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Abstract

The resurgence of system virtualization has provoked diverse virtualization tech-
niques targeting different application workloads and requirements. However, a
methodology to compare the performance of virtualization techniques at fine gran-
ularity has not yet been introduced. VMbench is a novel benchmarking suite that
focusses on virtual machine environments. By applying the pre-virtualization ap-
proach for hypervisor interoperability, VMbench achieves hypervisor-neutral in-
strumentation of virtual machines at the instruction level. Measurements of dif-
ferent virtual machine configurations demonstrate how VMbench helps rate and
predict virtual machine performance.

Kurzfassung

Das wiedererwachte Interesse an der Systemvirtualisierung hat verschiedenartige
Virtualisierungstechniken für unterschiedliche Anwendungslasten und Anforde-
rungen hervorgebracht. Jedoch wurde bislang noch keine Methodik eingeführt,
um Virtualisierungstechniken mit hoher Granularität zu vergleichen. VMbench
ist eine neuartige Benchmarking-Suite für Virtuelle-Maschinen-Umgebungen. In-
dem sie den Pre-Virtualisierungs-Ansatz für Hypervisor-Interoperabilität anwen-
det, erzielt die VMbench-Suite Hypervisor-neutrale Instrumentierung von virtu-
ellen Maschinen auf der Befehlsebene. Messungen verschiedener Konfiguratio-
nen von virtuellen Maschinen zeigen, wie VMbench dabei hilft, die Leistung von
virtuellen Maschinen zu bewerten und vorherzusagen.
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Chapter 1

Introduction

The introductory chapter of this thesis presents the fundamentals of virtualization
and justifies the relevance of virtual machine benchmarking.

1.1 Performance of Virtual Machines
Ever-increasing computing power on the server market calls for simplified server
management and good hardware utilization. In the recent years, system virtua-
lization [SN05] has become a key technique to improve maintainability and to
leverage server consolidation: Rather than on raw hardware, operating systems
and application software run in virtual machines, which are controlled by a hyper-
visor.

The hypervisor flexibly defines which resources are available to the virtual ma-
chines, providing extensibility of the virtual machine environment and resource
control. Virtual machines are mutually isolated, such that different operating sys-
tems and applications can run side-by-side on one physical host.

Unfortunately, flexibility does not come for free. Virtualization adds complex-
ity to the system, reducing performance of certain operations. Making the oper-
ating system aware of being virtualized helps avoid costly operations but binds
it to one specific hypervisor. The pre-virtualization technique [LUC+05], which
was recently developed by Joshua LeVasseur, overcomes the hypervisor lock-in
by preparing an operating system kernel for use on raw hardware as well as with
different hypervisors.

However, every virtualization technique adds a certain performance overhead,
which depends on a number of factors, such as the hardware, the virtualization
technique, the hypervisor, and the configuration of the virtual machines [You73].

1
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1.2 Hot Topics in Virtualization Research
The interest in understanding virtual machine performance derives from the wide
range of applications for virtualization and the diversity of hypervisors.

The indirection through the hypervisor [WCSG05] enables inspection of the
virtual machine from the outside. For example, intrusion detection [DKC+02]
and virtual machine migration [CFH+05, NLH05] can be realized on top of a
hypervisor. By virtue of indirection, virtual machines are a suitable basis for grid
computing [FDF03] and trusted computing [GPC+03, ELM+03].

Isolation of the virtual machines brings forward several improvements to de-
vice drivers and resource management. Controlled by a trusted hypervisor, high-
performance applications and legacy operating systems coexist on the same phys-
ical host [MUKX06]. Virtualization supports dependable [BS95] or even se-
cure [GCGV06] device drivers. For example, the first release of the Xen hy-
pervisor contained all device drivers in its kernel [BDF+03], whereas the second
release allowed user-level device drivers to access physical hardware [FHN+04].
Cumbersome porting of device drivers to a new operating system is avoided by
reusing unmodified device drivers in their native operating system that runs in a
dedicated device driver virtual machine (DD/VM) [LUSG04].

Consolidation of physical servers helps reduce costs, because data centers
need to acquire less hardware, and less hardware consumes less electrical power
[SN05].

In order to permit hypervisor interoperability, several efforts [VMwb, CI06]
define hypervisor-neutral interfaces, that is, general para-virtualization APIs with-
out binding to a specific hypervisor. The pre-virtualization approach [LUC+06]
combines the advantages of several virtualization techniques using the soft-layer-
ing concept [Coo83]: At build time, the operating system kernel is automatically
prepared for being virtualized, but it binds to the actual hypervisor only at boot
time of the virtual machine.

1.3 A Case for Virtual Machine Benchmarking
Only a few years after the revival of virtual machines, a large number of hyper-
visors for different purposes exists: Some emphasize good performance of the
virtual machines, others focus on special functionality or take advantage of pro-
cessor virtualization extensions. Moreover, virtual machines are configurable in
many ways, differing in what operating system and applications they run as well
as in the amount and type of assigned resources.

Then again, users of virtual machines have different minimum requirements
and metrics to characterize their servers [CGS06]. However, as economization is
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a driving force behind virtualization, users do not tolerate significant performance
degradation compared to running on raw hardware. Thus, there is great interest in
understanding and comparing performance of virtual machines.

Although most work on virtualization includes a performance evaluation (see
for example [WSG02, BDF+03]), the results can hardly be compared, because
different hardware, different guest software, and different benchmarking suites
are used. Even reproducing performance measurements from previous work when
source code and similar hardware are available can turn out to be a nontrivial task
in case imitating the original setup is cumbersome [CDD+].

In the recent two years, several approaches have been developed to assess the
performance of virtual machines [CGS06, MHS+, AA06, MST+05, GGC]. High-
level performance evaluation allows for comparison of virtual machine perfor-
mance, but it fails at predicting performance for new workload and explaining
what contributes to virtual machine performance. Low-level hypervisor-specific
performance evaluation enables performance analysis and prediction, but it is not
helpful for comprehensive comparison.

Thus, a methodology to investigate the reasons for performance differences
and to identify bottlenecks in virtual machine setups is ultimately needed. The
methodology must be able to characterize performance of a virtualized system at
an adequate level, and to relate low-level and high-level performance.

The goal of this thesis is to develop a benchmarking suite for realistic char-
acterization and rating of virtual machine environments (consisting of hardware,
hypervisor, and one or more virtual machines) regarding their overall performance
as well as performance in special domains.

1.4 Thesis Structure
Chapter 2 presents background on the pre-virtualization and benchmarking tech-
niques as well as a review of virtual machine benchmarking efforts. Chapter 3
describes the design of VMbench, a benchmarking suite targeting virtual machine
environments, and chapter 4 highlights several issues that were solved in its im-
plementation. Chapter 5 contains results and interpretation of the benchmarks.
Chapter 6 concludes this thesis with a summary and suggestions for future work.



Chapter 2

Background and Related Work

This chapter gives background information on virtual machine benchmarking.
First, I present and compare several techniques for system virtualization. Second,
I give an overview of benchmarking methodology. Third, I analyze related work
on virtual machine benchmarking, concluding that it does not allow comparison
and performance prediction of different virtual machine setups.

2.1 Techniques for System Virtualization
This section gives a short overview over several virtualization paradigms that are
currently used, ranging from the original concept of pure virtualization to recent
software- and hardware-based optimization techniques.

2.1.1 Pure Virtualization
Fundamental research on virtual machines [Gol73] dates back more than thirty
years, defining what is known as the pure virtualization paradigm: A hypervisor
presents a faithful emulation of a hardware interface to one or more guest opera-
ting systems running inside virtual machines.

In order to have full control of the hardware, the hypervisor runs at a higher
privilege level than the guest operating system kernels. Some processor archi-
tectures implement a mode of instruction called hypervisor mode, which sur-
passes the privileged supervisor or kernel mode [SN05]. On processors that dis-
tinguish only two levels of priority the guest kernels run in non-privileged user
mode [SN05]. Other processor architectures, such as Intel’s IA32 [Int06], have
more than two privilege levels, so that the hypervisor deprivileges the guest ker-
nels to an intermediate privilege level [BDF+03].

4
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Figure 2.1: A purely virtualized system

In any case, the hypervisor logically detaches the operating system from the
physical hardware, such that pure virtualization induces a strictly layered system
structure [Dij68] (see Figure 2.1). Strict layering allows for modularization, that
is, separation of interface and implementation [PS75]. Thus, pure virtualization
facilitates customization of the virtual machine setup such as hypervisor enhance-
ments and recursive construction of VMs [CN01].

Whenever an application executes a system call or experiences a fault, the
hypervisor redirects the request to the respective guest operating system. To en-
sure the containment of the virtual machine, the guest operating system kernel
traps into the hypervisor whenever it executes a virtualization-sensitive instruc-
tion, that is, when it tries to detect or modify external state of the virtual machine,
such as the amount of available resources. In response, the hypervisor emulates
the effect of the instruction and modifies physical machine state where necessary.
The VM assist optimization [Mac79] allows the processor to delay a trap into the
hypervisor by caching state changes in the virtual machine’s protection domain.
Popek and Goldberg [PG74] prove that a computer architecture is virtualizable
if all virtualization-sensitive instructions are privileged and trap into the hyper-
visor (see Figure 2.2). Hypervisors are also known as virtual machine monitors
(VMMs) [SN05]. The notion hypervisor emphasizes that the virtualizing software
has the highest privilege level in the system, whereas the notion virtual machine
monitor stresses that the virtualizing software gives guest software the illusion
of running on a physical machine. Henceforth, the notion virtual machine envi-
ronment refers to the combination of hardware, hypervisor or VMM, and virtual
machines.
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Figure 2.2: Non-virtualizable (left) and virtualizable (right) instruction set

Pure virtualization is a clean concept: It does not require modification of the
guest operating system kernel, minimizing engineering effort for virtualization
and permitting virtualization of operating systems whose source code is not avail-
able.

Unfortunately, pure virtualization has two major drawbacks: First, pure virtua-
lization assumes a virtualizable processor architecture where every virtualization-
sensitive operation that a guest kernel executes faults and traps into the hyper-
visor. Many modern processors architectures such as IA32 and IA64 are not
virtualizable [RI00]. Instead, several workarounds have evolved that contend
with non-virtualizable hardware [AA06]. Second, pure virtualization imposes
a relatively high virtualization overhead on the system, since all virtualization-
sensitive activity within the virtual machines must be authorized by the hypervi-
sor [You73, MST+05]. Particularly, switching between privilege and protection
domains takes significant time on modern processors. The operating system is not
aware of being virtualized, thus it does not avoid frequent virtualization-sensitive
operations such as enabling and disabling interrupt delivery.

2.1.2 Para-Virtualization
The para-virtualization concept [WSG02] was developed to overcome pure virtu-
alization’s drawbacks. Para-virtualization is based on the idea of modifying the
guest operating system kernel to make it virtualization-friendly: First, on non-
virtualizable processor architectures, the guest kernel must be aware of being vir-
tualized and correctly handle virtualization-sensitive but non-privileged instruc-
tions. Second, the kernel should avoid frequent traps into the hypervisor. Thus, a
high-level API replaces virtualization-sensitive parts of the guest operating system
kernel, allowing to cache virtual machine state in the guest kernel’s protection do-
main (see Figure 2.3). Virtual machine state is synchronized with the hypervisor
by means of hypercalls.
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Figure 2.3: Comparison of pure virtualization (left) and para-virtualization (right)

Para-virtualization represents co-design of hypervisor and operating system:
The operating system is adapted to a specific hypervisor, which is considered
a special hardware architecture. In contrast to pure virtualization, running the
operating system on raw hardware or on another hypervisor fails, because the
para-virtualized operating system does not obey the native machine interface.

