardware impractical and un-
affordable for average PC users. In contrast to SANs – providing block-
oriented storage (the smallest accessible unit is a block of data residing on
a logical storage device) – NAS (Network Attached Storage) is gaining in
popularity among users lately. Thus, more and more of these network-aware
hard-disks can also be found among private networks. In case of NAS, stor-

5

age space is made available in form of network shares (via high-level network
protocols like FTP [10] or SMB), where files are the smallest unit of alloca-
tion.

The assignment of this thesis is the development of a solution which
addresses normal PC users by combining the possibility to access devices re-
motely and the advantages of utilizing already existing network infrastruc-
ture and introducing a simple and inexpensive software layer at virtually
no additional cost. Further, design paradigms like reliability, scalability, in-
tegrity and security should be realized, albeit likely only up to a level which
complies to the scope of a study thesis. However, a working solution, poten-
tially attractive for average PC users, should be implemented at least. Being
constrained by latter requirements and the demand for a low-cost software
solution in particular, this also constrains the range of suitable standards
seeming applicable to the architecture. Advantageous for this task is the
fact that a large amount of the stipulated properties is already provided
by the most common network transmission protocol (TCP) today and the
underlying network stack, respectively. Due to the broad deployment of
TCP/IP-based networks and assuming this kind of implementation, a cer-
tain platform independence can be guaranteed by building an application
layer (ISO/OSI layer 5–7, see [1]) upon this transmission protocol.

Relevance

Today, virtually every newly purchased PC ships with at least one optical
storage device. During the advent of optical media even the plain CD-ROM
technology (i.e., a medium only capable of being read) was relatively ex-
pensive. However, with the introduction of the next generation of devices,
for example CD-R or CD-RW, the already established devices became con-
tinuously cheaper over time, which may be attributed to the need for and
consequently the broad spreading of these devices. A very similar process
could be detected with virtually every subsequent drive generation.

Currently, DVD+/-RW (multi-format) recorders can be found in many
computers with the new HD-DVD/Blu-ray Disc standards pending to be
released. So, at a first glance, it might seem superfluous to share these
devices over a network since all computers are fully equipped, but at least
two scenarios beyond just making optical storage devices accessible remotely
are imaginable. First, for reasons of admission control and second, to lower
hardware costs. Especially, in case of the new BD (s.a.) costs are dispro-
portionately high – and even higher, if a larger number of users should have
access to this storage technology. Sharing those devices within a corporate
network or a pool minimizes asset cost while still having access to state-of-
the-art hardware.

6

Issues/Problems

In a host computer peripheral scenario an issued SCSI command sent to a
local device usually never quits the system. So data being written or read
only has to be placed in memory prior to the call or has to be copied from
memory afterwards. To overcome spatial separation of host computer and
peripheral the shared memory between these endpoints has to be kept up-to-
date, resulting in a form of distributed memory coherency. This coherency
might be sustained by a simple communication protocol consisting of the
following three steps:

1. Transmit client memory block to server (C-to-S update)

2. Execute SCSI command on the server

3. Send the server’s modified memory block back to the client (S-to-C)

Here we still use the standard network notions of client/server, while in
the following sections of this work the more adequate notions of initiator
and target will be introduced.

The depicted protocol can be used for the entire SCSI command set in
general. However, in case of commands being accompanied by large data
blocks some optimizations may be applied. For example, after issuing a
WRITE command (W-type command, see [5], p. 16) the memory block holding
the data to be written obviously remains unaltered. In other words, a W-
type command to the medium in turn is a read-only operation in memory.
Thus, retransmission of the unmodified content (previously copied from the
client’s address space) is superfluous. The omission of the S-to-C transfer
ought to have a significant positive impact on network message delay and
finally application-level latency (see chapter 4). The same applies to READs
(R-type command) in an analogous manner: the C-to-S update of the target
buffer to the server is not necessary as the transferred data will always be
overwritten completely unappreciated.

Further, as the issued SCSI command blocks contain pointers to local
memory locations any implementation has to cope with the task of managing
these pointers transparently on the client’s computer to ensure an integrative
operation of the client process. For the server side, every incoming command
is ”new” and so the serving process has to manage memory allocations in
addition to the the client side’s memory copy operations (figure 1.1 shows a
block diagram of the basic architecture).

At least, the described functionality has to be implemented by the so-
lution developed throughout this thesis. Further, to ensure flexibility and
extensibility and to overcome the problem of complexity the widespread
design paradigm of layered software development will be applied.

7

Figure 1.1: Block Diagram

Simple network communication on the data link layer (e.g., Ethernet) is
unreliable and provides virtually no guarantees in terms of data integrity,
ordering, or arrival. Preferably, the implementation should be lean and so
will utilize as many services as possible already provided by the host’s OS
in form of the TCP/IP stack. Concordantly, requirements like data ordering
and integrity are introduced within these lower network layers (ISO/OSI
layers 3 and 4). The application-level functionality of transmitting SCSI
command blocks and request blocks respectively will be handled by the
remaining session, tunnelling and application layers (equivalents to ISO/OSI
layer 5 through 7).

Purely software-based implementations often struggle with an increased
latency caused by a complex stack of software layers. Similar issues have
already been observed with iSCSI solutions [18]. Specialized and expensive
hardware has been developed by a small number of companies (Adaptec et
al.) to overcome some of the depicted drawbacks. For example, by offload-
ing some of the CPU-intensive tasks to dedicated processing units the load
imposed by iSCSI packet generation can be alleviated (to a certain degree).
These considerations do apply to an ASPI over IP implementation as well.
However, due to the special deployment scenario for this solution – being
preliminarily defined (see above, p. 6) – the consequences may be neglected
for the course of this work. Again, additional costs for the end-user should
be avoided whenever possible. Considering that even with low-cost hard-
ware computational power (i.e., raw CPU cycles) is rather cheap, the still
layered ASPI over IP implementation should be of no concern.

Another important reason why iSCSI cannot be applied to the existing
scenario is the fact that – although the iSCSI standard does not restrict
the type of SCSI device being used – current implementations (e.g., Mi-
crosoft’s iSCSI initiator) do not support devices other than storage class

8

devices (which is most likely an restriction of the initiator kernel driver em-
ulating a local device of hard-coded type). In case of CD recording the task
is heavily dependent on latency of the interconnect medium replacing the
typically dedicated internal SCSI bus of the local computer. With Fast Eth-
ernet and Gigabit Ethernet available today, transfer bandwidth appearing to
be critical at data rates of several megabytes per second of today’s recording
devices, however, is of secondary concern. Pure sequences of READs (reading
data blocks from the medium) commands are not critical in contrast to se-
quences of WRITE (writing data blocks to the medium) commands especially
in case of CD recorders. In the following sections the causes and resulting
implications will be examined in more detail.

During the course of this study thesis a solution for the given problem
will be presented. Many design decisions have been made with the limited
resources and a preferably simple implementation in mind. Finally, the
main objectives will be achieved, but obviously with limitations imposed by
the respective hardware environment (CPU speed, network bandwidth and
latency). However, an outlook to further promising tweaks which may be
applied to circumvent unavoidable transmission latencies can be given at the
end of this thesis.

9

10

Chapter 2

Background and Related Work

2.1 Background

The following chapter is confined to background issues and other work re-
lated to this study thesis. Therefore, the following sections will delve into
various aspects of SCSI and ASPI [2] standards – later on also other related
technologies like SAS (Serial Attached SCSI), FC (Fibre Channel) and its
counterpart iSCSI. However, only the most important aspects relevant for
this work will be discussed rather superficial.

2.1.1 SCSI Fundamentals

For the first overview a basic knowledge of some of the important SCSI
fundamentals is necessary. The entire SCSI standard comprises multiple
documents representing different layers and also different levels of standard-
ization. The main starting point is the SCSI Architectural Model (SAM-2)
[13] which describes the overall architecture of a SCSI subsystem. In an
abstract view SCSI can be regarded as common client/server model, here
denoted by the term SCSI distributed service model ([13], fig. 5). This
scenario is very similar to the ubiquitous client/server model in network
communications. The client (SCSI Initiator Device) requests a service from
the server (SCSI Target Device), which sends back a corresponding response.
Furthermore, SCSI is based on the layered model (fig. 2.1) for distributed
communications which abstracts from a certain Interconnect or Service De-
livery Subsystem ([13], fig. 25). Thus, this interconnect can be of any given
type rendering SCSI a very flexible system, which may be easily observed
in case of Fibre Channel – a formidable transport for SCSI commands. The
SCSI model for distributed communications consists of two layers: the SCSI
Application Layer (SAL) and the SCSI Transport Protocol Layer (STPL),
stacked on top of an Interconnect Layer or Service Delivery Subsystem and

11

Figure 2.1: SCSI Architecture: Layered Model

finally an appropriate interconnect. As usual two kinds of communication,
vertical between adjacent layers and horizontal communication between the
two endpoints take place in this layered protocol architecture. Being re-
sponsible for I/O operations invoked by the client, the SAL guarantees a
certain level of standardization at application level (Command Standards).
Now, the STPL provides services and protocols for clients and servers to
communicate (SCSI Transport Protocol Standard). With the Interconnect
Layer, a signaling system and a service for the physical transfer of data
between sender and receiver (an Interconnect Standard) is introduced. To
accomplish I/O operations SCSI defines an Execute Command procedure call
(or mechanism) in its architectural model which follows the previously men-
tioned request/response protocol. However, this procedure call has to be
dispatched with a number of accompanying parameters (IN). The return
data represents the associated response. Assuming the Request-Response
transaction model ([13], 4.15, fig. 27) an Execute Command call to the appli-
cation layer (SAL) implicates an amount of protocol communication in the
lower layers. For example, [13] 5.4 the STPL splits the call up into calls to
Send SCSI Command, SCSI Command Received, SCSI Transport Protocol
Service Response, and Command Complete Received. In the SAM/SAL the
procedure call is noted as follows:

Service Response = Execute Command(
IN(I T L Q Nexus, CDB, Task Attribute, [Data-In Buffer Size],

[Data-Out Buffer], [Data-Out Buffer Size],
[Command Reference Number], [Task Priority]),

OUT([Data-In Buffer], [Sense Data], [Sense Data Length], Status)
)

The parameters of the Execute Command procedure call will be subject to

12

the following paragraphs, as they heavily influence the interface to a client
application utilizing SCSI. These parameters also constitute a great part of
the SCSI standard and since the three SCSI layers are relatively thin, they
have to be handled and transported in case of the given program design. De-
pending on the SCSI command to be invoked some of the input and output
parameters are optional (denoted by square brackets). So three parameters
become mandatory, namely the I T L Q Nexus, the Command Descriptor
Block (CDB), and a Task Attribute. The SCSI notion of a nexus describes a
logical relationship of different levels, for example between an initiator port
and a target port (I T Nexus), or more specific between initiator, target,
and a target’s logical unit (Logical Unit Number, LUN), which would be
noted as I T L Nexus. Furthermore, a defined task (representing a pending
command) can be addressed by a so called I T L Q Nexus (Q stands for Task
Tag), actually a numeric value – like in the case of the Execute Command
procedure call. Essential for the Execute Command procedure call is the
Command Descriptor Block as it defines a unified memory structure to gov-
ern SCSI command execution. The CDB’s generic layout is also defined by
the SAM, viz. the location and exact composition of the OPERATION CODE

(in the first byte). To proceed it is necessary to study the SCSI Primary
Commands (SPC-3) documentation, which describes the CDB format for all
common SCSI commands (i.e., SCSI commands any type of SCSI device has
to support) with more minutiae [16] 4.3. The CDB usually is of fixed size and
contains all additional information required for the execution of a SCSI com-
mand except for the optional parameters, like buffer locations and sizes, for
example the LOGICAL BLOCK ADDRESS, TRANSFER LENGTH, and CONTROL (al-
lowing optional features in conjunction with the SCSI command being about
to be executed). Finally, Task Attribute as the last mandatory parameter
to Execute Command enables features like linked commands (multiple I/O
operations are treated as a single task) and command reordering, rendering
SCSI an even more powerful peripheral subsystem, in contrast to low-cost
subsystems like ATA missing this range and richness of functionality.

In terms of error detection the client application can evaluate Sense
Data automatically collected by SCSI if the Status code equals to CHECK

CONDITION. In case of an error condition, the Sense Data structure provides
detailed information . As the objective of this work is control of WORM
(Write Once, Read Many) devices, two new SCSI commands READ and WRITE

have to be mentioned not yet defined by SPC-3. Since these commands are
not common to all device types they are introduced in the SCSI Multi-
Media Commands (MMC-5) [15] document. There are different subtypes of
READ and WRITE commands as the SCSI standard distinguishes between com-
mand classes of different sized CDBs accompanying the READ/WRITE com-
mand. Typical commands for direct-access block devices are READ 6, READ

13

10, and READ 12 introducing a level of flexibility when addressing large disks
by LOGICAL BLOCK ADDRESS. This description of SCSI fundamentals should
cover all main aspects of the standard needed to understand the considera-
tions of the subsequent chapters.

2.1.2 ASPI fundamentals

When studying the ASPI (Advanced SCSI Programming Interface) it should
be regarded primarily as application-level programming interface. Therefore,
the API helps to simplify the programmer’s view and access to local SCSI
devices.

From the system’s perspective multiple SCSI HBAs (Host Bus Adapters)
representing different initiators may exist. Although being uniformly ac-
cessible by the host’s OS through drivers abstracting from the adapter’s
peculiarities, a mechanism has to be introduced that allows to discover and
address devices as well as the responsible host adapter. Combined with the
function set needed to expose all main SCSI commands, the result consti-
tutes virtually all the functionality covered by ASPI. With the adapter count
already being returned upon initialization (GetASPI32SupportInfo()) an
inquiry can be sent to HBAs allowing the detection of all existing devices;
that is, the determination of all valid HA:ID tuples. The INQUIRY com-
mand is part of the SCSI standard and may be dispatched using ASPI’s
SendASPI32Command() function call accompanied by a properly initialized
SRB structure.

typedef struct
{

BYTE SRB_Cmd; // ASPI command code
BYTE SRB_Status; // ASPI command status byte
BYTE SRB_HaId; // ASPI host adapter number
BYTE SRB_Flags; // ASPI request flags
DWORD SRB_Hdr_Rsvd; // Reserved , MUST = 0

}
SRB_Header;

DWORD GetASPI32SupportInfo(VOID);
DWORD SendASPI32Command(LPSRB);

Figure 2.2: ASPI Programming Interface

There are many similarities between the SCSI programming interface (see
CDBs) and ASPI with a single main procedure call, where SendASPI32-

Command() in conjunction with a parameter structure (SRB, SCSI Request

14

Block) is analogous to Execute Command and its CDB in case of SCSI. The
SRB’s first field holds the ASPI command, for example SC HA INQUIRY (to
retrieve adapter-related information) or SC EXEC SCSI CMD (to dispatch a
SCSI command).

