
Extending GPU4FS with Advanced
File System Functionalities

Bachelor’s Thesis
submitted by

cand. inform. Nico Rath
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: M.Sc. Peter Maucher

29. April 2023 – 29. August 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I
did not use any source or auxiliary means other than these referenced. This thesis
was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, August 29, 2023

iv

Abstract

Persistent non-volatile memory (PMem) gained more and more attention over the
years. When compared to SSDs, it shines with lower latency and higher read
throughput. However, its write bandwidth is a major drawback. As PMem is
connected via the memory bus, the OS does not detect an IO-bound task; which
lets CPU cores stall more likely. Shifting PMem interaction to an accelerator
is one way to resolve this problem. GPU4FS is a graphics card accelerated file
system. However, it does not provide any advanced features. In this thesis, we
extend GPU4FS with checksum and deduplication functionality. While checksums
protect a file system’s content against corruption, deduplication can save storage
by detecting duplicate data blocks. Both functionalities are suitable for a GPU, as
their implementation is parallelizable. Our results show that GPU acceleration of
those features becomes more feasible the more load the file system faces. Thus, a
hybrid mode with mixed CPU/GPU utilization seems like a promising concept.

Persistenter, nicht-flüchtiger Speicher ist ein neu aufkommendes Feld im Bereich
der Speichergeräte. Dieser glänzt durch niedrige Latenz und hohe Leserate. Ein
Nachteil des sogenannten PMems ist seine vergleichsweise niedrige Schreibband-
breite. Da PMem über den Speicherbus an die CPU angebunden wird, erkennt das
Betriebssystem einen interagierenden Prozess als CPU gebunden; was zu einem
stallen der involvierten Kerne führt. Das Auslagern dieser Interaktion auf einen
Beschleuniger kann dieses Problem lösen. GPU4FS implementiert ein Dateisystem
vollständig auf der GPU, dem allerdings erweiterte Funktionen fehlen. Wir erweit-
ern GPU4FS um Checksum und Deduplication Funktionalitäten, welche aufgrund
ihrer Parallelisierbarkeit für eine GPU-Beschleunigung geeignet sind. Während
eine Prüfsumme (Checksum) fehlerhaft gespeicherte Dateien identifizieren kann,
bietet Deduplizierung (Deduplication) mehr Speicherplatz durch Duplikatelimina-
tion. Unsere Ergebnisse zeigen, dass die GPU bessere Ergebnisse liefert, wenn sie
mit großen bzw. vielen Dateien zu tun hat. Wenn sie kleine bzw. wenige Dateien
bearbeiten soll, ist sie der Flaschenhals. Daher schlagen wir weitere Forschung zu
einem Hybrid-Modus vor, der die CPU unter niedriger Last verwendet und erst bei
steigender Last auf die GPU umschaltet.

v

vi CHAPTER 0. ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 5

2 Background 7
2.1 Storage Devices . 7

2.1.1 Block-Addressable Devices 7
2.1.2 Byte-Addressable Devices 8

2.2 File Systems . 9
2.2.1 Organization . 9

2.3 Checksum Algorithms . 11
2.3.1 Cyclic Redundancy Check 11
2.3.2 Fletcher Checksum . 11
2.3.3 Cryptographic hash functions 12
2.3.4 BLAKE3 . 14
2.3.5 Discussion . 18

2.4 Deduplication . 18
2.4.1 Motivation . 18
2.4.2 Chunk Sizes . 19
2.4.3 Discussion . 20
2.4.4 Hashing Techniques . 20

2.5 GPU Programming . 21
2.5.1 Towards GPU Architectures 21
2.5.2 Programming Model . 22
2.5.3 Vulkan . 23

3 Related Work 27
3.1 GPU4FS . 27

3.1.1 Essentials . 27

1

2 CONTENTS

3.1.2 Block Pointer Design . 28
3.1.3 Block Design . 28

3.2 EXT4 . 29
3.3 Btrfs . 30
3.4 ZFS . 31

3.4.1 Checksumming . 32
3.4.2 Deduplication . 33

3.5 Additional File Systems . 34
3.5.1 NOVA . 34
3.5.2 User Space File Systems 34

4 Design 35
4.1 Checksumming . 35

4.1.1 Block Pointer Design . 36
4.1.2 Block Design . 36
4.1.3 Discussion . 42

4.2 Deduplication . 45
4.2.1 File System Design . 45
4.2.2 Discussion . 53

5 Implementation 57
5.1 Checksumming . 57

5.1.1 Checksum Algorithm — BLAKE3 57
5.1.2 File System Integration 64
5.1.3 Future Work — Update and Deletion 68
5.1.4 Future Work — Outlook 69

5.2 Deduplication . 70
5.2.1 Preparing the Deduplication Shader 70
5.2.2 Deduplication Shader . 72
5.2.3 Future Work — Update and Deletion 76
5.2.4 Future Work — Outlook 77

5.3 Resolving RAW Conflicts . 79
5.3.1 The Vulkan Approach 79
5.3.2 The GPU4FS Approach 80

6 Evaluation 87
6.1 Testing Methodology . 87

6.1.1 Machine “Optane” . 88
6.1.2 Machine “RX7900XTX” 88
6.1.3 Machine “Laptop Nvidia” 88

6.2 Checksumming . 89

CONTENTS 3

6.2.1 Checksumming — Raw Algorithm 89
6.2.2 Checksumming — GPU4FS Integration 92

6.3 Deduplication . 95
6.4 Shader Pipeline . 98

6.4.1 The Vulkan Approach 98
6.4.2 The GPU4FS Approach 100
6.4.3 Towards Low Pressure 104
6.4.4 Vulkan-related Issues . 105

6.5 Discussion . 105
6.6 Future Work . 107

6.6.1 Checksumming . 107
6.6.2 Deduplication . 107

7 Conclusion 109

Bibliography 111

4 CONTENTS

Chapter 1

Introduction

In recent years, modern computing systems gained more and more performance in
terms of Central Processing Unit (CPU), Random Access Memory (RAM), and
also secondary storage speed [1]. Within the last decades, CPUs have comprised
not only one but multiple cores to work on multiple processes simultaneously [2].
In terms of Flynn’s Taxonomy [3], multicore CPUs follow the “Multiple Instruc-
tion, Multiple Data” (MIMD) architecture with a relatively low level of parallel
processing. Modern multicore CPUs for example, contain 8 to 32 cores on average,
which allow a fully parallel execution of 8 to 32 instructions [4]. A so-called “Sin-
gle Instruction, Multiple Thread” (SIMT) architecture is implemented by modern
Graphics Processing Units (GPUs) [5]. The main purpose of a GPU is image ren-
dering, which is a highly parallel task [6]. Although they can compute sequentially,
GPUs are designed to process hundreds or thousands of instructions simultaneously.
In contrast to CPUs, GPUs contain many small cores instead of a few big cores [7].

Modern file systems not only allow writing and reading data from and to a disk,
they provide more advanced features. Btrfs [8] or ZFS [9] as modern Copy-On-
Write (COW) file systems implement some advanced features like deduplication,
snapshots, mirroring, or striping. As most file systems generally divide a disk into
blocks with a fixed size, most of the file system tasks are done in parallel fashion:
One specific task (checksumming, deduplication, read) usually processes multiple
blocks. These tasks are capable of processing the involved blocks independently
of each other. However, CPUs are designed to work on sequential operations. In
addition, modern file systems require more compute resources from a CPU to
provide their advanced features [10]. Consequently, those resources cannot be used
for application-related tasks. Thus, GPUs with their parallel processing nature,
could be the perfect accelerator for those file system features while reducing stress
on the CPU.

Non-Volatile Memory (NVM) is one type of secondary storage. Intel Op-
tane [11] as prominent representative is designed to provide DRAM-comparable

5

6 CHAPTER 1. INTRODUCTION

performance [12] with parallel access. The fastest type of Intel Optane connects
directly to the memory bus of some Intel CPUs, allowing them to access Optane
the same way as main memory [13]. Optane’s write performance is not as fast as
modern main memory, especially under moderate load. Thus, CPU cores are likely
to stall [13, 10]. Shifting those file system tasks to another processing unit allows
the CPU to work on application-related tasks instead of waiting for the storage
device.

Therefore, the evaluation of GPU-based file systems seems promising. The file
system GPU4FS [10] uses the GPU to accelerate file system calls, with NVM as
its main storage target. However, GPU4FS currently does not provide advanced
features. The goal of this thesis is to extend GPU4FS with checksum capabilities
and to implement deduplication as one use case of checksums. Furthermore, we
target minimal overhead and want to evaluate the feasibility of those features in
terms of performance. Additionally, we contribute to GPU4FS’s original goal of
reducing as much stress on the CPU as possible.

This thesis is organized as follows: Chapter 2 introduces the necessary back-
ground about file systems, checksums, deduplication, and GPU programming.
Chapter 3 continues with an overview of the original GPU4FS as well as related
and well-known file systems. In Chapter 4, we introduce our file system de-
sign, which includes both checksumming and deduplication. Chapter 5 provides
implementation details about the ported checksum algorithm as well as the file
system features. Within Chapter 6, we evaluate the features and summarize further
implications for GPU4FS.

Chapter 2

Background

The following section introduces important background for this thesis. We initially
give a short summary of different storage devices, introduce important taxonomies
of a file system and outline the state-of-the-art checksum algorithms and dedu-
plication. Furthermore, we explain GPU-related concepts in combination with
thesis-related aspects of the GPU framework Vulkan [14].

2.1 Storage Devices
The variety of available storage devices evolved significantly in recent years. Not
only shifted the primary storage medium from slow Hard Disk Drives (HDDs) to
fast Solid State Disks (SSDs), new storage technologies also emerged. This section
gives an overview of various storage devices, which we mainly differentiate by
their addressing granularity.

2.1.1 Block-Addressable Devices

Block-addressable devices are the most common non-volatile storage devices — at
least in the desktop market. Well-known representatives of this area are HDDs and
SSDs. While an HDD consists of spinning disks, an SSD consists of NAND flash
cells. The HDD’s spinning disks are accessed via a moving read/write head. By
design, an SSD is much faster than an HDD, especially when it comes to random
access [15].

An HDD is typically accessed via SATA [16]. While some modern SSDs still
use a SATA controller, the overhead of the SATA protocol started to dominate their
access time. Thus, so-called Non-Volatile Memory express (NVMe) SSDs evolved.
Those are connected via PCIe bus, which provides much higher speeds than SATA;
one single PCIe 3.0 lane provides 1 GB/s, while SATA3 provides a maximum of

7

8 CHAPTER 2. BACKGROUND

600 MB/s [17]. The design goals of NVMe drives were low latency, performance,
and parallelism. This implies future relevance for an accelerated file system [17].

As the name implies, block-addressable devices cannot be accessed byte-
individually: The Operating System (OS) must request a contiguous, hardware-
defined area of bytes instead of individual bytes. For example, a typical HDD
sector consists of 512 bytes. Thus, requesting one byte on the application layer
translates to a sector request on the physical layer. Furthermore, writing bytes to
disk results in rewriting the entire sector, not just single bytes [18].

2.1.2 Byte-Addressable Devices
While block-addressable devices are suitable for storing large, contiguous data
patterns, a byte-addressable device is designed to be updated more frequently with
scattered access patterns. Thus, one common representative of byte-addressable
memory is Dynamic Random Access Memory (DRAM). DRAM provides volatile
storage space, which is way faster than any block-addressable device. Typically,
the slower block-addressable devices hold system-related data which is loaded into
DRAM during system boot or on purpose. This allows an application to benefit
from DRAM’s faster speeds [18].

In recent years, a new evolution in the world of byte-addressable devices blurred
the line between the two aforementioned device types: Persistent Memory (PMem)
and, most importantly, Intel Optane ® Dual Inline Memory Modules (DIMMs).
Those storage technologies provide access in byte granularity, while persisting data
non-volatile. Additionally, Optane provides access latencies in the order of 500ns,
which is comparable to DRAM and even faster than NVMe. Optane DIMMs are
connected via memory bus, which makes them accessible the same way as DRAM.
This mitigates protocol-related overhead [19].

However, Intel Optane faces one major downside compared to DRAM and
NVMe SSDs: Writes to an Optane DIMM are relatively slow, resulting in a
maximum bandwidth of around 2 GB/s per DIMM [13]. As Optane is connected
to the memory bus of the CPU, the OS does not detect an I/O task. Thus, operating
cores are stalling, while the OS is not doing a context switch. This results in wasted
valuable CPU time [20].

2.2. FILE SYSTEMS 9

2.2 File Systems

After covering the variety of storage devices, we take a closer look at their logical
organization via file systems. A file system is an essential software part of the
OS, which is responsible for storing any files on storage devices in a reliable
and efficient manner. Excluding some exceptions (e.g., tmpfs [21]), the data will
be persisted. The file system exposes an Application Programmable Interface
(API) towards applications, allowing them to use its capabilities. Contrary to
main memory where each process receives its own address space, a file system’s
design assumes that the stored persistent data needs to be shared between multiple
processes [18].

2.2.1 Organization

As file systems are implemented in software, a variety with different capabilities
exist. While the file system hides the implementation details from user space
by providing a standardized interface like POSIX [22], its internal details are
important for this thesis. We will cover some of them in the following [18].

On-Disk Structures

To organize the contents of a storage device, the file system introduces specific
on-disk structures. These not only organize bytes logically into units commonly
known as files or directories, but are also fundamental for implementing advanced
features like checksumming or deduplication. However, not all file systems need
to implement the following structures similarly.

An inode is the root component of a persisted file. It has a unique identification
number and stores file-related information. Typical examples are type (e.g., file),
length, permissions, and references to the actual file content [18].

Directories organize inodes by referencing the inode number through so-called
hard links. An inode can be referenced by many directories, with different file
names associated. Thus, the file name is stored inside the directory entry, not the
inode [18].

As file systems were originally developed for block devices, they organize
content and their own structures in so-called blocks. Such a block is the smallest
addressable unit on disk. As a block device not always has enough free contiguous
blocks for a whole file, those blocks could be scattered across the drive. Thus,
so-called block pointers address a block uniquely, and store optional metadata.
Block pointers can then be used to reference the file content within an inode. As
an inode is typically fixed-size, it provides limited space for referencing block

10 CHAPTER 2. BACKGROUND

pointers. Some existing implementations solve this problem by utilizing a multi-
level hierarchy of block pointers, similar to a memory page table [23, 24]. This
hierarchy does not allocate data blocks directly within the inode, it references so-
called indirect block pointers which preserve storage for more block pointers [18].

To reduce the amount of block pointers, some implementations refer to the
concept of clusters [25] or extents [23]. Those are an either fixed or variable sized
aggregate of contiguous disk blocks. The concept of extents is found in many file
systems, although they use different terminology to refer to the same principle [18].

When mounting the file system, the driver usually needs knowledge about
some file-system-related configuration. This configuration is stored in the so-called
superblock. The superblock is stored in a fixed location on-drive. This allows the
file system driver to load its content safely, as it can load it from a fixed address
regardless of the drive’s size or type [18].

Digression: Kernel Space vs. User Space

Within OSes, a process’s execution context is divided into two categories: The
kernel space and the user space. Communication between those two spaces happens
through so-called system calls. Such a call allows a user space process to invoke a
kernel space functionality. Consequently, a system call transfers control into the
OS by executing a “trap” hardware instruction and raising the privilege level to
kernel mode [18]. The control-taking kernel level thread has nearly no limitations
regarding memory access and security principles. It has the same access privilege
as the OS itself — allowing it to access arbitrary memory addresses and manage
the hardware. Therefore, applications with many kernel interactions and a trusted
behavior are loaded into the kernel space rather than the user space. Candidates for
a kernel space execution are e.g., device drivers or file systems. As they provide
and manage access to a whole I/O device, file systems tend to access arbitrary
memory areas often. [18]. Thus, implementing the file system in kernel space is
common practice.

However, user space file systems like Aerie [26], Strata [27] or SplitFS [28]
emerged in recent years. User space file systems try to shift as much work as
possible from the kernel into the user space to reduce kernel-related overhead. To
interact with a user space file system, an application interacts directly with the file
system driver and not with the OS. Instead, the user space file system decides when
to interact with the OS, which allows it to reduce overhead.

2.3. CHECKSUM ALGORITHMS 11

2.3 Checksum Algorithms

Checksum algorithms have one property in common: They produce a fixed-length
bit pattern from an arbitrary-sized input sequence. However, the purpose of this
fixed-length bit pattern varies based on the chosen checksum algorithm: While
some algorithms are designed to solely detect bit flips [29, 30] — bits whose state
changed unintentionally [31] — the checksum family also includes cryptographic
checksum algorithms. Their purpose is to produce a unique bit pattern which
references an input sequence [32]. As one major goal of this thesis is to design
checksum (sum) functionality for a novel file system, we take a closer look at
different checksumming techniques in the following section. Initially, we cover
some error-checking and bit-flip-detecting algorithms. We then introduce crypto-
graphic checksums and their construction techniques, with one algorithm depicted
in detail. Finally, we conclude with a discussion about the introduced mechanisms
and explain the reason for choosing one particular algorithm within this thesis.

2.3.1 Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is an error-checking code which is mainly used
within data transmission systems. It consists of an amount of parity bits, which are
calculated over a bit input sequence. Those parity bits represent the validity of the
checksummed data and can be recalculated for validation purposes [29].

In context of a CRC computation, the input bit sequence is interpreted as
polynomial. To calculate the parity bits, a generator polynomial is introduced. The
parity bits are calculated by multiplying the input polynomial by xn, where n is the
degree of the generator polynomial. Afterwards, the algorithm divides the result of
that multiplication by the generator polynomial. The division’s reminder represents
the parity bits of the input sequence [29]. As a binary multiplication or division is
equivalent to a left or right shift, those operations can efficiently be implemented
in software or even in hardware circuits (so-called LFSRs) [33].

CRC comes in many flavors, with different error-checking capabilities. Some
examples are CRC16 or CRC32. The number in their names represent the degree
of the generator polynomial [29]. A generator polynomial generally has better
error-checking capabilities the higher its degree is [34].

2.3.2 Fletcher Checksum

A Fletcher checksum is significantly easier to compute than a CRC code while
giving nearly equivalent error detection properties [30]. Many common file systems
implement Fletcher’s sum [9, 8].

12 CHAPTER 2. BACKGROUND

Fletcher’s algorithm calculates two sums over its input bytes, sum1 and sum2.
The algorithm computes iteratively by splitting its input into K bit long blocks.
The sums are calculated modulo M , whereas M = 2K or M = 2K−1 according to
Fletcher. To compute sum1, each block is consecutively added modulo M . sum2

is then computed by taking sum1,i after block i was added, and adding sum2,i−1
to it. sum2,i−1 represents the value of sum2 after the i − 1-th iteration. Finally,
sum1,n and sum2,n are appended to represent the 2 ·K long checksum value [35].

2.3.3 Cryptographic hash functions
Cryptographic hash functions are hash functions which have special properties,
especially in terms of security. A cryptographic hash function is either a Message
Authentication Code (MAC) or a Manipulation Detection Code (MDC). While
the former utilizes a secret key to encrypt a public message, the latter does not
require any kind of secret key. As the name implies, an MDC is an encryption
method which detects manipulation within the data it shall protect. A MAC on
the other hand guarantees that a message originates from a specific author. We
want to detect a data manipulation rather than validating a block’s original author.
Therefore, MAC functions are not relevant for the purpose of this thesis [32].

Let H be an MDC, x an input of arbitrary length, and H(x) the hash value
of x produced by H . H can then be subdivided into multiple categories [32, 36].
For this thesis, Collision Resistant Hash Functions (CRHF) [37, 38] are relevant,
which are a subset of One Way Hash Functions (OWHF) [39].

H is an OWHF as defined by Merkle [39] if it satisfies the following condi-
tions[36]:

• x can be of arbitrary size

• H outputs values with fixed length

• H(x) is polynomial time computable when H and x are given

• Pre-image resistance: Finding x is computational infeasible if H and H(x)
are known

• Second pre-image resistance: Finding x and x′ such that H(x) = H(x′) is
computational infeasible if H and H(x) are known

H is called a CRHF if it is an OWHF and satisfies the following definition, given
by Merkle [36, 40]:

• Hash collisions: Finding x and y that resolve to the same hash value
(H(x) = H(y)) is computational infeasible if only H is known

2.3. CHECKSUM ALGORITHMS 13

In contrast to the properties of an OWHF, the aforementioned hash collision
property of a CRHF reduces the amount of known information further — knowing
only H is a stronger condition than knowing H and H(x) for an input value x.
Our takeaway from these definitions is that within a CRHF, a collision occurs
with “much fewer” probability than within an OWHF. Only if the hash function is
collision-resistant, it can be called a cryptographical hash function.

Cryptographic Hash Functions are constructed in many ways. In the following,
we explain well-known construction techniques.

Merkle-Damgard Iterative Hashing

The Merkle-Damgard construction technique was proposed by Merkle [38] and
Damgard [41] independently. Their technique relies on the fact that a collision-
resistant hash function f with a fixed-length input can be used to hash a variable-
length input.

The Merkle-Damgard technique divides the variable-length input b in equal
length sub-blocks bi. Their length is congruent to the input length of f . The hash
value f(bi+1) of bi+1 is then calculated by applying the hash function f to the
block bi+1 with respect to the hash value f(bi) of block bi. As block b0 has no
predecessor, the construction technique relies on an initialization vector (IV). This
procedure repeats iteratively from b0 to bn, whereas the last hashing step outputs
the final hash value f(b) of b. A more formal definition is given by Sobti et al [36].

