
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Legacy Processor and Device Support for Fully
Virtualized Systems

Michael Schilli

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa

Betreuender Mitarbeiter: Dipl.-Inf. Jan Stöß

4. Oktober 2007

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebe-

nen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been used.

Karlsruhe, den 4. Oktober 2007

Michael Schilli

Abstract

With recent processor extensions the IA-32 architecture became effectively virtualiz-

able. The L4 microkernel already provides the necessary extensions to support Intel’s

VT-x technology and the Afterburner framework was recently extended to introduce

a user level monitor on top of L4. This work proposes two extensions to the existing

framework to support legacy processor and devices in a fully virtualized system. The

resulting implementation will provide a fully 16-bit compatible execution environment

and will allow guest operating systems access to an existing hard disk drive.

v

vi

Contents

1 Introduction 1

2 Background and Related Work 2

2.1 Virtualization . 2

2.1.1 Full Virtualization . 2

2.1.2 Para-Virtualization . 2

2.1.3 Hardware-assisted Virtualization 3

2.2 IBM PC Hardware Platform . 3

2.2.1 Memory Model . 4

2.2.2 BIOS Interrupt Services . 5

2.3 Intel VT-x . 5

2.4 Xen . 6

3 Design and Implementation 7

3.1 Architecture . 7

3.1.1 L4/VT Extensions . 8

3.2 Legacy Processor Support . 9

3.2.1 BIOS Services . 10

3.2.2 Starting a virtual machine 11

3.3 IDE Emulation . 12

3.3.1 Generic PCI IDE controller 13

3.3.2 DMA Acceleration . 14

4 Evaluation 16

4.1 Booting . 16

4.2 Hard Disk Drive . 17

A Supported BIOS Services 18

vii

Chapter 1

Introduction

With the development of recent processor architectures, virtualization found its way

even into desktop systems and notebooks. Once confined to specialized, proprietary,

high-end server and mainframe systems, today it is used in applications like server

consolidation, migration, device driver reuse and secure computing. This progress

was due to steady performance improvements which led to applicable performance

overheads.

In virtualization, a hypervisor, also called virtual machine monitor (VMM), is a

software program that manages multiple operating systems on a single computer. More

precisely, it manages the system’s processor, memory and other resources, such as de-

vices, and allocates what each operating system requires. There are generally two dif-

ferent types of hypervisors. The first type runs directly on the given hardware, whereas

the second type requires a host operating system.

The L4 microkernel already provides the necessary extensions to support hardware

virtualization such as Intel VT-x [4]. It acts as a hypervisor that runs directly on the

given hardware, without the need of a host operating system. The recently extended

Afterburner framework [3] provides a set of servers and devices models to support a

user level VMM on top of L4.

The goal of this thesis is to extend the existing user level VMM to support legacy

devices in a hardware-based virtualization environment. The resulting VMM will be

able to offer a completely compatible 16-bit execution environment and will success-

fully boot FreeDOS, a free MS-DOS clone. Furthermore the VMM will be able to

provide arbitrary guest operating systems with an interface to access an existing hard

disk drive by emulating an IDE hard disk and a controller. This enables us to share a

given hard disk among several different guest operating systems.

1

Chapter 2

Background and Related Work

In this chapter I will first give a brief introduction to the different virtualization tech-

niques currently used, ranging from full virtualization to contemporary hardware-based

virtualization. In the next section I will describe some details of a standard PC system,

which are necessary for virtualization to provide guest operating systems with their

preconditioned environment. In section 2.3 I will provide a short introduction to In-

tel VT-x, a hardware virtualization extension for the IA-32 architecture. In the last

section I will present Xen, which has become a popular open source virtualization soft-

ware over the last years and with its recent versions is also capable to utilize hardware

virtualization extensions such as Intel VT-x.

2.1 Virtualization

2.1.1 Full Virtualization

The full virtualization approach provides a total abstraction of the underlying physical

hardware. No modification to the guest OS or application is required and consequently

the guest OS or application is not aware of running in a virtualized environment. This

can be advantageous, because it completely decouples the software from the hardware.

However, this approach can also result in performance loss. Support for full vir-

tualization was never part of the x86 architectural design, therefore all privileged in-

structions must be handled by the VMM for correct virtualization. Software also has

to provide a complete image of a system, including virtual memory, virtual BIOS, and

virtual devices. It has to maintain data structures for these virtual entities, that must be

updated with every guest access.

Well known software, that uses full virtualization, is for example VMware Work-

station, ESX Server, and Player.

2.1.2 Para-Virtualization

In contrast to full virtualization, the para-virtualization approach requires modification

to the guest OS. It avoids some drawbacks of full virtualization by presenting an ab-

straction of the hardware which is similar but not identical to the underlying physical

hardware. Virtualization-sensitive instructions in the guest OS are replaced by calls

to a VM monitor. As a result of the virtualization-aware guest OS, this approach can

2

CHAPTER 2. BACKGROUND AND RELATED WORK 3

reach near-native performance. One of the disadvantages of this approach is the need

of access to the source code to perform the necessary modifications, which also limits

the range of possible guest operating systems.

2.1.3 Hardware-assisted Virtualization

Recent development in processor architecture has originated in processor extensions

to support virtualization. Intel’s Vanderpool (Intel-VT) and AMD’s Pacifica (AMD-V)

technology help to simplify the task of processor virtualization by transferring some of

the complexity that arise from virtualization, from software to hardware. Each virtual

machine has its own hardware and allows a guest OS to be run in isolation.