In summary, ASPI unifies all different aspects of accessing SCSI devices
in a straight-forward way (see CDB in comparison to SRB). With ASPI sim-
plifying the discovery of SCSI hardware, introducing management for SRBs,
and providing a programming interface abstracting the view to multiple host
bus adapters (different hardware, various drivers) it encapsulates the SCSI
standard and extends it in terms of application-level programmability. How-
ever, since the introduction of SPTI (SCSI Pass-Through Interface) with the
Windows operating system the importance of Adaptec’s ASPI software layer
(originally developed and exclusively shipped with the firm’s AHA series of
host bus adapters) is continuously diminishing.

As illustrated in figure 2.3 with a compartment model, different levels of
processing are performed with the passed command structures. Leaving a
compartment implies the processing of the responsible entity which (in case
of ASPI) is the Windows ASPI layer, the SCSI Miniport/bus driver (SCSI),
or the device driver (O/S), eventually. However, the EXEC SCSI CMD com-
mand represents an exception to the remaining ASPI command set (mostly
providing an interface to management and discovery functionality) as the
accompanying CDB is directly passed to the appropriate SCSI stack and
finally the device (see fig. 2.3).

2.1.3 Sockets API

Another broadly used and thoroughly tested API is the classical BSD-style
network programming interface, building upon its original file handle-centric
design paradigm. With Microsoft’s WinSock API as its superset these pro-
gramming interfaces provide a well abstracted and easy-to-use API to the
TCP/IP stack and finally to the whole variety of existing networking hard-
ware. Sockets are the logical abstraction of network communication end-
points represented by file handles. Once being established, the programmer
can operate on these network connections (between instances of the Trans-
port Layer, ISO/OSI layer 4), typically by use of send() and receive()

primitives. While adhering to a proper client/server design, TCP connec-
tions are not built symmetrically, say the client uses another mechanism
(connect()) than the server which passively accepts (accept()) a connec-
tion.

Although WinSock supports advanced programming techniques, for ex-
ample Overlapped I/O to overcome limitations imposed by blocking sys-
tem calls (causing the affected process/thread to enter a waiting state),

15

these features will not be used with the proposed implementation. Instead,
parallel execution of multiple worker threads introduces the needed level
of asynchronous processing. Therefore, from a programmer’s point of view
relying on the blocking network API is advantageous, yet even mandatory
while a blocked state confines to the scope of a single worker thread resulting
in a nearly synchronous implementation design within this domain.

2.2 Related Work

2.2.1 SCSI

During the last couple of years storage access over network topologies has
been topic of thorough research and commercial development resulting in
a diversity of different technologies utilizing various types of interconnect,
specialized hardware, or layered software implementations. As the objective
of this thesis is the development of another similar solution, yet focussed
on real end-user usability and particularly optimized for transparent access
to CD recording devices residing at remote locations (issues that have often
been neglected in the past).

Evolving from Fast SCSI (SCSI-2) with a 8-bit wide bus offering transfer
speeds up to 10 MiB/s to Ultra 320 SCSI delivering aggregated data rates of
up to 320 MiB/s (with a widened 32-bit bus), SCSI has traditionally been a
storage subsystem processing transfers over wired, parallel cables. Although
transformed into a sequence of serial transfers in the lower SCSI layers (STPL
and SDS), from the application’s high-level point of view this is done trans-
parently giving an impression of parallelism. In fact, when submitting an
Execute Command procedure call first the complete set of parameters and
data structures have to be in place. Anyway, whether representing a sub-
stitute for a SCSI interconnect, an adaptation technology for the complete
SCSI standard, or an application-level transport for SCSI/ASPI command
traffic, the protocol has to be serialized and de-serialized allowing it to travel
along an arbitrary interconnect technology.

2.2.2 Fibre Channel (FC)

The first important standard to mention is Fibre Channel (first draft pub-
lished 1994), or better the Fibre Channel Protocol for SCSI (FCP) and the
Fibre Channel mapping layer for SCSI (FC-4), adapting the versatile SCSI
standard to another underlying interconnect. FC’s most prominent feature is
the optical infrastructure defined by the corresponding Physical and Signal-
ing Interface (FC-PH). However, while being another layered communication
technology, Fibre Channel is not limited to the fiber optical domain. For

16

example, there are also wired Fibre Channel devices (hard-disks with a 40-
pin SCA-2 connector) sometimes found in workstations where performance
is of highest priority.

Through its optical delivery subsystem (including Classes of Service func-
tionality) and a single protocol layer mapping SCSI communications directly
to the physical frame format, Fibre Channel represents an ideal storage sub-
system interconnect for high-performance environments. The underlying
physical layer again can be divided into 3 sublayers FC0 – FC2, which,
however, might be considered as single layer due to their compactness. The
behavior is representative when analyzing similar protocols, therefore a short
example should be given. After dispatching FCP CMND to initiate an Execute
Command on the target the command is marked by a unique identifier (Fully
Qualified Exchange Identifier, FQXID). Most protocols are designed to only
transmit solicited data (from initiator to target or vice versa depending on
the type of command; e.g., READ or WRITE). Hence, a FCP XFER RDY com-
mand has to be encountered by the initiator first. The other party replies
with an according FCP DATA packet followed by a finalizing FCP RSP con-
taining SCSI status and SCSI Request Sense information if applicable (see
Request-Response Protocol, chapter 2.1.1, SCSI Fundamentals).

2.2.3 iSCSI

Fibre Channel is a mature technology with many additional features needed
for high-demand scenarios. However, due to the costly optical infrastruc-
ture and specialized hardware this technology cannot be applied in case of
Personal Computers, although representing an important example in terms
of protocol communications and SCSI Application Layer (SAL) adaptation.

As counterpart technology and since Fibre Channel has always been rel-
atively expensive (s.a.), IETF [11] has pushed development for the iSCSI
protocol standard (finally posted for RFC in 2003). Originally aiming at
software implementation and thus building upon TCP as transport protocol,
the standard overcomes some limitations (iSCSI is a high-level application
layer protocol capable of being routed through the Internet, hence its name
”Internet SCSI ”). Recently, iSCSI is gaining importance although still suf-
fering from various design-inherent drawbacks also inhibiting its popularity.
However, when being deployed in an environment with an inexpensive (Gi-
gabit) Ethernet infrastructure, iSCSI is an ideal way to attach a separate
SAN (see chapter 1). Because of significant overhead caused by a com-
plex software stack and application layer in particular (see [18]), specialized
hardware solutions have been developed over time (see chapter 1), too.

17

2.2.4 Serial Attached SCSI (SAS)

With the advent of next generation hard-drives allowing high transfer speeds
and burst rates (mainly caused by large disk caches) new internal storage
attachment standards are about to supersede SCSI’s aged parallel cables.
Serial point-to-point connections do not suffer from limitations becoming
dominant in case of parallel technologies with increasing transfer speeds and
decreasing timings (e.g., signal echos impairing signal fidelity). Thus, an
initial U640 (Ultra SCSI 640) standard could not prevail in favor of a new
serial interconnect technology, as can be observed in case of various other
technologies (Serial ATA, USB, IEEE 1394). This Serial Attached SCSI
(SAS) standard borrows its lower layers from SATA, while FC - or more
accurate FCP - lends its approved SCSI adaptation layer (FCP) to the new
standard. In comparison to FCP, the SAS standard utilizes only required
fields of the command packet, defining superfluous fields reserved. Hence,
Serial Attached SCSI might be regarded as a Fibre Channel implementation
where the FCP is tunneled over SATA cables. SAS unites the many advan-
tages of dedicated point-to-point connections (allowing full-speed transfers
to each device), SCSI’s versatility, and backwards-compatibility to SATA in-
frastructure, respectively. Actually, SAS hard-disks may be installed among
SATA disks as they ship with the same connectors and SAS defines a SAT
(SAS ATA Tunneling Protocol). This, however, does not allow the reversed
scenario of deployment.

2.2.5 HyperSCSI/SCSI RDMA

Further, there are several less important protocols which provide the same
services either using different underlying network technologies or trying to
overcome some of the already discussed drawbacks by directly building upon
low-level network protocols like Ethernet or Internet Protocol (IP).

An example of the latter class is HyperSCSI [7], which is designed to
utilize both options for the transmission of SCSI protocol traffic (today,
only an Ethernet implementation in software exists). Any Ethernet-based
protocol communication is limited to the local network domain because of
the inability to be routed. This, however, might be a wanted behavior when
data has to be kept confidential and may not leave the local storage network.

A last instance of storage communication protocols is the SCSI RDMA
Protocol (SRP), where RDMA is an abbreviation for Remote Direct Mem-
ory Access, utilizing an Infiniband network infrastructure. All previously
discussed topics also apply to SRP apart from the required RDMA com-
munication service model. This service model introduces RDMA Channels
allowing pairs of consumers to communicate via messages and data trans-

18

fers. The data transfers occur with direct access to the remote computers
address space. The combination of message delivery and direct data transfer
allows the application of a RDMA service as another delivery subsystem for
SCSI commands (the exact realization is subject to the accompanying SRP
protocol proposal [14]).

2.2.6 NeroNET

As the primary objective of this thesis is the development of a communica-
tion protocol capable of transporting application-level request blocks (SRBs)
as well as maintenance of data coherency by payloading data buffers, a com-
prehensive overview of related protocols and work has been given in the
previous sections. There is, however, another product sold for deployment
in conjunction with the Nero Burning ROM application suite that takes a
completely different approach to provide a service allowing the centralized
recording of CD media. Once the extensions for NeroNET are enabled, a
new virtual recording device is available for usage from within Nero and the
entire Nero API, respectively. Although for the end-user the experience is
very similar, NeroNET does not continuously send commands over the net-
work. Instead, the complete CD image is compiled on the client and then
transmitted to the server where a lightweight Nero process finally writes
the data to the disc. An advantage of this concept is the possibility to im-
plement multi-user operation (e.g., a queuing mechanism). However, real
multiplexing is impossible due to the exclusiveness of this type of resource
(CD recorder) prior to operation such a device is reserved for a single party,
otherwise a SCSI RESERVATION CONFLICT condition occurs. On the other
hand this approach has the disadvantage of an increased burning process
duration. The overall time at least sums up to the transmission time of the
CD image plus recording-time, in contrast to the interleaved transmission
of data and immediate execution of the accompanying WRITE command as
is the case with ASPI over IP.

19

F
igure

2.3:
C

om
partm

ent
M

odel
(P

rocessing
of

E
X

E
C

SC
SI

C
M

D
and

H
A

IN
Q

U
IR

Y
)

20

Chapter 3

Design Considerations

3.1 Layered Solution

The following chapter covers the gradual design and implementation of a so-
lution to the given problem of this thesis. As discussed in chapter 1 the pri-
mary objective to realize a form of ASPI tunnelling over IP. In other words,
this is the development of a message and data passing protocol sustaining
memory coherency between initiator and target of SCSI transactions. The
protocol has to be of bidirectional design to support the underlying Request-
Response model and should define different types of messages which initiate
a well-defined behavior on the peer machine.

For the remaining part of this chapter a bottom-up design process will be
applied. The standard Internet protocol design procedure suggests a layered
solution design to overcome complexity, which leads to the ISO/OSI refer-
ence model. As discussed earlier in chapter 1 the proposed solution will build
on the TCP/IP stack, whereas the lower layers up to the transport layer (lay-
ers 1 through 4) are well defined; session, presentation, and application layer
make up the residuary part. With the restriction of architecturally similar
end-systems (little-endian vs. big-endian) a fully-fledged presentation layer,
which might be responsible for an independent data representation can be
omitted. In return, a supplementary tunnel layer should be placed upon the
session layer for the reasons mentioned above. This again results in a thin
application layer (see fig. 3.1).

21

Figure 3.1: Protocol Stack

3.2 Protocol Design

State Machine

Many Internet protocols are plain-text protocols. A fact which pays off
in debug situations and whenever resource-constrained systems might be in-
volved. Another example for this mind is IETF’s iSCSI protocol (RFC 3270,
[11]) – a protocol primarily designed for unstructured data transport – how-
ever, it defines an initial text-based negotiation phase (chapter 5, p. 50).
As iSCSI represents the principal model for the ASPI Tunnelling Protocol
(ATP) this methodology will be adopted, providing space for future exten-
sibility. For the well-defined communication between initiator and target
(client and server) a communication protocol has to be defined. It repre-
sents a mandatory operations contract for the two parties and stipulates
the behavior when transiting between different protocol phases. For appro-
priate visualization a connection-oriented transport state machine pattern
([1], p. 64, fig. 5–4) provides the foundation. This representation of a finite
protocol automaton uses a special notion for service primitives and their
decomposition. With the initial phase (text-based negotiation part) of the
ATP protocol being an element of the session layer the state machine pro-
cesses session-layer primitives (prefix S) as input and returns session- or
transport-layer (prefix T) primitives as output (<input>; <output>). Con-
catenated with a service and service primitive part an unambiguous nota-
tion is given (for example TConReq). To maintain diagram readability and
to limit the amount of intermediate protocol states the common request-
response sequence (Req → Ind, <Intermediate State>, Res → Cnf) [fig. 3.2]
is abbreviated by the simple notation of the respective layer-service identifier
(for example TCon).