Many well-known cryptographic hash functions utilize the Merkle-Damgard
construction technique. Some examples are MD5 [42], SHA-1 [43], and the SHA-
2 [43] family. Although it is one of the most used construction techniques, it
faces some drawbacks regarding security [44, 45, 46]. Therefore, new construction
techniques evolved.

HAIFA

The Hash Iterated Framework (HAIFA) method overcomes many drawbacks from
the Merkle-Damgard construction technique. HAIFA utilizes the same approach
as the Merkle-Damgard technique, with some modifications: It mainly introduces
the number of hashed bits as well as a salt value into the hash function. Those
modifications to the Merkle-Damgard technique mitigate its weaknesses against
(second) pre-image collisions [47].

Sponge Construction

The Sponge construction technique also follows an iterative construction scheme.
It works on arbitrary input and output sizes. A sponge construction operates in two

14 CHAPTER 2. BACKGROUND

phases — the absorbing and the squeezing phase. The first phase divides the input
in fixed-length blocks, and absorbs them iteratively into a hash state. Each block
absorption involves a pseudorandom permutation of the hash state. Afterwards, the
squeezing phase receives the fully absorbed hash state. It iteratively outputs a fixed
amount of bits from the received state. Each iteration involves another permutation
of the hash state before outputting the next set of bits. This squeezing process
repeats iteratively until the outputted hash is long enough [48, 36].

SHA-3 is one exemplary family which uses the Sponge construction. It provides
various different variants [43].

2.3.4 BLAKE3
BLAKE3 [49] is an evolution of the BLAKE2 [50] hash family. It targets 128-Bit
security and is therefore considered collision-resistant [49]. 128-Bit security means
that a colliding hash could be computed within 2128 operations [51].

Basic Procedure

BLAKE3 compresses its input in fixed-size chunks of 1024 bytes. Those are pro-
cessed independently. Every chunk is further split into a set of blocks, containing
64 bytes each. BLAKE3 uses those blocks to calculate a chunk’s hash value using
the HAIFA method. Their hash values are used afterwards to calculate the final
hash value of the input. BLAKE3 supports inputs of a length up to 264 bytes [49],
which is congruent to the maximum supported file size of GPU4FS[10].

In the following, we explain the BLAKE3 algorithm in detail. We start by ex-
plaining the construction of a chunk’s hash value, which is depicted in Algorithm 1.
Afterwards, we explain the so-called Merkle-Tree construction, which produces
the input’s hash value. An exemplary Merkle-Tree construction for a 4 KiB input
is additionally depicted in Figure 2.1.

Detailed Procedure

BLAKE3 uses HAIFA to combine the 64 byte large blocks to a chunk checksum.
To keep track of the compression’s progress, BLAKE3 holds the intermediate
results of a chunk in a stateful way. The authors call their implementation of
the HAIFA method “Chunk Chaining Values”, and describe the algorithm, which
is sketched in Algorithm 1, in the following way: Let si,k be the state which
compresses i blocks of the k-th chunk. Starting with an 256-Bit initialization state
s0,k and the 512-Bit long initial block b0,k of each chunk k, every iteration considers
the content of block bi,k to update state si,k to state si+1,k. The state s0,k consists of
a predefined initialization vector IV, the position of chunk k in the inputstream, the

2.3. CHECKSUM ALGORITHMS 15

amount of bytes within the block b0,k, and 32 bits of domain-specific information
(Lines 3 and 5 to 14). While the initialization vector corresponds to the initialization
routine of the Merkle-Damgard construction technique, the latter three initialization
objects originate from the HAIFA technique. To process all blocks of a chunk, the
algorithm needs to iterate at most 16 times. This is the outer loop (Line 3). The state
si+1,k is constructed by passing the state si,k and the block bi,k to a compression
function G (Line 16). This function iterates over this state-block combination
seven times, which we call the inner loop (Line 14). Each inner iteration considers
a permutation scheme (Line 17), which permutes bi,k before applying G again.
Before continuing with the next outer iteration, the state si,k goes through an XOR
procedure (Lines 19 to 21) and finally results in the new state si+1,k. The inputted
block bi,k is also called the message block, which we refer to in later chapters.

After constructing si+1,k, the algorithm continues with the next outer iteration.
The “Chunk Chaining Values” technique replaces the last 256 bit of si+1,k with
values 0–3 from IV, the position of chunk k in the inputstream, the amount of
bytes within the block bi+1,k, and 32 bits of domain-specific information, before
the procedure repeats (Lines 5 to 14). As each state si,k is only dependent from its
predecessor si−1,k, but not from any other states si,k′ , the “Chunk Chaining Values”
process is fully parallelizable. The final state sn,k corresponds to the hash value of
the chunk k [49].

Each chunk’s hash value sn,k is then arranged in a binary-tree fashion. For
all k, the sn,k values are leaf nodes in this binary tree, located on layer ln. Their
parent nodes sp1,k on layer ln−1 consists of the compressed values of the pairs
(sn,2k, sn,2k+1). To compress those pairs, the authors feed them as message block
into BLAKE3’s compression function, with a newly initialized state. Those parent
nodes are themselves compressed in pairs (sp1,2k, sp1,2k+1) to create their parent
nodes sp2,k on layer ln−2, up to the root node. The root node on layer l0 finally
contains the hash value of the input. Such a binary tree construction is also called
a Merkle-Tree [52, 49].

The authors propose a multi threading approach for BLAKE3. This approach
follows the divide-and-conquer paradigm and builds the Merkle-Tree in a top-down
fashion. It starts by splitting the input into a fully occupied left and a remaining
right part. Here, the left subtree always contains a number of chunks greater than
or equal to the number of chunks in the right sibling. The procedure continues
until the input is split into chunks. After applying the “Chunk Chaining Values”
approach, the backtracing happens by following the recursion stack [49]. This
approach fits a fork-join concurrency model, which is provided by multi threading
libraries as OpenMP [53] or Rayon (Rust) [54].

16 CHAPTER 2. BACKGROUND

Algorithm 1: Chunk Chaining Values Algorithm. See Figure 2.1 for its
usage in BLAKE3

Data: chunk ck with |ck| ≤ 1024
Result: s16,k — The hash value of chunk ck
/* State, empty at beginning */

1 s← [];
/* Subdivide ck in blocks b[i] with |b[i]| ≤ 64 byte */

2 b← divide(ck);
/* Initialize start state */

3 s[0; 7]← IV [0; 7];
/* Outer Loop */

4 for i← 0 to b.length()− 1 do
/* Initialize outer loop values */

5 s[8; 11]← IV [0; 3];
/* Fill 64 bit value k in two 32 bit words */

6 s[12; 13]← k;
7 s[14]← |b[i]|;
8 if i == 0 then

/* First iteration is chunk start */
9 s[15]← CHUNK_START ;

10 else if i == b.length()− 1 then
/* Last iteration is chunk end */

11 s[15]← CHUNK_END;
12 else

/* No domain information within chunk */
13 s[15]← 0;
14 end if

/* Inner Loop */
15 for j ← 0 to 7 do
16 G(s, b[i]);
17 permute(b[i]);
18 end for

/* Final XOR to construct hash value from
state */

19 for j ← 0 to 7 do
20 s[i]← s[i]⊕ s[i+ 8];
21 end for
22 end for
23 return s[0; 7];

2.3. CHECKSUM ALGORITHMS 17

Figure 2.1: Blake3 Merkle-Tree construction for 4 KiB input. See Algorithm 1 for
a detailed explanation of “Chunk Chaining Values”.

18 CHAPTER 2. BACKGROUND

2.3.5 Discussion

The outlined checksum algorithms are just a subset of all existing algorithms.
As there is not one checksum algorithm which satisfies all conditions, modern
file systems like Btrfs [8] or ZFS [9] provide many checksum algorithms. Thus,
the user is responsible for selecting an appropriate algorithm which matches the
contextual use case. BLAKE3 seems to be the most promising algorithm for our
use case. According to the authors, it has an “unbound degree of parallelism
[. . .] that scales up to any number of SIMD lanes” [49] — which matches a
GPU’s execution model. SHA256 [43], MD5 [42] or the recent standard SHA-
3 [55, 56] are calculated sequentially, presumably as their design is intended for
CPU computation. In addition, BLAKE3 shows higher speeds than well-known
cryptographic hash functions, and especially its predecessor [57]. Its superiority
over CRC checksums is given by its applied context; cryptographic hash functions
are fundamental for further features, e.g., deduplication, as outlined in Section 2.4.

2.4 Deduplication
In context of a file system, the main purpose of deduplication is to save storage
space by eliminating duplicated blocks, files, or bytes [58]. The following section
motivates the usage of deduplication within GPU4FS, and describes existing
implementation techniques. We conclude with a discussion about the several
construction techniques.

2.4.1 Motivation

As the amount of data is growing rapidly [59, 60], more and more research took
place in organizing files on drive efficiently. This led to further development in
the field of deduplication, making it suitable for several use cases: Cloud services
have utilized deduplication for years, as they are prone to data duplicates across
different users [60, 61]. Backups are very likely to contain redundant information,
which is why modern backup solutions like Restic employ deduplication [62].

Even the desktop world provides use cases for deduplication, as the trend in
the Linux world goes to containerization, immutable distributions, and sandboxed
applications [63, 64]. Examples of the immutability trend are given by Flatpak [65]
or Docker [66], whose main purpose is to sandbox applications into their own
container. This container brings all required dependencies for the application
and prohibits access to foreign content per default. However, many applications
share some similar dependencies, which need to be persisted multiple times. Here,
deduplication could save space by mitigating the amount of dependency duplicates.

2.4. DEDUPLICATION 19

Especially with Fedora’s announcement to shift its focus to immutable distribu-
tions [63], we believe that deduplication is an important feature for a modern file
system.

Deduplication can be implemented inline or post-processing [67]. While an
inline deduplication dedups synchronously right before a corresponding disk write,
a post-processing deduplication can act asynchronously at any point in time.

2.4.2 Chunk Sizes

Deduplication is applicable on specific granularity levels, e.g., chunk-level [68, 69]
or file-level [70].

The chunk-level is able to utilize a definable fixed [68] or variable [69] chunk
size. Thus, the given input stream is divided into those chunks and deduplicated
afterwards. A fixed-size chunk-level deduplication works as follows: After splitting
the input into the according chunk size, a hash function is applied to generate a
so-called fingerprint of all chunks. This fingerprint represents the chunk uniquely.
Thus, a cryptographic checksum is mandatory, as the collision resistance property
outlined in Section 2.3.3 guarantees the uniqueness of the fingerprint. If an equal
chunk enters the deduplication process afterwards, its fingerprint matches the
already stored fingerprint of the prior chunk. Thus, the duplicate is detected.
However, fixed-size chunking is prone to the boundary-shift problem [69]: As the
chunk boundaries are fixed, an input is always subdivided the same way. This
means that if an equal input stream is modified by inserting some bytes at its
beginning, the positions of all following bytes change. Thus, the modified input
stream has no similar chunks to its unmodified variant, leading to zero matches
during the deduplication process.

To address this problem, the technique of variable-sized chunking evolved.
Content-Defined Chunking (CDC) is the technique which resolves the boundary-
shift problem. CDC splits based on the content within the input stream, not at
predefined boundaries [69]. One way to implement this technique is via Rabin
fingerprints [71] — a non-cryptographical hash function whose output can be used
to detect if some given chunk-splitting conditions are satisfied. Restic for example
defines those conditions as satisfied if the lowest 21 bits of the Rabin fingerprint
are zero [62]. Although Rabin fingerprinting is the most common technique to
implement CDC, there exist a variety of faster algorithms [72, 73], which even
include GPGPU variants [74, 75]. After determining the variable-sized chunks, the
procedure continues analogously to a fixed-size chunk deduplication.

In contrast, a file-level deduplication [70] detects whole files as duplicates.
Thus, a file’s data is not split into chunks and fingerprinted independently, but the
overall file is fingerprinted and stored as duplication candidate.

20 CHAPTER 2. BACKGROUND

2.4.3 Discussion
The proposed techniques have their pros and cons. Although a file-level dedu-
plication imposes less overhead, its deduplication rate is worse compared to a
chunk-level deduplication. A chunk-level deduplication on the other hand needs
more computational power. Moreover, a variable-sized chunking is computational
more intensive than a fixed-size chunking. However, the performance and es-
pecially deduplication ratio of all proposed techniques depend on their applied
context. Microsoft’s researchers found that “whole-file deduplication is a highly ef-
ficient means of lowering storage consumption”[58], while the amount of research
in chunk-level deduplication also indicates the relevance of that technique.

2.4.4 Hashing Techniques
As proposed in the prior section, a chunk’s unique identifier is computed via a
collision-resistant hash function. However, storing the resulting key-value com-
binations efficiently is another important topic in the field of deduplication. This
section introduces techniques for storing those pairs efficiently, with the ability
to retrieve them fast. The techniques from this section founded our data structure
from Section 4.2.

Extendible Hashing

Extendible hashing is a technique which builds dynamically sized hash tables. Its
basic principle uses a single, so-called directory to store parts of the hash key.
The directory size determines the length of the stored key. Each directory entry
references one so-called leaf, whereas a leaf can be referenced by multiple directory
entries. A leaf’s purpose is to store all checksums with a common prefix, which
is also present in the referencing directory entries. A key’s value is retrieved by
looking it up in the directory. This happens by truncating the key’s length to the
key length of the directory. The directory responds with the leaf, which then holds
the key-value combination. If a leaf gets too small, the directory size is increased
and the leaf is split in two — which includes partly rehashing [76].

CCEH

Cacheline-Conscious Extendible Hashing (CCEH) is a hashing structure which
advances extendible hashing. It uses the same directory structure as extendible
hashing, but points to so-called segments rather than leaves. Those segments are
able to group multiple leaves together. To identify a leaf within a segment, CCEH
uses the least significant bits (LSBs) of the complete key. A segment is identified
by the most significant bits (MSBs) [77].

2.5. GPU PROGRAMMING 21

2.5 GPU Programming
A GPU operates fundamentally differently from a CPU. Whereas the CPU was pri-
marily designed for sequentially-fashioned tasks, the GPU’s design was specialized
for image processing [78]. Image processing tasks are mostly SIMD-fashioned:
One operation, applied to many pixels. Thus, a GPU provides many independently
operating “core-counterparts” which are, compared to a CPU core, less powerful.
However, their increasing computational potential led to research in non-graphics
related tasks and founded the terminology of the so-called General Purpose Graph-
ics Processing Unit (GPGPU) technique [78]. The following section introduces
core aspects of GPU programming, starting with a short architectural overview of
GPU architectures. We afterwards introduce the framework which is used within
GPU4FS to configure and program the GPU.

2.5.1 Towards GPU Architectures
To understand some of our implementation details, it is important to know the
basic architecture of a GPU chip. A GPU is a complex chip, not to mention
the different terminologies between different vendors. Nevertheless, all GPUs
utilize the same fundamental concepts. Therefore, we give a short and generally
applicable overview of thesis-relevant GPU concepts without diving into vendor-
specific details.

Figure 2.2 depicts a general applicable GPU architecture. We chose to use
AMD RDNA3 terminologies in our explanations [79], but the concepts apply to
any vendor. A GPU is connected to the CPU via the Peripheral Communication
Interface express (PCIe) bus. This bus is a bidirectional communication channel
used for data exchange. The GPU itself is divided into many distinct cores, the
Work-group Processors (WGP). Each WGP consists of one or more Compute
Units (CU), which perform the actual calculations. From a hardware perspective,
those CUs can be seen as the GPU pendant to a CPU core, with the main difference
that they consist of multiple programmable work elements — so-called single
instruction, multiple data (SIMD) lanes. SIMD lanes of a CU execute the same
instruction, but on different parts of the data. A CU typically consists of 32 to 64
SIMD lanes. The software counterpart to the CU is a so-called wave — a program
which can be executed by the CU. Thus, a wave must match the size of a CU. A CU
can execute different waves concurrently, while the wave provides the instructions
and holds its program context. Each WGP provides a local cache (LDS), while
each CU contains some registers. However, the LDS is not accessible across WGPs.
Thus, the GPU provides a global L2-Cache [80, 79]. Some architectures extend the
L2-Cache with additional cache hierarchies. One example is RDNA3’s global data
share (GDS) [79]. To receive data, the GPU is either able to communicate with

22 CHAPTER 2. BACKGROUND

Figure 2.2: Simple GPU architecture, inspired by AMD’s RDNA3 and NVIDIA’s
Ada Lovelace architectures. Sources: [80, 79].

DRAM via PCIe bus, or uses its own dedicated Video Random Access Memory
(VRAM).

One important register is the Program Counter (PC). It indicates the wave’s
current instruction to execute. The PC is CU-local, which means that a wave
can only issue one instruction at one time. This means that the SIMD lanes
within a wave cannot be programmed independently, but must all execute the same
instruction [81]. Different control flows between SIMD lanes within a wave lead to
divergent branches. For resolving a divergent branch, the GPU executes one side
of the branch via the condition-matching SIMD lanes, saves its results, rolls back,
and executes the other side of the branch afterwards — sequentially. This means
that divergent branches can slow down the CU by a factor of up to wavesize [82].

2.5.2 Programming Model

Based on the variety of specific GPU architectures, a standardized binary format
with vendor-independent commands evolved: SPIR-V [83]. SPIR-V translates
GPU programs (shaders) from a high-level language into a standardized form. We
use GLSL [84] as high-level language, which is then translated via Google’s glslc
compiler into vendor-independent SPIR-V code [85].

As a GLSL shader is not bound to a specific GPU architecture, it is the program-
mer’s responsibility to define the amount of SIMD lanes within a CU. This means
that a shader can consist of larger “logical” CUs than the actual GPU’s “physical”
CUs are. Thus, GLSL introduces new terminologies to abstract from the actual
GPU architecture: A logical CU is called a workgroup. This workgroup must be

2.5. GPU PROGRAMMING 23

translated onto physical CUs when executing the shader. Regarding Figure 2.2,
a workgroup may consist of more SIMD lanes than the physical CU. Thus, the
workgroup is split across different CUs of the same WGP. Depending on the shader
and its memory dependencies across the workgroup, the LDS cache is more often
involved to synchronize across different CUs. Reducing its involvement is thus
one opportunity to increase a shader’s performance; which is possible via GLSL’s
subgroup feature. Subgroups partition a workgroup logically into real CUs. Their
size maps exactly to the size of a WGP’s CU. In other words, a subgroup can be
interpreted as a wave. This enables the programmer to explicitly use physical CUs
with their local registers, while having the ability to synchronize larger workgroups
over the LDS cache.

2.5.3 Vulkan
To actually run a GPU shader, a CPU-side configuration framework is required.
This framework deals with the GPU driver in kernel space, and provides safe
access of GPU functionalities from user space. Vulkan [14] is a graphics- and
GPGPU-computing [78] API which does exactly that.

Over the last 30 years, OpenGL [86] was the leading standard in open source
GPU programming. OpenGL follows a state machine architecture, in which
it tries to generalize and hide computational complexity of different hardware.
Although this was suitable for early graphics applications and overhead from
several translation layers was negligible, GPUs evolved in terms of performance
and different feature sets. Therefore, Vulkan, as a more lightweight API, was
invented.

Within Vulkan, the developer has more control over the lower level details. In
contrast to OpenGL, the driver does not make any assumptions or validations by
default. It assumes that the application developer is providing every information
explicitly. This allows the developer to configure, for example, memory accesses
on a much lower level [87]. Additionally, Vulkan does not follow the state machine
pattern of OpenGL: Instead of calling one library function at a time which changes
the internal application state, Vulkan bundles different instructions together and
sends one bundle at a time. Although Vulkan is capable of both graphics and
compute shader execution, we focus only on the compute shader functionality of
Vulkan, as the graphics part is not relevant for this thesis.

Overview

Vulkan uses various structures to employ a GPU. Before an application can actually
issue a GPU command, it must discover all connected PCIe devices capable of
Vulkan functionality. After choosing the physical device, the application must

24 CHAPTER 2. BACKGROUND

Figure 2.3: Overview of the Vulkan pipeline. The leftmost side represents the
graphics part, while the rightmost side is the compute part. Source: [91],
all green objects are modifications.

create a logical device from it. The logical device is an actual instance of the
physical device which can consume the application’s Vulkan commands. After
creating a logical device, the application can dispatch command buffers through
a queue. A queue in Vulkan is logically a connection path from the CPU to the
GPU, which is capable of processing different types of commands [88, 89].

A command buffer records commands which shall be executed by a logical
device [90]. For simplicity, we define a compute command as a combination of
the following three Vulkan commands: Pipeline definition, Descriptor Set Layout
definition, and dispatch.

The pipeline definition of a compute command is simpler than its graphics
counterpart. While the latter involves several processing stages, a compute com-
mand uses only one stage of the so-called Vulkan pipeline. The Vulkan pipeline
is outlined in Figure 2.3. It is important to mention that our terminology of the
word “pipeline” is not equivalent with Vulkan’s definition: We define a GPU4FS
pipeline as the parallel execution of multiple software stages (shaders), where each
GPU4FS command goes through those software stages according to a specific
order. This definition is similar to a RISC pipeline [92]. Vulkan on the other
hand defines a pipeline as a configured variant of the Vulkan pipeline, which has
several stages either enabled or disabled. We only need the “compute shader stage”
within GPU4FS, which, according to Khronos, “consist of a single static compute
shader and the pipeline layout” [93]. Consequently, Vulkan does not allow multiple
different, interleaved executions of the “compute shader stage” within its definition

2.5. GPU PROGRAMMING 25

of a pipeline.
The pipeline definition of a compute command only defines the actual shader

to execute, its “main” function and the required pipeline layout with according
shader resources [93, 94].