In contrast to para-virtualization, the guest OS can execute directly on the pro-

cessor and therefore no modification to the guest are necessary, which allows to run

unmodified guest operating system similar to full virtualization. But experiments [2]

have shown, that hardware-assisted virtualization still underachieves in performance,

caused by the lack of optimizations.

2.2 IBM PC Hardware Platform

The original IBM Personal Computer (IBM PC) was first introduced in 1981. Based

on the Intel x86 architecture, that first appeared in the Intel 8086 processor released in

1979, IBM used an Intel 8088 processor; a successor of the 8086 but with only an 8-bit

external data bus (instead of 16-bit). The only proprietary component of the PC was

the basic input/output system (BIOS). After successful introduction on the computer

market, various manufactures started building their own PC compatible computers by

duplicating nearly all significant features including the BIOS, that was legally reverse

engineered. All computers that were software compatible with the original IBM PC

were generally referred as IBM PC compatible. This section gives an overview of the

IBM PC compatible hardware platform as seen from the operating system.

Since the introduction of the first IBM PC, the basic system startup procedure has

not changed. Most of the necessary initialization is done by the BIOS [8], that resides in

a ROM on the mainboard (today in a EEPROM/FLASH-ROM). Once power is applied

to the PC, the BIOS startup code is executed. Having set up hardware devices and

interrupt handlers (see 2.2.2), the BIOS initializes the system, performs a power-on

self-test (POST), determines a bootable device and initiates the bootstrap sequence,

which in turn boots an operating system (OS).

The Intel 8088 processor, as used in the original IBM PC, was able to address up

to 1MB of physical memory, limited by its 8-bit external data bus. Section 2.2.1 shows

the typical memory configuration of this 1 MB after successful BIOS initialization.

Later on, in 1986, Intel introduced the 80386, which was the first x86 processor to

have a 32-bit architecture. To ensure backward compatibility, it was still able to execute

native 16-bit code with a special processor mode, called real-address mode. The ex-

ecution environment of the processor in real-address mode was designated to provide

the execution environment of the original Intel 8086 with a nominal 1 MB physical

address space. Successive implementations of this architecture, which remained com-

pletely backwards compatible, were often termed i386 or IA-32 architecture.

Even today, with recent 32-bit or even 64-bit processors, systems still start in real-

address mode to maintain full backward compatibility. Although the term IBM PC

compatible is not commonly used for current computers anymore, the basic execution

CHAPTER 2. BACKGROUND AND RELATED WORK 4

environment is still comparable with the original IBM PC and operating systems are

expected to start in real-address mode. However, to accommodate the fact that today

the majority of systems expected to run are 32-bit operating systems, there has been

established a 32-bit code interface for BIOS services, called BIOS32 Service Direc-

tory [5]. This interface is now part of the Peripheral Component Interconnect (PCI)

standard.

2.2.1 Memory Model

A part of the IBM PC standard and the processor specification also specifies the phys-

ical memory organization. Figure 2.1 shows the typical memory arrangement of 1MB

physical memory available in real-address mode, which we will describe in more detail

here:

Interrupt Vector Table

BIOS Area

Video BIOS

00000

C0000

C8000

F0000

00400BIOS Data Area

00500
User memory

A0000Reserved for Video

Reserved for ROM

Extensions

Starting Address in Hex

Figure 2.1: Memory Organization in Real-Mode

• The Interrupt Vector Table (IVT) consists of 256 32-bit entries, also called real

mode pointers, each composed of a 16-bit segment and a 16-bit offset [9]. The

System BIOS and operating system install their interrupt handlers in this region,

which get called on hardware interrupts or via software INT instruction. Hard-

ware interrupts may be mapped to any of theses vectors, depending on configu-

ration of the programmable interrupt controller (PIC). A typical and commonly

used configuration maps hardware IRQs 0-7 on vectors 0-7h and hardware IRQs

8-15 to vectors 70-77h.

• The BIOS Data Area is used to store BIOS specific data such as user settings or

device parameters.

• User Memory is available for read/write access of system and user applications.

• The VGA BIOS area contains the Video ROM BIOS Extension provided by the

VGA controller card and is usually 32KB large. It provides its services by hook-

ing BIOS interrupt service 10h.

CHAPTER 2. BACKGROUND AND RELATED WORK 5

• The ROM BIOS Extensions area, as well as the VGA BIOS area, is inspected by

the BIOS during POST to detect ROM Extensions. An existing ROM Extension

is located with the help of a special signature at the beginning.

• The BIOS Area contains the systems BIOS itself and is usually 64KB large.

2.2.2 BIOS Interrupt Services

One of the initial goals of BIOS Interrupt Services was to provide an operational in-

terface to the system and to relieve the programmer of direct interaction with hardware

devices. The BIOS interface together with the application programming interface (API)

of the operating system formed what would now be called a hardware abstraction layer

(HAL). This abstraction layer made it possible to run the same operating system or ap-

plication on any compatible computer, regardless of variations in hardware equipment.

Therefore, most operating systems rely on services provided by the BIOS, especially

older legacy 16-bit operating systems make heavy use of theses services to interact with

hardware devices such as disk drives, keyboard and display. Modern operating systems

mostly rely on their own specific hardware device drivers and use BIOS services only

during system startup [16].

Over the years the number of services provided by the BIOS has become pretty

large. With each new developed hardware device, there has been introduced a new

BIOS services to support it. As of today, there are about 9000 different known ser-

vices [7].