In summary, para-virtualization achieves better performance at the cost of
higher engineering overhead and restricted binary compatibility. Composition of
virtual machine environments is less flexible and less modular than with pure vir-
tualization. Furthermore, the source code of the operating system must be mod-
ified by hand, which is cumbersome or even impossible in case of closed-source
operating systems.

2.1.3 Virtualization by Binary Translation
Some hypervisors, such as VMware’s Server, ESX Server, and Player [AA06],
use binary translation to virtualize the operating system kernel’s code at load
and run time: Innocuous instructions are left unmodified, except for corrections
of location-dependent code. Privileged instructions are replaced by hypercalls,
downcalls to the hypervisor. An improved form of binary translation, adaptive bi-
nary translation, detects and translates virtualization-sensitive but non-privileged
memory operations online by identifying data locations that are frequently in-
volved in traps. In contrast to para-virtualization, the kernel is not subject to
structural modifications.

Adaptive binary translation hides virtualization from the guest operating sys-
tem kernel. Thus, adaptive binary translation can virtualize unmodified kernels
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and reduce virtualization overhead even on non-virtualizable architectures. How-
ever, the translation process itself is rather intricate, because virtual machine
equivalence [PG74] requires the virtual machine to behave in a manner that is
indistinguishable from a physical machine, set aside timing and resource avail-
ability.

2.1.4 Hardware-Assisted Virtualization
Recent extensions of the legacy processor architectures such as Intel’s Vanderpool
Technology [UNR+05] or AMD’s Pacifica [Adv06c] remedy non-virtualizability
at the cost of more complex hardware. Introduction of a new processor mode
permits virtualization of unmodified operating systems, but performance can de-
crease, caused by lack of optimization [AA06].

Progressive para-virtualization [Fra06] takes advantage of virtualizable pro-
cessor architectures by selectively adding para-virtualization extensions to a pre-
viously unmodified guest operating system. These para-virtualization extensions
can for example optimize I/O and MMU operation, avoid idle time and support
device hotplugging.

2.1.5 Pre-Virtualization
Pre-Virtualization [LUC+06] is a novel concept for virtualization that uses the
soft-layering principle [Coo83] to improve hypervisor interoperability.

Applying the Soft-Layering Principle to Virtualization

The soft-layering principle [Coo83] was primarily developed to retain modularity
in network protocol design: Performance of layered network protocols is often
enhanced by increasing the flow of information between the layers through layer
co-design. The disadvantage of co-design is that lower layers’ interfaces are de-
fined to match higher layers’ requirements, such that lower layers are fixed and
not exchangeable. However, to make lower layers exchangeable, the soft-layering
principle requires that a layer offers by default a neutral interface to superior lay-
ers. In addition, the layer may provide superior layers with hints how to use it
efficiently. Thus, soft-layering helps avoid co-design.

Para-virtualization is another instance of co-design, namely hypervisor / oper-
ating system co-design: Each para-virtualization hypervisor defines a specific hy-
percall API that differs from the native instruction set of the processor. Therefore,
an operating system has to be ported to a hypervisor’s API to make it compatible
with the hypervisor.
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Figure 2.4: Several configurations for a pre-virtualized system

The pre-virtualization concept [LUC+06] applies soft layering to virtualiza-
tion: The guest operating system kernel is prepared for virtualization, but it is still
based on the native machine. At boot time of the virtual machine, a hypervisor
takes advantage of the virtualization preparations and adapts the kernel to make it
cooperate efficiently with the hypervisor. Thus, the same kernel binary image is
able to run on raw hardware as well as on different hypervisors (see Figure 2.4).

The In-Place Virtual Machine Monitor

A hypervisor on a non-virtualizable processor architecture offers a hypercall inter-
face that differs from the native machine interface. Therefore, an in-place virtual
machine monitor (IPVMM) is introduced that represents the internal state of the
virtual machine and mediates between guest kernel and hypervisor. For efficiency
reasons, the IPVMM resides in the guest operating system kernel’s protection
domain. It maps sensitive instructions to hypercalls and forwards incoming inter-
rupts and exceptions to the guest kernel.

Furthermore, the IPVMM is responsible for rewriting the guest kernel such
that the sensitive instructions that the binary kernel image specifies are replaced
by calls to emulation code in the IPVMM.

Advantages of Pre-Virtualization

Pre-virtualization is an improved form of para-virtualization where the virtualized
interface agrees with the native machine interface. Compared to para-virtualiza-
tion, it offers several advantages: First, the process of virtualization can be auto-
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mated, squeezing down engineering effort near zero. Second, pre-virtualization
leverages flexibility of the virtual machine environment, because it is hypervisor-
neutral and preserves the native machine interface. Third, virtualization is more
structured with pre-virtualization, given that all hypervisor-specific adaptations to
a guest operating system kernel are encapsulated in the IPVMM.

Performance of a pre-virtualized machine depends on how efficient the IP-
VMM maps native machine interface to hypervisor interface. Comparison of pre-
and para-virtualized operating system kernels [LUC+06] have shown only slight
differences in performance between both approaches.

Virtual Machine Environment Configurations

Pre-virtualization enables a single binary image of an operating system kernel to
be used in a variety of models for hardware access:

• Raw: The kernel runs in non-virtualized mode on raw hardware (see Fig-
ure 2.4, left).

• Pass-through: The kernel runs on a hypervisor, but still has access to most
physical devices. Only CPU and memory are virtualized by the hypervisor
(see Figure 2.5, left).

• Pass-through with virtual PCI: The kernel runs on a hypervisor which offers
real device access through a virtual PCI bus. This scheme enables partition-
ing resources between virtual machines.

• Hypervisor device drivers: Hardware is fully virtualized, so the kernel inter-
acts with device drivers that are part of hypervisor (see Figure 2.5, middle).
This scheme enables full system virtualization.

• Reused device drivers: Hardware is fully virtualized, but with this model,
the guest kernel interacts with a device driver virtual machine (DD/VM)
that has access to physical devices (see Figure 2.5, right). Reused device
drivers enable fine-grained resource control and improve system depend-
ability [LUSG04].

To summarize, the same guest kernel image can be used with different hypervi-
sors. Furthermore, the hypervisor can create any number of virtual machines, each
with memory and other resources assigned to it.
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Figure 2.5: Several configurations for device access: pass-through (left), hypervi-
sor device drivers (middle), reused device drivers (right)

2.2 Benchmarking Techniques
Generally, a benchmark is a standardized problem or test that serves as a basis
for evaluation or comparison [mer06]. The notion benchmark originally desig-
nated a point of reference for topographic surveys, but nowadays the meaning has
devolved to benchmarking programs and benchmarking results in computer sci-
ence as well. Thus, benchmarks try to answer questions about how well a system
performs a certain task [SKSZ99].

2.2.1 Requirements for Significant Benchmarks
Benchmarks serve a twofold goal [EWCS96,LIJ+98]: First, they are used to iden-
tify performance problems and improve system design. Second, they provide a
basis for comparison between systems.

Mogul [Mog99] gives a detailed analysis of requirements and properties of
benchmarks. He states that significant benchmarks must fulfil three requirements:

• Benchmarks must be repeatable, such that other researchers can verify and
perpetuate the tests.

• Benchmarks must be comparable, to permit valuation of suitability for a
certain task.

• Benchmarks must be relevant to important applications, so that benchmark
results predicts real-life behavior.

These requirements imply that the metrics used for benchmarking must have the
following properties: First, a proper scientific procedure is indispensable for ob-
taining correct results. Second, the researchers must agree on a common set of
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metrics that are used. Third, the metric must be realistic and widely used, which
means that it must be applicable both in the research domain and in the real-world
domain.

However, Mogul argues that the most difficult part in benchmarking opera-
ting systems (as opposed to benchmarking computer architectures) is to develop
reliable techniques to transfer insights from artificial, oversimplified test cases to
complex, unpredictable environments. The “tension between realism and repro-
ducibility” [Mog99] implicates that no benchmarking technique addresses both
these requirements equally well.

2.2.2 Workloads and Metrics
Benchmarks are classified based on the type of workload that they impose on the
system under test, ranging from homogeneous to heterogeneous, or based on the
type of metrics that they use to characterize the system. From the wide variety of
possible metrics, the following are most commonly used [EWCS96, TvS02]:

• Latency is the interval between stimulation and response.

• Throughput is the amount of data or events per time.

• Dilation is the extension in length.

• Utilization is the percentage of utilized computing time on a processor.

A metric represents only certain aspects of performance, some of which may be
more important than others for a given combination of workload and user require-
ments. For example, throughput may not be an appropriate metric to characterize
performance of an interactive system [EWCS96].

In benchmarking context, the notion system under test designates the combi-
nation of hardware and software that a benchmark evaluates.

Macro-Benchmarks

Macro-benchmarks [Ous90] measure overall performance of actual applications
under loosely defined conditions. The results are realistic, but as they are tied
to specific applications, the behavior of other applications can only vaguely be
inferred [BS97].

Typical examples for macro-benchmark workload are kernel build, web server,
or database operations.
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Micro-Benchmarks

Micro-benchmarks measure the performance of individual primitive operations
under well-defined conditions. The alternative notion narrow-spectrum bench-
marks [SBSM89] emphasizes that the variation of the workload is small. Micro-
benchmark measurements are quite exact but rather unrealistic [Mog99].

The lmbench suite [MS96] is a typical instance of an operating system micro-
benchmark. Its design was motivated by the need for a simple, portable, and
realistic benchmark suite that accurately measures a wide variety of individual
operations.

However, when writing the accompanying paper, the authors already predicted
that advances in computer architecture might obsolete the suite. In the course
of about ten years, this prediction has probably come true. The timing mecha-
nisms in lmbench are based on the gettimeofday system call, which is much more
imprecise than performance monitoring hardware that is built in modern proces-
sors. Multi-stage instruction pipelines, out-of-order execution, and deeper mem-
ory hierarchies have invalidated lmbench’s assumption of relatively simple and
predictable hardware.

The lmbench suite has been criticized for lack of statistical rigor and inconsis-
tent measurements [BS97], resulting in improved versions of lmbench [SM,Sta02]
and in the development of hbench:OS [BS97].

Profiling

Profiling means benchmarking the behavior of a program, for example the fre-
quency and duration of function calls or basic blocks. Examples for profilers are
gprof [GKM82], ATOM [SE94] and DCPI [ABD+97]. OProfile [MST+05] is a
profiling toolkit for the Linux kernel and applications that uses the CPU’s per-
formance monitoring counters and non-maskable interrupts to correlate hardware
events with activity. The two major mechanisms to generate profiles are tracing
and statistical profiling.

Tracing [GKM82] denotes the approach where the program under examination
outputs a trace, a stream of events that pertains to the control flow. For that pur-
pose, the program must be instrumented, that is, augmented by event registration
code. Depending on the frequency of events and on the cost of trace generation,
tracing can incur high overhead.

Statistical profiling [ABD+97] trades profiling overhead with accuracy: Either
in regular intervals (time-based sampling) or at certain events (tracing), samples of
the processor state are stored. Each sample contains instruction pointer, address
space identifier, and optionally additional information. A device driver usually
aggregates samples and passes them to a user-space daemon, who in turn adds
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information derived from corresponding executable files, such as which functions
pertain to the recorded instruction pointers. Thus, a statistical profiler outputs a
statistical summary of the events observed.

The advantage of statistical profiling is that it works transparently to the code
under examination, that is, the code does not need to be modified. Runtime over-
head of statistical profiling is rather low. However, the measured distribution of
executed code is only approximated.