Shader resources are VRAM- or DRAM-backed allocations which can be
used throughout a shader execution. Vulkan provides several types of shader
resources, from whose the buffer is relevant within this thesis. A shader resource
is represented by a descriptor on the CPU side [95].

After binding a pipeline definition, the application needs to back the defined
shader resources with actual memory allocations. The Descriptor Set Layout
defines the shader resources of a compute command, which are bound to the
previously set pipeline layout. [95].

The last step of a compute command is the dispatch. As mentioned previously,
a command buffer is executed via a specific queue, belonging to a specific logical
device. The dispatch defines the actual amount of used workgroups which shall
execute the previously set pipeline layout with the defined descriptor set layout.
Each workgroup spawns its own instance of the shader, which leads to additional
independently started invocations [96].

A command buffer can consist of multiple compute commands. Those can
either be dependent or independent of each other. However, dependent compute
commands must be synchronized appropriately. Compute commands can either
be execution- or memory-dependent. We focus on the latter dependency, as this is
the relevant case within this thesis. Vulkan provides many ways of synchronizing
between and even within compute commands. While the former involves the CPU
side and thus the Vulkan framework, the latter relies on the GLSL specification [97].

Memory Coherency and Synchronization between Commands

Vulkan provides several mechanisms for resolving dependencies between com-
mands; including fences, semaphores, events, and pipeline barriers [97]. The two
relevant synchronization mechanisms in our case are fences and pipeline barriers,
which we outline in the following.

A fence signals the host a completion of a command buffer. Before passing a
command buffer to a queue, the Vulkan fence is passed as an additional parameter.
Afterwards, the CPU can execute a blocking wait call on the fence to await the
command buffer’s termination. After passing the fence, the CPU can be sure that
all operations from the command buffer where executed and are visible [97].

A pipeline barrier on the other hand allows fine-granular synchronization
within a command buffer. Pipeline barriers can either be inserted between or
within pipeline stages of the Vulkan pipeline. Thus, they can be used to declare a
dependency between different compute commands within a command buffer [97].

26 CHAPTER 2. BACKGROUND

Memory Coherency and Synchronization within a Command

Synchronization between commands is not the only relevant case. As mentioned
in Section 2.5.3, a dispatch which specifies multiple workgroups spawns differ-
ent shader instances. Workgroups compute independently of each other, which
makes it necessary to be able to synchronize them appropriately. A dispatch-wide
synchronization differentiates two cases [98]:

1. Synchronization within a workgroup

2. Synchronization between workgroups

GLSL provides memoryBarrier() primitives, which ensure the first of both
cases. These guarantee the completion and relative ordering of memory accesses
within a workgroup. However, they do not guarantee any visibility between
workgroups, as the workgroup’s execution order is unspecified. In other words,
those barriers are useful to synchronize workgroup-local SIMD lanes [84, 98].

The second case tends to be an uncommon case within a compute shader. At
least, GLSL does not provide any primitives which would allow a synchronization
between workgroups directly. Thus, we developed a workaround for ensuring
visibility between workgroups, which is further examined in Chapter 5. For now,
we introduce the relevant concepts for our workaround.

One important precondition for a workgroup-wide synchronization is to declare
a buffer coherent. If the compiler encounters such an annotated buffer, it assumes
that the content of this buffer could be changed by dependent shader invocations
and generates appropriate SPIR-V code [99]. The volatile classifier implies an even
stronger condition, which includes that a buffer’s content could be changed at any
time from an external source [99]. However, the GLSL specification is not precise
on their distinction. Further research led us came to the conclusion that coherently
mapped buffers imply coherency between dependent shader invocations, whereas
dependent means in-order in the Vulkan pipeline or between workgroups. Volatile
buffers on the other hand shall be used for coherency between independent shader
invocations, which includes different compute commands [100]. Nevertheless,
both memory accesses are slower than non-coherent respectively non-volatile
accesses [84]. However, the GLSL language specification notes that those qualifiers
are just a precondition for valid visibility; they do not ensure the relative ordering
of memory accesses. Thus, ensuring synchronization between workgroups involves
some kind of ordering.

Furthermore, another synchronization-related concept exists: Atomics. GLSL
provides several operations which are guaranteed to modify a buffer’s content
atomically. All atomic operations work on GLSL types only. This means that no
user-defined structs can be modified atomically. However, atomic functions are a
fundamental concept which prevent race conditions in certain scenarios [84].

Chapter 3

Related Work

This chapter introduces related work to our topic, which inspired our design. We
introduce the most essential aspects of GPU4FS initially, which is the foundation
of this work. We then give a short overview of well-known file systems and explain
their solutions to our outlined problems.

3.1 GPU4FS

In the following, we will introduce the current state of GPU4FS. GPU4FS is an
inode-based file system which is mainly designed for organizing Intel Optane
DIMMs [10]. The biggest difference to a common file system is its implementation
on a GPU rather than a CPU. GPU4FS uses the Vulkan [14] framework to fulfill
file system tasks on the GPU. The main goal of GPU4FS is to reduce stress on the
CPU by moving computational-intensive work from the CPU to the GPU [10].

3.1.1 Essentials

GPU4FS was designed as a file system accelerator for modern storage, particularly
for Intel Optane. However, as GPU4FS uses standard Linux functionality for
mapping the Optane DIMM onto the GPU’s VRAM [10], it can be modified
to address NVMe drives. This generalizability is another motivation for our
integration of additional file system features.

As mentioned in Section 2.5, GPUs are primarily configured in user space,
which explains the decision of designing a user space file system. To support
commands that need OS support1, GPU4FS introduces a “trusted component”
application with privileged permissions.

1e.g., mmap() [101] to map memory into a process’ address space

27

28 CHAPTER 3. RELATED WORK

Figure 3.1: Block pointer in GPU4FS. The block pointer is 64 bit in size. It pro-
vides 57 bits for the address offset, three unused bits, one bit indicating
its validity, one bit indicating an indirect block reference, and two
bits indicating the page type of the referenced block. Own drawing,
inspired by: [10]

Communication between a CPU process and the GPU-side of the file system
is handled through a GPU4FS command buffer, which has nothing in common
with a Vulkan command buffer from Section 2.5.3: Each user space process holds
its own set of command buffers, which are mapped GPU-visible within a shared
memory region. A user space process triggers a file system action by creating and
inserting a command descriptor into the command buffer. The GPU then detects a
new entry within the buffer, executes the command and signals completion back to
the requesting process. [10].

GPU4FS stores files in clusters on the NVM drive, so-called pages. It provides
three different page sizes, which are congruent to x86-64 MMU page sizes2 [102].
Each page stores one or more blocks, which contain either file metadata or real file
data. When storing a file, it is thus split up to fit into one or more blocks, which
are located on one or more pages. GPU4FS uses block pointers to address these
blocks [10].

3.1.2 Block Pointer Design
The smallest element in GPU4FS is a block pointer. As mentioned previously,
those are used to identify a block uniquely while holding some essential metadata.
This metadata determines the type of the referenced block. The block pointer
design is depicted in Figure 3.1. A file in GPU4FS is made up of several blocks,
which can be organized in an indirection hierarchy [10].

3.1.3 Block Design
GPU4FS provides three block flavors: Inode, indirect block, and data block.

The file system uses an inode to reference the actual file. The inode size is
either 128 bytes or 256 bytes; depending on the configuration in the superblock.
As its current demonstrator implements inodes with a size of 128 bytes, we assume
the same inode size throughout our proposals. Such an inode reserves space for

24 KiB, 2 MiB or 1 GiB

3.2. EXT4 29

Figure 3.2: GPU4FS’s file pointer structure. The figure represents the pointer
structure for a file which stores two indirect blocks and five data blocks
in the inode. While the data blocks reference actual file content, the
indirect blocks are filled with further block pointers.

seven block pointers, which can either point to an actual data block or to an indirect
block. An indirect block references further block pointers [10]. This indirection
hierarchy allows unlimited file sizes in theory. The amount of block pointers within
an indirect block is determined by its page size. An indirect block can hold one of
the following options:

• 24 block pointers if its inode sized (128 byte)

• 29 block pointers if its small page sized (4 KiB)

• 218 block pointers if its large page sized (2 MiB)

• 227 block pointers if its huge page sized (1 GiB)

The current implementation of GPU4FS uses only inode-sized pages to store
indirect blocks [24]. Figure 3.2 depicts an exemplary block pointer structure,
corresponding to an actual file in the file system.

3.2 EXT4
The fourth extended file system (EXT4) is the fourth evolution of the family of
EXT file systems. EXT4 evolved from EXT3 [103] and exists in mainline Linux
since version 2.6.19 [23].

EXT4 is a kernel space file system which uses 48-bit-long block addresses.
Within EXT4, files are stored in extents. Especially HDDs benefit from extents,
as they reduce I/O latency by avoiding random reads. Furthermore, EXT4 uses
journaling for its crash consistency [23, 104].

EXT4 was a big inspiration for GPU4FS’s block design [10, 23]. GPU4FS’s
indirect block approach is inspired by both EXT3 and EXT4: While the indirect

30 CHAPTER 3. RELATED WORK

block approach itself can be seen as inspired by EXT3 [103], the variable page
size is somewhat related to EXT4’s extends [23]. EXT4 uses CRC checksums to
secure its metadata and journal, but not its data blocks [23, 105]. It also does not
support deduplication directly [23]. However, there exist approaches on patching
deduplication into the file system externally [106].

3.3 Btrfs
The B-Tree file system (Btrfs) is a kernel space file system which uses funda-
mentally different on-disk structures than GPU4FS [10] and EXT4 [23]. A Btrfs
formatted file system uses COW B+-Trees for storing the actual data. Atomic
block pointer updates in combination with COW ensure crash consistency [8].

Btrfs manages a file system within a forest of trees. This forest contains four
primary tree structures:

• Subvolumes store actual user files and directories

• Extent allocation trees provide extent-flavored free storage

• Checksum tree which holds one checksum item per allocated extent

• Chunk and device trees which allow RAID functionality

A leaf node within Btrfs stores three relevant file system data structures: A block
header, an array of items, and an array of data elements. Those leaves represent
e.g., a file or a directory entry [8].

A leaf’s block header stores metadata like CRC sums, flags, generation number,
and so on. An item within a Btrfs leaf node is fixed-size and consists of three
fields: key, offset, and size. In addition, each item references a corresponding data
element in the aforementioned data array. The key determines the item’s purpose
within the file. One possible key value is inode. The corresponding data element
holds the actual data of the inode. Another important type is the extent key. An
item of type extent allocates an extent from the extent allocation tree and stores
its reference within an extent [item, data] pair. Btrfs groups multiple blocks
together in an extent. A leaf can hold multiple extents, as on-disk fragmentation
does not always ensure large enough extents. Each leaf allocates one checksum
item per allocated extent, which references an entry in the checksum tree.

Btrfs does not support deduplication: Its authors state that “Due to the memory
requirements, it might be a feature only fit for high-end servers” [8]. However,
tools that extend Btrfs with deduplication functionality exist [107]. According to
the Btrfs documentation, those deduplication tools utilize a byte to byte comparison
rather than the existing checksums [107].

3.4. ZFS 31

Bees

Bees is a daemon which runs continuously to identify duplicated data. It performs
a full file system scan and stores all found blocks in a fixed-size hash table, with an
LRU strategy. During this scan, fully duplicate extents are immediately detected
and removed. Partly duplicated extents can be detected after the full file system
scan: Bees then tries to write the unique parts of both extents, and references
the duplicate blocks from one of the already existing extents. If Bees detects a
duplicate block within an extent, it additionally examines the nearby blocks in the
files which contain the matched block [108].

Duperemove

Duperemove is a tool which detects duplicated extents within different files. It
does not run as a daemon but rather as an application which needs to be triggered
manually. Duperemove takes a list of files as input and finds duplicated extents
within all of those files. Fulfilling this task involves three steps: Duperemove
initially discovers all submitted files, hashes their content in blocksize length
chunks, and stores the hashes in a database. This database serves as input for
further deduplication invocations, allowing Duperemove to detect files which did
not change. The second step uses the built database to create a list of duplicate
extents. Step three triggers the final deduplication step utilizing the results from
step two. Duperemove does not support partly duplicated extents [109].

3.4 ZFS
ZFS is a COW kernel space file system, mainly used for server storage purposes. Its
main focus lies on data integrity, simple administration, and support for immense
capacity. ZFS follows an indirect block pointer approach for referencing large files.
The overall file system structure is maintained in a large tree, with the data blocks
as its leaves. To understand its structure and complexity, we briefly describe the
involved ZFS components when issuing a POSIX system call in the following:

The involved ZFS components are depicted in Figure 3.3. Initially, ZFS receives
the system call through its ZFS POSIX layer. This layer translates the POSIX call
into a ZFS-valid structure, called the Object Transaction Interface. The transferred
object is then passed to the Data Management Unit (DMU). The DMU translates
the received object further into a data virtual address. This virtual address is then
passed to the Storage Pool Allocator (SPA). The SPA uses this virtual address for
allocating blocks on the physical device. As there could be many physical devices
present within a ZFS context, the SPA is responsible for choosing the correct device
for allocation. ZFS uses so-called vDevs as storage devices.

32 CHAPTER 3. RELATED WORK

Figure 3.3: ZFS layer overview. The left side shows a traditional file system
block diagram, while the right side depicts the ZFS block diagram.
Source: [9].

A vDev is a virtual device which bundles different capabilities. For example, a
vDev is created by the ZFS administrator, who specifies capabilities like mirroring,
disk concatenation, and further device-related concepts. Finally, the vDev is backed
with real devices, which persist data physically. The SPA thus allocates blocks
from a vDev, which executes its configured abilities [9].

3.4.1 Checksumming

Defining data integrity as main goal makes error detection and correction capabili-
ties one of the core components of ZFS. The file system checksums every allocated
block in the file system tree. ZFS provides a block pointer which is 128 bytes in
size, with reserved space for a 256-bit checksum [110]. Each ZFS block stores
the block pointers of its children and consequently their checksums. The only
block which stores its own checksum is the root of the file system tree — the
so-called überblock. Any create or update operation on a file involves multiple
checksum calculations, propagating in a bottom-up fashion up to the überblock. It
is important to mention that each update operation involves rewriting all involved
block pointers, coming from ZFS’s COW compliance. After writing the actual
data to disk, ZFS calculates the newly allocated block’s checksums. It then writes
those checksums into freshly allocated parent indirect blocks, which must further
be referenced by fresh indirect blocks. This procedure propagates recursively up

3.4. ZFS 33

to the überblock. Writing the überblock atomically to complete a file operation
ensures crash consistency [9].

3.4.2 Deduplication
ZFS implements an inline deduplication. Therefore, each file write considers
additional entries from a so-called deduplication table (DDT) [111]. ZFS dedu-
plicates fixed-size ZFS blocks, whose size is configurable to up to 1 MiB at pool
creation [112]. However, the community discusses if CDC is integrable into
ZFS [113].

In terms of DDT entry size, there are various different claims: Matt Ahrens
claims that the DDT consists of entries which are either 192 bytes (in-memory)
or 168 bytes (on-disk) in size [114]. His claims are available on the official
OpenZFS homepage. However, the recent OpenZFS documentation outlines that
the in-memory size of a DDT entry is slightly more than 320 bytes nowadays,
but does not mention any different on-disk sizes [112]. In both cases, a DDT
entry is identified by a ddt_key. This ddt_key uses a 256-bit cryptographical
checksum. ZFS allows SHA256, SHA512, Skein, and BLAKE3 as checksums for
deduplication [115].

Although the DDT is structured according to the extendible hashing tech-
nique [76] on-disk, the DDT uses an AVL tree for organizing its cached in-memory
entries [116, 114]. An AVL tree is a balanced binary tree [117].

Each DDT entry represents a previously written block on disk. Every time a file
is written to disk, ZFS invokes the deduplication step: It compares all checksums
of this file’s blocks with all saved DDT entry keys. If any DDT entry has the same
key, respectively same checksum, the corresponding file block is either directly
considered a duplicate (ZFS property on) or further validated through a byte-
wise comparison (ZFS property validate) [118]. Based on the result of the
deduplication step, the block is either written or discarded. The former case leads
to the insertion of a new DDT entry into the DDT table. In the latter case, ZFS
writes a reference to the block behind the matching DDT entry into the file’s block
pointer structure [116].

As every file write invokes a DDT table walk, ZFS suggest holding the entire
table in DRAM [119]. However, given the size of a DDT entry, the authors of
a widely known storage software3 suggest 1 to 3 GB of RAM per 1 TB of data.
Additionally, they mention that ZFS deduplication is a CPU-intensive task and
reduces the overall throughput of the ZFS partition [111].

3TrueNas [120]

34 CHAPTER 3. RELATED WORK

3.5 Additional File Systems
Next to the three aforementioned file systems, there exist a variety of other file
systems, each having different capabilities. This section gives an overview of
further file systems with relevance for GPU4FS.

3.5.1 NOVA
The NOn-Voltaile memory Accelerated (NOVA) is a kernel-space file system
which was designed for managing non-volatile memory. It is a log-structured file
system, which utilizes parallelism by giving each inode its own log. Its logs are
implemented as a linked list, as the random access performance of NVM is higher
than of any other persistent storage medium. Thus, a full linked list is extended via
a next pointer at the end. Additionally, it utilizes radix trees in DRAM to perform
search operations quickly and to reduce on-disk data structures. However, NOVA
neither proposes design approaches for checksumming nor for deduplication [121].

3.5.2 User Space File Systems
As mentioned in Section 2.2.1, the concept of user space file systems became
popular in recent years. Their functionality is mainly implemented in user space;
they only involve the kernel if it is unavoidable. Aerie [26], Strata [27], and
SplitFS [28] are some examples of user space file systems. They provide a user
space library which applications link against. This library provides functionality
which maps a file read only into a requesting process’s address space.

Strata performs a write by adding the write request to an update log. This
update log is then processed by Strata’s kernel component [27]. Aerie on the other
hand allocates space for a received write call via its kernel component, and lets the
user space library write the content directly [26]. Conversely, SplitFS utilizes a
staging file in user space, which is updated by the write call. The fsync() call
flushes this staging file onto drive [28].

The user space library either intercepts system calls [27, 28] or provides a
library which provides corresponding calls [26]. Commonly, their user space
library ensures synchronized and coordinated access, and goes into the kernel
only if its necessary [26, 27, 28]. Whereas Aerie and Strata introduce a trusted
component for kernel interaction [26, 27], SplitFS uses the ext4 DAX module [28].

As with NOVA, those file systems do not include checksum or deduplication
capabilities. Thus, they are relevant for the overall thematic, but not primarily for
this thesis.

Chapter 4

Design

Whilst GPU4FS [10] implements basic write and copy operations, it lacks advanced
file system functionalities. This chapter details a design of checksumming and
deduplication for GPU4FS. A working checksum implementation is a pre-condition
for implementing deduplication. Therefore, the checksum design process is detailed
prior to the deduplication design. After proposing their architecture, a discussion
about alternative design approaches justifies our decisions for both checksumming
and deduplication.

4.1 Checksumming
This section proposes a checksum approach for GPU4FS. Furthermore, we discuss
alternative designs. Our approach covers an optimized design for a GPU-based
block read and write. We describe our checksum approach only for an initial file
write, as GPU4FS does not currently support file updates. However, Section 5.1.3
gives theoretical advice on how to update checksums appropriately.

A satisfying checksum approach within GPU4FS is given if it fulfills the
following properties:

• Parallelization: Parallel computation in terms of SIMT

• Overhead: Low checksum overhead on disk

• Extensibility: Independent of current page sizes and chosen checksum algo-
rithm

Our implementation uses BLAKE3 [49] as checksum algorithm. Selecting
the checksum algorithm for a GPU4FS-formatted partition is possible within the
superblock: It provides appropriate configuration fields [10]. It is important to
mention that our proposed file system design is independent of the chosen algorithm.

35

36 CHAPTER 4. DESIGN

Figure 4.1: Modified block pointer for GPU4FS which supports checksumming.
The modified block pointer consists of two instead of three unused bits.
One bit is used to identify a checksum block.

Our design is capable of different checksum algorithms, preferably algorithms
which support 16 or 32 byte checksums to reduce internal fragmentation.

4.1.1 Block Pointer Design

As GPU4FS utilizes block pointers to reference data blocks [10], we decided
to introduce a new checksum block into the file system. A checksum block is
identified by a new bit flag inside the block pointer, as seen in Figure 3.1. We
use one of the currently unused bits to implement this bit flag. A block pointer is
defined as a checksum block pointer if its checksum bit flag is set to “1”. The extra
bit flag makes it easier to debug the checksumming approach, and eases the read
process of a file. However, it could be omitted in most cases, with one exception.
We outline this exception in Section 4.1.2, after explaining the overall design.