2.3 Intel VT-x

Virtualization was never part of the IA-32 architectural design. Several virtualization

sensitive instructions prevents it from being effectively virtualizable. Although it is

possible to create virtual machines on IA-32 architecture with techniques like full or

para-virtualization, this results in either high engineering costs or performance losings.

With recent processors Intel implemented an extension called VT-x, which reduces

engineering efforts and eliminates the need of special virtualization techniques.

The Intel VT-x processor extension introduces two new processor modes; VMX

root and VMX non-root mode. Both modes provide all 4 privilege levels (0-3) as on

native IA-32 architecture, allowing the virtual machine monitor (VMM) and the guest

to be run with its intended privilege level. VT-x also introduces two new transitions;

VM-exit and VM-entry. VM-Exit switches from non-root to root mode, whereas VM-

Entry switches reverse. The VMM runs in root mode and controls the execution envi-

ronment of the guest, that runs in non-root mode, with the help of the virtual machine

control structure (VMCS). The VMCS controls the behavior of VM-Exits, VM-Entries,

and the processor in non-root mode and consists of two different areas, the guest-state

and host-state area, which contain fields that corresponds to the different registers and

controls of a physical processor. A VM-Entry loads parts from the guest-state area

and resumes execution. It can also be used to inject an event such as exceptions or

interrupts into the guest. A VM-Exit stores the actual processor state in the guest-state

area and loads the host-state area. The VMCS also contains fields that control which

events or instructions in non-root mode cause a VM-Exit. The cause of an exit can be

obtained by reading the basic exit reason register.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

2.4 Xen

Xen [18] is a popular free software virtual machine monitor (VMM) for IA-32, x86-64,

IA-64 and Power-PC architecture. Using the para-virtualization approach, it requires

modification to both, the guest and host operating system, which limits the range of

available host and guest systems to mainly Unix-like systems. In doing so Xen achieves

a high performance. Although Microsoft Research, along with the University of Cam-

bridge Operating System group, developed a port of Windows XP for Xen, it was not

published due to licensing restrictions.

With the release of Xen 3.0 in december 2005, the development of recent hardware

extensions was taken into account, and support for hardware-assisted virtualization

was added, allowing Xen to run unmodified guests such as Microsoft Windows XP.

To provide the necessary execution environment to start unmodified guests, Xen uses

parts of a full system emulation from Qemu [15]. This subset of Qemu emulates all

important I/O parts of a PC, including a PCI bridge, a VGA card, PS/2 mouse and

keyboard, hard disk and floppy disk, network card, sound card, usb controller as well

as a complete PC BIOS. With this virtualization environment Xen is currently able to

run certain versions of Windows (including XP) and Linux as unmodified guests using

hardware virtualization.

Chapter 3

Design and Implementation

In this chapter we present the design and some important aspects of the implemen-

tation to support legacy devices in a hardware-based virtualization environment. We

focus on two important devices here; legacy processor and hard disk drive emulation,

because both devices are essential parts of a minimal and fully usable virtualization

environment.

Legacy processor support is important to provide arbitrary guest operating systems

with a 16-bit execution environment that is completely compatible to native hardware,

that means we should be able to run unmodified native 16-bit operating systems. This

introduces two main issues that have to be solved. The first one is to allow the guest

to run the processor in 16-bit mode (also called real-address mode) and the second one

is provide the necessary platform environment as already described in the related work

chapter.

Hard disks are a minimal system requirements for most operating systems as well,

because they expect to store application and/or system specific data on a nonvolatile

media. Hard disk emulation addresses an approach to share one or more existing phys-

ical hard disks among different guest operating systems.

This chapter is organized as follows: The next section gives an overview of the

currently used virtualization architecture, called Afterburner. The following section

covers details, necessary to fully support native 16-bit operating systems, including

BIOS functions. The last section describes the approach used to provide each guest

with an interface to access an existing hard disk drive.

3.1 Architecture

The Afterburner framework [1] provides a set of tools and servers to support virtual-

ization on L4. Originally, its main target was to support pre-virtualization, a technique

similar to para-virtualization. Pre-virtualization maintains hypervisor and guest OS

neutrality by introducing an automated two stage process. In the first stage the com-

piler automatically locates privileged instructions and pads them with spaces. The

produced binary executes both on raw hardware and on a virtual machine monitor. In

the second stage the VMM rewrites the sensitive instructions at runtime.

This framework was recently extended to support hardware-based virtualization [3].

The architecture consists of the following 4 components, as shown in figure 3.1:

• L4 is a microkernel and is used as the Hypervisor. It is also capable to support

7

CHAPTER 3. DESIGN AND IMPLEMENTATION 8

VMM1 VMM2 VMM3

Guest

1

Resource Monitor

L4

Guest

3

Guest

2

Figure 3.1: Virtualization Architecture

hardware assisted virtualization [4], what we will describe in more detail in the

next section.

• Resource Monitor is the root server of all virtual machine monitors. Its task

is to manage all physical resources available and hand them out to the virtual

machines if necessary; it ensures however, that only one virtual machine gets a

physical resource at a particular time (except for shared devices). During system

startup, the resource monitor creates one virtual machine monitor per virtual

machine and allocates the requested size of memory, as specified at command

line.

• The Virtual Machine Monitor (VMM) manages the virtual machine environment.

Most importantly, the VMM handles privileged instructions executed by the

guest operating system. Depending on the VMM’s type, instructions involving

device accesses are either emulated in the VMM itself, or forwarded to the real

hardware. At the moment, the VMM is capable of emulating a programmable

interrupt controller (PIC), a peripheral component interconnect (PCI) bus, and a

serial port controller.