Starting from the Not Connected state the initiator may create a con-
nection to the target (NC → TCon → Login) causing a transition to the
Login/Discovery state. These state transitions always apply to both par-
ties; that is, the initiator and the target should assume an identical state at
all times. Coming from a Login state it is possible for the initiator to discover

22

Figure 3.2: Request/Response Model

Layer Service Service Primitive
Transport (T) Connect (Con) Request (Req)

Disconnect (Dis) Indication (Ind)
Session (S) Discover Response (Rsp)

Login Confirmation (Cnf)
Close
CmdCall
CmdReturn
Ack
Data
Leave
LeaveForce

Table 3.1: Service Primitives

the target causing the StDiscover loop. The notation of S followed by a sub-
script t stands for text-based session layer communication as d corresponds to
binary data communication happening during Full-Feature phase. To com-
mence full operation the initiator now can dispatch a StLogin request (im-
plicating a Request-Response sequence including intermediate state) while
at the same time also negotiation may take place. Full-Feature phase is sus-
tained by subsequent calls to services of type SdCmdCall, SdCmdReturn,
SdAck, or SdData. Albeit, the use of the different services may possibly be
constrained to only one of the to involved endpoints, as is SdCmdCall in
case of the initiator and SdCmdReturn, SdAck in case of the target. SdData
may be utilized by both service consumers allowing the bidirectional trans-
mission of data premised in the previous section (3.1). The binary com-
munication phase may only be left using the service primitives SdLeaveReq
or SdLeaveForceReq, where Leave exits to the Login/Discovery state (with
accompanying SdLeaveInd indication for the far side party) and LeaveForce
immediately terminates the underlying transport connection (TDisInd) with-
out further communication resulting in a Not Connected state. As the prefix

23

Figure 3.3: Protocol State Machine

Sd indicates the Leave service is not communicated by a text-based request in
Full-Feature phase, but by a binary command packet. A valid session always
ends in the Not Connected start/end state implying an eventual StCloseReq
request (in case the Full-Feature phase has been left using the SdLeaveReq
service primitive).

Text-Phase Protocol

The text-based protocol messages consist of an input string which may not
exceed a length of 4096 bytes while every character is of 8 bits in size with
only the lower 7 bits of the ASCII code (0–127) in use. Incompliant charac-
ters should be avoided as the protocol behavior when processing this data
is not defined. Due to the fact that the input string length is unknown at
the time when the initial connection is made the string has to be terminated
with a well-known character sequence delimiting the transition from text
to binary communication. Posing HTTP (HyperText Transfer Protocol)
as example for a standardized Internet protocol the protocol to be designed

24

adopts the empty line delimiter (\n\n) also facilitating access to the protocol
for a console user (e.g., via telnet). The common format for data exchange
over the text-phase protocol is a ”<Property>: <Value>” sequence of lines
(separated by \n characters). The occurrence of at least one property/value
tuple determining the service primitive to be invoked is mandatory. Thus, a
minimal example for a valid text-phase message turns out to be of the form:

Primitive: LoginReq\n
\n

Figure 3.4: Minimal Message (example StLoginReq)

Apart from the ability to transmit other session-specific data this text-
based message protocol is also extensible in terms of new functionality which
might be introduced in newer versions of this protocol. For example, the
property/value format allows negotiation of additional features where the
initiator sends a login request, which contains a property enumerating fea-
tures it is capable to support. The target compares this list with its own
capabilities and returns the intersection of the two sets in the subsequent
login response.

Initiator

Primitive: LoginReq
Initiator: de.jbls.client
Capabilities: multi -path , v2
Isid: 1 # Initiator Session ID
Device: cdrw , 2:1
User: jlieder # User Name
Secret: ***** # Password Protection (opt)
Requesting access to device(s) 2:1 and cdrw.

Target

Primitive: LoginRes
Target: de.jbls.storage
Capabilities: multi -path # Confirming multi -path cap
Tsid: 1 # Target Session ID
Usid: 65537 # Unique Session ID
Granting access to atp ://de.jbls.storage ,cdrw.
Granting access to atp ://de.jbls.storage ,2:1.
Switching to Full -Feature mode ... you may proceed.

Figure 3.5: Sample Negotiation

The previous example (fig. 3.5) shows a sample conversation between
initiator and target during login-phase negotiating different parameters for

25

the establishment of a new session. Endpoint names do appear in reversed
FQDN (Fully Qualified Domain Name) notation; that is inversed DNS order
with TLD (Top Level Domain) to host name from left to right. This is
mostly equivalent to the iSCSI convention (see RFC 3720, [11], 3.2.6. iSCSI
Names) where the name has to fulfill the requirements for Uniform Resource
Names (URN). Hence, the proposal for a general format of ATP-URIs (ASPI
Tunnelling Protocol Uniform Resource Identifier) is:

atp://<tld.dns.rev>,<alias or remote HA:ID>

The reversed DNS notation provides a unique qualifier (at least in the
local network) and also allows further indirection by a discovery server or
service. Another approach of consolidation could be multi-naming by the
DNS naming service which resolves multiple Resource Names (URNs) to the
target’s IP-Address. The target finally provides the appropriate resource by
evaluating a passed ”Target:” property (comparable to the Virtual Host
feature of modern HTTP servers). Nevertheless, in the local network the
target name ”workstation” (no dots) simply remains ”workstation”.

In addition to the already mentioned negotiation of a common set of ca-
pabilities a Unique Session ID (USID) is determined (calculated from the
initiator’s and target’s local SID). This ID allows the identification of a
session which is necessary when implementing advanced functionality. For
instance, the presented software architecture will be prepared for techniques
like Multi-Threading and Multi-Path I/O (which potentially depends
on such a SID mechanism) intended to be discussed among other design
decisions in the following implementation design chapter. However, actual
specification of a full set of allowed session negotiation properties is beyond
the scope of this protocol definition. The only specified properties are listed
in table 3.2 where ”I” means the property has to be used in a text-phase re-
quest. An ”O” property has an analogous meaning for the according response.
Thus, referring to the aforementioned example (fig. 3.5) the Primitive prop-
erty appears in both the login request and the subsequent login response.
Finally, ”N” stands for negotiation (ranging across a request/response con-
versation and implying the previously defined negotiation algorithm) of the
corresponding property.

Property Type
Primitive I/O
Capabilities N

I: Request Property
O: Response Property
N: Request/Response

Negotiable Property

Table 3.2: Property Types

26

Full-Feature Phase Protocol

Unlike examined in the previous paragraphs the following section elaborates
a protocol definition for the opposing full-feature phase binary protocol.
Thus, these protocols have to be considered completely independent from a
design point of view. Like any other protocol tier the session layer packet
format has to encapsulate payload data given in form of SDUs (Service Data
Units) from superior tiers. This encapsulation has to be accomplished by
initializing in-memory structures comprising preceding header and optional
succeeding trailer structures, representing the actual PDU (Protocol Data
Unit), which then can be passed to the underlying layer. Actually, the
main task for the session layer, namely the correct initiation completed dur-
ing text-phase and termination of logical sessions completed by a particular
type of data packet (containing a LEAVE command code), is realized. Apart
from this primarily session-specific functionality the session layer also in-
troduces the smallest communication unit in form of a well-defined packet
format. In consequence, this can be visualized as a resulting stream of con-
tinuous session layer packets travelling along the transport connection. As
the transmission of data in binary mode is also of sequential nature similar
problems as in case of the text-based protocol in terms of unknown message
length emerge. A basic view of the packet header is shown in figure 3.6.

Figure 3.6: Session Layer Packet (Generic Layout)

The session layer packet header comprises several fields including data
for protocol-related communication and members increasing protocol ro-
bustness. First, a valid packet begins with the magic sequence of 4 bytes
containing hex value 0x51 (which is equivalent to the ASCII string "QQQQ").
Through the usage of a magic packet header it is likely to detect any pro-
tocol mismatch or protocol violation during communication. The next field
holds the length of the entire packet (4 bytes, unsigned integer) that is to be
processed. As per specification every packet has to have a length multiple of
64 bytes. Thus, the minimum packet size equals to 64 bytes where unused
sections in the payload field should be padded with zeros to reach the ap-
propriate size. This restriction, however, involves some advantages for the
software implementation as in the situation of processing the first packet it
is legal to receive a block of 64 bytes while the actual length of the packet is
still unknown. A continuous stream of this length guarantees the presence
of the full header allowing magic and packet length field to be extracted
for sanity check. The overhead introduced by the ”modulo 64” stipulation

27

should neither state a problem for the upper layers (as padding and un-
padding happens transparently) nor for the underlying layers where often
the physical layer finally has to perform some kind of padding (e.g., Gigabit
Ethernet, due to very short timings in conjunction with collision detection).
Nevertheless, this might introduce a marginally increased message latency.
The third field (again 4 bytes, unsigned integer) contains a sequence num-
ber which will be monotonically increased on both the initiator and target,
allowing a mechanism to continuously verify packet order (or detect poten-
tial packet loss of unreliable transport connections). The last header field
comprises four single byte members, where the first two members specify the
command TYPE and SUBTYPE transported by the corresponding packet. All
valid combinations of TYPE and SUBTYPE constants are listed in table 3.3.

TYPE SUBTYPE COMMAND
0x00 0x00 INVALID

0x01 NOP
0x02 ECHO

0x01 0x00 INVALID
0x01 CMD CALL
0x02 CMD RETURN

0x02 0x00 DATA
0x03 0x00 ACK
0x04 0x00 RETR
0xFF 0x00 INVALID

0x01 LEAVE
0x02 LEAVE FORCE

Table 3.3: Command Constants

Further, SUBTYPE is followed by a reserved field (set to 0x00) and a FLAGS

field (each 1 byte in size), which contains contextual information for the ses-
sion layer in form of two bits FLAGS FINAL (0x01) and FLAGS CONTD (0x02).
These flags are mutually exclusive as FLAGS CONTD indicates that a packet
is to be ”CONTINUED” (unless marked ”FINAL”); that is, subsequent packets
have to be processed to receive all information needed to build a complete
upper layer packet. The residual bits of the FLAGS field are reserved for
future use and should be set to zero.

Apart from a preceding header the session layer packet format also spec-
ifies a trailer containing two additional fields. Both, the first reserved field
(always equal to zero) and the second CRC field are 4 bytes in size. The
latter member should assure the packet header’s integrity by calculating a
corresponding Cyclic Redundancy Check value. However, a particular CRC
or hash function will not be specified by this protocol proposal as long as
the algorithm is deterministic in terms of repeatability (viz. the opposing
session layer protocol instances have to be able to generate and verify the

28

hash value). Unless necessary (e.g., in case the underlying transport layer
guarantees data integrity) an error check might also be omitted by using
a constant value verification (for example a bit-field equivalent to 0x8181).
In summary, session layer header and trailer exhibit a combined length (or
overhead) of 24 bytes. Therefore, while generally not being constrained in
length a minimal session layer packet (64 bytes) may carry a payload of 0
through 40 bytes.

Sync-Points

Like iSCSI the ASPI Tunnelling Protocol is designed to support Sync-Points
(see [11], RFC 3720, 3.2.8 Fixed Interval Markers (FIM)). These Sync-Points
are inserted into the session layer communication stream at fixed intervals
where pointer values determine the start of the next packet. The insertion of
these markers can be accomplished transparently to the remaining software
layers and represents an advanced mechanism to overcome TCP’s latency-
related drawbacks (in situations of packet loss when out-of-order frames are
temporarily stored in buffers at transport layer level). The Sync-Point inter-
val might be negotiated during the login phase, whereas a value of zero means
the omission of these markers. Assuming a collision- and routing-free local
network, the following solution will not implement sync-points, therefore be-
having like an extended ATP implementation with a negotiated sync-point
interval of zero (proposed text-phase property: ”Interval: 1000”).

Tunnel Layer

The tunnel layer packet layout is quite similar to the session layer format
previously discussed. A magic header field for identification purposes is not
necessary so the first field is a tunnel layer related sequence number followed
by fields containing the payload length and the payload offset. The latter
should always yield a value of 0x08 as only another reserved field (4 bytes
again holding a zero value) joins counting from the start of the same field
until the end of the reserved field. The offset value should be fixed for all
32-bit and 64-bit architectures (in terms of memory layout) and might serve
as check in case of a new protocol version where additional header fields
could have been introduced. Thus, by skipping these extensible fields as
well as having direct access to the encapsulated payload (by the use of this
pointer and the corresponding length) a certain version independence also
could be realized. The tunnel layer packet format also includes a trailer
which is identical to the session layer trailer except for the semantics of the
checksum field. Unlike the header, this checksum value references to the
handled payload. In other words, it protects the encapsulated data. Thus,
along with session layer error check mechanism integrity of packet traffic

29

and the application-originated payload data may be presumed. In addition
to yet another encapsulation the tunnel layer also transparently introduces
application-specific semantics by segmenting and reassembling the logical
unit of SCSI Request Block (SRB) and its optional data buffer. The tunnel
layer decides whether the data buffer has to be transmitted depending on the
type of command being dispatched. It might not be necessary to transport
the receiving data buffer to the command’s target when a Non-Data (N) or
READ command (R) is pending to be executed, and vice versa (for WRITE

commands (W)). The abbreviations refer to the common notion used in [5],
p. 16.

Figure 3.7: Segmentation/Reassembly

In summary, for every command at least one tunnel layer (and there-
fore one session layer) layer packet is generated. If the transmission of an
accompanying data block is required a second tunnel layer packet will be
constructed carrying the same tunnel layer sequence number (indicating al-
legiance to to the same application layer command). These two packets in
turn will be handed over to the session layer where again two session layer
packets of type CMD CALL (or CMD RETURN/ACK) and DATA are generated ac-
tually containing the application-level payload.

In contrast to the standards discussed earlier (FC, iSCSI and SAS), all
implementing a mechanism (Ready2Transmit or equivalent) to avoid trans-
mission of unsolicited data, the ASPI Tunnelling Protocol hands the re-
sponsibility to determine the necessity for buffer data transmission to the
corresponding initiator. Even though this implies the requirement for large
buffers (as stated in [5], p. 28), for ATP, however, there is no unsolicited
data. Thus, it is appropriate to avoid an additional R2T mechanism (which
actually means transmission of an intermediate notification command) po-
tentially causing increased latency for the eventual command execution. In
fact, if indicated by the initiator the buffer is prerequisite for proper execu-
tion.