4.1.2 Block Design

Checksum blocks are either stored on 128 byte, 256 byte, 4 KiB, 2 MiB or 1 GiB
pages. For simplicity, we differentiate between 128 byte- and 256 byte pages by
calling them inode- or mini page sized, respectively. As an inode provides 7 block
pointers, their corresponding checksums fit onto a mini page.

Although we solely use mini pages to provide space for checksum blocks in
our implementation, a checksum block is not bound to a mini page. We chose this
page size as GPU4FS’s current demonstrator only supports inode-sized indirect
pages. However, GPU4FS’s theoretical design is also capable of 4 KiB, 2 MiB or 1
GiB indirect pages [10]. In case of such an allocation, our checksum blocks also fit
on those larger page sizes to reduce overhead. We outline the necessary changes
in Section 4.1.2, after explaining our overall checksumming design for mini pages.

As this thesis implements the BLAKE3 checksum algorithm, one mini-page-
sized checksum block can hold up to 8 checksums. Figure 4.2 depicts such a
checksum block. The “self sum” field of a checksum block represents its own
checksum, which is calculated after the block was fully filled. To ensure a correct
self sum calculation, its 32-byte-long position within the checksum block needs to
be zeroed out prior to the self sum calculation.

4.1. CHECKSUMMING 37

To integrate the checksum structure into the actual file system, we modify
GPU4FS’s current file pointer structure. Based on the file pointer structure outlined
in Section 3.1.3, we modify the block types “inode” and “indirect block”: Both
data structures use formerly free block pointers to point to checksum blocks. Given
GPU4FS’s recursive indirect block pointer implementation [10], this design does
not reduce the maximum file size in theory — although we reduce the total amount
of addressable data blocks, which is inevitable.

Figure 4.2: Internal structure of a checksum block, stored on a mini page. The
checksum block always follows the depicted structure: The first check-
sum is the block’s self sum, the remaining checksums are calculated
over foreign blocks.

Inode Extension

Starting with the inode block, there are eight checksums which need to be stored:
Seven block checksums induced by the seven block pointers inside the inode, and
one checksum coming from the inode itself.

Therefore, the checksums coming from an inode block can be stored within one
mini-page-sized checksum block. This checksum block is referenced through the
first of the seven inode block pointers and stores its self sum, the inode’s sum, and
the six sums of the six remaining block pointers. Figure 4.3 depicts the modification
of an inode’s block pointers. The remaining six block pointers can either point to
real data blocks (“D0” to “D4” in Figure 4.4) or indirect blocks (“I0” in Figure 4.4).
To reduce potential internal fragmentation, an inode which uses only two of its
available block pointers is also able to allocate an inode-sized checksum block.

According to Section 3.1.3, an indirect block stores further block pointers. To
checksum those further block pointers, the required indirect block extension is
outlined in the following.

38 CHAPTER 4. DESIGN

Figure 4.3: Modified file pointer structure of an GPU4FS inode. In contrast to
GPU4FS’s original file pointer structure outlined in Figure 3.2, the
first block pointer now points to a checksum block. Per page size
construction, the checksum block provides space for all 8 checksums
which are required within an inode. Figure 4.4 details this figure.

Figure 4.4: Modified file pointer structure of an GPU4FS inode from Figure 4.3
in detail. Notice that this is an exemplary inode; an inode can hold
between zero and six indirect block pointers. “I0” stores references to
data blocks in the depicted example. However, it could also reference
a mixture of indirect block pointers and data blocks, or indirect block
pointers only. Our design supports both scenarios.

4.1. CHECKSUMMING 39

Figure 4.5: Modified pointer structure of an GPU4FS indirect block, which is
inode-sized. Inode-sized indirect blocks hold up to 16 further block
pointers. As one checksum block is 256 bytes in size and can thus hold
eight 32-byte checksums, it is necessary to reference two checksum
block pointers to store all 16 checksums. Figure 4.6 details this figure.

Indirect Block Extension

Inode-sized indirect blocks can store up to 16 block pointers, which are either
pointing to real data blocks or to more indirect blocks. Thus, it is necessary to
store up to 16 checksums for one indirect block. With BLAKE3 as checksum
algorithm, one indirect block needs 512 bytes of checksum storage. Given the
size of a mini page, it is inevitable to store more than one checksum block in
the indirect block. Figure 4.5 proposes the new indirect block structure, which is
detailed by Figure 4.6: Pointer zero and pointer seven are both used to point to
checksum blocks, while all other 14 block pointers follow the original block pointer
semantic. Thus, a checksum block from an inode-sized indirect block stores its
own sum in position zero, and the checksums of the next contiguously referenced
blocks in the remaining seven positions. As with inodes, the indirect block is also
able to allocate inode-sized checksum blocks, or a combination of both.

As an indirect block potentially stores more than one checksum block, the
“self sum” field of a checksum block can be used differently; instead of storing
its own self sum, it might store the self sum of a foreign checksum block, which
increases the integrity. In other words: An indirect block which uses more than
one checksum block can distribute their self sums across its different checksum
blocks. Such a scenario is exemplary outlined in Figure 4.6, and formalized in
the following: Let d0 be a data block and c0 be a checksum block which stores
the checksum of d0. If c0 now has a corrupted bit in both its self sum and the
stored sum of d0, there is no way to detect if d0 did suffer from corruption or the
checksum block c0 stores a flipped checksum. However, if another checksum block
c1 stores the sum of c0, this block can be used to validate if c0 is intact or corrupted.
With this extension, three instead of two dependent blocks need to be corrupted
before a corruption cannot be detected unambiguously.

40 CHAPTER 4. DESIGN

Figure 4.6: Detailed file pointer structure of an GPU4FS indirect block from Fig-
ure 4.5. This figure extends Figure 4.4. “I0” references 14 data blocks
“D5 to D18”, whose checksums are stored in C1 and C2, respectively.
This is just an example; “I0” could also reference further indirect
blocks, which would then follow the depicted design themselves.

4.1. CHECKSUMMING 41

Large Indirect Blocks

As stated previously, GPU4FS is able to allocate indirect blocks which are larger
than an inode-sized page. Thus, we propose two different approaches on extending
the checksumming approach for different indirect block sizes in the following.
While approach static uses only mini pages for storing checksum blocks, approach
dynamic allows different page sizes for a checksum block.

Within approach static, every position in the indirect block which is a multiple
of eight references a checksum block. This implementation allows an extension
to larger indirect block sizes directly, by following the implied mathematics. Ap-
proach static leads to the following amount of mini-page-sized checksum blocks,
with respect to the GPU4FS page sizes:

• Inode-sized indirect blocks: 21 checksum blocks

• Small-page-sized indirect blocks: 26 checksum blocks

• Large-page-sized indirect blocks: 215 checksum blocks

• Huge-page-sized indirect blocks: 224 checksum blocks

Approach dynamic on the other hand allows checksum blocks on page sizes
different from mini pages. This means that e.g., an indirect block which is small-
page-sized could utilize four small-page-sized checksum blocks instead of 26

mini-page-sized checksum blocks. The degree of an indirect block’s occupancy
makes it feasible to dynamically use a combination of small-page-sized and mini-
page-sized checksum blocks in combination. This principle can be applied to the
other GPU4FS page sizes.

Approach dynamic must use a specific target metric to determine the amount of
checksum blocks. Depending on the selected metric, the previously modified block
pointer with its checksum flag (regarding Section 4.1.1) eases its implementation,
especially when using a mix of different metrics.

One feasible metric is to target the least possible overhead. For determining
which checksum block size combination provides the least overhead for a given
file, the approach solely needs knowledge about the file size. As a checksum block
reduces an indirect block’s free block pointers, the file could need more or less
indirect blocks, depending on the different checksum block sizes. To be able to
allocate enough block pointers, each upper indirect block must be allocated in
advance of its potential child blocks. The algorithm then allocates checksum blocks
in a greedy fashion: Starting with huge-page-sized checksum blocks, the algorithm
allocates as many huge-page-sized checksum blocks as it can fully occupy. Then, it
proceeds with large-page-sized checksum blocks, then small-page-sized checksum
blocks, and finally places the remaining blocks onto one or more mini-page or
inode-sized checksum blocks.

42 CHAPTER 4. DESIGN

4.1.3 Discussion

The outlined checksum approach was built with our three design goals in mind:
Parallelization, overhead and extensibility. Additionally, we modified the already
existing file system structure as little as possible. In the following, we will discuss
differences to common file system implementations and outline an alternative
checksum approach for GPU4FS.

Fundamental Differences to Related Work

ZFS uses a block pointer which is 128 bytes in size [110]. However, GPU4FS’s
block pointer is only 8 bytes in size [10]. Therefore, ZFS’s implementation —
storing checksums inside the block pointers — is not easily adaptable to GPU4FS.
Increasing the block pointer size of GPU4FS would not just break current file
system usage; it would also affect the current page sizes and lead to more internal
fragmentation. An inode would consequently not consume 128 bytes, its storage
requirements would increase to at least 200 bytes when storing only one block
pointer inside the inode. 200 is not a multiple of two, which leads to changes in
the overall address format.

Compared to ZFS, the overhead of our checksumming approach is higher: ZFS
has a checksum overhead of 32 bytes per block pointer. Our checksum approach
comes with the same overhead when considering full or half-full indirect blocks.
In those cases, the allocated mini-page-sized checksum blocks are fully filled. All
other cases, however, introduce internal fragmentation. This is unavoidable as
GPU4FS needs to allocate pre-defined page sizes which are, per block pointer
construction, at least 128 bytes in size. The largest internal fragmentation within
our checksum approach is given if an indirect block is only filled with one block
pointer. In that case, the remaining 14 block pointers are unused. Although
we need to allocate one mini page only to checksum the indirect block’s first
eight block pointers, the internal fragmentation expands to 256− 32− 32 = 192
bytes. 192 bytes is the largest internal fragmentation inside a checksum block
when using inode-sized indirect blocks and mini-page-sized checksum blocks.
When allowing inode-sized checksum blocks, the maximum possible internal
fragmentation reduces to 128− 32− 32 = 64 bytes.

Btrfs utilizes a fundamental different approach on storing data checksums.
Within Btrfs, an additional data structure is used to store checksum items only.
This so-called checksum tree is stored independently of the actual file’s data [8].
Additionally, Btrfs checksums all tree blocks using a CRC32 checksum [8, 122].

As pointed out in Section 3.3, Btrfs uses so-called extents to store and organize
file data. Those extents can be variably sized — which makes a static checksum
approach as in our case unattractive. A separate tree structure is technically possible

4.1. CHECKSUMMING 43

within GPU4FS by selecting GPU4FS’s block pointer as unique key for the tree
structure. However, it would introduce more complexity into the file system: A
separate tree requires multiple SIMD lanes to walk the tree structure in parallel
to the real file pointer structure, which makes load balancing a file read difficult.
Additionally, a file write would require to walk the checksum tree for allocating
fresh checksum blocks, introducing additional O(log n) operations to the already
expensive checksum calculation.

EXT4, which design was an inspiration for GPU4FS [10], provides checksum-
ming only for block groups and its journal [105, 23]. In its current state, EXT4
plans to integrate checksumming for the extent tail, the allocation bitmaps, the
inodes and potentially the directories. Given its age and further development in
more recent file systems, the reasonability of those modifications is questionable.
EXT4 uses a CRC16 checksum for block groups, and a CRC32 checksum for its
journal [105]. EXT4 can thus not detect bit flips on individual file blocks, which
makes its implementation unattractive for GPU4FS.

Alternative Checksum Blocks — The Linked-List Approach

To reduce the amount of checksum block pointers within an indirect block, an
alternative implementation is also feasible. Such an implementation could utilize a
special inode-sized block, as depicted in Figure 4.7. This “special checksum block”
is referenced by the first block pointer inside an inode or an indirect block. The
alternative approach requires a distinction between the special checksum block
and the actual checksum block. An actual checksum block stores checksums only
and is thus similar to our implemented checksum block from Section 4.1.2. As the
actual checksum block provides only space for a fixed amount of checksums, we
need the ability to reference multiple actual checksum blocks. While our approach
from Section 4.1.2 borrows multiple block pointers to reference multiple checksum
blocks, the alternative approach uses the special checksum block: The “Next
Block” block pointer of a special checksum block can reference another special
checksum block, which allows chaining multiple contiguous special checksum
blocks together. Therefore, it is possible to utilize various pages sizes for the actual
checksum block. Holding an indirect block’s checksums would consequently
require four inode-sized or two mini-page-sized checksum blocks, chained by four
respectively two special checksum blocks. The self sum field inside a special
checksum block ensures its validity, while the “Sum Of Checksum Block” field
holds the corresponding actual checksum block’s self sum. The remaining 48
bytes are reserved for future usage. Compared to our chosen approach, such a
linked-list approach is considered bad in terms of our design goals: The chaining
approach forces the GPU to process the checksums sequentially. While the chosen
approach can retrieve all checksums within one indirect layer fully parallel with one

44 CHAPTER 4. DESIGN

Figure 4.7: Special checksum block, forming an alternative checksumming ap-
proach. The special checksum block holds a self sum, the sum of the
actual checksum block, a block pointer to the actual checksum block,
a block pointer to a further special checksum block and provides 48
additional bytes for further usage. The depicted special checksum
block is referenced within an inode or indirect block instead of the real
checksum block.

distributed operation, a special checksum block’s next pointer can only be resolved
after fetching the special checksum block fully from drive. Although the actual
checksum block can be retrieved in parallel with the next special checksum block,
the process is highly sequential: For example, an inode-sized indirect block would
require four sequential fetches each. Furthermore, the special checksum block
would store the “Inode Sum” redundantly. With regard to the wasted additional
space, the actual internal fragmentation of a special checksum block is high.
In fact, the total overhead is always at least 128 bytes more than our chosen
approach, as a special checksum block introduces 128 bytes regardless of the actual
checksum block’s size. For example, a fully occupied indirect block needs at least
128 ∗ 2 + 256 ∗ 2 = 768 bytes of additional storage. Our chosen approach comes
with a maximum overhead of 2 · 256 = 512 bytes to checksum an indirect block.
Storing more actual checksum block pointers inside one special checksum block
is not feasible as their self sum would exceed the special checksum block’s size.
Furthermore, extending its size is not sensible, as this would potentially aggravate
the consumed overhead. Nevertheless, the major argument against the linked-list
approach is its sequential nature. Therefore, this approach was not chosen.

4.2. DEDUPLICATION 45

4.2 Deduplication
With an integrated checksum approach, GPU4FS is ready for proposing a dedupli-
cation design. This thesis implements inline deduplication, as seen in ZFS [111].
This has one major reason: As inline deduplication reduces the amount of file
writes, we found it more suitable for the bandwidth-limited Optane DIMM than a
post-processing deduplication. Based on the research from Section 2.4, we chose
to adapt the fixed-size chunking approach into GPU4FS: Its page sizes are the
perfect chunking candidate. Thus, we call our design block-level deduplication, as
it operates on the various block sizes of GPU4FS.

After proposing our design, we sum up with a discussion about alternative ap-
proaches and compare our implementation with already existing implementations.

A satisfying deduplication design should fulfill the following properties:

• Fast: Inline deduplication needs low latency and quick responses

• Parallel: High degree of independent parallelization

• Overhead: As few additional blocks as possible

• Extensibility: Design independent of block sizes, allowing e.g., CDC in the
future [72]

4.2.1 File System Design
Inline deduplication requires a fast deduplication decision during every file write,
while providing a persistable on-disk design. Therefore, we introduce a variety of
new structs into the GPU4FS file system driver:

Deduplication Table (DDT)

We borrow the term deduplication table (DDT) from ZFS [9], as it fulfills the same
purpose within GPU4FS. The DDT is a structure which stores all deduplicated
blocks efficiently. We explain its structure in the following.

From a logical perspective, the DDT of GPU4FS follows the structure of a
binary tree. Thus, GPU4FS’s superblock references the root node of the DDT
tree. Per construction, this root node contains two child nodes, which are each
capable of having two further child nodes, and so on. This feature is recursive,
which allows to reference an infinite depth of nodes, respectively deduped blocks.
Leaf nodes within the DDT tree reference an actual data block on drive, whereas
inner nodes reference a subtree of DDT entries with a common checksum part.
The detailed structure of our DDT tree is outlined in Section 4.2.1.

46 CHAPTER 4. DESIGN

Figure 4.8: Design of a DDT entry in VRAM. Each DDT entry represents either a
data block or a DDT inner node on drive. The “referenced_checksum”
field stores either common checksum bits if the DDT entry is an inner
node, or the full checksum if the DDT entry is a leaf. The “con-
tent_block_pointer” is a block pointer. Each DDT entry provides an
8-byte-long “ref_counter”, indicating the amount of pages it dedups.
The “offset_in_vram_buffer” and “lock” integers are runtime com-
ponents. They are only filled if “content_block_pointer” points to a
further DDT inner node, respectively the current node is locked.

Figure 4.9: Design of a DDT entry on drive, which is similar to Figure 4.8.
This DDT entry replaces the runtime components with a “refer-
enced_inner_node_sum”. This sum is a checksum over the referenced
DDT block, with 16 byte length.

4.2. DEDUPLICATION 47

Each node within the DDT tree consists of 64-byte DDT entries, outlined
in Figure 4.8. Physically spoken, this makes up a total of 128 bytes per DDT tree
node. Thus, a tree node fits perfectly onto an inode-sized page of GPU4FS [10].
Selecting a GPU4FS page size for tree nodes brings further benefits: A GPU4FS
block pointer can reference a DDT tree node without any modifications to i.a.,
the type field. This allows smaller DDT entries, as there is no need for storing
two block pointers of different size — the “content_block_pointer” can either
reference a real data block or another DDT tree node. Furthermore, writing and
reading a DDT tree node is efficiently possible, as DDT tree nodes can be treated
as normal data blocks on the physical layer. Additionally, GPU4FS does not need
to hold all DDT entries in VRAM: Fetching them from drive is as easy as fetching
a normal data block. With a suitable eviction strategy, the maximum VRAM used
for deduplication is limited. Additionally, a more advanced memory allocator for
data blocks can also serve DDT tree node requests with no need for modification.

In terms of overhead, we face 64 bytes of additional space per data block in
the file system. Given the most recent results from Dinneen et al., the log normal
median of file size distribution is 9 KiB across their measured dataset [123]. 9 KiB
fit onto three GPU4FS small pages, which then need 64 · 3 = 192 bytes for storing
the DDT entries. Given the fact that we need to allocate inode-sized pages, we
round those number up to 256 bytes, which corresponds to two allocated pages
per file. If we consider 1 TiB which is distributed as outlined, we end up with
240 ÷ 28 = 232 bytes of DDT entries, which is a total of 4 GiB. It is important to
mention that 64 bytes overhead per such an allocation are induced by the GPU4FS
page sizes, not our design.

Ensuring DDT Integrity

The runtime-only fields are an important aspect of our DDT design. As the fields
“offset_in_vram_buffer” and “lock” are only relevant if the according DDT entry
was loaded into VRAM, we can use their space on drive differently: Our design
suggests a DDT entry on drive as depicted in Figure 4.9. On drive, each DDT entry
stores the checksum of the block behind the referenced “content_block_ptr”. This
“referenced_inner_node_sum” is suitable for validating the DDT entries before
using them. During a write-back of a DDT entry onto drive, GPU4FS can update
the checksum of this DDT entry. This design has further advantages: The sum
within each DDT entry protects its referenced subtree, if the DDT entry is an inner
node.

The DDT entry provides enough space to store a 128-bit-wide cryptographic
checksum. Therefore, we suggest using the already implemented BLAKE3 al-
gorithm for checksumming DDT entries. With regard to security, a truncated
BLAKE3 128-bit-wide checksum is collision resistant with 64-bit security [49].

48 CHAPTER 4. DESIGN

Figure 4.10: Exemplary DDT binary tree. The depicted figure shows a DDT with
5 referenced block pointers. The numbers on the edges represent the
binary value of the layer-indicating checksum bit, while the values
inside the nodes represent the relevant part of the stored checksum.
Each leaf references one data block uniquely.

The first collision is therefore expected after 264 stored blocks, which ought to be
enough for our purpose; 264 is an upper limit for the maximum addressable amount
of blocks within GPU4FS [10].

Our demonstrator will not implement the DDT self sums. However, it is an
important aspect for future work.

Allocating the DDT Tree

Trees need some kind of keys, which identify its entries uniquely. Those keys are
used during traversation and allow the algorithm to choose the next inner node.
Our DDT structure utilizes checksum bits as keys. We initially describe a binary
tree implementation to describe our principle of keys. As a binary tree would waste

4.2. DEDUPLICATION 49

Figure 4.11: DDT binary tree from Figure 4.10 as binary radix tree. The figure
outlines the radix property: The inner nodes “010” and “0100” were
replaced as they have a common prefix. To identify the common
prefix of a node’s referenced subtree, the numbers underneath the
nodes are used. They represent the amount of similar checksum bits
within the current layer.

50 CHAPTER 4. DESIGN

Figure 4.12: DDT binary radix tree from Figure 4.11 after adding the checksum
“011”. The inner node “01” was amended with an additional check-
sum bit, moved one layer downwards, and became the inner node
“010”. The former position of “01” was then initialized with a new in-
ner node. This node uses checksum bit 3 instead of 5 for determining
the child to traverse. The new “01” inner node references leaf “011”
in the right child, while the moved inner node “010” is its left child.
The child nodes of inner node “010” are unmodified.