• Guest hosts the guest operating system.

3.1.1 L4/VT Extensions

The L4 microkernel is a second generation microkernel developed by the System Ar-

chitecture Group at the University of Karlsruhe. It provides abstractions for address

spaces, threads and communication primitives (Inter Process Communication - IPC).

Recent processor architectures introduced hardware extensions to support virtualiza-

tion. To support the Intel VT-x hardware virtualization in L4, some small changes on

the thread and address space abstractions were required. These modifications can be

classified into the following 4 categories:

VCPU Thread L4 already provides the abstraction of threads. To represent the pro-

cessor of a virtual machine, the thread control blocks (TCBs) were extended to include

the Virtual Machine Control Structure (VMCS), that contains the virtual processor

state.

CHAPTER 3. DESIGN AND IMPLEMENTATION 9

VM-Exit Handler On virtualization sensitive instructions the processor generates a

VM-Exit and stores the current processor context into the guest state area of the VMCS.

Additionally, the VM-Exit handler stores the remaining processor context (general pur-

pose registers) onto the kernel stack. After this, the cause of the exit is obtained by read-

ing the appropriate VMCS field. After handling the fault the VCPU context is reloaded

and execution of the VM is resumed with a VM-Entry, that switches to non-root mode.

Virtualization Fault Protocol On most VM-Exits, L4 generates a virtualization fault

message and sends it to the corresponding VMM via standard IPC mechanism, similar

to page faults. The message contains the exit reason and, depending on the reason,

additional information such as guest register content. The VMM can then handle the

fault and send back a virtualization reply message, again via IPC. The reply messages

allows the VMM to modify the VCPU state, request additional state, or simply resume

execution. It can also be used to inject events such as exceptions or interrupts into the

guest.

Shadow Pagetable The shadow pagetable provides the necessary management to

support virtual memory. Instead of having access to real physical memory, the guest

OS runs in its own L4 address space, backed by virtual memory, and has to consider

this as physical memory. This introduces two translations: from guest-virtual to guest-

physical and from guest-physical to host-physical. The shadow pagetable caches theses

two translations in a single translation (guest-virtual to host-physical). When the guest

is running, the processor then uses the shadow pagetable for address translation.

3.2 Legacy Processor Support

When a processor is powered up or reset, it is placed in real-address (16-bit) mode.

This mode is almost identical to the execution environment of the Intel 8086 processor.

Virtually any program developed to run an on Intel 8086 processor will also run on IA-

32 processors in this mode. To provide guest operating systems in an hardware-based

virtualization environment with this mode, several constraints have to be considered;

first of all security. The guest application should be run in a protected environment,

which prevents it from interfering with any other applications or components in the

system, especially with the hypervisor (L4).

On the IA-32 processor architecture, there are the following three possibilities to

support 16-bit mode compatible with the original 8086 processor [10]:

• Real-address mode provides the programming environment of the original Intel

8086 on newer CPUs; it does not provide any protection to the hypervisor.

• Virtual-8086 mode provides virtually the same environment as real-address mode,

i.e. it emulates an Intel 8086 processor. But actually it is a special type of a task

that runs in protected mode. The major difference between the two modes is that

in virtual-8086 mode the emulator uses some protected-mode services such as

interrupt and exception-handling and paging facilities.

• Full Emulation uses an instruction set emulator to emulate a 8086 processor

in the VMM, which is always possible, independent from the processor archi-

tecture. However, the speed penalty inherent in interpretation of the executed

instructions is generally too high.

CHAPTER 3. DESIGN AND IMPLEMENTATION 10

Using real-address mode is not possible, because is not supported in VMX operation

on current VT-x processors. Full emulation would introduce a too high performance

penalty. Using the remaining virtual-8086 mode also assures the mandatory protec-

tion to run native 16-bit programs. The special exception-handling capabilities of this

mode, also allows the VMM to handle privileged instructions. Whenever a 16-bit pro-

gram tries to execute a sensitive instruction, the processor raises a general-protection-

fault (GP). The hypervisor (L4) then sends a fault message to the corresponding VMM

thread, which handles the faulting instruction. That means it either emulates the in-

struction or executes it on bare hardware and returns the result, depending on the VMM

type.

However, support for running the processor in 16-bit mode is not yet sufficient

to create an execution environment compatible with the original IBM platform; we are

still missing the important BIOS services. The next section is dedicated to this problem

and section 3.2.2 finally shows how we start a completely compatible virtualization

environment.

3.2.1 BIOS Services

To further enhance 16-bit compatibility, we also have to provide the native execution

environment of a PC, as described earlier. This includes to provide all BIOS Services

commonly used by older and newer operating systems.

We decided to use an already existing open source System BIOS and VGA BIOS

implementation, originally developed for the Bochs IA-32 Emulator [6]. This imple-

mentation is widely-used in open source virtualization and system emulator projects [15,

18] and has proven to be stable and complete in terms of supported guest operating sys-

tems.