Finally, the thin application layer (see section 3.1) handles additional
management tasks (including integrated logic to assert local memory co-
herency as will be discussed in the subsequent section) and finally pro-

30

Figure 3.8: Layer 6 Packet (Generic Layout)

vides an adequate programming interface (API) for both the initiator and
the target. In case of the initiator this is a function set equivalent to
SendASPI32Command() and GetASPI32SupportInfo(). For the target a
callback function, which will be invoked upon command arrival is required.

3.3 Implementation Design

Similar to the protocol design procedure the implementation design will
also be developed in a bottom-up approach. Thus, beginning with the low-
est software layer means the development of a Network Abstraction Layer
(NAL) which can help in the attempt to abstract from various O/S-specific
peculiarities. This might also facilitate a cleaner design for the remaining
layers building upon this abstraction framework. As prominent example
the Microsoft Windows operating system with its superseding WinSock API
(see chapter 2.1.3) may be mentioned. While preserving the defined class
interface the underlying network stack may be exchanged (for example by
defining platform-dependent preprocessor symbols). The same applies to
future technologies like IPv6 (see [3]) which should be taken into account
right from the early stages of design.

These objectives are achieved by introducing the class hierarchy of CGen-
ericEndpoint (as abstract base class) stipulating the generic interface, and
CTransportEndpoint, which finally implements the corresponding function-
ality. The term ”Generic” as element of a class name suggests the abstract
nature of this class as can be seen in the case of the given example. The
following descriptive texts (particularly in this section) will be aligned with
the notions and peculiarities of the C/C++ language since the presented
solution has been realized with this programming language, as well as the
term layer will be primarily used in the meaning of software layer, unless
otherwise noted.

The lowest layer of abstraction, namely CGenericEndpoint, is imple-
mented in Network.cpp and defined in the corresponding header file Net-
work.h. Generally, CGenericEndpoint (and the later CTransportEndpoint)
are designed to provide an encapsulation for socket handles and the func-
tion set operating on these handles (e.g., connect(), send(), and recv()).
Apart from this set of functions, yet defined purely virtual, this abstract class

31

implements three static functions responsible for name and service resolution
(tasks which are independent from particular socket handles). Further, Net-
work.h introduces infrastructure needed for Internet Protocol (IP) version
independence (for example, the use of struct in addr/sockaddr in ver-
sus struct in6 addr/sockaddr in6). With the definition of a preproces-
sor symbol IPV6 this software layer can be switched completely to IPv6
support while also remaining compatible to compilation under Unix oper-
ating systems. IPv6 support can be determined at runtime by evaluating
the static variable CGenericEndpoint::s bIpVer6. For the Windows plat-
form WsaTakeCare() takes care of the timely initialization and finalization
of WinSock library (by keeping account of the existing CGenericEndpoint

objects). The transport layer (Transport.cpp) builds on the given infrastruc-
ture and implements the residual functionality with CTransportEndpoint

(namely all common socket functions). The class is independent from a par-
ticular transport protocol (TCP/UDP are supported) and allows the reg-
istration of a callback handler (RegisterAcceptHandler()), which will be
invoked on connection request (this only applies to an endpoint operating in
server-mode). As with connection acceptance the requesting peer’s address
is also passed, a mechanism for address or network-based connection filtering
can be implemented (see the later implementation of the application-level
target class).

This also leads to a design issue, yet to be encountered, which actu-
ally concerns the application-level objects rather than the current topic of
low-level transport endpoints. However, from a software design point of
view, unfortunately, initiator and target classes cannot be architected sym-
metrically in their use of transport protocol endpoints objects. While the
high-level initiator can delegate the creation of a transport connection to
the lower layers that are actually responsible for this task, in a top-down
approach the opposing application-level target object has to create its own
listening transport-layer endpoint (the creation takes place within the ap-
plication layer). On the event of accepting a new connection the newly
acquired endpoint object (or socket handle) has to be published to the un-
derlying layers upon construction, resulting in an iterative hand-over of this
handle down to the lowest layer.

However, with the implementation of Network.cpp and Transport.cpp the
functionality of ISO/OSI layers 1 through 4 is adapted and available as
foundation the remaining software, namely the adjacent session layer, can
be built on. This will be subject of the next paragraphs.

The session layer class CGenericSession introduces the basic framework
for the entire session layer functionality. That is, the assignment of session
endpoint roles (session initiator or target), a session state and the corre-
sponding state machine, and an interface for sending and receiving text-

32

Figure 3.9: Transport Endpoint Classes

phase messages as well as full-feature phase packets. However, due to the
abstract nature of this class (see CGenericEndpoint) the actual function-
ality has to be implemented by an inherited class. This, in turn, increases
flexibility for the software solution to incorporate or realize different tech-
niques (i.e., various differently powerful classes). Along with these particular
considerations one might also anticipate the potential benefit in conjunction
with the previously discussed negotiation mechanism. A fact, which will
be important for the constitutive architecture as the software should be de-
signed to support Multi-Path I/O (see section 3.2), which is a technique to
deploy multiple transport connections at a low level by reasons of increased
resilience and throughput. By locating this functionality in a preferably low
software layer (obviously the session layer) the upper layers can be insulated
from these peculiarities. The first incarnation of the code will only realize a
single-pathed nexus yet maintaining an augmented code infrastructure ready
for advanced features. Here the notion of a nexus refers to the logical con-
nection between initiator and target, which (in case of an multi-path nexus)
might accommodate multiple paths. Thus, a path forms the smallest logical
unit of communication (in this case simply a transport layer connection).
In summary, the superior session class delegates the eventual task of packet
transmission to the associated classes (visualized by the UML association
between the involved classes, see fig. 3.10). When there should be used
multiple paths the responsible session class (CMultiPathSession) creates a
nexus capable of managing such a facility (CMultiPathNexus). This multi-
path nexus finally sets up the required communication paths (likely a pri-
mary communication path also responsible for management tasks which then
might negotiate the further installation of simple paths (CSimplePath)).
Nevertheless, this functionality still belongs to (and happens within) the

33

session layer and does not represent a violation of the layered paradigm.
From a session’s point of view these late connections implicate continuing
issues when connecting with the target. This fact also influenced some design
decisions. As already mentioned in the preceding section a clean software
design had to be abandoned due to the need for a central management of the
server socket. This now comes into play when considering a situation where
multiple sessions have to co-exist while still having to be ready to accept
further connection request. The scenario gets even worse for the creation
of multiple paths since the corresponding session object has no authority
to control the serving connection endpoint. Thus, if the affected session
would maintain its own transport endpoint – in addition to the actual ser-
vice socket – to allow authoritative path management, new dynamic service
port numbers had to be communicated. Since the set of port numbers for
a service should be predictable, this dynamic (and protocol-specific) port
behavior renders the service impractical when being deployed in firewalled
scenarios. However, the primary argument against this approach is finally
the fact that distinct session instances should not be aware of their sib-
ling instances by design. The disadvantage of the proposed solution is the
reversed assignment of responsibility for the target class hierarchy where
the application-level object becomes the connection principal (in contrast
to the initiator where the responsibility for transport connection is assigned
to the lowest session layer), which leads to this asymmetrical design. Still
the possibility for the application-layer (AL) target to distinguish between
the established sessions has to be given, realized by the already introduced
Session ID (SID). In other words, the SID defines the session allegiance for a
new path connection. Thus, prior to the assignment of a new path the peer
has to perform a text-based conversation with the AL-Target which then
delegates the current transport endpoint to the responsible session object
(by using the submitted SID). The delegation takes place by passing the
endpoint object to the constructor of the corresponding child object. Both
discussed scenarios should be roughly visualized by figure 3.11.

In case of the session classes (CGenericSession/CSinglePathSession)
there are three types of members functions:

nexus management EstablishNexus(), CloseNexus()
text-phase protocol SendText()/ReceiveText() and

SendLoginRequest()/ReceiveLoginResponse()
full-feature phase SendPacket()/ReceivePacket() and
communication NoOperationCommand()/LeaveCommand()

Most part of the session layer (fig. 3.11) should be considered as frame-
work and abstraction for the support of multiple communication paths, yet
the code responsible for tunnelling comprises the most important function-

34

Figure 3.10: Session Layer Class Hierarchy

ality. The SESSION LAYER PACKET (fig. 3.12) structure provides all neces-
sary information (Service Data Unit and Interface Control Information) for
SendPacket() to assemble a continuous memory block (the actual session
layer packet, see section 3.2, Full-Feature Phase Protocol) which eventually
can be sent to the underlying transport layer.

With Session.cpp and Nexus.cpp (implementing nexus & paths) the nec-
essary functionality of layer 5 for session initiation and basic communication
is implemented. Now, initiator and target are already able to remotely in-
voke generic commands and exchange unstructured payload data.

In overall design the next software layer, for example the tunnel layer’s
packet generation routines, is very similar to the previously presented session

35

Figure 3.11: Design Decision: Server Socket managed by Application-Layer

layer. Its primary objective is to introduce yet another encapsulation layer
for further convergence to the application layer, thus different mechanisms
to facilitate tunnelling of application-level objects will be added. However,
apart from the tunnel layer’s deviating packet format, PDU (Protocol Data
Unit) generation in general is realized identically.

The application-related functionality is defined by the CGenericTunnel

class also preparing interface functions for the later initiator and target-
based roles. As before, this class is the abstract ancestor for further inher-
ited software tiers. Only infrastructure for SRB-related tasks and callback
handler management for command arrival is provided. These are the com-
mon tasks finally required in the inheriting child classes (CTunnelEndpoint,
CTunnelInitiator, and CTunnelTarget).

The next level of functionality is introduced by the former class CTunnel-
Endpoint which comprises tunnel-layer packet generation (including seg-
mentation and reassembly) and procedures allowing R/R-based (see sec-
tion 2.1.1) communication of entire SRBs and their logically linked data
blocks. Apart from only transmitting the payload data, this set of func-
tions (TunnelCommand(), ReturnCommand() and AcknowledgeCommand())
also transports semantics (see section 3.2, session layer and the defined com-
mand types). The type of command influences the kind of behavior which
is invoked. Since in the direction from initiator to target (request) there is

36

enum SESSION_LAYER_PCI_TYPE
{

slInvalid ,
slNoOperation ,
slCommand ,
slDataSegment ,
slAcknowledge ,
slRetransmit ,
slLeave

};

struct SESSION_LAYER_PCI
{

SESSION_LAYER_PCI_TYPE spciType;

BYTE bySubType;

BOOL bContinued;
BOOL bFinal;

};

struct SESSION_LAYER_PACKET
{

UPPER_LAYER_PACKET *pBottomPdu;

SESSION_LAYER_PCI spciControlInfo;
UPPER_LAYER_PACKET ulTunnelPdu;

};

Figure 3.12: Session Layer Protocol Interface

only the CMD CALL primitive (dispatched by TunnelCommand()), as response
the two primitives CMD RETURN/ACK (dispatched by ReturnCommand() and
AcknowledgeCommand(), respecitvely) are valid. The exact communication
model for the different types of implementation will be discussed in the sub-
sequent sections. Nevertheless, the tunnel endpoint class is also responsible
for transparent transmission of SRBs; that, is coherency between the SRB’s
data buffer pointer and the actual location of its buffer (the target uses local
temporary buffers) has to be maintained.

As already mentioned in section 3.2 probably two session layer PDUs
have to be generated for a single SRB to be tunnelled. Nevertheless, since
the session layer builds on transport layer functionality, there is no maxi-
mum transfer size limitation and thus no need for any kind of fragmentation.
This also applies to the generation of tunnel layer PDUs and the correspond-
ing SDUs (namely, application layer SRB and data buffers). Finally, this

37

means the responsible tunnel layer may simply generate two packets and
pass them to the underlying layer, if the layer’s remote instance guarantees
reassembly of both PDUs to a valid SRB. This behavior requires additional
functionality in the CTunnelEndpoint class which is implemented by the
UpdateSrb() function taking care of correct updates to a SRB memory
structure. These updates to in-memory SRBs represent a critical task as
the contained pointers are only valid in the local domain of the executing
machine. Generally, a SRB and a data buffer are unrelated, unless the SRB
points to this data buffer prior to execution. On a remote computer the vir-
tual memory layout may look completely different requiring the correction
of all data buffer pointers. However, the additional effort confines to the
processing of EXEC SCSI CMD request blocks (since only these SRBs contain
pointers). Another high level task for the tunnel layer is the maintenance of
sequence numbers which depend on the client application’s dispatch order.
Especially for a multi-threaded implementation sequence numbers are im-
portant as ordered queues have to be processed and acknowledgements may
arrive out of order.

The next level of inheritance is realized by the classes CTunnelInitiator
and CTunnelTarget, which customize the generic behavior (of CTunnel-

Endpoint) for the initiator and target roles of the ATP protocol. By us-
ing inheritance it is possible for the child classes to override the introduced
common functionality. For example DispatchCommands() has been imple-
mented in CTunnelEndpoint realizing a dispatch loop for arriving tunnel
layer packets by continuously calling DispatchCommand() (until a session
layer LEAVE command is encountered). By overriding DispatchCommand()

within CTunnelInitiator and CTunnelTarget, the target is able to ade-
quately process CMD CALL packets and the initiator may react on CMD RETURN

and ACK messages. The exact implementation of these two classes deter-
mines whether the later ATP initiator or target will act synchronously or
asynchronously. In the next two sections this will be discussed in more
detail.

The final software layer is the application layer. As announced in section
3.1 this layer will be relatively thin. Actually, the involved classes (in Ap-
plication.cpp) do not participate in the previous class hierarchy, but they do
rely on the accumulated functionality of the ATP protocol stack by creating
instances of CTunnelInitiator and CTunnelTarget, respectively.

The main assignment for an application layer initiator class is the provi-
sion of a standard ASPI programming interface (SendASPI32Command() and
GetASPI32SupportInfo()) which then can be used in client applications to
transparently include ASPI services or to export via DLL (Dynamic Link
Library). Since the CTunnelInitiator class already implements most of the
required functionality the CAtpInitiator class remains relatively compact.

38

While not being included in the current implementation the class should
also be responsible for providing a virtual Host Bus Adapter (which allows
access to a set of ATP tunnels leading to different targets/target devices)
and accordingly loading an adequate configuration on initialization.