Hardware Performance Counters

Many modern processors include low-level performance monitoring mechanisms
that allow to keep track of hardware events such as clock ticks, retired instruc-
tions, cache misses, branches, and branch predictions. Intel’s Pentium 4 and Core
processors distinguish non-retirement and at-retirement events [Int06]:
Non-retirement events represent all events that occur during instruction execution,
whereas at-retirement events are generated only for committed work. For exam-
ple, a mispredicted branch contributes solely to non-retirement events. These pro-
cessors provide three usage models of performance monitoring:

Event Counting The benchmarking software reads and writes the event coun-
ters as registers. This requires the hardware counters to be configured such that
they automatically keep track of certain events. In regular intervals, for example
at timer interrupts, the software must poll the registers.

The time stamp counter is a special event counter that measures time rela-
tive to processor startup. On modern Pentium 4 and Core processors, the time
stamp counter increments at a constant rate, independent of processor clock speed
changes. Having a width of 64 Bits, it will not wrap around for at least ten years
after processor reset. The time stamp counter register is accessible via the rdtsc
instruction. Unfortunately, the rdtsc instruction does not serialize the instruction
stream, so it has to be prefixed with a serializing cpuid instruction if exact mea-
surements are required. Thereby measurements affect performance, making verti-
cal benchmarking at fine granularity impossible. Recent AMD processors provide
a rdtscp instruction that serializes the processor pipeline and reads the time stamp
counter atomically [Adv06b].

Non-precise Event-based Sampling The software defines a limit for the event
counters in question. When the counters overflow, a performance monitoring in-
terrupt is generated, so the interrupt service routine can record the return instruc-
tion pointer for later distribution analysis. The out-of-order execution of the Pen-
tium 4 NetBurst and Core micro-architectures is problematic for precise account-
ing of costly instructions, resulting in wrong correlation of events and instructions.
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Precise Event-based Sampling (PEBS) This usage model is similar to the pre-
vious, except that on overflow the processor state is stored in the debug store, a
dedicated memory buffer.

2.2.3 Relating Micro- and Macro-Performance
Useful benchmarks must allow to understand and predict performance [Mog99].
Therefore, a benchmarking methodology needs a performance model that corre-
lates micro- and macro-benchmarking results [SS96]. The model must be simple
enough to enable efficient calculation, yet it must be powerful to explain a wide
range of observations.

The Abstract Machine Model

Saavedra-Barrera’s abstract machine model [SBSM89] assumes that a program
consists of primitive operations whose individual execution times sum up to the
total execution time of the program. More formally, the system characterization
vector −→v represents the individual primitive operation’s execution times, whereas
the primitive usage vector −→a describes how often each primitive operation is exe-
cuted by the program. Thus, the total execution time p of a program on an abstract
machine is calculated as

p = −→v · −→a .

A suite of micro-benchmarks, called machine characterizer, determines the system
characterization vector. The primitive usage vector derives from an execution
trace of the respective application. Curve fitting is never involved, so that the
model directly explains execution time.

The model is simple, but quite limited for practical application. It ignores that
execution on real processors is non-linear in time due to effects such as caching,
pipelining, and interaction with hardware. In addition, the model assumes that
a typical system characterization vector exists and can be accurately measured,
which is not always the case [SS96]. Assuming a constant cache miss rate, mem-
ory hierarchies can be modeled by adding an explicit term.

Application-specific Benchmarking

As a refinement of the abstract machine model, Seltzer et. al. [SKSZ99] propose
application-specific benchmarking, consisting of vector-based methodology and
trace-based methodology.

The vector-based methodology is a generalization of Saavedra-Barrera’s linear
model to the affine performance metric

p = −→v · −→a + gc(−→a ),
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where −→v is the system characterization vector, −→a is the application performance
vector, and gc(−→a ) is a possibly non-linear function to characterize asynchronous
overhead. In their case, the asynchronous overhead was caused by garbage col-
lection in Java virtual machines, which runs non-deterministically with respect to
applications.

Trace-based methodology means dynamically adapting the application per-
formance vector to the respective application. The base component is a cache
simulator that provides a more detailed view of the application’s operations by
distinguishing cache hits and cache misses. From a mathematical point of view,
the simulation procedure conducts piecewise linearization of a non-linear perfor-
mance function.

In a subsequent work [ZS00], one of the authors achieved quite accurate per-
formance predictions for Java virtual machines by tracing about hundred primitive
operations that he considered decisive. However, it turned out that identifying sig-
nificant primitive operations is nontrivial.

2.3 Virtual Machine Benchmarking
Previous work on virtual machine environments has typically used standard oper-
ating system benchmarking suites such as lmbench [MS96] to evaluate the impact
of virtualization on performance. For example, the original paper on the Xen hy-
pervisor [BDF+03] compares Xen’s performance to several other hypervisors and
to execution on raw hardware.

However, operating system benchmarking suites are not aware of virtualiza-
tion and thus fail to answer virtualization-specific questions:

• Effect of server consolidation: How to describe the overall performance of
a system of consolidated servers?

• Virtual machine interference: To what extent does the virtual machine en-
vironment impact performance of individual machines?

• Generalization of micro-benchmark results: How does application-level per-
formance of a virtual machine relate to virtualization-level performance?

In the recent two years, several works have been published that address virtu-
alization-specific benchmarking: Two papers [CGS06, MHS+] examine how to
aggregate performance of multiple virtual machines into one single metric. One
paper [AA06] compares the impact of hardware virtualization assistance on per-
formance of virtual machines on the VMware Player hypervisor. The other pa-
pers [GGC,CG05,GCGV06,MST+05] describe two performance evaluation toolk-
its that are specific to the Xen hypervisor.
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2.3.1 Performance of Consolidated Servers
Server Performance Characterization

Casazza et. al. [CGS06] suggest a high-level approach to characterize the per-
formance of a system of consolidated servers. The authors observe that there are
mainly two virtualization usage models in enterprises: Server consolidation typi-
cally results in a mixture of servers (web, email, database etc.). Flexible provision-
ing improves hardware utilization and accelerates installation of new servers by
eliminating the procurement cycle. Both these virtualization usage models imply
a mixture of different workloads, each having different requirements and metrics,
with varying relative priorities.

Thus, the suggested methodology aggregates the overall performance of a
physical server as the weighted sum of individual metrics that were normalized
to non-virtualized performance. Iterative tuning of workload should identify bot-
tlenecks in the virtual machine setup.

The aggregation metric applies to a given instance of consolidated servers.
However, the methodology fails at two important benchmark requirements: Al-
though performance bottlenecks may be identified experimentally, it does not help
examine the causes for differences in performance among distinct setups. Also,
the methodology cannot predict the performance of other workloads or virtual
machine setups. Furthermore, the comparison of different virtualization environ-
ments is based on a single number, the aggregated metric, which certainly over-
simplifies the impact of virtualization1.

Nonetheless, the authors confirm a number of implementation challenges for
virtual machine benchmarking, including the following:

• Virtual machine clock accuracy and precision differ from hardware.

• Hypervisors provide only basic performance monitoring capabilities.

• Virtualization introduces additional abstraction, additional overhead, and
limits resources.

• Virtualization adds variation, particularly when resources are rare.

In the final section of the paper, the authors come up with the demand for industry-
standard virtualization benchmarks. In addition to the necessary attributes of
benchmarks mentioned in subsection 2.2.1, Casazza et. al. identify two attributes

1 A recent whitepaper by VMware [VMwa], the employer of Casazza et. al., does not adhere
to the server performance characterization methodology, a fact which has surprised its contender
Xensource [Xen].
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specific to virtualization: First, the benchmark should be agnostic in terms of plat-
forms, hypervisors, and virtual machine setup to the extent possible. Second, the
benchmark should apply to a wide range of systems, times, and components. The
authors estimate that the most difficult decision will be to choose which workload
and aggregation strategy matches user requirements.

VMMark

A recent paper by Makhija et. al. [MHS+] discusses an alternative approach for
benchmarking consolidated servers. To represent the diverse workload of vir-
tualized servers on a physical host, the authors define a tile as “a collection of
virtual machines executing a set of diverse workloads”. In periodical intervals,
the individual benchmark results are normalized to a reference system and then
aggregated into a single metric. Each individual workload is throttled such that it
executes at less than full utilization. Thus increasing the number of tiles running
on a single physical machine allows to judge whether the system is overcommit-
ted.

The authors combined five typical data center workloads and a standby server
in their exemplary tile. Reusing pre-existing benchmarks reduced engineering ef-
fort and provided a reliable basis for the metrics. The virtualized setup required
some adaptation, mainly to support aggregation of benchmark results and to re-
strict resource consumption.

It is questionable whether throttled workloads are realistic and interesting test
cases for virtual machine environments. The paper leaves open the question how
to decide on a well-defined reference score and on representative workload.

2.3.2 Comparison of Virtualization Techniques
Adams and Agesen [AA06] compare techniques for x86 virtualization, namely
software virtualization via adaptive binary translation versus hardware-assisted
virtualization.

In a qualitative comparison of virtualization overhead, the authors find that
neither technique is superior to the other. Adaptive binary translation tends to win
in trap elimination, emulation speed, and callout avoidance, whereas hardware-
assisted virtualization wins in code density, precise exceptions, and system call
performance.

In a series of experiments, the authors investigate virtual machine performance
under several workloads. Under benign workloads, which consist mostly of user-
level computations, execution time is close to native speed with either virtuali-
zation technique. Under more operating-system intensive workloads, such as an
HTTP server, the PassMark desktop-oriented benchmark, and large compile jobs,
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performance degrades to about 20% to 70% of native performance. The fork-
wait micro-benchmark stresses virtualization-sensitive operations, carrying per-
formance degradation to extremes. In order to examine performance differences
more in-depth, the authors wrote a series of virtualization nano-benchmarks, each
measuring performance of a single sensitive operation from within an artificial
operating system kernel.

The results from the publication give valuable insights in virtual machine per-
formance. However, the approach does not directly correlate nano-performance
with micro- and macro-performance. The proposed nano-benchmarking tech-
nique is incompatible with para-virtualization’s structural modifications, prevent-
ing performance evaluation of the popular Xen hypervisor. Instead, nano-bench-
marks run in the non-realistic environment of a purpose-built operating system.

2.3.3 Xen Profiling Suites
XenMon

XenMon [GGC] is a toolkit for QoS monitoring and performance profiling for
Xen-based VM environments, consisting of three components:

• The xentrace component resides in the hypervisor and generates events at
arbitrary control points.

• The xenbaked component resides in the privileged domain Dom-0. It catches
and processes the event stream.

• The xenmon frontend displays and logs xenbaked’s output.

XenMon supports several metrics, such as different time measures (CPU usage,
blocked time, waiting time), execution counts, and I/O operation counts. Xen
2 implements I/O operations by means of page flipping in order to avoid copy-
ing data between virtual machines: The client virtual machine exchanges a page
containing I/O data with an unused page from the driver virtual machine, an oper-
ation which is simple to instrument. The virtual machine scheduler was modified
to keep track of lapsed time and count virtual machine executions.

When using XenMon to study web server performance [CG05], the authors
found that small file sizes result in notable CPU processing overhead, because ev-
ery HTTP request/response pair results in the transfer of at least 5 TCP/IP packets,
each requiring a page flip. XenMon has also been used for measuring disk I/O.
Page flipping caused higher CPU overhead than expected: for each raw disk block
of 512 Bytes, a 4 KB memory page was flipped. In a sensitivity study on Apache
web server performance [CG05], the impact of CPU allocation on web server per-
formance was analyzed. The study revealed that increased CPU allocation to the
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driver domain sometimes resulted in frequent protection domain switches and led
to significantly decreasing performance.

In a recent work [GCGV06], a new virtual machine scheduler was built that
accepts feedback from XenMon. A mechanism named ShareGuard, similar to
Lazy Receiver Processing [DB96] and Resource Containers [BDM99], attributes
a driver virtual machine’s CPU time to the virtual machine that initiated the I/O
operation.