When operating in real-address mode, the VMM must provide appropriate interrupt-

handling facilities, which also implicates access to the BIOS services. The VMM

differentiates between the two types of interrupts; Hardware interrupts and Software

interrupts. Hardware Interrupts are generated either by virtual or real devices and the

VMM receives a request to inject an interrupt with the corresponding vector number,

dependent on the PIC configuration. Software Interrupts are issued from the guest op-

erating system via the INT instruction and the VMM receives a virtualization fault

message from L4. On both interrupt types, the VMM request additional VCPU state

before continuing. This includes the SP, EFLAGS, IP, CS, and SS registers. The CS,

IP and EFLAGS register are pushed onto the guests stack to allow the IRET instruc-

tion at the end of the interrupt handler procedure to resume execution of the interrupted

program. The VMM then looks up the corresponding interrupt vector in the guest’s

interrupt vector table. With the virtualization fault reply message, it sets the new stack

and instruction pointer, that will execute the appropriate BIOS or OS interrupt handler

on VM resume.

One of the problems that arose during testing was caused by the fact that the BIOS

was originally developed for the BOCHS IA-32 emulator, that emulates a complete x86

environment, including all common hardware devices. In conjunction with a VMM

that forwards device access to the real hardware, several devices did not work prop-

erly, mainly caused by timing dependencies. Timing problems occurred, when the

BIOS was waiting for a device to complete a requested operation. In a fully emulated

environment most of the emulated devices complete an operation prior to resuming ex-

ecution of the guest; however on real device access this is not the case. The required

waiting time is spend in a so called delay loop, which is a simple loop repeated for a

CHAPTER 3. DESIGN AND IMPLEMENTATION 11

specified number of times. On faster processors however, these loops are generally exe-

cuted too fast, resulting in completion at at time when the device has not yet completed

its operation. It was therefore necessary to modify some delay loops, i.e. increase the

loop count, which solved the problems in the majority of cases.

3.2.2 Starting a virtual machine

At system startup we have to take care, that the execution environment is set up cor-

rectly to run native 16-bit guests. The whole system is started with the help of the

GRUB bootloader. The desired virtualization environment, that supports legacy pro-

cessor and devices, is configured via command line parameters. An exemplary GRUB

boot entry would look like:

kernel=(nd)/tftpboot/schilli/kickstart kmem=64M

module=(nd)/tftpboot/schilli/pistachio-vt

module=(nd)/tftpboot/schilli/sigma0

module=(nd)/tftpboot/schilli/l4ka-resourcemon

module=(nd)/tftpboot/schilli/afterburn-wedge-l4ka-guest-vdev \

vmstart vmsize=512M wedgeinstall=16M wedgesize=32M hd0=33,1 hd1=33,2

module=(nd)/tftpboot/schilli/systembios

module=(nd)/tftpboot/schilli/vgabios

On system startup, the resource monitor creates a monitor thread (VMM) for each

virtual machine and reserves the specified amount of memory for it. The monitor thread

creates a new L4 address space for the guest and loads two binary images into it at the

fixed location shown in figure 3.2. These two images contain the system BIOS and the

VGA BIOS code that is fundamental to achieve a complete and compatible native 16-

bit execution environment. Prior to starting the virtual machine, the processor is set up

Address Space

VGA BIOS

System BIOS
0xF0000

0xC0000

Figure 3.2: BIOS Image Locations

to start in virtual-8086 mode and it’s initial instruction pointer is set to 0xfe05b, which

is also called the BIOS POST Entry Point. This assures that, once the guest is started,

the BIOS is proper initialized and will establish all necessary device configurations.

After successful initialization and configuration, the BIOS boot up procedure will then

initialize all interrupt vectors, find any existing ROM extensions (in our case a VGA

ROM) and initialize it, determines a bootable devices and tries to load and execute a

master boot record (MBR), which will finally start an operating system.

CHAPTER 3. DESIGN AND IMPLEMENTATION 12

3.3 IDE Emulation

To share an existing hard disk drive among several different guest operating systems,

we have to provide each guest with an interface to access it. The Advanced Technology

Attachment (ATA) standard, also known as Integrated Drive Electronics (IDE), is a

quasi standard interface for connecting storage devices such as hard disk and CD-ROM

to a personal computer for almost 20 years. Recent versions of this standard allow to

connect up to four devices and specify both programmed input/output (PIO) and direct

memory access (DMA) transfers, which permits transfer rates of up to 133 MB/s.

In this section we describe a software emulated ATA (IDE) controller and hard disk,

realized with the help of a device driver operating system (DD/OS) [13]. The DD/OS

introduces a client-server model, that enables any external processes (clients) access

to its device drivers. This is necessary because of the stateful design of an ATA disk

controller. Independent from the data corruptions that can occur, when multiple guests

use the same filesystem at a time, an IDE controller is not capable of handling multiple

access from different operating systems. The DD/OS enables us to share existing hard

disks at the granularity of partitions. That means it is possible to make e.g. the first

partition available to one guest and the second partition of the same hard disk available

to another guest.

VMM1 VMM2

Guest DD/OS

Shared Memory Shared Memory

Block Server

Native Hard Disk

Virtual Hard Disk

Request

Figure 3.3: DD/OS - Client Architecture

DD/OS

The device driver operating system (DD/OS) provides the necessary interface to access

a hard disk from external applications. The DD/OS itself is a special guest OS with

legacy device drivers, that have passthrough access to the native hardware. Running

the device drivers with its original operating system enables extensive reuse of existing

device drivers and reduces engineering effort. Hosting the DD/OS in its own virtual

machine also isolates the devices drivers from other components, which reduces effects

of malfunctioning devices and/or drivers and generally improves the system depend-

ability.

To provide clients access to its devices, the DD/OS exports a virtual interface to the

Block Server, that allows access to the linux block layer. Devices are addressed over

their corresponding major/minor number [14].

All requests are managed through a shared memory concept, as shown in figure 3.3.