In contrast to the initiator CAtpTarget maintains connection manage-
ment. On the event when a client connects to the server socket the ATP tar-
get class hands over the new connection to a dynamically created CTunnel-

Target object. Before application layer communications may commence
CAtpTarget also registers a default SRB handler function with the tunnel
target class. This callback function (DefaultSrbHandler) is a static mem-
ber function of CAtpTarget and acts as default implementation which simply
dispatches the incoming SRB requests to the target’s local WinASPI layer
for actual execution.

For a comprehensive overview one may find a complete UML diagram
in Appendix A including the entire ATP class hierarchy. It might help in
surveying the solution’s principal structure and design outlined in the past
chapter. A valuable hint for easier understanding might be the recognition
of associations as links between protocol layers/software sub-layers.

3.4 Synchronous Implementation

A synchronous software implementation is characterized by its procedural
design. At runtime it is possible to exactly determine the algorithm’s next
internal state if the previous state was also known. Hence, both endpoints
behave as deterministic automatons realizing a strict horizontal commu-
nication protocol which under no circumstances may be violated (in con-
trast to the later asynchronous implementation where these commitments
will be relaxed by a certain degree). The actual communication sequence
of the synchronous implementation is shown in figure 3.13. Referring to
previous considerations (see chapter 1) a basic R/R-model has to be re-
alized resulting in two distinct states receiving and sending, an endpoint
may assume. Due to the asynchronous nature of some ASPI function calls
(deferred completion notification) this fact has to be regarded when de-
signing the protocol communication sequence. In the first step (1) the
initiator tunnels a SRB by invoking TunnelCommand() (which maps to a
CMD CALL packet on session layer) while the target is in receiving mode.
The target knows (by specification) that a single tunnel layer PDU ar-
rives and executes the ASPI command after the corresponding SRB has
been placed properly into memory (2). When regaining program control
from the WinASPI layer the target changes to sending mode (3) and dis-
patches a ReturnCommand() to notify the receiving initiator about this event

39

as soon as possible (since ReturnCommand() also submits the target’s up-
dated SRB memory structure the initiator may evaluate the return sta-
tus of SendASPI32Command()). If the issued ASPI command behaves asyn-
chronously (see Tunnel.cpp, CGenericTunnel::IsAsyncSrb(LPSRB)) the tar-
get has to check for SRB completion which depends on notification method
previously passed in the SRB Flags field. However, some of these flags will
be masked out to determine a common notification mechanism on the target
side (preferably the Windows Event Notification API (SRB EVENT NOTIFY)
for low CPU overhead, see [2], p. 31). If the SRB status already is not equal
to SS PENDING (see [2], p. 34) the command is completed or has failed. Oth-
erwise the process ceases operation cooperatively until completion by calling
the Windows API WaitForSingleObject(). Although rendering this im-
plementation suboptimal an AcknowledgeCommand PDU is sent (4) even if a
synchronous SRB has been transmitted. The initiator in turn waits for both
messages and modifies the local memory facilitating a transparent ASPI
layer emulation for the client application. The client may (legally) poll the
SRB’s status field for completion or error code. The downside of this ap-
proach is the inability to process multiple SRBs in parallel which might be
desirable for increased-demand scenarios. Additionally, supplemental CPU
resources in form of multiple system cores cannot be used since all activity
takes place in a single thread within a process.

Figure 3.13: Synchronous Implementation: Sequence Diagram

The source of a synchronous implementation is not provided with this so-
lution as the approach only marks an intermediate state of the work. Various
modifications had to be applied to the code to allow multi-threaded opera-
tion and improvements have only been incorporated into the later code base,
thus both implementations might be recognized as independent branches of
the solution. However, finally it should be easy to build an advanced syn-
chronous implementation drawing benefits from the results of this work and

40

building on the presented ASPI Tunnelling Protocol stack and infrastruc-
ture.

3.5 Asynchronous Implementation

For the intention to implement asynchronous protocol instances additional
code infrastructure has to be at the programmer’s disposal since constructs
to protect critical code sections are essential in multi-threaded program-
ming. Furthermore, different kinds of queues acting as input and output
mechanisms between dependent threads will be needed. The most promi-
nent types are the FIFO (first-in first-out) queue and especially in commu-
nications software the priority heap for tasks like packet reordering. Most
of these ADTs (Abstract Data Types) provided by standard programming
libraries (e.g., Standard Template Library, STL) are not re-entrant and
thus not applicable to multi-threaded programs. As the presented solu-
tion will utilize the validated STL classes queue and priority queue to
avoid errors being potentially introduced by custom code, the ATDs have
to be enveloped by classes responsible for adequate locking. Functions
like Enqueue() and Dequeue() have to be of atomic nature. This might
also apply to operations on numeric values implying the need for inter-
locked variable classes. The source file Queue.cpp and its header aggregate
this functionality by implementing CGenericQueue, CSimpleQueue (encap-
sulates std::queue), and CSyncQueue. The priority heap is implemented
by CPriorityQueue (using an instance of std::priority queue) and syn-
chronized by CSyncPrioQueue. Finally, the last type of ADT is realized
by CBoundedBuffer<TYPE> (inherits from CTypedPtrArray<CPtrArray,
TYPE>, provided by Microsoft Foundation Classes (MFC)). The bounded
buffer provides a number of slots in which incoming acknowledgements from
the target can be arranged. Like previously visualized by template notation,
all classes are templated and thus type-independent (as usually demanded
from ADTs). Another important class is CSignal which facilitates signaling
of events between threads by using the Windows Event Notification API.
Hence, instances of CSignal (containing a Windows event handle) can also
be used for convenience on the initiator to notify the client application of
command completion (ASPI layer emulation) and completion tasks on the
target (see previous section).

Multi-threaded design primarily affects the lowest sub-tier of the tunnel
layer, namely the classes CTunnelInitiator and CTunnelTarget. In the
former class two queues (m psqSendQueue, m psqSentQueue) and a bounded
buffer (m psbPendingBuffer) are introduced. With a client application dis-
patching a SendASPI32Command() function call the accompanying SRB is
enqueued in the Send Queue. There are also three types of threads complet-

41

ing different tasks. The Transmit Thread continuously dequeues elements
from the Send Queue for transmission over the ATP tunnel. After tunnelling
the SRB is categorized as sent by adding the address of the SRB to the Sent
Queue. However, prior to the blocking transmission the thread has to check
whether the Sent Queue may accept another element. Otherwise it is blocked
until an element gets freed (by using three interleaved critical section locks
as internal signalling mechanism, see producer/consumer problem). This is
the sequential behavior referred to in section 2.1.3. The blocking ensures
that when the SRB should be inserted into the Bounded Buffer simultane-
ously (the buffer is accessed by increasing sequence numbers) already used
slots will not be overridden. The bounded buffer is necessary for rapid access
to pending SRBs when an acknowledgement comes in (the queue does not
and must not provide random access) and since the buffer does not possess
further access control facilities this might cause loss of data. It is just the
Receive Thread which is responsible for the access to pending SRBs and their
update (according to the received data). Finally, completed SRBs have to be
disposed sequentially by the Dispatch Thread ; that is, only the head of the
Sent Queue is examined. By peeking the queue’s first element (the thread is
blocked if the queue is empty) the current sequence number is determined.
This sequence number defines the slot in the bounded buffer where the ac-
tual state information is stored. A state value of qssGarbage indicates that
signalling and freeing of memory structures have occurred. This behavior
induces the existence of potential head-of-queue issues during the process of
disposal, however, due to the fixed maximum number of pending SRBs this
behavior is explicitly desired. Nevertheless, disposal is independent from
signaling (which happens in the Receiver Thread), thus from the client’s
perspective all ASPI tasks are still completed asynchronously (as indicated
by the target).

For an asynchronously working target different considerations have to be
made. As the initiator may employ more than just one Transmit Thread,
theoretically consecutively enqueued SRBs might arrive at the target out of
their order. Further, the target also is not restricted in its number of Receive
Threads. To ensure correct re-ordering of the arriving SRBs the target im-
plements a priority queue (m pqSrbQueue of type CSyncPrioQueue<CPrio-
QueuedSrb *>). All incoming SRBs are enqueued while the element with
the highest priority, that is the earliest SRB, resides on top of the heap.
The priority heap does not deal with the omission of sequence numbers,
thus the target additionally maintains a sequence number for the next com-
mand pending to be issued. As long as the next command is not received
(the top element of the heap does not carry the pending sequence number) all
Worker Threads are blocked. The blocking is realized by a signalling mech-
anism which reacts to the arrival of new elements. As previously hinted

42

multiple Worker Threads may exist while the number of threads determines
the amount of concurrently executing ASPI commands. Each thread pro-
cesses an ASPI command and is responsible for its further observation; that
is, returning the return result back to the initiator, waiting for the execution
to be completed, and the eventual acknowledgement of the command (see
figure 3.14). Subsequent to this process the thread may assume responsibil-
ity for a new ASPI command.

Keeping advanced functionality like Multi-Path I/O in mind, the exis-
tence of multiple Transmit and Receive Threads matches exquisitely to the
concept of multiple communication paths. Here, each thread is associated
with a previously established path: upon creation each threads receives a
pointer to its associated path which the thread in turn uses as ICI (Inter-
face Control Information) for the function call when dispatching a tunnel
layer packet. The information is passed by each layer until the nexus finally
delivers the session layer packet to the responsible path object. Parts of
this behavior (see Session.h, CMultiPathSession::Send(PCBUFFER pData,

int nLength, SESSION PCI pPci)) are already implemented yet redirect-
ing all requests to the (single) primary path of a multi path nexus. In
summary, for the initiator this means for each path there must exist a trans-
mitting and a receiving thread (2n + 1, whereas n is the number of paths).
The target has to employ a receiving thread for each utilized path and an
arbitrary number of worker threads (n + m, whereas m is the number of
concurrent ASPI tasks). For a single path nexus these requirements are
optional; that is, the target may keep the 5 threads especially for use with
SMP (Symmetric Multi-Processing) systems.

The existing code base is written in C++ for compilation with the Mi-
crosoft product line of C++ compilers. Initial development was started with
the MS Visual C++ 6.0 (SP6) IDE and therefore should be still compati-
ble with this environment. However, development was shifted to MS Visual
Studio .NET 2003 and finally MS Visual Studio 2005 during the overall
process. This is why the focus did not remain on backwards compatibility
to VC6 and it might be necessary to modify some portions of the code to
recover compatibility. Further, the presented code should be considered ex-
perimental with the primary objective to demonstrate feasibility of the given
specifications, yet an application among end-user systems nearly might be
imaginable. Especially multi-threaded programming is error-prone and sev-
eral bugs are likely to be eliminated yet.

43

F
igure

3.14:
A

synchronous
Im

plem
entation:

C
om

prehensive
D

esign
D

iagram

44

Chapter 4

Evaluation

4.1 Synchronous Implementation

The initial synchronous implementation has not been extensively analyzed
during development. While these implementations already worked (all im-
portant types of SRBs were transmitted correctly), they caused high CPU
loads due to the utilization of polling (busy waiting) for command com-
pletion. Debugging was conducted with a client and a server application
(SockClient and SockServer) acting as simple initiator and target. Here,
SockClient comprises test code which performs a device discovery resulting
in a listing of devices found on the remote system (see figure 4.1). On the
other hand, SockServer realizes a simple target allowing the connection to a
single initiator. Incoming SRBs are forwarded to the local Windows ASPI
layer for execution. Later versions of SockServer implemented Event Noti-
fication which has a diminishing effect on the excessive usage of resources.
To allow further testing the current code base was incorporated into a new
project which should yield a Windows ASPI layer (Wnaspi32.dll) replace-
ment library. However, this implementation remained synchronous. The
results indicated relatively moderate performance, yet the first endeavor of
erasing and burning a CD-RW medium over network connection succeeded.
Further, Nero 6 Reloaded performed as ASPI client application.

Despite working properly, throughout this thesis performance will be
benchmarked by regarding the absence of Buffer Underruns (BURN) at dif-
ferent data rates (i.e., recording speed). Variable buffer fill levels are strictly
considered unacceptable, even though todays recording devices are able to
avoid corruption of media during these underrun situations. However, it is
not desirable to tolerate BURNs, as a frequent buffer refill generally pro-
longs the burning process (with rising BURN count elapsing time increases
exceedingly).

45

Date: Wed Dec 14 21:58:52 2005
Target Name: chief
Target Port: 8181
Target Alias: alias
Host adapter inquiry succeeded.

Manager: <NERO ASPI32 >
Identifier: <atapi >
Device: NEC CD -ROM DRIVE :463
Device: MEGARAID LD 0 RAID 0

Figure 4.1: Console Output: Device Listing (SockClient)

Hardware Configuration
Pentium 4 1.6 GHz
256 MB RIMM
100 MBit/s Realtek NIC
Pentium III 600 MHz
320 MB DIMM
Intel PRO/100 NIC
O/S: Windows XP
Cross-Connected CAT5

Experimental Results
Rec. Speed Data Rate Device Buffer
4x: 600 KiB/s 1.788 MiB/s 80%
8x: 1200 KiB/s 1.311-2.980 MiB/s < 60%
10x: 1500 KiB/s peak 4.410 MiB/s not stable

Table 4.1: First Performance Results

Figure 4.1 shows the impact of the initial implementation’s triple payload
transmission. Thus, the collected measurements range between two and
three times the actual recording speed. Stable results (relatively constant
buffer fill level of 80%) were only observed with 4x (600 KiB/s) recording
speed, although an optimization has been deployed causing the omission
of CMD RETURN messages (the initiator waits until the target sends the final
command completion acknowledgement). Speeds of 8x or even 10x yielded
no stable results, hence the imprecise data rates.

4.2 Asynchronous Implementation

The SockClient source code could virtually remain unmodified, since the
ATP interface for initiators (with the usual ASPI interface function set
of SendASPI32Command() and GetASPI32SupportInfo()) was not touched.
However, the actual implementation of the ATP protocol stack changed dra-
matically (see section 3.5). Also new code dispatching multiple SRBs in par-
allel to test the new implementation’s capabilities was introduced. Here it
is important that the initiator side of protocol correctly signals completion
with event notifications. Further, various problems with thread synchro-

46

nization occurred and compatibility to Nero had to be reconstituted. The
SocketServer, on the other hand, was now able to accept multiple client
connections accomplished by a dedicated server socket Accept Thread. Each
ATP tunnel also employs multiple Receiver and Worker Threads again per-
mitting asynchronous operation at this level. For evaluation purposes the
target’s DefaultSrbHandler() dumps the current state of the internal SRB
queue as shown in figure 4.2.