Although XenMon helps understand performance of different virtual machine
configurations, it is specific to the Xen hypervisor. Comparing results under dif-
ferent hypervisors would require porting the XenMon infrastructure to each hy-
pervisor under examination. Different abstractions, such as how I/O operation are
realized, might render the results incomparable between different hypervisors.

Xenoprof

The Xenoprof project [MST+05] adds support for OProfile (see Subsection 2.2.2)
to the Xen hypervisor. Virtualizing the hardware performance counters would re-
quire a different privilege setup and incur a high overhead, so the hardware perfor-
mance counters are managed by Xen on behalf of the guest kernels. Xen-specific
drivers residing in the guest kernels receive notifications about performance mon-
itoring events by means of virtual interrupts, and they access the data via shared
memory.

Using Xenoprof the authors discovered that, in the original Xen performance
measurements [BDF+03], not the hypervisor but the network interface card was
the component which limited throughput. Unfortunately, given that hardware
performance counter virtualization would be costly, Xenoprof is tied to para-
virtualized XenoLinux. Using OProfile with other hypervisors would require port-
ing the drivers and modifying the user-level tools and the hypervisor.

2.3.4 Shortcomings of Existing Virtual Machine Benchmarks
As the preceding discussion has shown, work on virtual machine benchmarking
treats three areas of interest. The VConsolidate and VMMark projects address
high-level performance characterization of colocated virtual machines. Another
work conducts a low-level comparison of hardware and software techniques for
virtualization under VMware. The Xenoprof and XenMon projects investigate
virtualization performance specific to the Xen hypervisor.

However, research on virtual machine performance has neither addressed how
to characterize different hypervisors at a low level of abstraction nor how to relate
performance of different granularity. Both accurate hypervisor characterization



CHAPTER 2. BACKGROUND AND RELATED WORK 21

and decompositional analysis of virtualization’s performance impact are neces-
sary to understand performance. Users of virtual machine environments need an
impartial basis for their purchasing decisions, developers wish to avoid perfor-
mance bottlenecks in their virtualization solutions, and researchers want to learn
how to build efficient virtual machine environments. In contrast to related work on
virtual machine benchmarking, this thesis focuses on low-level cross-hypervisor
comparison and prediction of virtual machine performance.



Chapter 3

Design

First, this chapter analyzes the impact of virtualization on performance. Then, it
states the requirements for a virtual machine benchmarking suite and presents a
three-stage methodology for virtual machine benchmarking. Subsequently, it de-
scribes the design of VMbench, a virtual machine benchmarking suite, in relation
to the three stages.

3.1 The Impact of Virtualization on Performance
The starting point for a performance evaluation is to find out which aspects of
performance are of interest. Therefore, a virtual machine benchmarking suite that
should be able to compare different virtualization techniques must model peculiar-
ities of particular virtualization techniques and hypervisors in a generic manner.
Current system virtualization paradigms impact several aspects of performance:

• Virtualization-sensitive instructions: As sensitive instructions alter exter-
nal state of the virtual machine, they must not execute within the virtual
machine (see Section 2.1). Thus, either the virtual machine itself, the hy-
pervisor or special virtualization hardware has to emulate the behavior of
sensitive instructions.

• Virtual processor mode and context switch, interrupt delivery, and access
across user-kernel boundary: Depending on which virtualization paradigm
is used, the hypervisor must intercept voluntary or non-voluntary privilege
switches of the virtual processor. For example, with hardware-assisted vir-
tualization, the hypervisor must intercept exceptions, but it does not need
to intercept system calls. In contrast, with virtualization using binary trans-
lation, the hypervisor must intercept system calls too [AA06]. Also, most

22
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virtualization paradigms require that the hypervisor intercepts hardware in-
terrupts. If the hypervisor switches between guest kernel and user address
spaces by means of paging [LUC+06], kernel access to user memory is de-
layed, too, because the user address space must be emulated for the kernel.

• Interference of virtual machines sharing one physical host: Concurrent vir-
tual machines have restricted access to physical resources. Performance of
competing virtual machines decreases if resources are insufficiently avail-
able. A related problem are sequencing issues: Hypervisors sometimes lack
knowledge about optimal scheduling of virtual machines. Thus, they of-
ten take suboptimal decisions about the order in which virtual machines are
granted resource access.

Considering the diversity of virtualization techniques, there may exist other as-
pects of performance that are susceptible to virtualization. However, most con-
temporary system virtualization techniques encounter the aforementioned aspects.

3.2 Requirements for a Virtual Machine Benchmark-
ing Suite

In order to yield meaningful results as defined by Mogul [Mog99] and detailed
by Casazza et. al. [CGS06], a virtual machine benchmarking suite must meet the
following requirements:

• Comparability: The benchmarking suite must allow to compare different
hypervisors and virtual machine environment setups. Thus, the benchmark-
ing suite should run on any hypervisor without requiring major adaptations.
Moreover, the benchmarking suite should be easily portable to other archi-
tectures and operating systems.

• Generality: The benchmarking suite must predict performance of different
types of applications. Therefore, the suite must incorporate different bench-
marking applications, each stressing another aspect of performance.

3.3 Methodology
VMbench uses a three-stage approach to characterize performance of a virtual
machine environment. The stages build upon each other, increasingly tolerating
complexity and non-determinism of the environment (see Figure 3.1).
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Stage 1:
Hypervisor performance signature

Stage 2:
Best-case predictions

for realistic applications

Stage 3:
Analysis of

VM interference

Figure 3.1: Stages of analysis with VMbench

1. Hypervisor performance signature: In the first stage, micro- and nano-bench-
marks determine the hypervisor performance signature, that is, the best-case
performance of a virtual machine’s primitive operations for a given combi-
nation of hardware, hypervisor, operating system and workload. Therefore,
a single virtual machine exercises well-defined operations, such that the per-
formance of virtualization-specific functional primitives can be accurately
measured. To determine the best-case performance, VMbench minimizes
side effects and interprets the results optimistically.

2. Virtual machine performance: The second stage combines the outcome of
the first stage using a linear model to predict best-case results for realistic
applications.

3. Virtual machine interference: The third stage examines how the prediction
from the second stage varies under non-optimal conditions caused by con-
current virtual machines.

VMbench pursues a latency-oriented approach. Although some application
areas for virtual machines exist where data throughput is more important than la-
tency [CGS06], several arguments justify the focus on latency: First, latency of
primitive operations allows to apply a linear performance model. Second, accord-
ing to Endo et. al. [EWCS96], “throughput measures provide an indirect rather
than direct measure of latency” by delivering only end-to-end information and ig-
noring event handling latency. Third, VMbench considers throughput reduction
caused by virtualization to be a consequence of dilated primitive operations.
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3.4 Issues of Virtual Machine Benchmarking
Benchmarking in a virtual machine environment faces a number of issues. These
issues are related to the way a system is virtualized, to the additional layer that
virtualization introduces, and to unforeseeable effects caused by the complexity of
the virtualized system. Each of the following subsections addresses a benchmark-
ing-sensitive aspect of virtualization and discusses how to solve it.

3.4.1 Different Virtualization Techniques and Hypervisors
Within only a couple of years, the resurgence of system virtualization has stimu-
lated the development of diverse virtualization paradigms and hypervisors. Even
when limiting the comparison to IA32, the most popular processor architecture for
server computers today, competing hypervisors are based upon hardware-assisted
virtualization, para-virtualization, virtualization via binary translation, or combi-
nations thereof. Some hypervisors support hardware partitioning, some support
full system virtualization (see Section 2.1).

The requirement for comparability (see Section 3.2) postulates that a virtual
machine benchmarking suite should be able to compare performance of virtual
machines on hypervisors adhering to different virtualization paradigms. In order
to yield comparable results, the benchmarking suite must measure performance
with respect to a common interface. Moreover, the suite must not be biased to-
wards one hypervisor.

Hardware-assisted virtualization and virtualization by binary translation apply
to the native machine interface, such that virtual machines are directly comparable
at a machine’s lowest abstraction level. Para-virtualization’s hypervisor-specific
adaptation prevent instruction-level comparison of virtual machines. However,
pre-virtualization, which leaves the native machine interface intact (see Subsec-
tion 2.1.5), is capable to substitute para-virtualization [LUC+06]. In addition, it
is compatible with hardware-assisted virtualization and with virtualization by bi-
nary translation, in the sense that these techniques can virtualize a pre-virtualized
operating system kernel, too. Therefore, pre-virtualization enables instruction-
level comparison of different hypervisors, provided that the respective IPVMMs
perform comparably well.

For comparing different hypervisors at higher levels of abstraction, the bench-
marking process must establish a unified interface to wrap hypervisor-specific
functionality. For example, the Xenoprof infrastructure, which supports statistical
profiling on the Xen hypervisor (see Subsection 2.3.3), could be ported to each
hypervisor under examination. Given that each hypervisor has its own specialties,
porting requires a certain engineering effort, and the resulting profiler might be
biased.
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3.4.2 Implications of the Layered System Structure
Benchmarks are initiated by one virtual machine, which I will call primary virtual
machine. In order to yield meaningful results, the primary virtual machine must be
aware of the hypervisor and of all other virtual machines in the system (secondary
virtual machines). However, virtual machines are strictly isolated. The conse-
quences of isolation are virtualization transparency, virtual machine opacity, and
emergent misbehavior.

Virtualization Transparency

With the exception of para-virtualization, virtualization is transparent, that is, the
virtual machines are not aware of being virtualized. In any case, virtual machines
have no means to retrieve information from the hypervisor, and they do not know
anything about the other virtual machines with whom they share a physical host.

An example for effects of virtualization transparency is the address space lay-
out in traditional L4-based virtualization: As the guest operating system kernel
runs in user mode, user address spaces are not mapped into the kernel address
space. Instead, temporary mappings are constructed whenever the guest kernel
faults on user memory. These shadow page faults, which are transparent to the
guest kernel, cause notable degradation of performance.

The solution to circumvent virtualization transparency is straightforward: Vir-
tualization is made opaque by extending the virtualizing software such that it ex-
poses information about itself and about all virtual machines to the primary virtual
machine. For example, the hypervisor or the IPVMM must report the number of
transparent guest kernel page faults. The primary virtual machine is augmented
with facilities to gather information from all components of the virtual machine
environment.

VMbench defines a common approach for benchmarking applications to iden-
tify the IPVMM (if one is present), configuration of all virtual machines on the
physical host, and name and version of the hypervisor. To enable coordinating of
measurements, each component that actively participates in benchmarking offers
an interface to control benchmarking and access measurement results. Wherever
possible, performance monitoring hardware is not virtualized, such that data from
the various components is directly comparable and additional measurement over-
head is avoided. However, if an instruction requires supervisor privilege, such
as IA32’s wrmsr instruction, a virtualized operating system kernel will cause a
fault, and the hypervisor must emulate the instruction. In order to make shadow
page faults and other transparent events visible to the primary virtual machine, all
hypervisors under examination must be modified to expose an equivalent bench-
marking interface.
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Given that benchmarking takes place in an artificial environment rather than
in a production environment, relaxing virtual machine isolation does not impact
system security. Influence of the benchmarking extensions on performance is a
more serious problem: The benchmarking suite must be designed such that perfor-
mance in a benchmarking-aware environment does not deviate from performance
in a production environment. As exact measurements with IA32’s rdtsc instruc-
tion are relatively expensive (see Subsection 2.2.2), simultaneous benchmarking
at different levels of the virtual machine environment is impossible.