On client registration the server makes several pages of shared memory available to the

client. This memory is arranged as a ring descriptor or producer-consumer ring as used

CHAPTER 3. DESIGN AND IMPLEMENTATION 13

in Xen [18].

When the client issues a request, the VMM injects a virtual interrupt into the

DD/OS to cause invocation of the appropriate block server function. When the server

signals the client in response, the VMM injects a virtual interrupt as well.

3.3.1 Generic PCI IDE controller

IDE controllers have a well known programming interface at fixed addresses and using

fixed IRQs. Most OSes, particularly older and native 16-Bit ones - including the BIOS,

have code that deals directly with this interface. It is therefore essential to support this

interface in order to provide guest operating systems with access to hard disk drives.

This also assures that we sustain compatibility with older systems and cover a large

base of supported platforms.

We extended the existing PCI-bus model to propagate a new PCI IDE device. The

IDE controller itself is implemented in the so called compatibility mode, i.e. the con-

troller registers are determinated to fixed IO locations and fixed IRQs as shown in

table 3.1. This mode enables operating systems that do not support the PCI-bus access

to the controller at the presumed locations.

Channel Command Block

Registers

Control Block

Register

IRQ

Primary 1F0h-1F7h 3F6h 14

Secondary 170h-177h 376h 15

Table 3.1: Compatibility mode resource usage

A generic PCI IDE controller is capable of supporting up to two IDE channels with

two devices per channel for a total of four IDE devices. The emulated devices are spec-

ified as command line parameters of the corresponding VMM in the GRUB boot entry.

The exemplary entry in section 3.2.2 shows these parameters (hd[0,3]=major,minor).

The VMM then emulates every access to the default IO ports from table 3.1 according

to the ATA/ATAPI-6 specification [17].

Device Operations

An IDE device basically supports commands, that can be grouped into the following

three major different classes, that must be properly handled by the VMM:

• Non-data commands involve no data transfers from or to a device. Commands

of this class query a status, query or set capabilities of a device, or execute func-

tions, that only return a status. This class can be handled solitary by the VMM

by setting or reading the appropriate registers.

• Data-in commands transfer one or more blocks of data from the device to the

host. If the guest issues a command of this class, the VMM invokes the appro-

priate function of the block server interface to read the requested block(s) from

hard disk into a local cache. When the request has completed, the VMM in-

jects a hardware interrupt to signal either an error during execution or transfer

completion of the data block. On success the guest can read the requested block

by repeatedly reading the data register until all data for the command has been

transfered.

CHAPTER 3. DESIGN AND IMPLEMENTATION 14

• Data-out commands transfer one or more blocks of data from the host to a de-

vice. If the guest issues a command of this class, it first transfers the block(s) by

repeatedly writing to the data register. The VMM saves this data in a local cache

and as soon as all data for the command has been transfered, the VMM issues a

block server to transfer the data out of the cache onto the hard disk. Again, the

VMM injects a hardware interrupt to signal either success or error.

On bare hardware PIO mode operation requires a great deal of CPU overhead to

configure a data transaction and transfer the data. In hardware-assisted virtualization

environments however, this method further decreases performance. Each IO port ac-

cess involves a privileged instruction, which will generate lots of traps to the hypervi-

sor. Because of this general inefficiency of PIO mode operations, it was advantageous

to implement some kind of DMA transfers, which we will present in the following

section.

3.3.2 DMA Acceleration

Today, many hardware systems use direct memory access (DMA) including disk drive

controllers, graphics cards, network cards, and sound cards. DMA channels allow to

transfer data to and from devices with much less CPU overhead than without a DMA

channel. Because the DD/OS linux itself uses DMA to transfer the requested data, it

offers the possibility to provide an emulated DMA disk controller for the guest as well.

This allows transferring data to and from the guest directly, without an indirection over

the VMM’s local cache. In contrast to other virtualization software, the DMA transfers

will not be software emulated but executed on a real DMA controller, resulting in a real

reduction of CPU load.

A very important consideration when choosing a device to emulate is how broadly

supported it is. We choose to implement the IDE controller part of the Intel 82371AB

(PIIX4) [12], a common bus master DMA controller that is supported by a large number

of platforms. The bus master programming interface is an extension of the standard

IDE programming interface. This means that devices can always be addressed using the

standard interface, with the bus master functionality only used when appropriate. This

also means that the generic IDE controller is a prequisite for using DMA functionality.

The three basic classes of device operation apply for DMA accelerated transfers as

well, and are handled from the VMM almost identical.

As with the generic PCI IDE controller, the existing PCI-bus model was extended to

propagate the new device and to determine the I/O ports for device access. Any access

to these ports claimed by the DMA controller are trapped and emulated according to

the specification.

Physical Region Descriptor

The physical memory region to be transferred on a DMA transaction, is described

by a physical region descriptor (PRD) as shown in figure 3.4. The PRDs are stored

sequentially in a descriptor table in memory. Each PRD entry is 8 bytes in length. The

first 4 bytes specify the base address of a physical memory region, the next 2 specify

the size or transfer count of the region, and bit 7 (EOT) in the last byte indicates if this

is the final PRD in the descriptor table. The guest prepares this PRD table in memory

and provides the starting address by loading the PRD table pointer register prior to

engaging the buster master function.