[106038585] Queue Size 1, Async SRBs pending 0

Figure 4.2: Console Output: Queue Size (SockServer)

Having SockClient and SockServer approved to work correctly with the
new implementation, it is of great interest whether the ASPI wrapper (Wn-
aspi32.dll) can also be suited to the new code and more importantly the
yields over the former realization that might be expected. Unfortunately,
the status printed by SockServer (figure 4.2) while operating together with
Nero Burning Rom as initiator showed a low utilization of available queue
capacity. To be more accurate, the maximum queue size was a single pending
element (as shown in figure 4.2). This means, albeit Nero is programmed
as a multi-threaded application, the main thread responsible for dispatching
commands to the ASPI layer does not fully use its asynchronous feature set.
Thus, Nero does also not make use of the queued services provided by ATP-
MT (the multi-threaded implementation of the ASPI Tunnelling Protocol).
That means even during a burning process always only a data block of 64
KiB is in flight. Nevertheless, eventually data is buffered by the target’s
recording device providing reliability for the overall process.

To achieve the prescribed objective of actual user-friendliness and easy
deployment, another project is included with the solution. AtpTarget is a
Windows Service which comprises the ATP implementation and additional
infrastructure for service management (e.g., command line options to install
and uninstall the service on a Windows machine; sufficient administrative
rights presumed). A Windows Service can be run with SYSTEM account
permissions without needing a user to be logged onto the machine. In the
following section this ATP Target Service is consulted for all further mea-
surements (see Appendix D).

4.3 Experimental Results

The asynchronous implementation of ASPI Tunnelling Protocol initiator and
target has been thoroughly tested in the following environment (see fig.
4.2). As previously hinted, for the target role a properly installed AtpTarget
Windows Service in conjunction with the Nero ASPI Layer (version 2.0.1.74)

47

has been employed. Nero Burning Rom 6 Reloaded (version 6.6.0.18) acted
as client application for the latest Wnaspi32.dll ATP initiator.

The environment comprised two dedicated target and initiator machines
(hardware configuration see below) running a copy of Windows Server 2003
SP1 and Windows XP SP2, respectively.

Target Initiator Network
AMD Duron 700 MHz AMD Athlon 1333 MHz Gigabit Ethernet Switch
512 MB 512 MB 16 Gbps Backplane
Intel GbE PRO/1000MT Intel GbE PRO/1000MT 1.4881 Mpps per Port
Plextor PX-W4012A
Windows Server 2003 EE Windows XP
Service Pack 1, Build 3790 Service Pack 2

Table 4.2: Hardware Setup

To determine network performance a network latency measurement has
been conducted by using the traceroute utility. Traceroute can be in-
structed to either use ICMP ECHO or UDP packets for operation and with
the -q option a certain number of packets can be sent. With the deter-
mination of average round-trip time (RTTs) network performance can be
estimated. For network layer ECHO packets (38 bytes) the average RTT is
0.171 ms (171 µs) and for 128 byte transport layer UDP packets the aver-
age delay is 0.365 ms (365 µs). To be able to comprehend these values the
console output is listed in figure 4.3.

$ traceroute stef.jl.pa23.net -I -q 20
traceroute to stef.jl.pa23.net (192.168.8.3), 30 hops max,
38 byte packets
1 stef.jl.pa23.net (192.168.8.3)
0.386 ms 0.269 ms 0.153 ms 0.152 ms 0.179 ms 0.170 ms 0.164 ms
0.151 ms 0.152 ms 0.152 ms 0.148 ms 0.150 ms 0.151 ms 0.152 ms
0.145 ms 0.150 ms 0.149 ms 0.147 ms 0.147 ms 0.150 ms

Figure 4.3: Latency Measurements

With this configuration the highest possible (yet stable) speed could be
ascertained to 2,400 KiB/s. Since the applied hardware environment can
be regarded as average equipment, generally, viable burning speed with the
current ATP implementation was ultimately limited to 16x CD.

To further analyze the performance of the implementation in conjunc-
tion with the hardware environment Ethereal as Network Protocol Analyzer
has been deployed. Prior to use possible TCP Offload Engines (TOEs)
should be deactivated through the driver software, as this causes the ana-
lyzer software to mark most frames (Ethernet and TCP segments) due to

48

invalid CRC values. These calculations are offloaded from the TCP stack
and not made until the NIC dispatches the Ethernet frame. The analyzer
running on the initiator machine captured an excerpt from a ATP session
being busy of recording a CD. With the recorded dump the exact timing
of the transmitted Ethernet frames and the corresponding TCP segments
could be determined. Here, communication showed large delays in message
response that were caused unlikely by the processing on the target computer.
The conclusion should be that the receiver is not able to process the data
immediately. This adverse timing just coincided with the TCP segments
which were not marked with the TCP PUSH flag. The PUSH flag is located
in the TCP header of each segment and instructs the remote TCP stack to
immediately pass the incoming data to the corresponding application pro-
cess. However, the occasional absence of PUSH flags should be traced back
to Nagle’s Algorithm (1984) [9] described in RFC 896. At that time, grave
problems arose due to limited bandwidth and the excessive transmission
of small packets (for example caused by usage of telnet) causing conges-
tion collapse. Nagle’s proposal was to retain small packets on the sender’s
side if acknowledgements are still outstanding. This behavior matches well
with the previously observed timing issues. From a programmer’s point of
view it is not possible to influence TCP flag generation directly, but the
appliance of Nagle’s Algorithm (which is deployed in virtually every modern
TCP/IP implementation) can be easily deactivated. This is done by apply-
ing a setsockopt() function call to the corresponding socket handle. Socket
API documentation disadvises the usage of the TCP NODELAY socket option
with the constraint the option yet might be applicable to code which has to
send many small messages. For this implementation the TCP NODELAY op-
tion means the emulation of a datagram-like service (implicating small delay)
over an established stream-oriented TCP connection. In other words, when
sending a large chunk of data or a small message on the application layer,
the last TCP segment (carrying the PSH flag) is sent immediately and thus
cannot cause a delay any more. To realize the modified behavior the existing
source files can easily be patched, whereas in Nexus.cpp the member function
CSinglePathNexus::AssignEndpoint(CGenericEndpoint *pEndpoint) is
located allowing the change to be applied to the initiator, target, and even
all involved path endpoints. The additional code is shown in figure 4.4. Just
in proximity to this modification the final code of Nexus.cpp also adjusts
the TCP receive and send windows (SO RCVBUF and SO SNDBUF options) to
further optimize the stack behavior. These new options, however, are not of
transport layer level but of socket level (modifying the socket operation).

When reviewing the Linux iSCSI implementation (hosted on Source-
Forge.net) it is not long until stumbling upon the code section where the
TCP NODELAY option is activated there (linux-iscsi/daemon/iscsi-io.c, line 79).

49

101 int flag = TRUE;
102
103 CTransportEndpoint *pTranspEndp =
104 dynamic_cast <CTransportEndpoint *>(pEndpoint);
105
106 _ASSERTE(pTranspEndp);
107 BOOL bSuccess = pTranspEndp ->SetSockOpt(
108 TCP_NODELAY , &flag , sizeof(flag), IPPROTO_TCP
109);

Figure 4.4: Application of the TCP NODELAY Option

In other words, the TCP NODELAY option is an indispensable prerequisite for
communication protocols like iSCSI and ATP (as of equal nature). A short
Ethereal dump of this datagram communication between TCP NODELAY ini-
tiator and target on the data link layer (Ethernet) is shown in Appendix C.
In addition to this dump Appendix C also includes a listing of the ATP con-
nection establishment phase on transport level (hex dump of conversation).

With the new code the former issue is resolved and in the given configu-
ration ATP now is able to operate with data rates up to 40x CD speed and
yet no indication for symptoms of too high demand. Further, this perfor-
mance seems to be relatively insensible against additional traffic (i.e., a file
copy process on a network share), since switched networks should be ideally
collision-free (no retransmits). Indeed, data rates of 6,000 KiB/s are quite
near the theoretically possible bandwidth of Fast Ethernet (100 MBit/s)
networks.

The diagram in figure 4.5 shows the reached data rates and the user
time CPU utilization (pure user level overhead) of the ATP target during a
40x CD (6,000 KiB/s) speed test run. The attached Plextor recording device
practices ZoneCLV with distinct zones of constant burning speed (the drive’s
motor is adjusted to maintain speed while otherwise the actual write speed
would continuously increase), which can be easily observed in the diagram.
The user time (in percent) alone is utilized by the AtpTarget process on
the machine. With increasing write speed the moderate CPU utilization
is slightly rising. When only accounting active periods the average user
time is about 6%. This can also be put into relation with the average data
rate of the corresponding zone which results in a value of 1.50% user time
CPU utilization per processed MiB/s. While being acceptable for average
computers, certainly, this amount of overhead can still be optimized.

With the knowledge about feasibility of various burning speeds in the
given environment the observed behavior can be mathematically analyzed.
The following formulas will calculate bandwidth and latency requirements

50

Figure 4.5: AtpTarget Process Analysis: CPU Utilization and Data Rate at 40x ZoneCLV

for various scenarios and thus can give a hint whether the deployment of
the ATP protocol at certain data rates seems possible. However, the results
are not claimed to be applicable in every situation. For example, positivlely
rated parameters must no imply flawless operation in the actual environ-
ment. An important parameter for the calculations is the recording speed
v (in times the single CD speed of 150 KiB/s) and the available network
bandwidth B (in Mbit/s) together with the network latency tlat. The model
is based on the assumption of transmission of whole data blocks of 64 KiB.
Since the basic unit for a recording device is a sector of 2048 bytes, a block
comprises 32 real sectors. As defined by the CD standard (for data CDs)
single CD speed corresponds to 75 sectors per second. Hence, the number of
written blocks per second (at a given recording speed) is approximated by
formula (4.1). Further, (4.2) calculates the expected time required to write
such a block to the medium. The same applies to (4.4), but with the actually
available network infrastructure accounted, as (4.3) evaluates to the number
of blocks that can be transferred over the medium. Finally, (4.5) calculates
the overall time needed for transmission which now allows the verification
of the resultant values against one another.

First, the desired recording speed has to be checked against the available
network bandwidth (constraint A (4.6), an actual network efficiency of 70
percent is assumed). If this condition is met the overall timing can be
verified with constraint B (4.7), which demands an excess of 20 percent for

51

the calculated timing requirements.

v = recording speed [x CD]
B = network bandwidth [MBit/s]
tlat = network latency [ms]

1x CD = 150 KiB/s
1 Block = 64 KiB

Formulae

a =
⌈

75
32 · v

⌉
(4.1)

treq =
1

a · 1000
(4.2)

b =
⌊
B · 1000 · 1000

8 · 64 · 1024

⌋
(4.3)

ttrans =
1

b · 1000
(4.4)

t = 2 · ttrans + tlat (4.5)

Constraints

B >
v · 150 · 1024
70% · 125000

(4.6)

t < 80% · treq (4.7)

For the given experimental setup (v = 40, B = 1000, tlat = 1) the result
is an overall block transmission time of t = 2.52 milliseconds. Apart from
the fact that the Gigabit Ethernet definitively is capable of sustaining the
assigned data rate, this is well below the required timing of treq = 10.64 ms
(which corresponds to 94 Blocks per second). Even with a Fast Ethernet
network as interconnect (B = 100) formula (4.5) returns a feasible value of

52

t = 7.26 ms.

Of different concern is the implicated CPU utilization during operation on
the target (and also the initiator). With the previously determined value of
1.50 percent utilization per MiB/s data rate the impact can be extrapolated
for other CPU speeds (same architecture and linear scaling assumed).

U = 1.5 · v · 150

1024
· 700

f
(4.8)

This represents a very imprecise estimation where U means the resul-
tant utilization and f the actual processor speed in megahertz. User time
utilization also implies consumption of privileged time (geater or equal, at
least). Hence, 50 percent CPU utilization should be considered as satura-
tion for the processor. Nevertheless, while being potentially inaccurate the
estimation might give a hint to minimum CPU requirements at a defined
recording speed v. For the present 40x (6,000 KiB/s) the lower limit seems
to be reached at some 133 MHz.

Similar tests have been conducted with the same target but a different
initiator machine (Intel Pentium III 600 MHz, 320 MB RAM, 100 MBit
NIC). By experiment, a maximum recording speed of 24x was identified.
According to the previous calculations (p. 52) the timing requirements are
met, but continuous buffer underrun conditions occurred. Due to the obser-
vation of relatively high CPU utilization during the test it seems likely to be
the reason of failure. Probably additional aspects remained unconsidered in
the presented set of formulas.

Finally, it might be interesting to analyze the limits of the solution of
this thesis by exchanging the underlying physical network with a wireless
technology. Here, latency is the predominant limitation as air is a shared
medium which has to be arbitrated. Unfortunately, for testing only 802.11b
WLAN equipment was available, which is not even capable of providing the
required (transport layer) data rate for the lowest possible recording speed
of 4x (600 KiB/s). In a real world scenario the WLAN link (11 MBit/s)
yields a data rate of approximately 350 KiB/s, a fact that inevitably leads
to buffer underruns when serving as network infrastructure for an ATP tun-
nel. However, despite suffering inherently from latency issues, a Wireless
LAN with adequate bandwidth seems to be capable, as buffer underruns
were moderate during the tests. Experiments generally acknowledging fea-
sibility of ATP over WLAN might be of further interest. Even tests over a
WAN (Wide Area Network) connection were successful. While the process
of erasing a rewritable medium (CD-RW) only produces few and infrequent
commands, this experiment confirmed the possibility to even use an Internet
connection with the ATP protocol.

53

54

Chapter 5

Analysis

The following chapter will analyze the collected results and discuss various
other aspects concerning the so far presented solution of this thesis. Apart
from the many advantages and downsides associated with the given solution,
it may be referred to as correct. In addition to the careful design process
the actual proof of correctness is done by the observation of overall correct
operation in normal and experimental application.