4.2. DEDUPLICATION 51

space, we refer to an optimized variant afterwards.
Within a binary tree, the DDT tree is traversed in the following way: Starting

from the root node, the first checksum bit of a data block determines if the tree
traversal recurses into the left or the right child. While a value of “0” indicates the
left child, its complementary value “1” indicates the right child. This procedure
continues for each layer li using the i-th checksum bit. An exemplary binary tree
is depicted in Figure 4.10.

However, using only one bit to determine the next recursion candidate has one
downside: We can construct an example where we insert two checksums into our
binary tree structure which are only different in their 256th checksum bit. Although
the checksums only differ in one bit, we must allocate 255 further nodes. As an
internal node consumes one inode-sized page, its allocation introduces an overhead
of 128 bytes. This means that we would waste 255 inode-sized pages. Additionally,
the allocated nodes force pointer chasing of an unnecessary long pointer chain,
where each node refers to only one child.

Thus, a binary tree alone is not feasible: Instead of utilizing the i-th bit as key
for the layer li, we can jump over a sequence of common checksum bits. This
means that each child which is the only child within its parent is merged with the
parent. This data structure is known as radix tree, which has shown promising
within PMem [124]. The outlined technique of interpreting the bits as string and
arranging them in a radix tree is related to the leaf organization in extendible
hashing [76]. In the following, we explain our usage of the extendible hashing
technique from Section 2.4.4.

Consider Figure 4.11 for an exemplary scenario. The according decision bit for
layer l4 is chosen by selecting the first different bit of the referenced two checksums
as corresponding key — the 5th bit in the depicted example. However, a later
allocation could differ in its 3th bit with the aforementioned checksums. To be
able to resolve such a collision, we need to store the common checksum part of the
compactified inner node. The collision scenario involves the preceding common
checksum part to find the index of the first colliding inner node bit with the new
checksum ns. The colliding inner node nc on layer li is then moved one layer down
according to its common checksum value, and relocated within a newly introduced
inner node nn. The former position of the aforementioned inner node nc on layer li
is occupied by nn. This new inner node nn uses the colliding bit to decide between
the newly introduced checksum and the moved inner node. Finally, the new inner
node nn on layer li receives the common checksum part of nc and ns. The resulting
tree is depicted in Figure 4.12. As each insertion requires up to one new node
allocation, our DDT design introduces at most 128 bytes per data block.

Each modification of the DDT affects only a small, fixed number of tree nodes.
Locking is therefore applied on a node level. This ensures parallel computation to
a high degree, as only a small set of nodes is locked for a short amount of time.

52 CHAPTER 4. DESIGN

Figure 4.13: DDT binary radix tree from Figure 4.12 with directory. The direc-
tory stores direct references to DDT inner nodes, which reduces tree
traversal.

4.2. DEDUPLICATION 53

With our design of the DDT tree, we are able to store DDT entries on drive
efficiently. However, looking up the DDT tree requires O(log n) operations, as we
currently do not use any caching strategy. Extendible hashing as in Section 2.4.4
suggests a directory, which references its leaves via parts of the key. Within our
design, those leaves are DDT inner nodes, referencing a subtree. Thus, we are able
to use a directory of any size, which points to an DDT inner node of the tree. This
way, we do not need to start our traversal at the root node, but directly in the correct
subtree. Changes within the DDT may include changes in the directory, which
consistency is guaranteed via atomic operations. A visualization of the directory
is given in Figure 4.13. Based on the principle of extendible hashing [76], the
directory is only allowed to point to an inner node whose stored key’s length is less
than or equal to the directory’s key length.

Depending on the size of the directory, this results in a lookup time of O(1).
However, the constant runtime is a trade-off between allocated VRAM for the
directory and subtree depth to traverse. Contrary to the original extendible hashing,
we do not limit the amount of entries within a leaf [76]. Therefore, there is no need
for expanding the directory after a specific amount of insertions; we can initialize it
either fixed-size or expand it by some heuristics. The directory itself can either be
built dynamically after mounting the file system, or stored in a contiguous region
on drive and loaded into VRAM. To provide high speeds, the directory should
always be swapped into VRAM.

Given time constraints, we were not able to implement the directory structure.
However, we expect its implementation to speed-up deduplication.

4.2.2 Discussion
The introduced deduplication design satisfies our four design goals: It is fast, locks
on the fine-granular node level, introduces the least possible overhead, and is
extensible to a high degree. If a future development of GPU4FS decides to increase
the inode-page size from 128 bytes to 256 bytes, the proposed binary radix tree is
substitutable with a 4-ary radix tree. The 4-ary radix tree holds four child nodes —
which increases the size of a DDT node from 128 bytes to 256 bytes. The radix
property works the same way, although the key now utilizes at least two bits instead
of one bit.

Although the overhead of a file-level deduplication would be smaller, its dedu-
plication ratio would also decrease. As mentioned in Section 2.4.3, the deduplica-
tion ratio of the applied technique relies on the surrounding context.

54 CHAPTER 4. DESIGN

Towards Extensibility

As our design utilizes checksum bits for identifying blocks on drive, the dedu-
plication design is not bound to a specific block size: A DDT entry could also
store a reference to another data structure, which might hold (block-pointer,
offset, length) triples. The DDT entry itself then consists of the checksum
of the data behind those triples. Thus, the deduplication design supports CDC
chunking, although this would introduce more overhead in terms of computation
and storage. However, its evaluation is future work.

Fundamental differences to related work

ZFS was a great inspiration for our proposed design. It implements deduplication
as an AVL tree in RAM, using the “extendible hashing” approach on-disk [112,
116]. The AVL property ensures that the referenced subtrees within each node
differ in their height by only one layer [117]. This property makes the AVL
tree a balanced tree. Nevertheless, balancing a binary tree comes with its costs:
As a modification-induced imbalance might occur on a much higher level [125],
the entire tree must be locked. Additionally, the AVL tree has no compressing
properties similar to the radix tree. Thus, we chose to use a radix tree.

As with checksumming, Btrfs again uses a fundamentally different approach
for deduplication. The core of Btrfs even does not support deduplication, as
outlined in Section 3.3. Instead, the Btrfs documentation suggest the two supported
tools Bees and Duperemove, which patch deduplication into the file system. Both
tools implement a post-processing deduplication, which Btrfs refers to as “out-
of-band” deduplication [107]. This is contrary to our design, as we provide
an inline deduplication. The tool Duperemove takes a list of files as input and
dedupes them by identifying duplicate extents. It must be invoked by the user
and does not run as a daemon [109]. Duperemove relies on a red-black tree as its
DDT [109]. Additionally, Duperemove subdivides its files in configurable long
chunks, which are then checksummed and deduplicated. Bees on the other hand is
designed to run as a daemon, which incrementally dedupes new data by utilizing
a Btrfs tree search. Bees works on the whole file system, which is rather related
to our implemented deduplication variant than Duperemove’s procedure [108].
Differently to Duperemove, Bees uses a fixed-size hash table [108]. Thus, the
DDT layout of Duperemove is more related to our design than the DDT layout of
Bees. Finally, Bees examines the nearby area of a duplicate block to find larger
duplicate areas [108]. This is again contrary to Duperemove and our design, as
GPU4FS scans all blocks independently of each other — similarly to Duperemove.
Duperemove on the other hand allows a configurable block size to dedup, whereas
GPU4FS’s deduplication design is limited to the page sizes.

4.2. DEDUPLICATION 55

As mentioned in Section 3.2, EXT4 does not support deduplication at the
moment. Thus, it cannot be compared to GPU4FS’s deduplication design.

Alternative DDT Design — Simple Lookup Cache

Alternatively to a radix tree, the DDT could also be represented by a cache struc-
ture [126]. The full 256 checksum bits then are the key of the direct-mapped
cache, where each unique entry references one data block pointer. The GPU4FS
superblock could point to the address of the DDT lookup cache. This approach
comes with major downsides: Utilizing a single direct-mapped cache would need
2256 entries to address all existing checksum values. Providing space for all of them
is necessary as all checksum values could occur at any time with equal probability.
Implementing the cache fully-associative is no option, as the lookup time would
grow to O(N). As one goal within our deduplication is performance and low
latency for deduplication lookups, a linear table search of a potentially 2256 entries
large page table is not suitable.

Alternative DDT Design — Hash Table

Advancing the direct-mapped cache approach to a hash table is another possible
option. Again, the GPU4FS superblock could point to the address of the DDT
hash table. Hash tables have, similar to direct-mapped caches, an access, insertion,
and deletion time of O(1). The hash table stores entries in so-called buckets. Its
hash function is our cryptographical checksum. As our hash table is not 2256 bytes
large, hash collisions are unavoidable. Those could either be resolved via open
addressing, or via separate chaining [127].

Open addressing moves elements inside the hash table if a collision occurs.
The size of the hash table determines the amount of checksum bits which are used
for addressing a value’s table entry location. Thus, the hash table’s size should be
a power of 2. A colliding element is then stored on an alternative, free location.
This approach comes with one major downside: The more elements the hash table
stores, the denser it is occupied. At some time, the table needs to be relocated to
provide more space. However, such a relocation requires the complete table to be
locked, which violates our “parallel” goal. Additionally, if we expand the hash
table more than 128 bytes at a time, we waste space in advance without knowing
that this space is actually needed. This violates our “overhead” goal. Expanding the
hash table by only 128 bytes locks the table more often, which reduces throughput
and violates the “parallel” goal.

Separate chaining requires the hash table to store lists inside its buckets. After
determining a value’s bucket, it is stored inside the accompanying list. Imple-
menting the lists naively would increase the lookup time of our hash table with a

56 CHAPTER 4. DESIGN

growing amount of entries: As the hash table has a fixed size, its lists inside the
buckets grow over time. Depending on their implementation (e.g., a linked-list),
they seek a linear lookup time — which violates our “fast” goal. Trading the
linear lookup time with a hash table resize is not easily possible, as we would
change the hash key’s size. This would require a revalidation of all bucket entries
with moves from one bucket to another. This not only violates our “fast” goal, it
also violates the “parallel” goal as we need to lock the overall structure during
relocation. To mitigate this problem, the hash table could be allocated “larger”
initially. However, this would again violate the “overhead” goal. From all outlined
alternative approaches, separate chaining is most related to extendible hashing in
its original variant. Nevertheless, our adaption of extendible hashing does not build
fixed-size buckets which are accessed through the directory, but a tree which’s
inner nodes can be looked up within the directory.

Both outlined techniques identify the resize operation as costly. Although there
exist approaches on reducing its overhead [128], subsequent work found that their
performance is not significantly better than already existing approaches [77].

Towards Speed-Up Data Structures

Our design is able to use several speed-up data structures, which improves lookup
time even further. One promising approach are CCEHs[77]. As with extendible
hashing, we do not integrate this technique directly but adapt its concept.

Instead of placing two DDT entries onto an inode-sized page, we are able to
place 64 DDT entries onto a small page. This decreases the depth of our radix
tree, as the small page can use six checksum bits to address its entries. However,
allocating bigger pages to store DDT nodes introduces more internal fragmentation,
as cryptographical checksums are expected to collide with equal probability. The
selection of DDT page sizes is thus a trade-off between performance and overhead.
However, one sensible way to use larger page sizes is to compactify the DDT tree:
If a subtree of depth six is fully occupied, we are able to group the according
inode-sized pages together into one small page. The same argument holds for
large pages and, potentially, huge pages. The advantage of this optimization is
that we save pointer chasing operations and thus increase the overall throughput:
As the DDT tree becomes denser, its upper levels are more likely to be fully or
nearly fully occupied. The overhead of such a compactification is negligible, as
we introduce a constant amount of one additional block pointer to perform the
compactification. Additionally, we are able to reconstruct the original pointer
structure from its compactification by walking the subtree and recreating the inode-
sized pages within each layer. This way, we ensure to support a rollback if potential
deletions of the DDT remove values from a compactified subtree. However, we do
not implement this compactification and leave it at that as theoretical advice.

Chapter 5

Implementation

After designing the two file system features, their integration into GPU4FS is
mandatory for evaluating some design decisions. The following section details
the implementation process of checksumming, and deduplication afterwards. We
describe the implementation process in the chronological order as it actually
happened: A suitable BLAKE3 implementation is necessary for a checksum
integration, while deduplication depends on a working checksum integration. Each
section concludes with further work, describing additional implementation effort
to improve our design. Throughout the whole chapter, the terminology “shader” is
used and implies a compute command as introduced in Section 2.5.3.

5.1 Checksumming
The following section covers the implementation of GPU4FS’s checksum func-
tionality using GLSL shaders [129]. Initially, we describe the implementation
of the depicted BLAKE3 [49] checksum algorithm on the GPU. Afterwards, we
implement the theoretical checksum design from Section 4.1. Finally, we describe
an approach on how to update and delete our checksums efficiently, and sum up
with a discussion about alternative implementation approaches.

5.1.1 Checksum Algorithm — BLAKE3
Calculating a BLAKE3 checksum follows the outlined steps from Section 2.3.4:

1. Split input in 1024 byte large chunks and checksum them independently

2. Arrange those checksum results as leaves in a Merkle-Tree

3. Backtrace the Merkle-Tree to the root value

57

58 CHAPTER 5. IMPLEMENTATION

4. Output the root value as final hash value

The following section details our implementation of those four steps. We extend
our approach within every section until we finally cover all preconditions for a
GPU4FS integration. The BLAKE3 authors proposed two approaches for im-
plementing step one on SIMD hardware efficiently. One approach tends to be
more efficient on smaller input lengths, while the second targets larger input sizes.
Both BLAKE3 implementations follow their “Chunk Chaining Values” suggestion,
covered in Section 2.3.4.

Basic Structures

Our BLAKE3 implementation uses multiple data structures. The most essential
structures are explained in the following:

The state array holds the internal state of each compressed chunk. Since
BLAKE3’s checksum can be calculated in parallel, we need to allocate storage to
store the calculation results from multiple SIMD lanes. Within BLAKE3, 1024
byte large chunks can be compressed independently of each other, producing a 32
byte hash output for each. Those hash values are then combined in the Merkle-
Tree fashion, as explained in Section 2.3.4. To share all results with all SIMD
lanes within a workgroup, the state array must be declared “shared”. GLSL then
provides the memoryBarrierShared() call to ensure visibility between all
SIMD lanes within a workgroup: All modifications prior such a barrier must be
visible to all SIMD lanes within a workgroup after passing the barrier [84].

The parallel hashing struct represents the internal state of a single processing
SIMD lane. This means that within a parallel hashing instance, the GPU stores
the calculation results of one single local chunk calculation. Adding another state
variable in addition to the state array allows state modifications during a chunk’s
compression process more easily while encapsulating the invalid results during the
compression process. After calculating a chunk’s sum, the internal state is moved
from the parallel hashing struct to the shared state array variable.

In the following, we introduce the two different approaches for fulfilling step
one of the checksum calculation. Those approaches are derived from the BLAKE3
paper. While the former approach is suitable for small input sizes, the latter
provides better performance for larger inputs [49].

Implementing Approach One

BLAKE3’s first approach arranges the internal state words v0 − v15 into four
128-bit vectors. Each of those four vectors contains four contiguous state words
of the initial internal state, starting at state v0. The approach then applies the
compression function G to those four vectors. Afterwards, a diagonalization step

5.1. CHECKSUMMING 59

Figure 5.1: Exemplary Merkle-Tree, representing the structure of a BLAKE3
checksum. The depicted Merkle-Tree holds four leaves, each rep-
resenting 1024 bytes of input length. The tree corresponds to a small
page’s checksum calculation.

rearranges those words so that each diagonal now forms a column. We used the
atomicExchange() function to update the contents within a shared state array
variable [49].

As approach one mixes the internal states of multiple chunks during its di-
agonalization step, we must ensure workgroup-wide memory consistency during
compression. Our experiments showed that approach one performs worse than
approach two, which we believe originates from the synchronization overhead.
Thus, we utilize approach two in all scenarios.

Implementing Approach Two

Approach two suggests compressing one chunk per SIMD lane. Implementing the
second approach utilizes the parallel hashing struct to store a chunk’s state locally.
After applying the compression function G and the permutation scheme according
to BLAKE3’s definition, each SIMD lane holds the hash value of its assigned
chunk. This hash is then written back into the state array variable. Approach two
follows the SIMD programming principle, which prevents dynamic branching.
Thus, all SIMD lanes are able to work truly parallel.

Backtracing the Merkle-Tree

Step two now rearranges the results from step one as leaf nodes in a Merkle-Tree.
We define cl,i as the Merkle-Tree node i, located on layer l. The lowest layer
which accommodates the leaf nodes is called lmax. Initially, step two inputs two

60 CHAPTER 5. IMPLEMENTATION

neighbor leaves clmax,i and clmax,i+1 with i being an even number as message block
into BLAKE3’s compression function G. Those inputted values are then processed
in the same way as a real chunk block was processed before. Using approach two,
another 32-byte checksum cl−1,i is calculated. This process continues within every
layer l until the algorithm reaches layer l0. Figure 5.1 visualizes the backtracing
up to the root node.

Backtracing a tree is efficiently done using a top-down recursion approach.
The lowest recursion level would calculate the chunk sums utilizing the approach
from Section 5.1.1, and the recursion stack would handle all the backtrace refer-
encing automatically. As outlined in Section 2.3.4, the top-down approach was
originally proposed by the authors, which found it suitable for a fork-join con-
currency model on the CPU [49]. Sadly, GLSL does not allow recursion on the
GPU [84]. Therefore, we cannot build the tree using the advantages of stack-based
recursion. We solved this problem by constructing the tree in a bottom-up fashion:
After building layer n, we backtrace one layer upwards until we reach the root
node. Without recursion, backtracing a non-full tree is not trivial, especially when
exhausting the parallelization potential. Given the properties of the BLAKE3
Merkle-Tree pointed out in Section 2.3.4, we split the tree in its fully occupied left
side and its potentially not fully occupied right side. The left side can be processed
in parallel using #chunks in left subtree SIMD lanes initially. Every backtrac-
ing step from layer i to layer i− 1 halves the amount of compressing SIMD lanes.
Within the right side, we backtrace all chunks cl,i if they have a neighbor cl,i+1.
In that case, we create a new inner node cl−1,i. If cl,i has no neighbor, it becomes
cl−1,i. This procedure allows a bottom-up backtracing of arbitrary-sized BLAKE3
Merkle-Trees without recursion stack.

Processing Large Input Sizes

The approach from Section 5.1.1 is capable of hashing arbitrary input lengths in
theory. Practically, it is limited to the workgroup size. In our case, the amount of
SIMD lanes within a workgroup is 256. This means that this approach can process
up to 210 · 28 = 218 KiB. Within GPU4FS, however, we need to checksum page
sizes which are 2 MiB or even 1 GiB in size. This motivates further research of
backtracing larger input sizes.

A compute shader limits the allocatable space for global variables [130]. It
is therefore not possible to allocate a large state array, providing enough space
to satisfy our requirements. Even if there were no allocation limits: Storing all
leaf’s hash values of e.g., a huge page at the same time would require an array with
230 ÷ 210 = 220 entries. This corresponds to 220 · 25 = 225 bytes of storage, which
is 32 MiB in total.

To solve this issue, the properties of a Merkle-Tree come to rescue. Let m be a

5.1. CHECKSUMMING 61

large Merkle-Tree with depth k. We consider a Merkle-Tree “large” if it exceeds
the size of the state array. A subtree in this context is a part of the large Merkle-Tree
which represents the compression structure of 256 chunks. The only size-exempted
subtree instance is the last possible subtree within a dispatch, holding less than 256
leaves. This means that every other Merkle-Subtree msi with depth l ≤ k must
have depth l = 8 while holding exactly 2l = 256 leaves. A subtree’s leaf on depth
l originates from the original tree’s depth k. Those full subtrees are independently
compressible up to their own root node msrooti. The msrooti of a Merkle-Subtree
msi is an internal node of the original Merkle-Tree, located at depth k− (l− 1). It
satisfies the requirement of not having any neighbor within its Merkle-Subtree msi
and is therefore the subtree’s root node.

Within our approach, we can store up to 256 chunk compressions inside the state
array. By not exceeding this size, the procedure would output only one msroot0
value which would represent the hash value of the input. As we exceed this size
in GPU4FS, we have further subtrees with further msroot nodes, as outlined
previously. Therefore, the proposed modification does not return the backtrace
result msroot0 but rather stores it as msroot_first0 inside the first level array.
The algorithm then continues with the next chunk values, which either form another
full subtree with 256 leaves or the last subtree in a dispatch with less than 256
leaves. Their results are also not returned but stored as msroot_firsti inside the
first level array. The first level array can hold up to 256 Merkle-Subtree hash values
— which corresponds to a total input size of up to 64 MiB. The proposed algorithm
is recursive, which means that the same procedure applied to a full state array can
be applied to a full first level array, compressing its values into a second level array.
When allocating 64 further second level array places, the algorithm can handle
input sizes up to 4 GiB. A last step backtraces the results from the second level
array array by utilizing the approach from Section 5.1.1. Figure 5.2 represents the
outlined scenario.