CHAPTER 3. DESIGN AND IMPLEMENTATION 15

Byte 0Byte 1Byte 2Byte 3

EOT

Physical Base Address

Reserved Byte Count

Main

Memory

Figure 3.4: Physical Region Descriptor Table Entry

To support this kind of transfer, we extended the ring descriptor to hold a copy of

a PRD table, which the block server will use to program the requested data transaction

within linux. The linux block layer interface allows to specifies multiple vectors with

a single request. This prevents splitting up a DMA transfer into multiple requests and

thus does not result in any performance loss.

Chapter 4

Evaluation

In this chapter I will first give an overview about the different operating systems which

have successfully been booted. The next chapter gives an evaluation of the performance

achieved by using the emulated hard disk driver in both PIO-only and DMA mode. All

tests were performed on an Intel-VT CPU with 3.6 GHz and 2GB RAM. The used

hard disk drive was a Maxtor STM3802110A with 80GB, 2MB cache, UDMA 100

interface, connected to a Promise Ultra 133 TX2 controller.

In tests involving the hard disk, the VMM runs one instance of the DD/OS with

passthrough access to hardware devices and one instance of the guest with emulated

devices. In all other cases, we run only a single instance of the guest with passthrough

access.

4.1 Booting

In this section I will give an overview about which systems we are now able to boot

with the help of a virtual BIOS.

FreeDOS

The VMM successfully boots a previous installed 16-bit FreeDOS 1.0 [11] from hard-

disk. The command prompt is fully usable over the keyboard and the user can start

arbitrary system programs. Additionally it is possible to run OpenGEM, a graphical

user interface (GUI) and application set similar to Win 3.x from Microsoft. Because of

a missing emulated graphic card, GEM uses a VESA screen driver for output, which

allows a resolution of 800x600 (SVGA) and writes its output directly into the frame-

buffer.

FreeDOS and other 16-Bit operating systems depend a lot from BIOS services,

appendix A lists the most important ones, that have been tested and are known to work.

Windows XP

We have made some effort to start an already installed Microsoft Windows XP. After

initial problems regarding the execution environment, we were able to start Windows

at least partially. At first we tried to start Windows with only emulated software inter-

rupts. After some time during system initialization, Windows tried to restart the sys-

tem. We believe that this is caused by missing configuration tables in memory, which

16

CHAPTER 4. EVALUATION 17

are normally established during system startup by the BIOS. Using an emulated BIOS

resolved this issue. At the moment Windows starts up to the boot menu, where you

can select different boot methods, like safe mode or debug mode. Continuing startup

results in Windows setting up debug register, which is currently not handled by the VM

monitor. Further work has to be done to fully support Windows as a guest.

4.2 Hard Disk Drive

Starting

The VMM starts successfully FreeDOS, Linux and parts of Windows XP from an emu-

lated hard disk. The main difference between FreeDOS and all other operating systems

is, that it does not use interrupts to signal command completion. Hosts can disable in-

terrupt delivery, by writing a 1 to bit 1 in the device control register. They have to poll

the status register instead, and wait for busy to become 0, which indicates command

completion. While Linux boots with both, the generic IDE controller and the DMA

controller, FreeDOS and Windows use only the generic part, because FreeDOS and

this early stage of Windows use only BIOS services, that don’t support DMA transfers.

Performance

The following gives an overview of the results of benchmarking the emulated hard

disk as well as a short evaluation of the results. Table 4.1 shows the performance of

sequential data reads (bursts) under a linux guest, without any filesystem overhead,

compared to the results on native hardware. To test PIO mode, the hard disk drive was

forced with hdparm to disable DMA transfers.

Native [MB/s] VM [MB/s]

PIO mode 1.9389 2.7976

DMA mode 60.0213 5.5950

Table 4.1: Sequential read of 8KB blocks from hard disk

The curiosity in PIO mode, that the VM is faster than the native hardware, is caused

by the fact that the DD/OS actually uses DMA to transfer the requested block into the

VMM’s local cache.

The problem causing this massive performance loss on DMA transfers results pri-

marily from the DD/OS linux. Tests have shown that the major amount of time was

spend in linux waiting for the request to complete. A single request took about 18.86ms

on average, whereas about 2.16ms resulted from emulation and signaling in the VMM

and 2.68ms from overhead in the block server. The remaining 14.02ms was the average

time needed to complete the request within linux. According to the ATA specification,

a host can request up to 256 sectors with a single read command, which is exactly

128KB. Even if linux would always request a maximum sector number, it would still

result in only about 9.129 MB/s throughput. Compared to the potential native perfor-

mance, the DD/OS is much too slow. We suspect that this may be caused by scheduling

effects.

Appendix A

Supported BIOS Services

BIOS Service Status

INT 08h (System Timer) OK

INT 09h (Keyboard Data Ready) OK

INT 10h (Video) see table A.2

INT 11h (Get Equipment List) OK

INT 12h (Get Memory Size) OK

INT 13h (Fixed Disk/Floppy) see table A.3

INT 14h (Serial Communication) unknown

INT 15h (System Service) fails

INT 16h (Keyboard Service) see table A.4

INT 17h (Printer Service) unknown

INT 18h (Diskless Boot Hook) OK

INT 19h (System Bootstrap Loader) OK

INT 1Ah (System Time) unknown

INT 1Ch (User Timer Tick) dummy, hooked by OS

Table A.1: BIOS Service Functions

Video BIOS Function Status

AH=00h (Set Video Mode) partly1

AH=01h (Set Text Cursor Shape) unknown

AH=02h (Set Cursor Position) OK

AH=03h (Get Cursor Position) OK

AH=05h (Set Active Page) OK

AH=06h (Scroll Up) OK

18

APPENDIX A. SUPPORTED BIOS SERVICES 19

AH=07h (Scroll Down) OK

AH=08h (Read Character Attribute) OK

AH=09h (Write Character Attribute) OK

AH=0Ah (Write Character) OK

AH=0Ch (Write Pixel) fails 2

AH=0Dh (Read Pixel) fails 2

AH=0Eh (Teletype Output) OK

AH=11h (Character Generator) fails 2

AH=13h (Write String) OK

AH=0Fh (Get Current Video Mode) OK

AH=4fh (VBE) fails

Table A.2: Video BIOS Service Functions

Fixed Disk Function3 Status

AH=00h (Reset Disk System) OK

AH=01h (Read Disk Status) OK

AH=02h (Read Sector CHS) OK

AH=03h (Write Sector CHS) OK

AH=04h (Verify Sector) OK (dummy)