Opacity of Virtual Machines

Some benchmarking techniques, such as statistical profiling (see Subsection 2.2.2),
require accessing virtual machine state that resides within other protection do-
mains. For these investigations, cutting down virtualization transparency is insuf-
ficient. The benchmarking suite needs a means to retrieve and interpret internal
virtual machine state. However, facilities to access internal virtual machine state
differ among virtual machine environments.

Moreover, in some virtual machine environments, the resource monitor, which
emulates or multiplexes hardware devices, runs in user mode. The L4Ka virtuali-
zation project [LUC+06] is an example for fine-grained protection domains. The
modularity created thereby enhances safety and configurability, but it makes at-
tributing processor state to virtual machines more difficult: The hypervisor does
not associate virtual machine semantics with address spaces, and the resource
monitor cannot access processor state of threads residing in other address spaces.

In contrast to a distributed system, a common clock exists within every vir-
tual machine environment, namely the non-virtualized time stamp counter which
is built into every modern processor. In order not to virtualize the time stamp
counter, the hypervisor must simply clear a processor flag during initialization.
Given that the time stamp counters of the individual processors in a multiproces-
sor machine may diverge, each component that accesses the time stamp counter
must be physically multiprocessor-aware.

To support statistical profiling, VMbench includes a hypervisor-neutral li-
brary for logging events and associated information about protection domains.
Hypervisor-specific glue code binds the library to the hypervisor’s facilities for
interrupt handling and debug output.

Non-Normality and Emergent Misbehavior

Conventional micro-benchmarks usually expect that their measurements are nor-
mally distributed, and that measurements of different systems are distributed sim-
ilarly. The underlying assumption is that measurement errors result from the ad-
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dition of many small and independent effects, in which case the central limit theo-
rem applies [Was04]. Given that the affine transformation of normally distributed,
independent random variables is itself normally distributed, normally distributed
measurements can be composed linearly.

A normality assumption can be tested, for example using the Kolmogorov-
Smirnov test, or in case of small populations using the Lilliefors test. In case
a normality assumption cannot be justified, there are unnoticed effects that need
more precise explanation.

On the one hand, performance of a virtual machine environment heavily de-
pends on effects of locality (that is, caching and congestion), and on random tim-
ing effects in the various layers. Therefore, the normality assumption is rarely
justified. On the other hand, even if the primitive operations are not normally
distributed, a linear model might apply.

The problem of non-predictability gets even worse if complexity of the vir-
tualized system causes emergent misbehavior, that is, unforeseeable effects that
result from the interaction of several components [Mog06]. To understand the ad-
verse impact of non-normality and emergent misbehavior, consider the following
three examples from different levels of the virtual machine environment:

• To avoid switching the protection mode, a virtual machine often buffers
page table modifications and flushes them at once to the hypervisor.

• The Pentium IV NetBurst microarchitecture is heavily pipelined and sup-
ports out-of-order execution [Int06]. On the one hand, ignoring the pipeline
for instruction-level measurements yields imprecise results. On the other
hand, controlling the pipeline by means of serialization leads to worst-case
measurements.

• Scalability of multiprocessor virtual machines is susceptible to suboptimal
scheduling decisions by the hypervisor. If a virtual machine holding a spin
lock is preempted, concurrent virtual processors that contend for the lock
waste time for reasons that are invisible to the guest operating system. Uhlig
et. al. indicate that avoiding lock-holder preemption can improve virtual
machine performance by up to 28% [ULSD04].

Application-specific benchmarking handles these effects by refining its system
model based on knowledge about the underlying architecture. Using application-
specific benchmarking in virtual machine context is hindered by underlying vir-
tualized architecture behaving different for each hypervisor. The benchmarking
suite must not make assumptions about hypervisor implementation.

For these reasons, VMbench sets aside automatic application-specific bench-
marking and contends with analyzing the distribution of measurements, such that
application-specific benchmarking can be applied manually for each hypervisor.
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3.4.3 Performance Accounting and Aggregation
In the case of virtualized devices, virtual machines can offload workload to other
virtual machines, for example to ones running a device driver operating sys-
tem [LUSG04]. Resource containers as proposed by Banga et.al. [BDM99] might
be helpful to correctly account execution time spent on behalf of other virtual
machines. However, to keep track of workload offloading, a convention among
all hypervisors and virtual machines would be necessary, so the initial version of
VMbench does not include a concept for resource containers.

The question how to aggregate the performance of multiple virtual machines
has recently been treated by the VMMark and VConsolidate projects [MHS+,
CGS06]. Although VMbench was designed with a focus on low-level perfor-
mance aspects, it is compatible with such high-level benchmarks: Its output can
be normalized to non-virtualized performance and included in an aggregate met-
ric.

3.5 Hypervisor Performance Signature
VMbench is motivated by an application-centric point of view: Application soft-
ware and operating system kernel run in a virtual machine, so a virtual machine
performance evaluation can be similar to a hardware performance evaluation. In
the style of the abstract machine model (see Subsection 2.2.3) the virtual machine
characterizer outputs a performance signature of virtualization-specific primitive
operations.

However, a virtual machine is subject to more side effects than a physical
machine. For example, the hypervisor or other virtual machines can steal time
from it, which means that the virtual processor neither sleeps nor runs, because
the hypervisor performs housekeeping work, or another virtual machine occupies
the physical processor. If the guest operating system kernel executes in user mode,
a virtual processor mode switch causes additional overhead by physical context
switching. In order to yield a best-case performance signature, stolen time must
be minimized.

Figure 3.2 depicts the kinds of activity that occur in a system virtual machine:

• An application executes innocuous instructions.

• A fault, system call, or interrupt causes a transition to the guest operating
system kernel. The transition proceeds either directly or via indirection
through the hypervisor.

• The guest kernel executes a mix of innocuous and sensitive instructions.
Sensitive instructions are emulated by the IPVMM or a comparable entity
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Figure 3.2: Activity in a virtual machine

and may cause a hypercall that transfers control to the hypervisor. The
emulation executes transparently with respect to the guest operating system.

• The guest kernel reactivates an application, possibly after a guest context
switch. Again, the privilege switch proceeds either directly or via the hy-
pervisor.

• At any point in time, the hypervisor or another virtual machine can steal
time from the virtual machine.

VMbench assumes that innocuous instructions executed by an application or by
the guest kernel have no time dilation effect.

3.5.1 Choosing an Adequate Level of Abstraction
The level of abstraction for hypervisor benchmarks must be chosen carefully:
On the one hand, only low-level hypervisor benchmarks allow precise charac-
terization of the hypervisor. On the other hand, portability between hypervisors
requires that the micro-benchmarks must no be affected by para-virtualization-
related structural modifications of the guest operating system kernel. Further-
more, the level of abstraction should define an interface that is narrow enough to
avoid collecting huge amounts of data. Representative measurements should de-
viate little from their respective mean value. If the measurements are not normally
distributed, the model should probably be refined [SKSZ99].

An examination of the diverse levels in a virtual machine environment indi-
cates which primitive operations are suitable for hypervisor benchmarks.
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• For hypervisor comparison, processor microarchitecture events are very
low-level. Measuring microarchitecture events requires each hypervisor to
provide a way to configure and access measurements in a similar way.

• System calls are too high-level to allow conclusions about how the virtuali-
zation will react on them. For example, RAM-resident files and files on hard
disk cannot be distinguished at the system call level, such that overhead of
accessing a file on hard disk cannot be predicted.

• Hypercalls are hardly comparable, because para-virtualization results in in-
compatible hypercall interfaces.

• Operating system kernel functions are not suited for performance prediction
with a linear model, because they are iterative, nested, and usually have non-
constant execution time. However, kernel function profiling can be helpful
for analyzing which functions are susceptible to virtualization and therefore
targets for optimization through para-virtualization. Principal component
analysis [The07] is an adequate statistical method to identify these func-
tions: It simplifies a multidimensional data set using an orthogonal linear
transformation such that the resulting subspace has largest variance.

• Basic blocks are sequences of instructions, where each instruction always
executes directly before the succeeding instruction. In contrast to functions,
basic blocks have exactly one entry and one exit, and do not contain any
jumps. Therefore, the performance of basic blocks is easier to describe than
the performance of functions. However, basic blocks are not a syntacti-
cal construct of high-level programming languages. In case a basic blocks
contains virtualization-sensitive instructions or is interrupted by concurrent
activity, its execution time is not constant.

All of the levels mentioned above represent only effects that pertain to the syn-
chronous stream of execution. They do not contain effects of transparent or asyn-
chronous execution such as address space switches and interrupts.

As outlined in subsection 3.4.1, I suggest comparing hypervisors on a common
instruction-level interface. First, with pre-virtualization (see Subsection 2.1.5),
performance of raw hardware and different virtualization techniques is directly
comparable. Measurements at the neutral platform interface are orthogonal to
virtualization, which is carried out by the IPVMM below this interface. Second,
pre-virtualization allows automatic instrumentation of the guest operating sys-
tem kernel by modifying the virtualization preparation phase during kernel build.
Third, the instruction level is the most natural interface to record transparent or
asynchronous events.
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Figure 3.3: Instrumentation according to aspect-oriented programming

3.5.2 Nano-Benchmarks
Instrumentation for nano-benchmarks at the instruction level is modelled conve-
niently using the aspect-oriented programming paradigm [MSSP02]: The cross-
cutting-concern benchmarking inserts instrumentation code, which is specified as
an advice, at certain code locations that are indicated by join points such as in-
stances of sensitive instructions or function calls (see Figure 3.3).

VMbench allows to instrument primitive operations of different granularity:
functions, basic blocks, and sensitive instructions. When recording the execu-
tion of sensitive instructions, the instructions are identified either by their code
address or by their instruction type. Alternatively, VMbench supports manual in-
strumentation, such as performance measurements of system calls or at specific
code locations within the IPVMM.

Each class of primitive operations can be combined with a metric. In this con-
text, the notion metric designates the benchmarking code that is executed before
and after a primitive operation. Table 3.1 presents an overview of VMbench’s
nano-benchmark metrics with respect to their information content and their over-
head.

The Count Metric

Among the three metrics, the count metric has the lowest memory and runtime
overhead. Having minimal side effects, it is best suited for extracting a usage
vector of the primitive operations. However, it does not give any information
about the sequence or execution latency of primitive operations.
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Table 3.1: VMbench’s nano-benchmark metrics on the IA32 architecture
Metric Measured data Memory overhead Runtime overhead

for n measurements instr./ser./
and m primitives D-cache misses

count counter 1×m words 1 / 0 / up to 1
mean latency counter 3×m words 34 / 2 / up to 6

cumulated time
latency samples counter 1+2×n words 42 / 2 / up to 6

time
event type

The Mean Latency and Related Metrics

The mean latency metric cumulates execution latency and execution count of
primitive operations, the information necessary to calculate the arithmetic mean
of latencies. It serves well to accumulate the total execution time of primitive op-
erations, and to characterize primitive operations that are normally distributed.
Non-normally distributed operations are not characterized well by this metric.
This metric has only modest space requirements, but exact latency measurement
on the IA32 architecture requires two serializations of the instruction stream for
each primitive operation that is executed. Moreover, serialization clobbers the
four general-purpose registers, such that the metric code must temporarily save
them on the stack. The double-word (64 bit) wide accumulator can hold time in-
tervals up to several years. Minimum latency or maximum latency metrics can be
implemented similarly to mean latency.