Parallelizing across Workgroups

Utilizing the approach from Section 5.1.1, it is possible to compress input sizes of
any length. However, this approach requires shared variables to allow backtracing.
Shared variables within GLSL are only valid between multiple SIMD lanes within
a workgroup, but not between different workgroups [84]. Even when considering
VRAM storage, GLSL does not provide synchronization barriers which allow a
coherent VRAM access across different workgroups [84]. Vulkan on the other hand
allows synchronizing between different shaders [131]. The BLAKE3 compression
shader is thus split into two shaders, whose execution order is outlined in Fig-
ure 5.3: The first shader S1 is responsible for the chunk compression and subtree
backtracing proposed in Section 5.1.1, while the second shader S2 backtraces the

62 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Exemplary compression of a state array which is fully occupied. Each
subtree is either a fully occupied subtree with 256 elements, or the
last subtree with ≤ 256 elements. The up to 256 hash values inside
the first level array represent the hash values from the subtrees ms0 to
ms255. The first level array is cleared by compressing its elements into
the second level array. Afterwards, the next batch of subtrees ms256 to
ms511 can be processed. This procedure continues until there are no
subtrees msi remaining. In a final step, all elements within the second
level array are compressed to the final hash value.

5.1. CHECKSUMMING 63

Figure 5.3: The two BLAKE3 shaders S1 and S2. S1 calculates the workgroup-
local results while S2 uses them to backtrace workgroup-crossing. The
arrow in between indicates a Read-After-Write (RAW) conflict and
thus their execution order.

results from the first shader invocation in one final step. S1 can utilize multiple
different workgroup sizes, which needs not be a power of 2. This property is
important as most modern GPU’s do not provide 2n compute units [132].

Our implemented scheduling algorithm in S1 assigns a balanced amount of
elements to each workgroup wi in a greedy fashion, which ensures an efficient
usage of the GPU’s compute units. Within the execution of S1, each workgroup
processes 2i input bytes. The scheduling algorithm distributes three input sizes
across the workgroups, which we call packages: The large package size, the small
package size, and the remaining package size. As mentioned in Section 5.1.1,
backtracing is only allowed between subtrees whose msrooti nodes are located on
the same layer in the original Merkle-Tree. Therefore, it is necessary to introduce
those three package sizes. We define the small package size to be one power of two
less than the large package size. This means that a large package size of 2i bytes
results in a small package size of 2i−1 bytes. We then assign the workgroups either
large or small package sizes. Only the last workgroup wn within a dispatch receives
a remaining package size amount of bytes. Allowing a non-power of 2 as remaining
package size allows compressing sizes of arbitrary input length without destroying
Merkle-Tree’s properties. The algorithm distributes as many large packages to
workgroups as there are enough bytes left to fill all other workgroups fully up with
small packages. This means that our package size splitting point i ensures that
all workgroups wi to wn−1 process 2i−1 bytes, while all workgroups w0 to wi−1
process 2i bytes. After distributing the packages to the workgroups, the approach
from Section 5.1.1 is applied by every workgroup individually, placing their results
in a VRAM-mapped buffer. This buffer is called workgroup result array.

Shader S2 then receives this workgroup result array after appropriate synchro-

64 CHAPTER 5. IMPLEMENTATION

Figure 5.4: The shader pipeline which calculates a file’s checksum within GPU4FS,
utilizing the design from Section 4.1. Each box represents a shader call,
while each arrow represents their execution order and RAW conflicts.

nization. Its only purpose is to backtrace the workgroup result array with respect
to the three different subtree depths, which are induced by the three package sizes.
S2 receives #workgroup many subtrees, which corresponds to the amount of
chunks to compress within S2. Based on the outlined properties of the Merkle-Tree
construction technique, S2 can utilize the backtracing approach from Section 5.1.1.
Depending on the splitting point i, S2 must additionally compress some small pack-
ages starting at the subtree from former workgroup wi to ensure a fully occupied
left subtree. This is the case if the splitting point i is less than #workgroup÷ 2.
Afterwards, the approach from Section 5.1.1 is applied to the workgroup result
array, which was potentially further compressed to satisfy the left-subtree-property.

5.1.2 File System Integration

After porting BLAKE3 to the GPU, the checksum design from Section 4.1 inte-
grates checksumming into GPU4FS. Writing a file’s checksums to NVM is done
within three steps and in accordance to the design from Section 4.1:

1. Reserving blocks and configuring block pointers within a file’s inode and
indirect blocks

2. Calculating real data, inode, and indirect block sums and writing them to the
corresponding checksum blocks

3. Calculating the checksum block’s self sums and storing them according to
the block format from Figure 4.2

5.1. CHECKSUMMING 65

Figure 5.5: Checksum control struct which controls step two and three of the
checksumming approach. A checksum control struct consists of four
8 byte unsigned integers. The “address_to_write” field specifies the
address where to write the calculated checksum on drive. Furthermore,
the struct defines the referenced data with length “size” via an “offset”
into a mapped buffer. The field “metadata” holds multiple smaller
values, for example an identifying “buffer id”. The selectable buffers
are either “File (0)”, “NVM (1)” or “Command (2)”. Those buffers are
further described within GPU4FS [10].

The shader pipeline (with our pipeline definition from Section 2.5.3) is outlined
in Figure 5.4. Its stages are explained in the following. The pipeline suffers from
RAW conflicts, which require an appropriate memory synchronization. We outline
our implemented synchronization mechanisms in Section 5.3.

Configuring Block Pointers

In its current implementation, GPU4FS uses one compute shader to implement its
commands [10]. We need to implement checksum calculation only for its command
file write, as all other commands do not perform any checksum-related tasks. The
single compute shader processes the file write command through the following
four steps [10]:

1. Writing file data to disk

2. Writing inode to disk

3. Configuring block pointers inside inode and indirect blocks

4. Updating the directory

We must intercept at step three of the file write command: Configuration of a
file’s block pointers must happen in accordance with our design from Section 4.1.
Therefore, we modify the aforementioned step and add some logic which reserves
an inode’s zeroth, and every indirect block’s zeroth and seventh block pointer. Every
reservation is then stored in a block-type-matching, VRAM-mapped checksum

66 CHAPTER 5. IMPLEMENTATION

config buffer. These buffers hold an array of checksum control structs, whose
design is outlined in Figure 5.5. The “block pointer” shader provides five different
checksum config buffers, each separated by the following types:

• Inode and indirect block checksum (meta checksum config buffer)

• Self checksum (self checksum config buffer)

• Small page checksum (small checksum config buffer)

• Large page checksum (large checksum config buffer)

• Huge page checksum (huge checksum config buffer)

Each checksum config buffer holds its own array of checksum control structs.
A distinction between self sums and other sum types is necessary as a checksum
block’s self sum can only be calculated after its content was fully written to disk.
However, the content of a checksum block is not known prior to step two of
our checksum write approach. The distinction between inode, small, large, and
huge page checksums is necessary to synchronize our shader pipeline properly.
Additionally, it ensures compliance with the original GPU4FS file write design,
which is good in terms of backwards compatibility. Both arguments are further
outlined in Section 5.3. Furthermore, their distinction allows better load balancing
of different page sizes, as outlined in Section 5.1.2.

The config buffers do not rely on any kind of sorting, which makes their
processing more flexible. This is additionally compliant with GPU4FS’s idea of
out-of-order command execution [10].

Calculating Real Block, Inode, and Indirect Block Sums

With filled config buffers, the next step is calculating the actual checksums. Step
two calculates all data, inode, and indirect block sums, whose checksum control
structs are stored inside the checksum config buffers. We refer to inode and
indirect block sums as “meta” sums, respectively “meta” pages. To calculate the
checksums, we extend the BLAKE3 implementation from Section 5.1.1. The
checksum calculation of real, inode and indirect block sums must support the four
different GPU4FS page sizes which were outlined in Section 3.1.3: 128 byte, 4
KiB, 2 MiB, and 1 GiB. In Section 5.1.1, we argue that each workgroup is capable
of processing about 262 KiB of input length. This means that shader S2 only
needs to be invoked for 2 MiB and 1 GiB pages. Our extension to the already
existing BLAKE3 implementation covers this case distinction: If a page’s size is
128 bytes or 4 KiBs, it is scheduled on one workgroup only, utilizing shader S1. If
a page’s size is 2 Mibs or 1 GiBs, it is schedulable on min(#wg, page_size÷ 218)

5.1. CHECKSUMMING 67

Figure 5.6: Detailed shader call procedure of step two from our checksumming
shader pipeline. Four instances of S1 calculate the workgroup-local
results according to Section 5.1.1, whereas the two S2 dispatches
backtrace the results of their corresponding S1 shader according to Sec-
tion 5.1.1. The arrows in between indicate RAW conflicts.

many S1 workgroups. The argument page_size ÷ 218 within min ensures that
each workgroup has at least 262 KiB to compress — according to Section 5.1.1.
This distributes as much work as possible onto the GPU’s different compute units,
allowing a high throughput.

Distributing the different page sizes onto different sizes of workgroups requires
some effort. Although we describe the procedure of checksumming one file with
the shader pipeline, GPU4FS is designed for multiple dispatches of file writes [10].
Therefore, step two must also support scenarios where e.g., a large page follows a
small page, which requires the shaders to collect enough workgroups for scheduling
a large page. However, this would involve communication between workgroups,
which is — as outlined in Section 2.5.3 — not officially supported. Therefore,
we implement step two within four S1 and two S2 dispatches, which is visualized
in Figure 5.6. Each of them map their type-matching checksum config buffer, as
described in Section 5.1.2. The four S1 dispatches are responsible for compressing
either huge or large pages into their own workgroup result array, or writing small
or inode page sums directly to NVM. As only the pairs of S1 and S2 shaders are
dependent of each other, the checksum calculation of all page sizes works in an
out-of-order fashion. We only need to ensure that an S2 shader blocks until its
corresponding S1 shader provides enough input. Resolving this RAW conflict is
explained in Section 5.3. Additionally, a dependent pair of S1 and S2 shader could
be moved independently of all other pairs within the pipeline. This property is

68 CHAPTER 5. IMPLEMENTATION

especially important for deduplication, as outlined in Section 5.2.1.
This modification also introduces more flexibility for configuring GPU4FS to

an application’s workload: The amount of workgroups for checksumming each
page size can be adjusted by the mounting application. Thus, an application
which normally deals with many small files can dispatch more workgroups for
checksumming small pages, and the other way around. Mapping the corresponding
checksum control buffers into the according S2 dispatch allows a correct decision
of the number of workgroup result array elements for each entry in the checksum
control buffer.

Calculating the Checksum Block’s Self Sums

Step three is responsible for calculating the first entry within every checksum
block: Its self sum. Their calculation process is simpler than the process from Sec-
tion 5.1.2, as there is only one single page size to consider. With respect to Sec-
tion 4.1.2, a self sum calculation is scheduled on one workgroup. Our procedure
maps the self checksum config buffer as checksum config buffer, and starts another
run of S1.

As mentioned in Section 4.1, the checksum design is able to not only use
mini-page-sized checksum blocks. In case of a checksum block allocation larger
than 4 KiB, it is necessary to involve a dispatch of shader S2. However, this is not
part of this thesis, but important for future development of GPU4FS.

5.1.3 Future Work — Update and Deletion

As a file system needs to update and delete files at certain times, we propose a
theoretical approach on how to support those tasks within checksumming. However,
this thesis’s demonstrator neither implements nor evaluates those tasks — we leave
our advice for future work.

Update

Supporting block updates involves two main tasks: Updating a block’s sum and
updating its indirection path. Both processes imply no fundamental differences to
our proposed implementation: The checksumming shader pipeline from Figure 5.4
receives information from the block pointer shader. Based on that information, the
checksumming process takes place. Thus, by implementing the update process in
the block pointer shader which is responsible for configuring block pointers and a
file’s indirection hierarchy, we automatically gain support for our checksum update
mechanism: The block pointer shader fills the according checksum config buffers

5.1. CHECKSUMMING 69

with information about the modified data block(s), as well as the meta and self
blocks which must be rechecksummed.

Supporting updates in general introduces a new command into GPU4FS’s list
of supported commands. It may be derived from the file write command [10], but
should provide specific information and offsets of the blocks which need to be
updated.

Deletion

Deleting a checksum is a trivial task, as this task’s complexity lies in directory
updates: Deleting a file means decrementing the hardlink counter of its inode to
zero. A zeroed hardlink counter means that this inode is no longer referenced
within the file system and can be overwritten. Therefore, all blocks belonging to
that inode — especially our checksum blocks — are automatically freed and can
be reallocated. There is no need for overwriting the stored checksums. However,
the reallocation process needs a more advanced block allocator [10], which is not
context of this thesis.

5.1.4 Future Work — Outlook

Our checksumming approach works within the original demonstrator of GPU4FS.
However, it is capable of some extensions, which we advise in the following.

Verification of Checksums

Although checksums are now introduced into the file system, we do not utilize
them for checking the actual validity of the file content. As the original demon-
strator does not implement the ability to read files through the GPU, we had no
opportunity of integrating a checksum validation for the GPU side. Thus, we
suggest implementing the verification of checksums when reading blocks from disk
by simply recalculating a block’s sum and validating it against the stored value.
The checksum verification can utilize our proposed implementation with minor
changes, applying it either after reading a file’s content fully or in an asynchronous
fashion.

RAID

BLAKE3 ensures unique fingerprinting of GPU4FS blocks. This feature is not only
relevant for deduplication, but can also be used to implement RAID functionali-
ties [18]: When detecting a corrupted block, a RAID 1 could utilize a checksum to

70 CHAPTER 5. IMPLEMENTATION

detect if the same block is intact on a mirror drive and trigger a replication. RAID
functionality is already a work-in-progress within our team.

More Checksum Algorithms

In Section 2.3, we introduced multiple families of checksum algorithms. Crypto-
graphic checksums were relevant to ensure deduplication support, but may be too
expensive for simply protecting against bit flips. As our approach was specifically
designed to be decoupled from the utilized checksum algorithm, we encourage the
evaluation of simpler algorithms like Fletcher’s sum.

5.2 Deduplication
This section details our deduplication implementation, which follows the design
of Section 4.2. We initially describe modifications to the GPU4FS pipeline which
was outlined in Section 5.1.2. Afterwards, we outline our implementation of
the deduplication shader, including further practical aspects. We conclude with
theoretical advice for updating and deleting a DDT entry and motivate future work.

5.2.1 Preparing the Deduplication Shader
Before we are able to integrate a new deduplication shader, the implementation
from Section 5.1.2 needs some modifications. Currently, we generate our block
pointers in the initial block pointer shader and write the file content immediately
on drive. Afterwards, we proceed through the checksum shader invocation, which
calculates block checksums over data and checksum blocks. However, deduplica-
tion depends on already calculated checksums for deciding if a block is actually
written to drive. Otherwise, the according block pointer needs to point to an
already existing block while not writing the duplicate. As our implementation
from Section 5.1.2 calculates the checksums after writing the actual data on disk,
deduplication cannot be implemented straightforwardly. Implementing deduplica-
tion without any modifications to the shader pipeline would introduce high write
overhead, as duplicated blocks would be written unnecessarily to drive. Instead,
we decide to enrich the shader pipeline with the write-data shader. Its purpose is
to write the actual file data onto drive. Decoupling the write-data process from the
block pointer creation allows the pipeline to utilize a higher amount of workgroups
for writing blocks to drive than for their block pointer creation — which brings
more parallelism.

Figure 5.7 depicts the modified shader pipeline. The original GPU4FS shader
is now only responsible for configuring the block pointers and directory entries.

5.2. DEDUPLICATION 71

Figure 5.7: Shader pipeline of GPU4FS with integrated deduplication shader. The
arrows indicate RAW conflicts.

However, the data behind the configured block pointers is not written to drive
immediately: The block pointer fills a buffer in VRAM instead. The so-called
staging buffer holds an array of staging structs (Figure 5.8). Those staging structs
represent a block pointer on drive, combined with the content it points to. The
write-data shader is able to use this information when writing the data to drive. The
only values written by the block pointer shader are the inode and its indirect blocks,
filled with block pointers. Those values are required regardless of the deduplication
shader’s decision.

As a potential deduplication decision leads to different entries within an inode or
indirect blocks, we cannot calculate their checksum in advance to the deduplication
shader. Thus, the calculation of meta sums is dependent of the deduplication
step — which justifies the new “Meta Sum Checksum Calculation” step after the
deduplication. As the self sums of those checksum blocks depend on calculated
meta sums, we decided to execute the self sum shader completely after the meta
sum shader. Although the self sums of real data blocks could be calculated after
the “Real Data Checksum Calculation” step, two different self sum invocations
are not sensible in terms of overhead. Thus, all self sums of a file write are
calculated within the “Self Sum Checksum Calculation” step. As the meta and self
sum calculations do not influence the write-data shader, we can execute them in
parallel. Figure 5.7 indicates this behavior by placing both shaders next to each

72 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Staging struct in detail. It consists of the “address_to_write”, an “offset”
into a VRAM buffer, the “according_block_pointer_address” of the
backing block pointer and a field with metadata. The “metadata” field
includes e.g., the size.

other, without an additional RAW conflict between them.
With these modifications, we decoupled the block pointer creation from the

actual content creation on disk and ensured a correct checksum calculation. This
brings further benefits for a pipelined execution, which we outline in Section 5.3.2.
However, we still need to pass all block’s checksums to the deduplication shader.
As the deduplication shader is executed after the checksum calculation, we fill
another buffer named DedupInfoBuffer with DedupInfoBufferStructs during
the checksum calculation. Those structs are nothing more than combinations of
checksum values, an offset in our staging buffer and a metadata field. This offset
ensures that the deduplication shader can determine the corresponding staging
buffer entry for a calculated checksum. DedupInfoBufferStructs are 48 bytes in
size each. With those modifications, we are able to integrate deduplication.

5.2.2 Deduplication Shader

With the design from Section 4.2 in mind, we implement a new deduplication
shader. This shader’s main purpose is to decide wether a staged block needs to be
written or is already present on drive. The latter case reconfigures the corresponding
block pointers, and signals the write-data shader to not write the duplicate. To
fulfill this purpose, the deduplication shader needs access to the staging buffer and
all corresponding checksum values. Thus, GPU4FS executes the deduplication
shader after checksumming the data blocks, but prior to the write-data shader.

Block Distribution across Workgroups

The first step within the deduplication shader is to distribute a file’s blocks across all
dispatched deduplication workgroups. Each workgroup is able to start a deduplica-

5.2. DEDUPLICATION 73

tion when it has received eight DedupInfoBufferStructs. This number is explained
in the following. The block distribution across workgroups either follows a concur-
ring or a cooperative approach. Selecting one of those two approaches happens
implicitly by selecting one of the RAW synchronization mechanisms, which are
outlined in Section 5.3. For now, it is important to know that each deduplication
workgroup is able to start the deduplication process as soon as it was assigned at
least eight DedupInfoBufferStructs.

Shader Implementation

After a deduplication workgroup acquired enough DedupInfoBufferStructs, the
actual deduplication takes place. Within the responsible workgroup, each subgroup
acquires one of the workgroup’s assigned DedupInfoBufferStructs. Although the
deduplication process would only need one SIMD-lane per DedupInfoBufferStruct,
we utilize complete subgroups of 32 SIMD lanes. This decision is based on the
structure of the GPU and the high potential of divergent branches: As explained
in Section 2.5, different control flows between SIMD lanes of a subgroup lead to
branch divergence. Such a divergent branch is resolved by executing the groups
of divergent SIMD lanes sequentially. As we explain in the following, our dedu-
plication process involves four distinct cases which occur relatively evenly within
a growing DDT. Therefore, parallelizing over SIMD lanes would introduce a
high degree of branch divergence. However, as each subgroup, respectively wave,
has its own instruction pointer, we have no divergent branches during the actual
deduplication process if we parallelize over subgroups instead of SIMD lanes.

We describe our shader implementation by explaining the process of inserting
a block b’s checksum chk into the DDT.

After acquiring an entry from the DedupInfoBuffer, a subgroup proceeds by
walking through the existing DDT. Within each layer, the subgroup decides which
checksum bits of chk are relevant to walk through the structure. After walking the
tree down to its leaves, the subgroup decides between two cases:

1. DDT leaf is empty

2. DDT leaf is occupied

The former case is the simplest case in our algorithm: If the indicated DDT leaf
is empty, a dedup table entry is filled according to Section 4.2.1. The latter case
checks the DDT entry’s stored checksum against chk: If both match, it found an
entry to dedup and increments the “ref_counter” of the matching DDT entry by
one. However, if they do not match, this step involves a relocation of the already
existing DDT leaf. The algorithm then replaces the leaf with an inner node and
utilizes the nearest different checksum bit of both, the former DDT leaf and chk, to

74 CHAPTER 5. IMPLEMENTATION

address them uniquely in the new inner node. The exact behavior of this relocation
was specified in Section 4.2.1.

As we use our compactified DDT tree from Section 4.2.1, a subgroup must
also validate each inner node it traverses against chk. Inserting a new DDT entry
could involve a relocation within an inner node. This is the third case which could
occur whilst inserting a new DDT entry. After utilizing the relevant checksum bit
of chk to decide a recursion into the right or left child, a subgroup validates the
checksum bits in the child’s “referenced_checksum” field. This field stores the
prefix checksum bits which are equal in the underlying subtree, and is depicted
in Figure 4.8. Before continuing its traversal, the subgroup decides between two
cases again:

1. DDT inner node’s referenced_checksum is equal to same-length prefix of
chk

2. DDT inner node’s referenced_checksum is not equal to same-length prefix
of chk

Again, the former case is the simpler case of both. If the chosen child node’s
subtree has the same checksum prefix than chk, the subgroup recurses into the
child without any modifications. The latter case involves a relocation of this child
node, according to Section 4.2.1: The subgroup removes the inner node from the
DDT structure and integrates a new inner node. This inner node has two children,
of which one points to the previously removed inner node (utilizing the distinct
checksum bit) and the other one points to chk. The new inner node then stores a
common prefix of its children, which must be shorter than the common prefix of
the relocated inner node.