However, correctness is not sufficient in real-world scenarios as for the
end-user the primary concern is reliable operation and performance of the
solution. Depending on the given network infrastructure this objective is
accomplished, viz. data rate and latency requirements at the application
level are met. Last but not least, this is significantly facilitated by the usage
of the TCP NODELAY option.

5.1 ASPI over IP

As demonstrated up to this point, with the developed solution it is possible
to tunnel application-level ASPI SRBs over a network interconnect. The
ASPI Tunnelling Protocol (ATP) has been designed just for this purpose
and realizes all specified requirements, as it actually facilitates the tunnelling
of ASPI commands. Tasks like maintaining distributed memory coherency
(chapter 1) and many others being associated with the primary objective
require careful design (with several accompanying decisions of importance)
and a rather complex framework of supporting functionality.

Beginning with a layered solution paradigm and after having previously
studied SCSI, ASPI, and network fundamentals the design was being elabo-
rated by a bottom-up approach. The protocol design included the definition
of an appropriate state machine and was followed by the formulation of a
text-phase and finally a full-feature phase protocol. This part of the pro-

55

tocol demanded the definition of a session layer and a tunnel layer packet
format. With the Implementation Design part and in particular the more de-
tailed sections Synchronous Implementation and Asynchronous Implemen-
tation the actually realized design decisions were outlined (Appendix B.1
includes a detailed diagram of the layered overall architecture, p. 65). The
subsequent chapter delved into the experimental analysis of the developed
ASPI Tunnelling Protocol and shows the limitations of the solution imposed
by external conditions. Nevertheless, the experimental analysis facilitated
the revelation of a software-related issue which could be identified and coped
with.

However, with the experiences gained over the course of this thesis it
has to be noticed that even while ASPI provides the functionality to lever-
age multi-threaded operation, it is barely utilized by client applications (as
learned with the example of Nero). From a system architectural point of
view the multi-threaded design of an appropriate solution seems to be worth-
while, yet for future work it might be reasonable to rather focus on a less
sophisticated single-threaded solution based on the insights of this thesis
and the provided implementation. Since that would be sufficient, at least
for the initiator part, inherent sources of bugs in the residual code could
be eliminated. Some of the potential possibilities will be elaborated in the
subsequent section.

5.2 Advantages/Drawbacks (ATP)

The software architecture for the entire ASPI Tunnelling Protocol stack has
been thoroughly designed. The goal of a good design should finally be the
realization of a straightforward and elegant implementation, however, it is
impossible to prevent a project from growing and thus with the experience
gained during implementation, it certainly would have been possible to cor-
rect some of the formerly committed programming flaws. Some of the most
urging issues will be discussed in the following Outstanding Issues section.
Multi-Threaded programming and especially debugging is complex, a fact
that actually limited the amount of revision the code could obtain in the
course of this study thesis. In any case, the result can be regarded as proof-
of-concept.

Further, a strictly scientific design process sometimes involves an enlarged
or even bloated OOP (Object Oriented Programming) hierarchy. Often the
same functionality might be accomplished with procedural programming and
fewer resources. A prominent example can be found with the class compound
of CGenericSession, CGenericNexus, and CGenericPath. Inheritance is
the appropriate procedure to aggregate functionality, however, the same in-

56

heritance complicates debugging due to large call stacks and causes overhead
at runtime. Certainly the ATP protocol could be redesigned to flatten the
class hierarchy with a low-level implementation of a single software layer.
Probably two software layers (session and tunnel layer) might not be neces-
sary. Nevertheless, in case of features like Multi-Path I/O (MPIO) the clean
software design of the existing class hierarchy still can ease programmabil-
ity and despite the previous considerations a great deal of work and careful
thought went into the layout of particular classes and functions.

Obviously, the advanced features mentioned throughout this work like
Multi-Threading and Multi-Path I/O are aimed at the operation with
Nero Burning Rom (in increased-demand scenarios). With multi-threading
finally realized and a class hierarchy prepared for operation in multi-path
mode, it is unfortunate that these features can only be utilized by software
which by itself is of multi-threaded nature and prepared to asynchronously
wait for multiple commands to complete. The multi-pathing feature readies
the ATP protocol for resilience and the benefit of multiple links between
initiator and target allowing the utilization of additional bandwidth. Other-
wise throughput and latency would be limited by a single network adapter
in the single-threaded case. Anyway, systems with multiple cores (together
with SMP) seem to become more common in future, even for the average
home user and thus multi-threading still remains an interesting aspect for
the overall system architecture. In summary, it is hardly possible to antic-
ipate Nero’s low requirements in terms of multi-thread awareness prior to
having realized an actually multi-threaded implementation.

5.3 Outstanding Issues

As previously announced in 5.1 this section will discuss some possible im-
provements for the existing code base towards an optimized and reliable
software solution which can be deployed among a production environment.
First, a technique called Scatter/Gather I/O (SGIO) should be applied in the
code; that is, a vector of blocks (comprising pointer and the block’s length)
is passed to a vectorized version of a function. SGIO is used in several places
of an operating system, however, for this solution the vectorized versions of
Socket API functions, namely sendv() and recvv(), are important. Similar
functions are also provided by the WinSock API. While optimizing program
efficiency SGIO can also simplify packet assembly as scattered data does not
have to be copied into a contiguous chunk of memory. For example, header
part, payload data, and packet trailer may reside at different locations which
might (1) avoid the allocation of memory (new) and the (2) accompanying
copy operations (memcpy()).

57

252 PBUFFER pBuffer = new BUFFER[ulPacketLength];
253 TUNNEL_HEADER *pHeader = (TUNNEL_HEADER *) pBuffer;
254
255 PBUFFER pPayloadBuffer = (PBUFFER) (pHeader + 1);
256
257 memcpy(pPayloadBuffer , pcUpperLayerPacketBuffer ,
258 ulUpperLayerPacketLength);

Figure 5.1: Packet Generation Code (Session.cpp)

Together with the generation of packet checksums these tasks cause the
most processing overhead of the protocol stack. However, the well separated
structure of Network Abstraction Layer (NAL) and its adjacent software
layers should constrain the effort needed for the integration of a SGIO-
enabled interface (i.e., verctorized function signatures). The realization al-
ready would decrease required resources, but a methodology for passing an
ordered list of packet fragments between protocol layers has to be intro-
duced. Such an abstracted data structure is a common obstacle in layered
protocol programming hence several approaches can be found among in-
ternal operating system designs. An elegant way to overcome the problem
is given with Windows’ paradigm of I/O Request Packets (IRPs) applied
within the Windows driver stack [8]. The IRP provides a common structure
enabling each driver located in the stack to access driver-specific (or layer-
specific) information. This design could also be applied to the existing ATP
implementation and facilitate (vertical) inter-layer protocol communication.
Another important issue in conjunction with internal stack communication
is freeing of previously allocated memory which could also be simplified by
the use of a data structure equivalent to IRPs. The problem is caused by
the asymmetric behavior of the sending and receiving protocol instances.
In the former case the memory allocation originates in the highest protocol
layer (a SendPacket() request) and deallocation has to happen after the
PDU has actually been dispatched on the lowest layer. In the contrary case
of the opposing protocol instance, the initial packet originates in the lowest
protocol layer where memory has to be allocated on packet arrival. The
required memory cannot be freed until the PDU has been processed by the
entire protocol stack demanding a separate packet processing behavior for
the two occurrences of protocol endpoints. Again, a common data struc-
ture facilitating internal protocol communication and carrying all important
information for the separate protocol layers could ease the task of keeping
account of allocated memory blocks (memory leaks).

With today’s network hardware (high bandwidth, low latency) it is pos-
sible to realize the presented solution of the ATP protocol. Even the serial

58

network technology is able to provide latencies which are adequate for de-
manding tasks like the transmission of storage subsystem traffic, at least
for high level (application layer) protocols like ATP or iSCSI. This traffic
cannot be compared to the raw SCSI communication over an interconnect
bus or point-to-point connection. Here, with these specialized interconnect
technologies the demands to the timing behavior are much more restrictive.
The performance gains accomplished by the TCP NODELAY modifications pro-
vide some headroom for the increasing data rates reached with the current
generation of CD/DVD recorders. However, due to restrictions caused by
network or computer hardware with limited resources, it might be necessary
to discover new possibilities to decrease latency requirements or further op-
timizations of the ASPI Tunnelling Protocol. A potential tweak to diminish
relevancy of protocol message delay might be the premature acknowledge-
ment of pending requests to the client software. This application then may
dispatch further WRITE commands although the former SRBs are still about
to be processed on the target. This, in turn, demands an mechanism to
detect unexpected conditions in case of an error during execution. However,
the SCSI standard already defines two mechanisms in conjunction with this
behavior. It is explicitly legal to acknowledge WRITE commands with a GOOD

status while the request is buffered in the drive’s cache unless the so called
Force Unit Access (FUA) bit is set ([15], p. 131). In this case, subsequent
commands are obligated to indicate a Deferred Error Condition ([16], 4.5.5,
p. 39). Fortunately, Nero omits the FUA bit to leverage the drives’ buffer-
ing features, which also supports the possible application of this tweak in
future implementations of the ASPI Tunnelling Protocol. In other words,
the immediate acknowledgement is likely to provide a mechanism to be-
come virtually independent from latency issues while the single limitation
of sufficient bandwidth between initiator and target remains.

Apart from this set of internal optimizations some external improvements
could also be made. The following considerations suggest completion of a
purely multi-threaded implementation or an advanced single-threaded incar-
nation of the protocol initiator. Certainly, the MT version would be more
versatile, however, due to the lack of support ST would be sufficient even
for the use with Nero Burning Rom. Since the advanced ST solution only
comprises a single main program thread it would be rendered almost un-
able to implement features like Multi-Path I/O. As discussed above, packet
generation overhead could be easily diminished by the presented mecha-
nisms, yet the single-threaded initiator should allow the application client
to use the Windows event signaling system to further optimize the usage
of CPU resources. Anyway, sources for bugs could be eliminated with the
less complex single-thread solution, which might be the primary objective
for eventual deployment among end user computers. In either case, the tar-

59

get’s implementation should remain multi-threaded, as for the server side
asynchronous execution might be of foremost concern.

In summary, the core of the presented ATP protocol stack may remain to
provide a reliable framework for future software utilizing the ASPI Tun-
nelling Protocol. Nevertheless, some additional proposals for these im-
plementations should be mentioned. First, the concept of a Virtual Host
Adapter (VHA) could be enforced by the protocol initiator. This VHA then
could realize an abstraction for the management of multiple sessions to differ-
ent target computers. Here, a mapping between virtual devices and session
has to be established. Since the transmission of SRBs is transparent between
initiator and target the common device addresses (HA:ID) are derived from
the target’s local device map. This means all initiators have to support a
device address mapping from virtual addresses to target addresses, while
the target controls access to unlocked devices for the corresponding session.
Prior to initialization of the local ATP ASPI Layer the user should be able
to modify the association of Virtual Devices (VD) (to the VHA) which then
can be used in the following Nero session. If configuration changes are not
likely to happen frequently, it is also imaginable to provide access to the
configuration in form of a Windows Control Panel applet. In figure 5.2 a
suggestion for an appropriate UI is visualized.

Figure 5.2: Association Dialog UI Proposal

60

Chapter 6

Conclusion

To conclude the work of this study thesis presented in the course of the
previous five chapters, the following paragraphs will finally give a repetitive
overview. The impetus for the given topic, ASPI over IP, was the observa-
tion of an apparent lack of support for optical devices as rather important
form of mass storage in the case of already existing solutions facilitating
separation of storage devices from the responsible host system. It is obvious
that this concept in general is applicable to various scenarios and thus has
been subject of recent research and commercial interest. A fact also outlined
by the sheer number of different standards (amongst others, there are for
example the most important occurrences of Fibre Channel and its sibling
iSCSI), which were considered throughout the first part of this thesis.

The existing technologies allow the transparent transmission of SCSI com-
mand traffic across almost any type of interconnect to achieve the objective
of a distributed storage network and independence from local computer buses
at the same time. By choosing this generic approach, namely tunnelling
SCSI over serial network transports, a completely new level of storage virtu-
alization is achieved. However, this type of virtualization has not yet been
carried to the domain of optical storage, its peculiar requirements, and the
respective application software (at least in case of the Windows family of
operating systems). Hence, an appropriate and equivalent solution (that
means taking a very similar approach to existing solutions) for the ASPI
interface, which represents an important standard for this type of applica-
tion software, should be designed. While several methodologies and notions
could be adopted from the standards earlier studied, a new protocol with
text-based and full-feature phase had to be developed to facilitate the seman-
tically correct transmission of SRBs. Having a functional ASPI tunnelling
protocol stack at hand, in the subsequent course of design two distinct re-
alizations (single-threaded/synchronous and multi-threaded/asynchronous)
were identified and also elaborated. An actual implementation in software

61

finally demonstrated the correctness of the presented solution also in its
multi-threaded incarnation (initiator and target). Subsequently, various
tests with the final code base have been conducted in real-world scenar-
ios (target computer equipped with recording device and initiator running
Nero Burning Rom as client application). By identifying software-related
issues obviously impeding network message timing, it became possible to
further improve overall performance up to a level, which may well satisfy
the requirements for most optical storage recording tasks.

Despite its preliminary status, the code base demonstrates feasibility of
the approach and proper operation of the ATP communication protocol.
At this point, together with some of the clues for further software design
improvements and the outlook to user interface optimizations identified
throughout the final part of this work, the conclusion of a viable solution to
the objective of this thesis can be drawn.