The Latency Samples Metric

Latency samples are the most fine grained metric. Memory overhead is propor-
tional to the maximum number of samples that can be recorded. Given that dy-
namic memory allocation causes bookkeeping overhead and non-predictable tim-
ing of memory accesses, samples are saved to statically allocated memory, such
that only a fixed number of samples can be saved. Runtime overhead of latency
samples is only a little higher than with mean latency, considering that measuring
samples of latency requires two serializations per measurement as well. In order
to save space, time intervals are saved as 32 bit wide words, such that latencies up
to one second can be measured, which has been found to suffice even for delayed
instructions, basic blocks, and functions.
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3.5.3 Micro-Benchmarks
The instruction- and function-level benchmarks discussed in the previous section
only represent the activity in the guest operating system kernel that is synchronous
to the virtual processor. As discussed in section 3.1, most virtualization techniques
also reduce performance of asynchronous events or events related to processor
mode switching. Examples for these types of events are page faults, exceptions,
system calls, and interrupts. With virtualization, switching the processor mode or
the current address space can take considerably more time.

VMbench includes micro-benchmarks to characterize these events in a manner
similar to the lmbench suite [MS96].

3.5.4 Storing and Exporting Recorded Data
To yield realistic results, a benchmark suite must collect data with lowest overhead
possible. Thus, not only the metric code, but also the storage of recorded data must
be optimized to be minimally intrusive.

Memory Allocation

Nano-benchmarks, which are transparent to the surrounding code, must neither
modify processor registers nor the stack. Therefore, all nano-benchmarking data
is stored in dedicated memory. In case of latency measurements, the code that
is inserted before the primitive operation being measured fetches the respective
memory into the processor cache and saves the negated current time to it. The
code that is inserted after the primitive operation adds the current time to the
memory. Thus, the benchmarking code calculates the time difference between
start and end of the primitive operation.

Coordinating Measurements

A user initiates a benchmark run by executing a user-mode application. This
application consecutively identifies the system it runs on, starts measuring in all
benchmarking-aware components of the virtual machine environment, imposes
some workload on the system, finishes measuring, gathers the results, and outputs
them in human-readable form. Controlling benchmarks from user-level provides
end-to-end measurement with respect to the user and simplifies saving data to
files. The interesting topic for virtual machine benchmark coordination is how to
enforce benchmark control and data aggregation across diverse system layers and
configurations.

The lower layers of the virtual machine environment, more precisely guest
operating system kernel, IPVMM, and hypervisor, must provide means to read
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and reset their counters, either via an interface akin to function calls or via shared
memory. Shared memory is the preferred method to transfer large chunks of con-
tiguous data. Call semantics are suited for short notifications, or in case shared
memory cannot be established without major modifications.

• Benchmarking applications access data from the operating system kernel
via shared memory.

• The IPVMM offers wedge calls, which are basically system calls that are
handled by the IPVMM itself. All IPVMMs under examination must im-
plement a common set of wedge calls.

• Communication with hypervisors is implemented via their specific hyper-
call interface.

Non-Atomic Measurements

Both nano- and micro-measurements are non-atomic: Other activities in the vir-
tual machine system, such as stolen time or a world switch to another virtual ma-
chine, can disjoin start and end of a measurement. Disabling stolen time during
measurements by means of locking would cause results to be non-realistic. There-
fore, the mean latency metric should be interpreted with care. Latency samples
should be checked for excessive outliers. In most cases, interleaved measurements
are rare, such that the median is an adequate measure for the central tendency.

VMbench tries to enforce virtually synchronous start and stop of measure-
ments by pre-paging memory mappings where possible. Hypercalls and wedge
calls are synchronous with respect to the virtual machine anyway.

Measurements on Multiprocessor Machines

In a multiprocessor environment, inter-processor synchronization to arbitrate stor-
age for measurements would disrupt realistic time behavior. With all virtual ma-
chine environments I am aware of, sensitive instructions are emulated on the same
processor where they were issued. Thus it suffices to allocate distinct storage for
each processor. VMbench does not yet handle threads migrating between virtual
processors.
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3.6 Virtual Machine Performance Under Optimal
Conditions

Similarity between the abstract machine model (see Subsection 2.2.3) and the vir-
tual machine model suggests to apply a linear performance model for predicting
virtual machine performance based on the hypervisor performance signature. The
abstract machine model maps well to execution of the same sequence of primitive
operations on different types of virtual machines. However, the second analysis
stage which determines the baseline cost of virtualization must avoid virtual ma-
chine interference. Therefore, virtual machine performance prediction starts with
the best-case performance of a virtualized system.

3.6.1 Applying the Linear Model
In order to contend with non-normally distributed latencies of primitive opera-
tions, the best-case system characterization vector is defined to be the median
execution time of primitive operations under optimal conditions. If the execution
time is skewed but outliers are infrequent, the mean execution time may be more
realistic. In most observed cases, the 5%-trimmed median is sufficiently realistic
to represent the central tendency. The decision which measure for central ten-
dency is most representative must be made on a case-by-case basis. For example,
the user should verify that the mean latency coincides with the calculated mean of
the latency samples.

In analogy to vertical profiling as described by Hauswirth [HSDH04], vertical
benchmarking means that benchmarks at different levels of abstraction run simul-
taneously. The high cost of instruction-level benchmarking on the IA32 architec-
ture, which is mainly caused by instruction stream serializations, makes vertical
benchmarking impossible. Instead, VMbench runs the same workload on differ-
ently instrumented operating system kernels to determine minimum run times at
each level.

3.6.2 Selecting Relevant Workload
The requirement for generality (see Section 3.2) demands a virtual machine bench-
marking suite to incorporate different types of workload. Thus, VMbench entails
a selection of diverse workloads. In accordance with related work [AA06,MHS+],
VMbench distinguishes three types of application based on how they are affected
by virtualization:
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• Computing-intensive applications run mostly in user mode. Thus, system
virtualization affects user mode execution mainly through interference of
concurrent virtual machines. Thus, computing-intensive applications are
helpful for characterizing performance of concurrent virtual machines.

• Operating system intensive applications frequently exercise the kernel, for
example by accessing RAM-resident filesystems or by manipulating tasks
or threads. However, I/O operations that block the virtual machine are rare,
so dilation of virtualized operations is the most prevailing aspect of perfor-
mance.

• I/O intensive applications use the operating system mostly for accessing ex-
ternal hardware, such as disc or network. The virtual machine is often idle
while waiting for I/O operations to complete. Therefore, data throughput is
more important than dilation. In some cases, virtualization-specific bottle-
necks limit data throughput.

Several smaller programs represent a mix of computing-intensive and operating
system intensive workload. To evaluate OS-intensive workload, VMbench runs
the Linux kernel build benchmark. To evaluate I/O-intensive workload, the net-
perf and httperf benchmarks are suitable, because they are well maintained and
easily configurable. The netperf and httperf benchmarks are not yet integrated
with VMbench.

3.7 Virtual Machine Interference
The previous section described how to establish a lower bound for the best-case
performance of virtual machines. The best-case performance analysis uses a lin-
ear model based on the primitive operations that a virtual machine executes. As
a consequence, it ignores all independent activity by other virtual machines or
by the hypervisor. For example, it cannot identify transparent activity which in-
creases stolen time (see Section 3.5) or delays of asynchronous events such as
interrupt delivery.

In addition to nano- and micro-benchmarks, the benchmarking suite needs
a benchmark that gives a global view of the physical machine. Two types of
benchmarks are suitable to retrieve a global view: statistical profiling or idle-loop
profiling.

3.7.1 Statistical Profiling
Statistical profiling (see Subsection 2.2.2) requires to access the processor state
either in regular intervals or at certain events such as performance monitoring
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interrupts. A virtual machine benchmarking suite must do this with low overhead
in a portable manner.

A meaningful statistical profile attributes consumed resources (e.g. processor
time) to the entity consuming it (e.g. the thread). However, in a virtual machine
environment, this information is distributed among several components: Statisti-
cal profiling must track low-level hardware events, such as hardware performance
counters or timer interrupts. Most of these tasks require supervisor privileges,
such that the hypervisor has to carry them out. In case of fine-grained privilege
separation, as with the L4Ka virtualization project [LUC+06], the hypervisor as-
sociates no virtual machine semantics with the profiling information. Only the
virtual machine monitor, who may not have supervisor privileges, knows which
virtual machine an address space is assigned to. Unless the virtual machine mon-
itor imposes extensive restrictions on its virtual machines, it cannot interpret pro-
filed state. Thus, the virtual machine itself must find out which process the profiled
state describes.

VMbench supports statistical profiling in collaboration with the hypervisor.
However, hypervisor-specific bindings to performance monitoring interrupts are
necessary to make this work.

3.7.2 Idle-Loop Profiling
Idle-loop profiling has been suggested by Endo et. al. [EWCS96] to determine
event handling latency. The technique is even less intrusive than statistical profil-
ing, requiring only a user-mode process at low priority to time the execution of an
idle loop. Dilation of the loop’s execution time indicates activity within the virtual
machine or, if the idle loop is the only process running in the virtual machine, time
stolen by the hypervisor or by other virtual machines.

The drawback of idle-loop profiling as opposed to statistical profiling is that
it cannot determine what caused the dilation. The user must either guess the
causative event or impose synthetic workload.

To implement idle-loop profiling, neither hypervisor nor operating system
needs to be modified. Therefore, this technique is well suited to identify stolen
time in a virtual machine environment.



Chapter 4

Implementation

This chapter describes the implementation of VMbench for the Linux kernel run-
ning on the IA32 architecture.

4.1 The Structure of VMbench
The overall design of the VMbench suite is displayed in Figure 4.1. The bench-
marking system consists of the following components:

• VMbench tools, which are written in the Perl script language, control bench-
marks and export data to MATLAB [The07].

• The VMbench user-level library encapsulates access to the diverse compo-
nents of the virtual machine environment. The library binds to the respective
components at load time.

• In order to take advantage of virtualization-specific benchmarks, user-level
macro- and micro-benchmarks link to the VMbench user-level library.

• The guest kernel may be instrumented to run nano-benchmarks. However,
benchmarks to determine the application-level performance run on a non-
instrumented kernel.

• Similarly, if an IPVMM is present, it may or may not be prepared for nano-
benchmarks.

39
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Figure 4.1: Hierarchical structure of VMbench

4.2 Kernel Instrumentation for Nano-Benchmarks
For low-level measurements, VMbench supports automatic instrumentation of
functions, basic blocks, and sensitive instructions. Additionally, it includes fa-
cilities for manual instrumentation and reconfiguration at run time. The following
subsections describe VMbench’s instrumentation mechanisms and its benchmark-
ing metrics.

4.2.1 Benchmarking Functions and Basic Blocks
The Linux kernel is usually compiled by GCC, the GNU C compiler. Triggered
by command line arguments, GCC instruments functions or basic blocks with
calls to profiling functions. Table 4.1 specifies GCC’s profiling mechanisms. On
the IA32 architecture, function calls incur relatively high overhead compared to
most other instructions. For realistic and precise timekeeping, instrumentation
must avoid inducing any additional overhead. Therefore, VMbench postprocesses
GCC’s assembler-language output with the afterburner assembler parser. The as-
sembler parser detects the profiling function calls, which GCC inserts in the as-
sembler code, and replaces them with low-overhead benchmarking code.

It was worth to note that, at the assembler level, a function has one entry but
may have multiple exits. The metric code at a function entry and all corresponding
exits must refer to the same counter, so allocation of new counters must take
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Table 4.1: GCC’s profiling mechanisms
Functional primitive Mechanism GCC flag Profiling function
Function entries gprof -pg mcount
Basic blocks gcov -fprofile-arcs gcov merge add
Function entry cyg profile -finstrument- cyg profile func enter,
and exit functions cyg profile func exit

place when parsing a function entry. Function exits refer to the counter that was
allocated when parsing the preceding function entry. In contrast, jump labels must
be unique within each assembler file, such that new label names are generated on
each function entry and exit.