GLSL neither allows vectors nor dynamic sized arrays [84]. Thus, we must
store all allocated DDT entries in a fixed-size, contiguous array of type dedup inner
node. A dedup inner node is the struct which represents a DDT inner node, having
two DDT entries as children. Consequently, a DedupTableEntries buffer allocates
this array in VRAM. To allocate from that array, we introduce a small buffer called
DedupTableEntriesOffset. This small buffer is only 72 bytes in size and holds
nothing more than the DDT tree root and an integer counter “last_offset”. This
“last_offset” counter indicates the next free entry in our VRAM representation of the
DDT. Each insertion into the DDT structure atomically increases the “last_offset”
field and thus ensures that each index is uniquely acquired by exactly one subgroup.
Those atomic operations are implemented through GLSL’s atomic functions [84].

Ensuring a fine-granular locking of our DDT entries is crucial to exploit much
parallelism. As mentioned in Figure 4.8, we use the “lock” field of each DDT
entry to lock it during a traversal. Each subgroup locks one DDT entry — the
currently traversed one — at a time. This lock remains acquired during all required

5.2. DEDUPLICATION 75

operations to that DDT entry, especially relocation. The subgroup releases its lock
immediately when continuing its traversal into a child node. As the index of an
inner node does not need to correspond to its logical location in the DDT tree,
we do not need to move all DDT entries physically when a subgroup allocates a
new inner node and relocates the currently locked one. This decoupling of logical
and physical location allows a subgroup to lock and process an inner node, while
another subgroup may be processing the inner node’s subtree at the same time —
without interruption.

1 boo l l o c k _ b l o c k _ p t r _ a t o m i c a l l y (u i n t p a r e n t _ o f f s e t , boo l
d i r e c t i o n) {

2 i n t r e s ;
3 / / Depending on d i r e c t i o n , l o c k e i t h e r l e f t or r i g h t c h i l d
4 i f (d i r e c t i o n) {
5 / / Ensure a t o m i c i t y t h r o u g h a t om ic compare swap
6 r e s = atomicCompSwap (d d t _ e n t r i e s . p a r e n t _ e n t r i e s [

p a r e n t _ o f f s e t] . l e f t _ n o d e . locked , 0 , 1) ;
7 } e l s e {
8 r e s = atomicCompSwap (d d t _ e n t r i e s . p a r e n t _ e n t r i e s [

p a r e n t _ o f f s e t] . r i g h t _ n o d e . locked , 0 , 1) ;
9 }

10 r e t u r n r e s == 0 ;
11 }
12
13 d e d u p _ b l o c k _ r e s u l t dedup_b lock () {
14 . . .
15 boo l i s _ l o c k e d = f a l s e ;
16 do {
17 / / Lock c h i l d node o f " c u r r e n t _ i n n e r _ n o d e " o f e i t h e r "

l e f t " or " r i g h t " d i r e c t i o n
18 i s _ l o c k e d = l o c k _ b l o c k _ p t r _ a t o m i c a l l y (

c u r r e n t _ i n n e r _ n o d e , d i r e c t i o n) ;
19 / / Only c o n t i n u e i f s u c c e s s f u l l y l o c k e d
20 i f (i s _ l o c k e d) {
21 / / C o n t i n u e w i t h a c t u a l work on DDT e n t r y
22 . . .
23 / / Unlock p r e v i o u s l y l o c k e d c h i l d node . T h i s method

i s e q u i v a l e n t t o l o c k _ b l o c k _ p t r _ a t o m i c a l l y , b u t
swaps t h e "0" and "1" i n atomicCompSwap

24 u n l o c k _ b l o c k _ p t r _ a t o m i c a l l y (c u r r e n t _ i n n e r _ n o d e ,
d i r e c t i o n) ;

25 }
26 } w h i l e (! i s _ l o c k e d) ;
27 }

Listing 5.1: Spinlock around actual deduplication procedure. The “do/while” loop
is our actual spinlock, which tries to acquire a DDT entry atomically.
It can only proceed if it acquired the entry successfully.

76 CHAPTER 5. IMPLEMENTATION

Our locking procedure utilizes a spinlock to synchronize between subgroups.
The implemented lock is outlined in Listing 5.1. Synchronizing between subgroups
within a workgroup is supported by GLSL natively: As outlined in Section 2.5.3,
the memoryBarrier() primitives guarantee synchronized memory between
SIMD lanes within a workgroup, and thus also subgroups. However, synchroniz-
ing SIMD lanes between workgroups is more complicated, as mentioned in Sec-
tion 2.5.3 and Section 5.1.1: GLSL does not provide any synchronization primitives
between workgroups [84]. Atomic functions on the other hand guarantee that a
modified value is visible to all invocations afterwards, even between different
workgroups [84]. Additionally, GLSL provides the volatile memory flag, which
forces the shader to load and store directly to global memory. In combination with
an atomic locking field and our spinlock procedure from Listing 5.1, we found a
way to guarantee memory visibility between workgroups within GLSL code.

5.2.3 Future Work — Update and Deletion
For providing update and deletion support within deduplication, we introduced
the “ref_counter” field into the DDT entry. This field is depicted in Figure 4.8.
As the deduplication shader increases the “ref_counter” with each successful
deduplication, an update process can decrement the field of the former referenced
block pointer atomically by one. Thus, the deduplication shader needs knowledge
about both the old and the new block pointer and checksum of the modified block;
which can be provided via an additional staging struct stored in the staging buffer.
As the “offset_in_staging_array” field of a DedupInfoBufferStruct is 64 bit large,
we can simply split the field into a lower and an upper half with 32 bit each. Both
halves then reference a staging struct each: While the lower half points to a staging
struct which holds the old block pointer and checksums, the upper half points to the
staging struct which contains the updated information. The old checksum can then
be retrieved from drive, while the new checksum comes from the priorly executed
checksum shader. The deduplication shader then decrements the DDT entry which
references the old block pointer and processes the new staging struct as described
in Section 5.2.2. This process depends on the modifications from Section 5.1.3,
meaning that GPU4FS needs the new command “FILE_UPDATE”.

The deduplication shader handles a block deletion analogously — with the
only difference that there is no new staging struct next to the old staging struct. If
the “ref_counter” field reaches the value zero, the DDT entry identifies no block
on drive anymore and can be freed.

However, our demonstrator neither implements update nor deletion support.
We leave these implementation details for future work.

5.2. DEDUPLICATION 77

Digression: The Boundary-Shift Problem

As we use fixed-size chunking, the deduplication process is prone to the boundary-
shift problem [69]: Inserting some bytes at the start of a file could lead to potential
shifts throughout all files, which means that most blocks within the file would be
classified new. However, we can address this problem within GPU4FS: If a block
overflows during an insertion, GPU4FS is able to shift the overflow onto a new
GPU4FS block, without touching the following file blocks. This way, they remain
untouched, which means that a potential deduplication stays persistent. To indicate
if this procedure should be applied, we could introduce a “dedup” bit flag, similar
to the checksum bit flag from Section 4.1.1. Depending on the amount of set
“dedup” flags in an area, the update process is able to decide which update strategy
it should apply. Although this procedure introduces more internal fragmentation,
we gain another benefit from that consideration: Only few blocks must be changed
on PMem, which reduces write amplification. However, the implementation and
evaluation of this idea is future work.

5.2.4 Future Work — Outlook

Our demonstrator implements only a subset of potential deduplication features.
Thus, we outline some future work in the following:

Paging

One important aspect of our implementation is the ability to swap DDT entries
in and out. Given the low latency of Intel Optane and the small size of a DDT
entry, we assume that evicting DDT entries and exchanging them with PMem is
fast — at least faster than with any other persistent memory device. Implementing
a drive-backed pagination brings further benefits, as we ensure consistency with
the underlying PMem as soon as an entry is no longer held in VRAM. Although
our demonstrator does not implement this feature, we have some theoretical advice
on how to implement it.

The “offset_in_vram_buffer” field from Figure 4.8 indicates if a DDT entry
is present in VRAM. It is zeroed out if the corresponding entry is swapped onto
PMem. The subgroup which fetches the entry from drive sets the corresponding
“lock” field, which reduces additional reads from the DIMM and thus stress. Given
the granularity of our DDT entries, however, it seems sensible to hold the most
traversed pages (which are the “upper” DDT-tree levels) always in VRAM, and to
swap only within the “lower” levels. The crossover point between upper and lower
level is user definable or could even utilize dynamic heuristics. This crossover
point is also affected by the size of the extendible hashing directory, which was

78 CHAPTER 5. IMPLEMENTATION

introduced in Section 4.2.1. It is also feasible to implement a hybrid mode, where
the lower levels are always exchanged with PMem. With a working directory
implementation as described in Section 4.2.1, it could be sensible to hold solely
the directory in VRAM, and modify DDT entries directly on PMem. However, the
outlined principles need further research.

To provide an independent allocator for the DDT entries, the GPU4FS su-
perblock provides a “reserved” field. As mentioned in Section 4.2, we are also able
to use the default linear allocator of GPU4FS to allocate space for DDT entries.
However, with future development of an advanced block allocator, we do not need
this linear allocator anymore.

Paging — The Vulkan Way

Vulkan provides the ability to declare a device-local buffer pageable [133]. If the
Vulkan device supports this extension, it is able to swap out buffers from VRAM
to DRAM if the VRAM is under pressure. Thus, this feature may be utilized to
enhance the paging process from Section 5.2.4, but needs further research.

Indirect Block Deduplication

The fact that equal data comes in patterns led to more advanced deduplication
approaches, e.g., CDC [72]. However, CDC within GPU4FS raises more questions
about the overall file system, as the overall block pointer design and indirection
hierarchy could need modifications. Thus, we suggest implementing indirect block
deduplication in addition to data block deduplication. This feature is not sensible
within our demonstrator, as the demonstrator only supports one indirection layer.
However, files with a higher indirection degree as well as potential different indirect
block sizes could benefit from an indirect block deduplication.

Checksumming DDT Entries

Our DDT design is already prepared for integrating DDT self sums, as outlined
in Section 4.2.1. Thus, we leave this advice for future work.

Unmount and Remount

The problem of spilling the DDT entries onto PMem was already outlined. The
same procedure supports a graceful unmount process: When unmounting the
file system, one final step before committing the unmount is to write back all
modified DDT entries from VRAM to PMem. A DDT modification is detected by
calculating all DDT entry self sums and comparing them with their counterpart on
drive: A VRAM entry must be written over a PMem entry if their self sums diverge.

5.3. RESOLVING RAW CONFLICTS 79

As the DDT sums are recursive, it is important to write the DDT entries to drive in
a bottom-up fashion. After flushing the leaves, their parents can be checksummed
and flushed, then their parents can be checksummed and flushed, and so on.

Depending on the mount time of the file system, the amount of modified DDT
entries can be huge. Thus, a continuously running daemon could reduce the amount
of non-flushed DDT entries by writing back some modified entries periodically —
e.g., when the file system idles.

Remounting the file system is straightforward, as the DDT could either be
prefetched from PMem (to some extent) or lazy loaded on purpose. Depending on
a potential directory implementation as in Section 4.2.1, the remount could also
involve a load or full rebuild of the directory.

5.3 Resolving RAW Conflicts
The outlined implementation does not clarify how to solve the RAW conflicts.
According to Section 2.5.3, Vulkan provides many synchronization mechanisms.
Our implementation needs to synchronize between different workgroups, especially
between different commands. Thus, we have multiple options for resolving the
RAW conflicts. This section distinguishes two resolution options: We refer to them
as the Vulkan approach and the GPU4FS approach. While the former uses standard
Vulkan functionality, the latter focuses on GPU4FS structures and uses the overall
GPU4FS command design. It is important to mention that the Vulkan approach is
not capable of the shared command buffer idea from GPU4FS [10]. This led to the
development of the GPU4FS approach, which we motivate further in Section 5.3.2.

5.3.1 The Vulkan Approach
Vulkan’s synchronization mechanisms include fences and pipeline barriers, as
introduced in Section 2.5.3. While a fence is suitable for synchronizing different
command buffers, a pipeline barrier synchronizes memory accesses within a com-
mand buffer. Our final pipeline, as outlined in Figure 5.7, has the flexibility to use
both of them interchangeably, with minor changes to the implementation.

The pipeline can be implemented via five different command buffers. Those
can be synchronized via fences. In fact, this means that each arrow between the
stages in Figure 5.7 represents a fence in code, ensuring the termination of the
conflicting step. It is important to mention that, according to Section 5.1.2, our
checksumming procedure utilizes two shaders within its command buffer, not
one. Consider Figure 5.3 for those additional RAW conflicts. However, the RAW-
indicating arrows can be resolved by splitting the S1 and S2 shaders into two further
command buffers, which are then synchronized via fences. Consequently, the “Real

80 CHAPTER 5. IMPLEMENTATION

Data Checksum Calculation” step consists of two instead of one command buffer if
both S1 and S2 are needed. This is the case for large and huge page’s checksums.

On the other hand, the pipeline could utilize one common command buffer
for all shader invocations. In this case, a fence is no longer appropriate as it only
synchronizes between but not within command buffers. Thus, a pipeline barrier
comes to help: All RAW conflicts can be resolved by putting a pipeline barrier
at exactly those positions where the aforementioned resolution put fences. This
ensures not only a memory-coherent pipeline, but also coherency within a multi-
shader stage as the checksum calculation. Additionally, the implementation is
able to execute the write-back shader truly parallel to the meta sum and self sum
calculations, as induced by Figure 5.7.

Our implementation of the Vulkan approach utilizes one command buffer in
combination with pipeline barriers, as pipeline barriers do not involve busy-waiting
on the CPU. Fences require a CPU thread to stall, which is against the goals of
GPU4FS [10]. As the Vulkan approach needs to know all scheduled GPU4FS
commands before starting the shaders, it is able to distribute all commands equally
across all available workgroups, within all shader stages. Thus, it is the cooperative
synchronization approach which assigns each workgroup its subset of commands
in advance.

5.3.2 The GPU4FS Approach
Although the proposed mechanisms from the prior Section 5.3.1 are feasible for
situations where GPU4FS is invoked as a one-time program, they are not compliant
with its original design: GPU4FS should run as a daemon rather than a one-time
program, having a command buffer per accessing application [10]. This means that
each application which requires access to the file system originally runs the startup
routine once, with one invocation of the original compute shader. GPU4FS uses
only one compute shader within its original implementation from Section 3.1, and
provides daemon-like behavior by utilizing an endless loop within the shader. This
endless loop always polls for new command buffer entries, and dispatches them
onto a workgroup. When using the RAW resolving mechanisms from Section 5.3.1,
the endless loop would never allow the block pointer shader to terminate. Thus,
both the fence and the pipeline barrier afterwards would never trigger, which
would never allow our following shaders to execute. Additionally, a pipelined
per-file execution of the shaders is not possible due to the pipeline barriers. To
solve this issue, we put each stage from the shader pipeline from Figure 5.7 in
one Vulkan command, without any Vulkan-based synchronization mechanism.
Then we adapt the endless loop from GPU4FS’s initial shader into our shaders:
Each dispatched shader runs in an endless loop, and acquires commands from
the GPU4FS command buffer. As Vulkan commands can run independently on

5.3. RESOLVING RAW CONFLICTS 81

Figure 5.9: “File write” command descriptor from GPU4FS. The left side repre-
sents the original “File write” command descriptor [10], while the right
side depicts our modification.

the GPU, they do not hinder each other to proceed. This modification raises two
former solved issues:

1. How to guarantee ordered per-file execution of our shaders?

2. How to guarantee memory synchronization across our shaders?

Both Vulkan mechanisms which solve these issues are no option anymore, as the
endless loops would never allow a shader to terminate.

To solve those issues, we assign each shader type one unique identification bit.
This means that especially our checksum shaders need seven bits — five for their
S1 and two for their S2 variant — as their exact type must be distinguishable. We
then modify the “atomic_acquire” and “atomic_complete” field’s usage. These are
integers within a file write command descriptor [10]. The file write command de-
scriptor is depicted in Figure 5.9. The fields were originally designed for indicating
a command acquisition by a workgroup, respectively its completion [10]. In its cur-
rent implementation, the fields are used as a binary bit flag [24]. However, the fields
are 8 bytes in size and therefore capable of holding 64 bits. Within our modification,
the “atomic_acquire” signals a command’s current processing state: If a shader
successfully acquires a command, its “atomic_acquire” field is “binary or”-ed with
the shader’s identification bit. Using GPU4FS’s block assignment algorithm [10],
a command is dispatched only once within each shader. The “atomic_complete”
field on the other hand signals a shader step completion: If a command is fully

82 CHAPTER 5. IMPLEMENTATION

processed by a shader, its “atomic_complete” field is “binary or”-ed with the
shader’s identification bit. This signals the following shader that it can dispatch this
command, resulting in another “atomic_acquire” modification by the subsequent
shader. A command is then fully processed after its “atomic_complete” field has
the write-data shader and the self sum shader bit set. Contrary to the Vulkan ap-
proach, the GPU4FS approach does not assign commands to workgroups uniquely:
Here, the workgroups are responsible for acquiring commands by themselves. This
makes the GPU4FS approach the concurring approach.

Although this procedure works in theory, we have one last problem to discuss:
Cache coherency. A written value is not necessarily visible to other shader invoca-
tions. However, we can adapt our DDT entry locking approach from Section 5.2.2:
By declaring all mapped buffers volatile, we ensure memory coherency across
workgroups [98, 99]. The relative ordering of memory accesses is guaranteed
by memoryBarrier() primitives [84] and simple spinlocks: Each shader step
spinlocks on the “atomic_completion” field of a command it wants to acquire.
The shader is then only allowed to proceed if the matching shader flag in that
field was set by the previous shader. Afterwards, the shader tries to acquire the
command via an atomic “or” on the command, using its unique identification field.
To signal its completion, it sets the appropriate bitfield in the “atomic_completion”
field after issuing a memoryBarrier() call — which allows the next shader
to continue. The principle is sketched in Listing 5.2. Our file write command
descriptor outlined in Figure 5.9 introduces the following fields into its previously
empty positions: “gig_and_meg_pages_prior”, “kilo_and_meta_pages_prior”, and
“self_pages_prior_and_metadata”. The former two fields hold the amount of al-
ready processed gig, meg, kilo or meta pages. As a reminder, meta pages in our
context are indirect blocks or inodes. Those indicators are mainly used by our
shader implementations to identify positions in all internal buffers uniquely. As
we allow out-of-order execution, the shaders do not need to process all commands
in the same order. Thus, it is important that we assign each file write command
its own budget of free array positions which are not dependent from a shader’s
dispatch ordering. Therefore, the introduced fields indicate the exact amount of
previously processed blocks, each separated in different flavors. The entries each
are 32 bit wide, as we expect that after 232 pages the first scheduled block is done
and the buffers can be cyclically refilled. The “metadata” field is general purpose
and uses only one bit in our current implementation, which we currently use to
enable or disable deduplication on file write command level.

5.3. RESOLVING RAW CONFLICTS 83

1 i n t a c q u i r e _ n e w _ b l o c k (i n t b l o c k) {
2 / / . . . u se code from maucher[10]
3
4 / / s p i n l o c k u n t i l command i s ready f o r c u r r e n t s ha der
5 / / a t om ic o p e r a t i o n s are n o t removed by c o m p i l e r
6 w h i l e ((atomicAdd (c o n f i g . d a t a [b l o c k _ o f f s e t +

c o m p l e t i o n _ o f f s e t] , 0) & (FLAG_PREVIOUS_SHADER)) == 0) ;
7
8 / / workgroups t r i e s t o a c q u i r e , a tom ic o p e r a t i o n e n s u r e s t h a t

o n l y one workgroup s u c c e e d s
9 i f ((a tomicOr (c o n f i g . d a t a [b l o c k _ o f f s e t +

a l r e a d y _ a c q u i r e d _ o f f s e t] , FLAG_CURRENT_SHADER) &
FLAG_CURRENT_SHADER) == 0) {

10 new_block = b l o c k ;
11 r e t u r n 0 ;
12 }
13 / / . . . u se code from maucher[10]
14 }
15 vo id d i s p a t c h (i n t s t a r t _ b l o c k) {
16 / / . . . u se code from maucher[10]
17 memoryBar r i e r () ;
18 b a r r i e r () ;
19 / / s i g n a l command p r o c e s s i n g done
20 i f (l o c a l == 0) {
21 a tomicOr (c o n f i g . d a t a [b l o c k * b l o c k _ s i z e +

c o m p l e t i o n _ o f f s e t] , FLAG_CURRENT_SHADER) ;
22 }
23 memoryBar r i e r () ;
24 b a r r i e r () ;
25 / / . . . u se code from maucher[10]
26 }

Listing 5.2: Command acquisition process, schematically sketched. The “do/while”
loop is our actual spinlock, which tries to acquire a DDT entry
atomically. It can only proceed if it acquired a block successfully.
Otherwise, it tries over and over.