AH=05h (Format Track) OK (dummy)

AH=08h (Get Drive Parameter) OK

AH=10h (Check Drive Ready) OK

AH=15h (Get Disk Size) OK

AH=41h (IBM/MS Installation Check) OK

AH=42h (IBM/MS Extended Read) OK

AH=43h (IBM/MS Extended Write) OK

AH=44h (IBM/MS Extended Verify) OK (dummy)

AH=48h (IBM/MS Get Drive Parameter) OK

Table A.3: Fixed Disk Service Functions

1The VGA Bios is specific to the plex86/bochs Emulated VGA card and not intended to drive a physical

card. However, most standard text modes work fine.
2Graphic modes incompatible with physical VGA card.
3Only hard disk functions were taken into account. Any floppy disk or ATAPI (cdrom) functions (includ-

ing El-Torito Boot) were not tested and are subject to fail.

APPENDIX A. SUPPORTED BIOS SERVICES 20

Keyboard Function Status

AH=00h (Read Keyboard) OK

AH=01h (Check Status) OK

AH=02h (Get Shift Flag Status) OK

AH=05h (Store Keystroke) unknown

AH=0Ah (Get Keyboard ID) OK

AH=10h (MF-II Read Keyboard) unknown

AH=11h (MF-II Check Status) unknown

AH=12h (MF-II Get Extended Status) unknown

Table A.4: Keyboard Service Functions

Bibliography

[1] Afterburner framework. http://www.l4ka.org/projects/

virtualization/afterburn/.

[2] Keith Adams and Ole Agesen. A comparison of software and hardware tech-

niques for x86 virtualization. SIGPLAN Not., 41(11):2–13, 2006.

[3] Martin Baeuml. Hardware virtualization support for Afterburner/L4, May 4 2007.

[4] Sebastian Biemueller. Hardware-supported virtualization for the L4 Microkernel,

September 29 2006.

[5] Thomas C. Block. Standard BIOS 32-bit Service Directory Proposal. Phoenix

Technologies Ltd., June 1993.

[6] Bochs. The Open Source IA-32 Emulation Project. http://bochs.

sourceforge.net.

[7] Ralf Brown. The x86 Interrupt List. http://www.ctyme.com/rbrown.htm.

[8] IBM Corporation. Technical Reference: Personal Computer Hardware Reference

Library. march 1983.

[9] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual: Volume 1: Basic Architecture, November 2006.

[10] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual: Volume 3A: System Programming Guide, Part 1, November 2006.

[11] FreeDOS. A complete, free, 100% MS-DOS compatible operating system.

http://www.freedos.org.

[12] Intel Corporation. 82371AB PCI-TO-ISA/IDE Xcelerator (PIIX4) Datasheet,

April 1997.

[13] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified de-

vice driver reuse and improved system dependability via virtual machines. In

Proceedings of the 6th Symposium on Operating Systems Design and Implemen-

tation, San Francisco, CA, December 2004.

[14] Torben Mathiasen. Lanana Linux Device List. http://www.lanana.org/

docs/device-list/.

[15] Qemu. A Generic and Open Source Machine Emulator and Virtualizer. http://

fabrice.bellard.free.fr/qemu/index.html.

21

http://www.l4ka.org/projects/virtualization/afterburn/
http://www.l4ka.org/projects/virtualization/afterburn/
http://bochs.sourceforge.net
http://bochs.sourceforge.net
http://www.ctyme.com/rbrown.htm
http://www.freedos.org
http://www.lanana.org/docs/device-list/
http://www.lanana.org/docs/device-list/
http://fabrice.bellard.free.fr/qemu/index.html
http://fabrice.bellard.free.fr/qemu/index.html

BIBLIOGRAPHY 22

[16] Adam Sulmicki. A Study of BIOS Services as used by Microsoft Windows XP.

http://www.missl.cs.umd.edu/winint/index2.html.

[17] T13. Information Technology - AT Attachment with Packet Interface - 6

(ATA/ATAPI-6), February 2002.

[18] Xen. Open Source Hypervisor. http://www.xensource.com.

http://www.missl.cs.umd.edu/winint/index2.html
http://www.xensource.com

	Introduction
	Background and Related Work
	Virtualization
	Full Virtualization
	Para-Virtualization
	Hardware-assisted Virtualization

	IBM PC Hardware Platform
	Memory Model
	BIOS Interrupt Services

	Intel VT-x
	Xen

	Design and Implementation
	Architecture
	L4/VT Extensions

	Legacy Processor Support
	BIOS Services
	Starting a virtual machine

	IDE Emulation
	Generic PCI IDE controller
	DMA Acceleration

	Evaluation
	Booting
	Hard Disk Drive

	Supported BIOS Services