4.2.2 Benchmarking Sensitive Instructions
The afterburner assembler parser was originally developed to pre-virtualize oper-
ating system kernel code. Specifically, it detects and instruments virtualization-
sensitive instructions. VMbench uses the assembler parser to insert benchmark-
ing code for sensitive instructions. The build infrastructure may activate pre-
virtualization and benchmarking independently at file granularity, allowing to
compare latency of original and pre-virtualized sensitive instructions.

Unfortunately, not all sensitive instructions can be identified at the assembler
level: Memory-sensitive instructions are merely sensitive in some contexts. For
example, a mov instruction, which is virtualization-insensitive in most cases, be-
comes sensitive when it modifies a page table. To cope with memory-sensitive
instructions, VMbench expects memory-sensitive instructions to be marked in the
assembler code with pseudo-instructions. These pseudo-instructions are replaced
by benchmarking code.

Analogous to how memory-sensitive instructions are identified, VMbench pro-
vides the facility to manually instrument arbitrary places in the kernel code. This
enables benchmarking specific control flow such as overall I/O latency or subsets
of sensitive instructions. For example, VMbench records system call invocations
using manual instrumentation.

4.2.3 Rewriting the Assembler Code
Assembler-level rewriting is relatively convenient, because symbolic names are
used to name code and data locations. In contrast to higher-level languages, side
effects are easier to control.

Figure 4.2 displays the ELF file sections related to benchmarking. The lo-
cation of the benchmarking code, which is needed to reconfigure the metric, is
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Figure 4.2: ELF file sections that are relevant to low-level benchmarking
X stands for the metric name.

specified in a non-loadable file section to minimize data overhead during runtime.
I extended the afterburner assembler parser to emit benchmarking code as previ-
ously discussed. The separation between syntax and semantics was only tainted
for instrumenting functions, where the assembler parser identifies calls to bench-
marking functions by the name of the called function.

VMbench’s nano-benchmarks allow to choose among several metrics. Addi-
tional metrics, such as timestamp samples, access to the processor’s performance
monitoring counters, and calls to high-level C or C++ functions respective meth-
ods, are already prepared but currently not in use.

4.3 Implementation of Micro-Benchmarks
As indicated in subsection 3.5.3, VMbench’s micro-benchmarks are similar to
those from the lmbench suite [MS96]. In contrast to lmbench, VMbench accounts
time more precisely using the time stamp counter, and it leaves all statistical anal-
ysis to dedicated statistics software.

As yet, VMbench includes micro-benchmarks to determine the latency of sys-
tem call, page fault, exception, sending and ignoring a signal, sending and han-
dling a signal, and installing a signal handler.

• The getppid system call, which retrieves the identification of the parent pro-
cess, represents the base cost of two context switches, from the application
to the operating system kernel and back to the application. The kernel ob-
tains the identification of the parent process easily from the process control
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Figure 4.3: Components of the VMbench user-level library

block, such that getppid is one of the fastest system calls. A getppid system
call typically does not execute any virtualization-sensitive instructions.

• A page fault entails at least one kernel entry and exit. In addition, the kernel
executes several sensitive instructions, and, if necessary, initiates I/O. A
page fault results in a sequence of at least eight sensitive instructions: mov,
sti, pushf, cli, popf, pgd read, pgd read, pte set.

• A handled signal has comparable overhead to two system calls: kill and
sigreturn. The kill system call or a hardware exception enters the kernel and
activates the signal handler at user mode. The sigreturn system call returns
from the signal handler and reactivates the regular instruction stream. The
whole procedure comprises 23 sensitive instructions, most of them being
related to synchronization by clearing and setting the interrupt flag.

• An unhandled signal results in a sequence of three sensitive instructions:
pushf, cli, popf.
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4.4 Data Export
The VMbench user-level library gathers data from the various components of a
virtual machine environment. Each component offers different interfaces for com-
munication. Thus, the library includes several backends, each communicating
with one virtual machine environment component. Figure 4.3 shows VMbench’s
backends and how each backend interacts with a distinct component.

Communication with the guest operating system kernel is implemented via
shared memory. In Linux kernels before release 2.6.12, the /dev/kmem device
was nonfunctional, so the necessary code was backported from release 2.6.17 in
straightforward manner. In addition to shared memory, Linux offers profiling sys-
tem calls such as profil and getrusage. Adding a special system call for VMbench
was not necessary.

Counter access must be atomic, that is, it must not be interleaved with any
other activity that changes the counters. To avoid page faults, VMbench pages all
buffers in before using them.

4.5 Benchmarking Control
The benchmarking process is based on several tools (see Figure 4.4):

• The vminfo tool provides a uniform way to access information about virtual
machines.

• Workload generators, such as the extract counters tool, use the VMbench
library to conduct benchmarks in a uniform way.
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• The delta tool computes the difference between two files containing binary
counter values, according to the counter’s metric.

• The lookup counters tool associates the binary counter values with external
information about what the counters represent.

The tools vminfo, delta, and lookup counters are not performance-critical, in that
they run either before or after measuring. Implemented in the Perl language, they
share some of their code in a Perl library.

4.5.1 The vminfo Tool
The benchmarking process needs two sorts of information about the virtual ma-
chine environment: the presence of a particular component and what measure-
ments a component supports.

Presence detection is specific to the respective component: The uname com-
mand extracts the current version of the Linux kernel from the proc filesystem.
An IPVMM should intercept the cpuid instruction and specify its own name in
the processor model field. Generally, timing skew analysis allows to detect a hy-
pervisor. Detection of the L4 hypervisor is more convenient, because a special
invalid instruction triggers publishing the kernel interface page.

VMbench stores metric and counter names in object file sections that are not
loaded upon execution. To avoid transferring non-relevant information, VMbench
supports caching object file information. The Perl library extracts metric and
counter names from the object files or from the cache, and instructs the VMbench
user-level library how to access the counters.

4.5.2 Workload Generators
Workload generators link to the VMbench user-level library in order to record
virtualization-specific events.

The extract counters workload generator, for example, starts measurements,
runs an arbitrary program by means of the execve system call, and finishes mea-
surements when the program terminates. Thus, it serves as a wrapper for arbitrary
programs which need not be instrumented.

The forkwait program [AA06] stresses process creation and termination. These
operations are particularly susceptible to virtualization.

VMbench’s micro-benchmarks (see Section 4.3) are also linked to the VMbench
user-level library, allowing to record virtualization-sensitive events during synthe-
sized activity.
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4.5.3 The lookup counters Tool
Depending on which metric was used, the data specifies either implicitly or ex-
plicitly the primitive operation that produced it. In case of tracing, the counters
are allocated in the same order as the pertaining primitive operations. In case of
sampling, each data sample specifies the unique identifier of the instruction that
produced the sample. The lookup counter Perl script reads a file containing binary
counter data. Then it looks up the human-readable names of the primitive opera-
tions, for example function names, sensitive instructions, or memory addresses.

4.6 Relating Micro- and Macro-Benchmarks
A number of statistic software suites exists, among them GNU R, MATLAB with
its Statistic Toolbox, and the IT++ library. I chose MATLAB, because it combines
both vector mathematics and statistical analysis. It has a graphical user interface
with built-in support for common tasks such as data import and plotting. The
freely available GNU Octave language is compatible with most MATLAB code. It
only lacks the convenient graphical environment and more sophisticated statistics
functions.



Chapter 5

Results

This chapter presents initial results that were produced using the VMbench suite.
After introducing the benchmarking environment and the configurations under
examination, the overhead of kernel-level nano-benchmarks is evaluated. The
main focus of this chapter is to exemplify how to characterize virtual machine
environments using VMbench’s three-stage methodology.

5.1 Benchmarking Environment
I ran the experiments on an Intel Pentium 4 CPU model 4 stepping R0. The
processor, built using 90 nm technology, ran at 3.8 GHz core speed and 800 MHz
bus speed. It had a 64-entry instruction TLB and a 64-entry data TLB. In all
configurations, the RAM available to Linux was restricted to 256MB.

The system under test booted a stripped-down version of Debian 3.1 from
a 12 MB-sized ramdisk image. Additional storage was allocated on temporary
ramdisks. The kernelbuild benchmark ran on a DMA-capable IDE hard drive in a
chroot environment. To avoid interferences by the network interface card, bench-
marks that do not need networking were run with the network interface taken
down.

Using GCC version 3.3.5 and the afterburner assembler rewriter for pre-virtua-
lization, I built the Linux kernel version 2.6.9 in unmodified form and in different
micro-benchmarking configurations. Hyperthreading and multiprocessing were
disabled in the kernel. Fast system calls were enabled, but they are active only if
the respective hypervisor supports them.

47



CHAPTER 5. RESULTS 48

5.2 Configurations Under Examination
I compared performance on raw hardware with performance on two hypervisors,
L4 and Xen. In addition, I have verified that VMbench is compatible with a pop-
ular closed-source virtual machine monitor. However, the license agreement does
not permit publishing the results. Given that the virtual machine monitor virtual-
izes performance monitoring hardware, benchmarking results are less precise.

Xen is a native hypervisor for the IA32 and AMD64 architectures. It sup-
ports para-virtualized adaptations of Linux and several other operating systems
as guests. With hardware-assisted virtualization, it can also support unmodified
Linux and Windows. Xen runs guest kernels in privilege ring 1, whereas guest ap-
plications run in privilege ring 3. Thus, it takes advantage of segmentation support
built in IA32 processors for switching between guest kernel and applications.

L4 is a mature second-generation microkernel [Lie96]. Given that the mi-
crokernel concept allows only basic security-related functionality to run in ker-
nel mode, user-mode L4 applications can implement diverse personalities at lib-
erty. Taking advantage of this flexibility, one popular option is to run L4 with a
user-mode virtual machine monitor that hosts Linux or other guest operating sys-
tems [LUSG04]. The ensemble is called L4Ka virtualization environment. How-
ever, L4 has not been designed as a specialized hypervisor, such that it restricts the
virtual machine monitor’s view on the virtual processor in some aspects. Work is
underway to make L4 support virtualization in a more straightforward manner.

Xen and L4 were configured for pass-through device access, which has been
described in subsection 2.1.5. Benchmarking other configurations of the virtual
machine environment is left for future work.

5.3 Nano-Benchmark Overhead
The Linux kernel under examination contains 5571 virtualization-sensitive in-
structions. For example, during a kernel build, about 57,591,000 sensitive in-
structions are executed. The overhead of nano-benchmarking was approximately
determined by comparing the overall run time of a Linux kernel build on a non-
instrumented kernel and on several instrumented instrumented kernels (see Fig-
ure 5.1). On the one hand, the measurements indicate that the overhead of the
count metric for sensitive instructions is negligible. Considering that the count
metric has minimal impact on memory and cache (see Table 3.1), too, it is well
suited to record the usage count of sensitive instructions. On the other hand, the
higher overhead of latency samples and average latency support the decision to
abandon vertical benchmarking (see Subsection 3.6.1). Storage for latency sam-
ples is limited, such that the latency samples metric looses significance for long
benchmarking runs.
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Figure 5.1: Nano-benchmarking effect on run time of kernelbuild, normalized to
non-instrumented run time

5.4 Hypervisor Performance Signature
This section describes the first stage of the suggested benchmarking methodology:
the determination of the hypervisor performance signature.

5.4.1 Sensitive Instruction Signature
Histograms allow to judge how appropriate the assumption of a normal distribu-
tion is. The histograms 5.2, 5.3, and 5.4 demonstrate the empirical distribution of
sensitive instructions under forkwait workload on raw hardware, on L4, and on
Xen 2. For several of the sensitive instructions, the histograms rarely justify a
normality assumption in the strict sense. However, most histograms resemble a
degenerate distribution, in which case the median of the values represents their
central tendency, too.

Most sensitive instructions take up to 200 cycles. Infrequent outliers are due
to cache misses or due to non-atomic latency measurements.