62

Appendix A

Class Hierarchy

63

F
igure

A
.1:

C
om

prehensive
U

M
L

D
iagram

of
the

A
T

P
C

lass
H

ierarchy

64

Appendix B

Layered Architecture

Figure B.1: Detailed Diagram of the layered ATP Architecture

65

66

Appendix C

ASPI Tunnelling Protocol

67

1
0
.
0
0
0
0
0
0

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
S
Y
N
]

S
e
q
=
0

A
c
k
=
0

W
i
n
=
6
5
5
3
5

L
e
n
=
0

M
S
S
=
1
4
6
0

2
0
.
0
0
0
1
1
3

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
S
Y
N
,

A
C
K
]

S
e
q
=
0

A
c
k
=
1

W
i
n
=
1
6
3
8
4

L
e
n
=
0

M
S
S
=
1
4
6
0

3
0
.
0
0
0
0
3
4

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
A
C
K
]

S
e
q
=
1

A
c
k
=
1

W
i
n
=
6
5
5
3
5

L
e
n
=
0

4
0
.
0
0
0
1
9
8

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1

A
c
k
=
1

W
i
n
=
6
5
5
3
5

L
e
n
=
2
1

5
0
.
0
0
0
4
6
7

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
1

A
c
k
=
2
2

W
i
n
=
6
5
5
1
4

L
e
n
=
2
1

6
0
.
1
9
1
8
0
7

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
A
C
K
]

S
e
q
=
2
2

A
c
k
=
2
2

W
i
n
=
6
5
5
1
4

L
e
n
=
0

7
0
.
1
2
8
1
3
3

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
2
2

A
c
k
=
2
2

W
i
n
=
6
5
5
1
4

L
e
n
=
1
2
8

8
0
.
0
0
0
5
7
0

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
2
2

A
c
k
=
1
5
0

W
i
n
=
6
5
3
8
6

L
e
n
=
1
2
8

9
0
.
0
1
1
0
7
9

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1
5
0

A
c
k
=
1
5
0

W
i
n
=
6
5
3
8
6

L
e
n
=
1
2
8

1
0

0
.
0
0
0
4
3
5

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
1
5
0

A
c
k
=
2
7
8

W
i
n
=
6
5
2
5
8

L
e
n
=
1
2
8

1
1

0
.
0
1
3
1
3
9

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
2
7
8

A
c
k
=
2
7
8

W
i
n
=
6
5
2
5
8

L
e
n
=
1
2
8

1
2

0
.
0
0
0
2
8
7

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
2
7
8

A
c
k
=
4
0
6

W
i
n
=
6
5
1
3
0

L
e
n
=
1
2
8

1
3

0
.
0
2
7
5
3
5

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
4
0
6

A
c
k
=
4
0
6

W
i
n
=
6
5
1
3
0

L
e
n
=
1
9
2

1
4

0
.
1
6
9
2
5
3

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
A
C
K
]

S
e
q
=
4
0
6

A
c
k
=
5
9
8

W
i
n
=
6
4
9
3
8

L
e
n
=
0

1
5

0
.
0
0
0
0
9
0

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
5
9
8

A
c
k
=
4
0
6

W
i
n
=
6
5
1
3
0

L
e
n
=
1
2
8

1
6

0
.
0
0
0
4
5
2

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
4
0
6

A
c
k
=
7
2
6

W
i
n
=
6
4
8
1
0

L
e
n
=
1
9
2

1
7

0
.
1
4
9
7
5
1

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
A
C
K
]

S
e
q
=
7
2
6

A
c
k
=
5
9
8

W
i
n
=
6
4
9
3
8

L
e
n
=
0

1
8

0
.
0
0
0
2
6
0

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
5
9
8

A
c
k
=
7
2
6

W
i
n
=
6
4
8
1
0

L
e
n
=
4
4
8

1
9

0
.
0
0
8
7
3
7

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
7
2
6

A
c
k
=
1
0
4
6

W
i
n
=
6
4
4
9
0

L
e
n
=
1
9
2

2
0

0
.
1
6
8
7
9
8

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
A
C
K
]

S
e
q
=
1
0
4
6

A
c
k
=
9
1
8

W
i
n
=
6
4
6
1
8

L
e
n
=
0

2
1

0
.
0
0
0
0
9
5

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
9
1
8

A
c
k
=
1
0
4
6

W
i
n
=
6
4
4
9
0

L
e
n
=
1
2
8

2
2

0
.
0
0
0
4
3
8

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
1
0
4
6

A
c
k
=
1
0
4
6

W
i
n
=
6
4
4
9
0

L
e
n
=
1
9
2

2
3

0
.
1
2
2
1
4
6

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
A
C
K
]

S
e
q
=
1
0
4
6

A
c
k
=
1
2
3
8

W
i
n
=
6
4
2
9
8

L
e
n
=
0

2
4

0
.
0
0
0
2
4
7

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
1
2
3
8

A
c
k
=
1
0
4
6

W
i
n
=
6
4
4
9
0

L
e
n
=
4
4
8

2
5

0
.
0
0
2
9
0
0

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1
0
4
6

A
c
k
=
1
6
8
6

W
i
n
=
6
5
5
3
5

L
e
n
=
1
9
2

2
6

0
.
2
0
2
2
7
9

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
A
C
K
]

S
e
q
=
1
6
8
6

A
c
k
=
1
2
3
8

W
i
n
=
6
4
2
9
8

L
e
n
=
0

2
7

0
.
0
0
0
0
8
5

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1
2
3
8

A
c
k
=
1
6
8
6

W
i
n
=
6
5
5
3
5

L
e
n
=
1
2
8

2
8

0
.
0
0
0
4
4
6

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
1
6
8
6

A
c
k
=
1
3
6
6

W
i
n
=
6
4
1
7
0

L
e
n
=
1
9
2

2
9

0
.
1
9
4
5
6
8

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
A
C
K
]

S
e
q
=
1
3
6
6

A
c
k
=
1
8
7
8

W
i
n
=
6
5
3
4
3

L
e
n
=
0

3
0

0
.
0
0
0
2
6
1

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
1
8
7
8

A
c
k
=
1
3
6
6

W
i
n
=
6
4
1
7
0

L
e
n
=
4
4
8

3
1

0
.
0
0
3
0
5
7

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1
3
6
6

A
c
k
=
2
3
2
6

W
i
n
=
6
4
8
9
5

L
e
n
=
1
9
2

3
2

0
.
1
2
9
6
6
7

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
A
C
K
]

S
e
q
=
2
3
2
6

A
c
k
=
1
5
5
8

W
i
n
=
6
5
5
3
5

L
e
n
=
0

3
3

0
.
0
0
0
0
9
5

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1
5
5
8

A
c
k
=
2
3
2
6

W
i
n
=
6
4
8
9
5

L
e
n
=
1
2
8

3
4

0
.
0
0
0
4
1
9

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
2
3
2
6

A
c
k
=
1
6
8
6

W
i
n
=
6
5
4
0
7

L
e
n
=
1
9
2

3
5

0
.
1
6
6
9
3
0

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
A
C
K
]

S
e
q
=
1
6
8
6

A
c
k
=
2
5
1
8

W
i
n
=
6
4
7
0
3

L
e
n
=
0

3
6

0
.
0
0
0
2
6
5

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
P
S
H
,

A
C
K
]

S
e
q
=
2
5
1
8

A
c
k
=
1
6
8
6

W
i
n
=
6
5
4
0
7

L
e
n
=
4
4
8

3
7

0
.
0
0
2
3
7
8

1
9
2
.
1
6
8
.
8
.
1
1

1
9
2
.
1
6
8
.
8
.
3

2
2
2
7
>
8
1
8
1

[
P
S
H
,

A
C
K
]

S
e
q
=
1
6
8
6

A
c
k
=
2
9
6
6

W
i
n
=
6
4
2
5
5

L
e
n
=
1
9
2

3
8

0
.
1
5
8
0
4
5

1
9
2
.
1
6
8
.
8
.
3

1
9
2
.
1
6
8
.
8
.
1
1

8
1
8
1
>
2
2
2
7

[
A
C
K
]

S
e
q
=
2
9
6
6

A
c
k
=
1
8
7
8

W
i
n
=
6
5
2
1
5

L
e
n
=
0

F
igure

C
.1:

Sam
ple

A
T

P
C

onversation
(E

thereal
D

um
p)

68

>
0
0
0
0
0
0
0
0

5
0

7
2

6
9

6
d

6
9

7
4

6
9

7
6

6
5

3
a

2
0

4
c

6
f

6
7

6
9

6
e

P
r
i
m
i
t
i
v

e
:

L
o
g
i
n

>
0
0
0
0
0
0
1
0

5
2

6
5

7
1

0
a

0
a

R
e
q
.
.

<
0
0
0
0
0
0
0
0

5
0

7
2

6
9

6
d

6
9

7
4

6
9

7
6

6
5

3
a

2
0

4
c

6
f

6
7

6
9

6
e

P
r
i
m
i
t
i
v

e
:

L
o
g
i
n

<
0
0
0
0
0
0
1
0

5
2

6
5

7
3

0
a

0
a

R
e
s
.
.

>
0
0
0
0
0
0
1
5

5
1

5
1

5
1

5
1

8
0

0
0

0
0

0
0

6
4

0
0

0
0

0
0

0
1

0
1

0
0

0
1

Q
Q
Q
Q
.
.
.
.

d
.
.
.
.
.
.
.

>
0
0
0
0
0
0
2
5

e
8

0
3

0
0

0
0

3
c

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
<
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
3
5

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
4
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
5
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
6
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
7
5

3
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
8
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
b

0
2

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
+
.
.
.

<
0
0
0
0
0
0
1
5

5
1

5
1

5
1

5
1

8
0

0
0

0
0

0
0

6
5

0
0

0
0

0
0

0
1

0
2

0
0

0
1

Q
Q
Q
Q
.
.
.
.

e
.
.
.
.
.
.
.

<
0
0
0
0
0
0
2
5

e
8

0
3

0
0

0
0

3
c

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
<
.
.
.

.
.
.
.
.
.
.
.

<
0
0
0
0
0
0
3
5

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
3

f
f

4
e

4
5

5
2

4
f

2
0

4
1

.
.
.
.
.
.
.
.

.
.
N
E
R
O

A
<

0
0
0
0
0
0
4
5

5
3

5
0

4
9

3
3

3
2

0
0

0
0

0
0

0
0

0
0

6
1

7
4

6
1

7
0

6
9

0
0

S
P
I
3
2
.
.
.

.
.
a
t
a
p
i
.

<
0
0
0
0
0
0
5
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
8

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

<
0
0
0
0
0
0
6
5

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

<
0
0
0
0
0
0
7
5

c
8

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

<
0
0
0
0
0
0
8
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
d

0
2

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
-
.
.
.

>
0
0
0
0
0
0
9
5

5
1

5
1

5
1

5
1

8
0

0
0

0
0

0
0

6
6

0
0

0
0

0
0

0
1

0
1

0
0

0
1

Q
Q
Q
Q
.
.
.
.

f
.
.
.
.
.
.
.

>
0
0
0
0
0
0
A
5

e
9

0
3

0
0

0
0

3
c

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
<
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
B
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
C
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
D
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
E
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
0
F
5

3
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

>
0
0
0
0
0
1
0
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
d

0
2

0
0

0
0

.
.
.
.
.
.
.
.

.
.
.
.
-
.
.
.

F
ig

ur
e

C
.2

:
Sa

m
pl

e
A

T
P

C
on

ve
rs

at
io

n
(T

ra
ns

po
rt

L
ay

er
)

69

70

Appendix D

ATP Target Service

Figure D.1: ATP Target implemented as native Windows Service

71

72

Bibliography

[1] Sebastian Abeck, Peter C. Lockemann, Jochen Schiller, and Jochen
Seitz. Verteilte Informationssysteme. dpunkt Verlag, 2002.

[2] Adaptec. Advanced SCSI Programming Interface (ASPI). Technical
reference (SDK), 1998.

[3] S. Deering and R. Hinden. RFC 2460, Internet Protocol, version 6
(IPv6) specification. Request for comment, 1998.

[4] Rob Elliott. SAS comparison to Fibre Channel with FCP. Presentation
slides, Hewlett-Packard, 2003.

[5] Rob Elliott. SAS SCSI upper layers. Presentation slides, Hewlett-
Packard, 2003.

[6] S. Hopkins and B. Coile. The ATA over Ethernet protocol. Protocol
specification, Coraid, http://www.coraid.com/documents/AoEr8.txt,
2004.

[7] Patrick Beng T. KHOO and Wilson Yong H. WANG. Introducing a
flexible data transport protocol for network storage applications (Hy-
perSCSI). Protocol specification, MCSA Group, NST Division - Data
Storage Institute, Affiliated to the National University of Singapore,
2003.

[8] Microsoft. Handling IRPs: What every driver writer needs to know,
2003.

[9] John Nagle. RFC 896, congestion control in IP/TCP internetworks.
Request for comment, 1984.

[10] J. Postel and J. Reynolds. RFC 959, File Transfer Protocol (FTP).
Request for comment, 1985.

[11] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner.
RFC 3720, Internet Small Computers System Interface (iSCSI), 2004.

[12] INCITS T10. Small Computer Systems Interface – 2 (SCSI-2), 1994.

73

[13] INCITS T10. SCSI Architecture Model – 2 (SAM-2). Standards draft,
2002.

[14] INCITS T10. SCSI RDMA Protocol (SRP). Standards draft, 2002.

[15] INCITS T10. Multimedia Commands – 5 (MMC-5). Standards draft,
2005.

[16] INCITS T10. SCSI Primary Commands – 3 (SPC-3). Standards draft,
2005.

[17] INCITS T13. AT Attachment – 5 with Packet Interface Draft (ATAPI-
5), 2000.

[18] Fujita Tomonori and Ogawara Masanori. Performance of optimized
software implementation of the iSCSI protocol. Technical report, NTT
Network Innovation Laboratories, 2003.

74

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.1.1 SCSI Fundamentals
	2.1.2 ASPI fundamentals
	2.1.3 Sockets API

	2.2 Related Work
	2.2.1 SCSI
	2.2.2 Fibre Channel (FC)
	2.2.3 iSCSI
	2.2.4 Serial Attached SCSI (SAS)
	2.2.5 HyperSCSI/SCSI RDMA
	2.2.6 NeroNET

	3 Design Considerations
	3.1 Layered Solution
	3.2 Protocol Design
	3.3 Implementation Design
	3.4 Synchronous Implementation
	3.5 Asynchronous Implementation

	4 Evaluation
	4.1 Synchronous Implementation
	4.2 Asynchronous Implementation
	4.3 Experimental Results

	5 Analysis
	5.1 ASPI over IP
	5.2 Advantages/Drawbacks (ATP)
	5.3 Outstanding Issues

	6 Conclusion
	A Class Hierarchy
	B Layered Architecture
	C ASPI Tunnelling Protocol
	D ATP Target Service