• On raw hardware, the in and out instructions, which access external devices,
take considerably longer than in virtualized environments, because they op-
erate on real hardware. The invlpg instruction, which flushes the TLB, takes
550 to 700 cycles. The mov instruction takes up to 600 cycles in case of a
cache miss.
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Figure 5.2: Sensitive instruction histogram of pre-virtualization on raw hardware
The X-axes reflect the range of values in 20 classes, whereas the Y-axes specify

the frequency of sensitive instructions in each class.



CHAPTER 5. RESULTS 51

0 1000 2000
0

5000

10000

15000
pgd_read

0 1000 2000
0

1

2
x 10

4pte_read

0 5000
0

5000

10000
pte_set

0 5000 10000
0

50

100
pmd_set

0 5000 10000
0

2000

4000

6000
pte_test_and_clear_bit

0 5000 10000
0

2000

4000

6000
pte_read_clear

0 1000 2000
0

1000

2000

3000
popf

0 200 400
0

500

1000
pushf

0 1000 2000
0

1000

2000

3000
cli

0 1000 2000
0

200

400

600
sti

0 5000 10000
0

10

20
in

0 2000 4000
0

50

100
out

2000 4000 6000
0

50

100
invlpg

0 500 1000
0

200

400

600
mov

Figure 5.3: Sensitive instruction histogram of pre-virtualization on L4
The X-axes reflect the range of values in 20 classes, whereas the Y-axes specify

the frequency of sensitive instructions in each class.
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• With the L4Ka virtualization environment, half of the pmd set pseudo in-
struction take about 8000 cycles. The pte test and clear bit pseudo instruc-
tion takes 2000 cycles. The pte read clear pseudo instruction takes more
than 1500 cycles. The in and out instructions take less than on raw hard-
ware, because they access virtual devices. The invlpg instruction takes be-
tween 2500 and 6000 cycles, with major peaks at 2700, 3400, and 4200
cycles.

• On the Xen 2 hypervisor, several histograms show minor peaks at 2400 cy-
cles, which are possibly due to timer interrupts arriving during non-atomic
measurement and instruction emulation. The pmd set instruction has three
distinct peaks at 200, 3100, and 9200 cycles. The first peaks is formed by
about 40 percent of the data, the second by about 50 percent.

Assuming normal distributions, the sensitive instruction signature reduces a
sensitive instruction’s latency to its median value. The boxplot diagrams 5.5, 5.6,
and 5.7 display quartiles, outliers, and medians of the sensitive instructions. Each
box ranges from the lower quartile to the upper quartile. Thus, it includes fifty
percent of the data. The whiskers extend to include the rest of the data minus
outliers. Given that outliers below the lower quartile are infrequent, the boxplot
diagrams confirm that the median values of latencies are acceptable for usage in a
best-case hypervisor signature.

5.4.2 Mode and Context Switching Latency
Figure 5.8 displays the latency of different events related to processor mode or
context switching. The 95% confidence intervals for the data at 99 degrees of
freedom (that is, 100 independent benchmarking runs) are less than 0.5% from
the mean value.

It is interesting to note that pre-virtualized Linux on Xen 2 handles signals
faster than it does on raw hardware. During a single signal handling operation,
the virtual interrupt flag is cleared or set at least fourteen times. I suppose this is
the reason for the unexpected performance enhancement.

5.4.3 Baseline Virtualization Overhead
The time series diagrams 5.9, 5.10, and 5.12 display the dilation of an idle loop
(see Subsection 3.7.2). The inner loop was calibrated to run for at least one mil-
lisecond. The benchmarking application, which executes at minimum priority,
repeats the inner loop several hundred times. Interrupts and activity of the opera-
ting system or other applications dilate the execution time of the inner loop. On
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Figure 5.5: Sensitive instruction signature of pre-virtualization on raw hardware
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Figure 5.6: Sensitive instruction signature of pre-virtualization on L4
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Figure 5.7: Sensitive instruction signature of pre-virtualization on Xen 2
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Figure 5.8: Mode and context switching signature of pre-virtualization on raw
hardware (left), L4 (center) and Xen 2 (right)
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Figure 5.9: Idle profile of pre-virtualized Linux on raw hardware
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Figure 5.10: Idle profile of pre-virtualized Linux on L4
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Figure 5.11: Idle profile of pre-virtualized Linux on L4 with reduced timer inter-
rupt frequency
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Figure 5.12: Idle profile of pre-virtualized Linux on Xen

raw hardware (Figure 5.9), incoming timer interrupts cause delays of about 38,500
cycles every ten milliseconds. Every fifth timer interrupt activates the scheduler,
such that the idle loop takes 4,600 cycles longer.

On L4, virtual timer interrupts are modelled through an IPC timeout for the
IRQ handler thread [LUC+06]. The microkernel handles more timer interrupts
than it passes to the guest operating system (Figure 5.10). In a virtual machine
environment, the additional interrupts are useless, since they do not trigger any
activity. Changing the L4 kernel to generate less timer interrupts was trivial and
reduced the timer overhead (see Figure 5.11).

The profile on Xen (Figure 5.12) looks very similar to raw hardware, however,
timer interrupts show more variation. Analysis of the absolute numbers reveals
that timer interrupt handling takes longer on raw hardware than on L4 or Xen,
probably due to better cache utilization.

5.5 Virtual Machine Performance Under Optimal
Conditions

As suggested in Section 3.6, the second stage of the virtual machine benchmarking
methodology predicts lower bounds for execution time of realistic workload. In
Figures 5.13, 5.14, 5.15, and 5.16, baseline execution time is shown right at the
bottom, latency of selected sensitive instructions is above, is latency of context
switches is yet above, and latency caused by stolen time is upmost.
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Figure 5.13: Performance analysis of gzip under different hypervisors
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Figure 5.14: Performance analysis of forkwait under different hypervisors
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Figure 5.15: Performance analysis of find under different hypervisors
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Figure 5.16: Performance analysis of kernelbuild under different hypervisors
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Figure 5.17: Prediction accuracy with VMbench

The gzip workload consists of compressing an 1.5 MB archive containing
a mix of highly compressible and not very compressible files. This activity is
computing-intensive. If virtual machine interference is precluded, it is hardly sus-
ceptible to virtualization. Both hypervisors perform almost as well as raw hard-
ware (see Figure 5.13).

In contrast, the forkwait workload [AA06] is very operating-system intensive
and highly susceptible to virtualization. For VMbench’s purpose, it consecutively
creates 16 processes, which simply terminated themselves right after being cre-
ated. The results (see Figure 5.14) indicate that both context switching and sensi-
tive instructions contribute significantly to the virtualization overhead.

The find workload stresses system calls, such that kernel entry and exit form
the major virtualization overhead. In contrast, the overhead through virtualization-
sensitive instructions is rather low.

The kernelbuild workload builds the Linux kernel for the IA32 architecture in
its minimal configuration. More than 1,038,400 system calls constitute the major
virtualization overhead.

5.6 Virtual Machine Interference
Figure 5.17 summarizes the accuracy of VMbench’s performance predictions.
The log-log scale enables comparing the different types of workload in a sin-
gle plot. Performance on raw hardware is marked with +, performance on L4
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Table 5.1: Prediction accuracy with VMbench
Workload Pre-Virtualization on L4 Pre-Virtualization on Xen
gzip 98.6% 99.7%
forkwait 45.9% 58.6%
find 85.6% 99.6%
kernelbuild 86.9% 96.1%

with o, and performance on Xen with x. Table 5.1 contains the ratio of predicted
execution time to real execution time.

The ratios confirm that VMbench predicts best-case performance: In neither
case, virtualized performance is lower than estimated. However, they also indicate
that virtual machine interference has quite large impact in some cases. To some
extent, the inadequacy of the Pentium IV for accurate nano-benchmarks may be
the reason for prediction errors.

A vast amount of possibilities exists to evaluate how virtual machines inter-
fere. Future work should extend this analysis by investigating the performance of
multiple virtual machines that compete for resources. For example, one virtual
machine could run the instrumented idle loop, while another builds a kernel or
transfers data over the network.



Chapter 6

Conclusion

Given the huge popularity of virtual machines and the increasing diversity of vir-
tualization techniques, performance analysis of virtual machine environments is
constantly gaining importance. This contribution pursues a decompositional anal-
ysis of runtime in virtualized environments, resulting in a proposal for a virtual
machine benchmarking methodology and in the implementation of VMbench, a
prototype virtual machine benchmarking suite.

6.1 Contributions of This Work
The suggested benchmarking methodology addresses the “tension between re-
alism and reproducibility” [Mog99] by proceeding from artificial micro-bench-
marks to realistic measurements at macroscopic level.

The VMbench suite deals with several issues that arise when benchmarking
virtualized environments. Particularly the pre-virtualization paradigm [LUC+06]
enables benchmarking a broad variety of virtualization techniques. Compiler-
aided instrumentation allows to measure the latency of different primitive opera-
tions. VMbench coordinates benchmarking among the components of the virtual
machine environment. It exports results for evaluation with statistical software,
which in turn applies the linear model.

The initial evaluation indicates that VMbench predicts the time dilation of
operating-system intensive workload well enough to predict the execution time of
virtualization techniques under consideration on an ordinal scale.

6.2 Suggestions for Future Work
Considering both the popularity and the diverse interface of the IA32 architecture,
I find it unlikely that, within the next years, a single hypervisor will dominate
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IA32-based virtualization. Thus, performance evaluation of virtual machines will
remain a topic of high interest. The increase of publications on this topic within
the last year reinforces this claim.

However, this thesis has discussed performance evaluation and prediction of
virtual machines for a narrow domain. It is up to future work to expand the
methodology to diverse areas of application.

Improve Prediction Accuracy In order to improve prediction accuracy, spe-
cific knowledge about how a hypervisor enforces virtualization is necessary. Up-
coming technologies may embody additional performance bottlenecks that the
initial VMbench model does not anticipate. Moreover, as proposed by Seltzer et.
al. [SKSZ99], simulation may be useful to refine the linear model. Given that
the probability distribution of the observed data depends on how virtualization
is realized, switching to a non-linear model is not very promising. Upcoming
processor architectures [Adv06b] have more accurate facilities for precise time
measurements.

Model Work Offloaded to Device Driver Virtual Machines As discussed in
subsection 3.4.3, the abstraction of resource containers can model work offloaded
to device driver virtual machines. Furthermore, the combination of VMbench and
performance aggregation strategies might yield valuable insights about concur-
rency of virtual machines.

Describe Virtual Machine Configuration in a Portable Way In order to bench-
mark diverse hypervisors and virtual machine setups, portability is key. It would
be convenient to be able to configure different virtual machine environments us-
ing common tools. Describing the setup of a virtual machine environment in XML
format would also benefit other projects, such as virtual machine migration and
data center administration. Similarly, XML-based data exchange would simplify
data collection.

Port VMbench to Other Processor Architectures and Operating Systems As
soon as pre-virtualization supports other processor architectures such as AMD64
and PowerPC and other operating systems such as BSD, Windows, and MacOS
X, the VMbench suite can be ported to these. Given that modern processor ar-
chitectures have similar performance monitoring capabilities, the ports should be
straightforward. Porting VMbench to other processor architectures will improve
prediction accuracy, because Pentium 4 is probably the worst-case platform for
accurate instruction-level timing. It would be exciting to see how much latest
processor features such as IOMMUs [Adv06a] accelerate virtual machine perfor-
mance.
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6.3 Concluding Remarks
Industry, researchers, and customers urgently need standards to compare the per-
formance of virtual machines [CGS06]. Time will show whether a widely ac-
cepted, general, realistic, and accurate methodology for virtual machine perfor-
mance analysis can be established.
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