Distributing Checksum Calculations

The GPU4FS approach in its presented manner works if each command only needs
one workgroup within a shader stage. However, we face the situation that a large or
huge checksum calculation needs more than one workgroup per data block. As we
do not specify a fixed amount of workgroups, we need an even more fine-granular
assignment algorithm, which allows the dispatched workgroups to distinct which
part of the block they are working on. Our implementation introduces an additional
buffer per shader, the so-called ProcessingInfoBuffer. This small buffer holds

84 CHAPTER 5. IMPLEMENTATION

two integer arrays: The stage and the done array. The index in both arrays is
given by the currently selected command number, which simply is an integer
number. If a workgroup is about to acquire a block belonging to a command,
it atomically increases the stage value of this command. If the stage value was
zero, the workgroup additionally is responsible to initialize the done field which
belongs to the command with the highest possible stage value for this command.
In terms of checksumming, this is either the total amount of large pages or the
total amount of huge pages. The done field is then atomically decremented after
each workgroup finished its execution. As we support out-of-order execution, we
cannot assume that the workgroups finish in a first-in-first-out fashion. Thus, the
done field ensures that the workgroups do not set the “atomic_completion” field
until each workgroup processed its assigned subset fully. This way, we are able to
count the amount of workgroups working on a block, and assign each workgroup
the correct block to work on.

Towards Out-Of-Order Execution

The GPU4FS approach already involves out-of-order execution of the shaders.
However, we can benefit from even more out-of-order execution by utilizing
the several introduced structs from Chapter 5. With respect to the final pipeline
from Section 5.2.1, we are able to start the write content stage of a command as
early and parallel as possible: The block pointer shader inserts a staging struct into
the staging buffer as soon as the according block pointer was written. Thus, we can
use one unused metadata bit of that struct to indicate its readiness for a write-data
dispatch. Depending on the activation state of deduplication, this is either the
case after writing the staging struct into the staging buffer, or after passing the
deduplication shader. Thus, a system with disabled deduplication is able to write a
block as soon as its block pointer was created. As write content then runs parallel to
checksumming, this hides latency and reduces the overall execution time. A system
with enabled deduplication on the other hand could benefit from a speculative write
content mechanism. However, speculative writing needs further investigation by
future work.

The deduplication principle benefits from an allowed out-of-order execution of
the overall deduplication process. We know from Section 5.2.2 that each dispatch
of a deduplication shader needs at least eight assigned DedupInfoBufferStructs to
perform one deduplication iteration. Thus, we are able to indicate their readiness
via the metadata field, which can be set by the checksumming process. The
deduplication shader is then able to spinlock on both the DedupInfoBufferStructs
and the according staging struct, and proceeds after it acquires eight ready blocks.
This procedure utilizes the same “dispatch” and “acquire_new_block” principle
as outlined in Listing 5.2, with the exception that it does not rely solely on the

5.3. RESOLVING RAW CONFLICTS 85

“atomic_acquire” and “atomic_completion” fields of a GPU4FS command. A
command’s “atomic_acquire” field is set after all containing blocks were acquired
by a deduplication instance, as well as a command’s “atomic_completion” field
is set after the last deduplication shader completes its processing of a command’s
blocks. To ensure that each deduplication shader instance acquires eight different
ready blocks, we use the idea of the ProcessingInfoBuffer again. In context of
deduplication, the done field of a command is initialized with the maximum amount
of deduplication cycles for a command, which is a multiple of eight. This amount
can be calculated via the file size, stored in the associated GPU4FS command.

86 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

In the following, we present a detailed evaluation of our newly introduced features.
Initially, we cover the raw checksumming performance and compare it with its
GPU4FS implementation. Afterwards, we benchmark the deduplication process
isolated. As we introduced a pipeline into GPU4FS, we benchmark the overall
design with an integration test of our new pipeline, and compare the results to
former results from GPU4FS [10].

6.1 Testing Methodology

To benchmark our features, we utilize Vulkan’s “timestamp” query functional-
ity [89]. This functionality allows us to write a timestamp on the GPU after passing
a specific stage within a command buffer. In depth, the timestamp queries insert an
execution dependency between its prior and its following commands, with respect
to the specified stage for the timestamp query. This stage must exist in the Vulkan
pipeline, as outlined in Section 2.5.3. Thus, we insert a query before and after each
command submission. We define the “all commands” stage as our stage flag. This
ensures that the commands we want to time passed all stages within the Vulkan
pipeline [89]. We also declare a memory barrier in front of both timestamp writes,
to ensure that all memory operations were written. It is important to mention that
our GPU4FS related evaluations mapped the GPU4FS command buffer on VRAM
instead of DRAM. This mitigates PCIe bandwidth limitations, although it does not
prevent them completely. If not mentioned differently, we mapped all persistent
buffers in the “tmpfs” environment which is backed by DRAM. Furthermore, we
inserted a cleanup shader which cleans all buffers before executing any benchmark.

Our evaluation process ran on three different machines. We outline their
technical details in the following:

87

88 CHAPTER 6. EVALUATION

6.1.1 Machine “Optane”
The first machine is our target machine. It consists of the following technical
specifications:

• Dual Intel ™ Xeon ® Silver 4215 CPUs @ 2.5 GHz, 16 threads each.

• 128 GB of 16 GB DDR4 DIMMs at 2400 MT/s, 64 GB per CPU.

• 512 GB of Intel Optane memory at 2400 MT/s, DDR4-socket-compatible.
Distributed into four 128 GB DIMMs and 256 GB per CPU.

• AMD RX 6800 GPU, with AMD’s RDNA2 architecture. It consists of 60
Compute Units, 16 GB VRAM, and a memory interface of 512 GB/s width.
Connected via PCIe 3.0.

6.1.2 Machine “RX7900XTX”
Specifically for benchmarking the pipeline’s performance, we introduce machine
“RX7900XTX”. It consists of:

• AMD Ryzen ™ 7 3700X, 8 cores with SMT (16 in total) @ 3.6 GHz.

• 8 GB of DDR4 at 2400 MT/s, single channel configuration.

• AMD RX 7900XTX GPU, with AMD’s RDNA3 architecture. It consists
of 96 Compute Units, 24 GB VRAM, and a memory interface of 800 GB/s
width. Connected via PCIe 3.0.

6.1.3 Machine “Laptop Nvidia”
For evaluating our results not only on AMD hardware, but also on Nvidia graphics
cards, we introduce machine “Laptop Nvidia” with the following capabilities:

• AMD Ryzen ™ 9 6900HS, mobile processor, 8 cores with SMT (16 in total)
@ 3.3 GHz.

• 32 GB of DDR5 at 6400 MT/s, dual channel configuration.

• Nvidia RTX 3050 Ti mobile, based on a GA107 Ampere Chip. It consists of
20 Compute Units, 4 GB VRAM, and a memory interface of up to 195 GB/s
width. Connected via PCIe 4.0

It is important to notice that machine “RX7900XTX” and “Laptop Nvidia” are not
Intel Optane ready. Thus, we cannot benchmark the overall GPU4FS performance
on them. However, those machines still show interesting performance details of
our implemented design.

6.2. CHECKSUMMING 89

(a) BLAKE3 on Machine
“RX 7900XTX”

(b) BLAKE3 on Machine
“Laptop Nvidia”

Figure 6.1: BLAKE3 on GPU, comparing various workgroup sizes. The algorithm
performs better, the more workgroups it has available.

6.2 Checksumming

This section evaluates our implemented checksumming approach. As outlined
in Section 5.1.1, the process of checksum integration involved the implementation
of BLAKE3 on the GPU. This implementation is independent of its GPU4FS
integration. Thus, we initially evaluate the implemented checksum algorithm.
Afterwards, we compare the GPU4FS integration to the theoretical performance of
our algorithm.

6.2.1 Checksumming — Raw Algorithm

Our BLAKE3 implementation includes various steps, which were outlined in Sec-
tion 5.1.1. We show the performance of the overall algorithm in the following
section.

Figure 6.1 depicts the raw BLAKE3 algorithm on machines “RX7900XTX”
and “Nvidia Laptop”, dispatched with different workgroup sizes. Figure 6.2 details
the leftmost sides of both subfigures from Figure 6.1. We observe that the execution
time rises linearly with the amount of checksummed bytes. However, we can reduce
the execution time by increasing the amount of processing workgroups, which leads
to more parallelization. This is exactly what we expected. Regarding Section 5.1.1,
additional workgroups are only sensible when one workgroup utilizes its SIMD
lanes fully and would need another iteration to continue computation. As we

90 CHAPTER 6. EVALUATION

(a) BLAKE3 on Machine “RX
7900XTX”

(b) BLAKE3 on Machine “Laptop
Nvidia”

Figure 6.2: BLAKE3 on GPU, comparing various workgroup sizes. Zoomed view
of Figure 6.1. We observe that eight workgroups are the sweet spot for
checksumming 2 MiB.

implement approach two of BLAKE3 [49] (compare Section 5.1.1), this is the
case on exactly 256 chunks or 28 · 210 = 218 bytes of input. Thus, we benchmark
additional workgroups only when the algorithm can use them.

Figure 6.3 compares our measured performance results with the BLAKE3
Rust reference implementation, provided by the original BLAKE3 authors. We
benchmarked the original implementation and switched to its multithreaded variant
after the single threaded variant was slower. This was the case at around 1 to 2 MiB.
The depicted GPU results represent the best results from Figure 6.1. Our results
show that the GPU implementation of BLAKE3 outperforms the reference CPUs at
around 1 to 2 MiB — the crossover point where we needed to use the CPU’s multi
threading variant. Thus, it is questionable if the multi threading implementation
of the original variant works performantly. We verified our CPU results through
the official CLI tool “b3sum”, which showed comparable results in the higher end.
The lower end of “b3sum” showed higher results, which we believe to originate
from precision problems within bash’s time command and additional overhead.

As Figure 6.3b shows, the GPU implementation is slower for small input
sizes when compared to the CPU implementation. However, this is not surprising:
The reference implementation on the CPU is able to use native AVX instructions.
Contrary, the GPU code must go through multiple translation layers before it is
compiled down to the GPU’s ISA. Additionally, the small sizes fit the execution
model of a CPU better, as the few cores of the CPU can deal better with small

6.2. CHECKSUMMING 91

(a) BLAKE3 — All sizes (b) BLAKE3 — Small sizes only

Figure 6.3: BLAKE3 on various GPUs, compared with the reference implemen-
tation on CPU. The markers indicate the GPU4FS page sizes. We
observe that large size calculations are better on GPU, although the
reference implementation on CPU performs better for small sizes.

input sizes. However, as GPU4FS only needs an algorithm which can checksum
GPU4FS page sizes, we are able to build optimized variants for small and large
pages. Their performance benefits are outlined in Section 6.2.2.

Speaking of the reference implementation, we also took a closer look on the
results from the original BLAKE3 authors. They propose that their algorithm
provides a throughput of up to 140 GB/s for 32 MiB when executed on an Intel
Xeon Platinum 8275CL with 48 threads [49]. This is questionable, as we measured
different results with their provided code. We also found another GPGPU imple-
mentation which provides execution times on an Intel Xeon Platinum 8358 CPU
with 64 threads. Their benchmarks show similar results to our depicted measure-
ments [134]. We do not know how the BLAKE3 authors achieved those speeds,
but do question them at this point. However, we can imagine that they somehow
removed the overhead coming from a DRAM fetch from their measurements, but
cannot prove this theory yet.

Takeaway

The outlined results have implications for our GPU4FS configuration. As Figure 6.2
outlines, we should use one single workgroup for checksumming small page
sizes and eight parallel workgroups for checksumming large page sizes. From a
theoretical perspective, this makes sense as those workgroup sizes are capable of
calculating the checksums without one inner iteration: One workgroup has 256
SIMD lanes, which lets it compress up to 256÷ 4 = 64 small pages. In contrast,
eight workgroups are capable of compressing 218 · 23 = 221 bytes, which is exactly

92 CHAPTER 6. EVALUATION

the size of a large page. Theoretically, a huge page checksum calculation would
need 230 ÷ 218 = 212 workgroups, which cannot be scheduled truly parallelly on
current GPUs. As our results imply, the BLAKE3 algorithm works more efficiently
when distributing it across more workgroups — if it can employ them with data.
Thus, we chose to select 256 workgroups as an appropriate workgroup size for
calculating huge page checksums — especially as the BLAKE3 summer is capable
of backtracing up to 256 workgroups without using a loop.

6.2.2 Checksumming — GPU4FS Integration
Given the results from Section 6.2.1, we can evaluate our GPU4FS integration of
BLAKE3. The GPU4FS integration of BLAKE3 does not need the capabilities to
checksum arbitrary input sizes — we only need to support the five GPU4FS page
sizes. Thus, the GPU4FS integration of BLAKE3 provides optimized variants for
some of those page sizes.

As presented in Section 5.1.2, the GPU4FS integration of BLAKE3 has a RAW
dependency coming from the block pointer shader. We proposed two ways of
resolving those conflicts in Section 5.3; the Vulkan Approach as in Section 5.3.1
and the GPU4FS approach as in Section 5.3.2. We present only the former ap-
proach in the following. Our decision relies on the fact that the GPU4FS approach
was designed for out-of-order execution of the overall GPU4FS pipeline. Regard-
ing Section 5.3.2, this forces bypassing compute-unit local caches, which are fast.
As we benchmark one shader in isolation and not the overall pipeline, we do not
benefit from out-of-order execution. Our isolated measurements do not include the
Meta and Self shaders as their performance is, based on their sizes, equivalent to
the small page shader.

To ensure correctness of the stored checksums, we walked the file system on the
CPU and compared the checksum block’s values with their expected values. This
validation process was enabled up to the maximum amount of currently supported
indirect blocks within a file. Larger files could not be stored; we therefore could
not validate their stored checksums.

Checksumming with the Vulkan Approach

Figure 6.4 depicts the checksum integration with the Vulkan Approach as synchro-
nization mechanism. Regarding Figure 5.3 and its depicted checksumming shaders
S1 and S2, we started d#kilo_pages÷64e workgroups of the S1 variant for check-
summing small pages, 32 workgroups of the S1 variant for checksumming large
pages, and 256 workgroups of the S1 variant for checksumming huge pages. While
the amount of small page dispatches ensures that each workgroup needs at most one
processing iteration, the amount of large and huge page dispatches are a trade-off

6.2. CHECKSUMMING 93

(a) All sizes (b) Small sizes only

Figure 6.4: Comparison of our BLAKE3 algorithm vs. the adapted GPU4FS inte-
gration of our BLAKE3 algorithm. We observe that the page-optimized
integration performs better than our reference implementation for small
pages, and on machine “Laptop Nvidia” also for large pages. Addition-
ally, machine “RX7900XTX” shows strange behavior for large pages.

between performance and overhead — especially on machine “RX7900XTX”. The
large and huge calculations involve one workgroup performing the S2 shader each.

The results indicate clearly that checksumming all kinds of small pages, up to
the theoretical maximum amount of small pages within a file, is faster than our
GPU reference implementation on machine “RX7900XTX”. We chose machine
“RX7900XTX” for reference as it hosts the fastest of our GPUs. Notice that
the GPU reference implementation checksums a growing input size and thus has
a growing, dependent Merkle-Tree, while our GPU4FS integration must only
checksum pages independently of each other. Especially Figure 6.4b details
the differences between those two situations: While the execution time of the
GPU4FS integration stays roughly the same up to 131 KiB input size, the GPU
reference implementation grows. The latter rise in the integration’s execution time
(Figure 6.4b) originates from the growing pressure on the memory bus, which we
validated by removing the coherency-guaranteeing pipeline barrier before writing
our last timestamp.

The measurements on machine “Laptop Nvidia” scale with especially large
sizes (Figure 6.4a), which indicates that our algorithm operates efficiently on
all potential combinations of input sizes. We also benchmarked the maximum
amount of large pages possible within one file, which show no statistical outliers

94 CHAPTER 6. EVALUATION

on machine “Laptop Nvidia”. However, machine “RX7900XTX” shows diver-
gent behavior which is not congruent to our measurements on machine “Laptop
Nvidia”. Even when allowing more than 32 workgroups for processing large pages,
we were not able to achieve the same performance as machine “Laptop Nvidia”.
As the GPU of machine “RX7900XTX” consists of 96 CUs while the GPU of
machine “Laptop Nvidia” consists of 20 CUs, this must originate from a combina-
tion of the overall system configuration of machine “RX7900XTX” and Vulkan-
related issues. In fact, we visualized the PCI tree of machine “RX7900XTX”
via sudo lspci -vvv -t. After finding a PCI chain with two switches in
between, we observed that some of those switches reported a configured speed
of PCIe 1.0 with a width of 1 lane. This might be the cause for our issue. Un-
fortunately, we do not have another test system available. Although the PCIe bus
and RAM are minorly involved during the checksum calculation, we can hardly
imagine that the huge differences originate from their different GPU architec-
tures. We mainly based this assumption on the hardware-superiority of machine
“RX7900XTX’s” GPU over machine “Laptop Nvidia’s” GPU and the reference
performance of machine “RX7900XTX”.

However, we addressed our observations by measuring the Vulkan approach on
another machine which is PCIe 4.0 ready and provides 64 GB of RAM, but has a
slower AMD RX6800XT GPU. This machine shows the same linear asymptotic
performance as machine “Laptop Nvidia” when checksumming up to 511 large
pages. In combination with our results from machine “Laptop Nvidia”, we conclude
that our algorithm performs well and suffers from the configuration of machine
“RX7900XTX”.

Takeaway

We conclude that our checksum integration provides a high throughput, espe-
cially for large sizes. Additionally, its performance is higher than our GPU ref-
erence implementation within small sizes. However, we observed that machine
“RX7900XTX” seems to be influenced by the amount of parallel large page cal-
culations, especially as its integration performs worse than our results from the
reference implementation as soon as it crosses the 8 MiB mark. Nevertheless,
its performance for huge pages is as good as its reference implementation. In
combination with the results from machine “Laptop Nvidia”, we assume that those
issues come from the system configuration.

6.3. DEDUPLICATION 95

(a) Dedup with empty DDT on Machine
RX7900XTX

(b) Dedup with empty DDT on Machine
Laptop Nvidia

Figure 6.5: Deduplication process with empty DDT; isolated measurement. The
DDT performance is always higher than the original GPU4FS shader.
Depending on the used GPU, it can sustain higher load with a growing
throughput.

6.3 Deduplication

This section details our measurements for the isolated deduplication process. We
initially measure the deduplication with an empty DDT and compare those results
with a growing DDT afterwards. Both measurements involve randomized values
for each measured amount of bytes. To ensure the correctness of our DDT ap-
proach, we validated all stored block pointers against their expected block pointers.
Additionally, we implemented a DDT visualizer, which is able to visualize the DDT
graphically. While the former ensures the correctness of the overall deduplication,
the latter lets the user check if the DDT was built correctly. We benchmark the
Vulkan approach only, given the same arguments as in Section 6.2: The GPU4FS
approach is optimized for interleaving commands and out-of-order execution, from
which the isolated benchmark does not benefit. Figure 6.5 shows the deduplica-
tion process isolated, starting with an empty DDT. The figures show the original
GPU4FS shader performance for reference.

We observe that our deduplication process is capable of delivering higher
speeds than the original GPU4FS shader. Additionally, the deduplication band-
width increases with the amount of files to process up to a certain level: As each
workgroup can process 8 pages in parallel without one inner iteration, the machine
“Laptop Nvidia” is capable of processing a maximum of 160 pages and the machine
“RX7900XTX” a maximum of 768 pages without iterating once — if we expect
an optimal scheduling. Thus, “Laptop Nvidia” (Figure 6.5b) shows more variance
within its results, as we exceed the maximum amount of workgroups much faster

96 CHAPTER 6. EVALUATION

(a) Machine “RX7900XTX” (b) Machine “Laptop Nvidia”

Figure 6.6: Deduplication process with growing DDT, up to 140,800 pages. The
performance stays the same with a growing DDT.

than on machine “RX7900XTX”. However, machine “RX7900XTX” (Figure 6.5a)
also looses performance after exceeding its capabilities. Within deduplication,
there is no communication with the local RAM over the PCIe bus. This explains
why we do not face any memory-limiting drops as in Section 6.2.2. Additionally,
the deduplication process does not involve much branching when the DDT is
empty. Therefore, the theoretically faster machine “RX7900XTX” outperforms
the “Laptop Nvidia” GPU — which is what we expected.

Growing DDT

However, the more important performance indicator is the deduplication perfor-
mance over time, as the DDT grows. To build a realistic scenario, we inserted
more and more DDT entries into the table, and measured the time an insertion
needs consecutively. Figure 6.6 depicts our measurements. We compare one, ten,
and 22 file writes, with 64 small pages each. Thus, the highest number of DDT
entries during our depicted measurements is 140,800. We even benchmarked
2000 contiguous insertions on machine “RX7900XTX”, which showed the same
bandwidth as our measurements for 100 insertions.

As Figure 6.6 shows, we measure a steady deduplication performance with a
low variance. The measured variance is not surprising, as we utilize spinlocks to
synchronize the DDT accesses and insert randomized values into the table. Here,
the decision from Section 5.2.2 shows its benefits: As we employ full subgroups
only, we ensure that there are no divergent branches during the overall dedupli-
cation. Thus, the performance does not drop significantly with a growing DDT,
although it does depend on the amount of files and the fairness of the scheduler.
Those arguments also address the differences between machine “RX7900XTX”

6.3. DEDUPLICATION 97

and machine “Laptop Nvidia”, when it comes to different file sizes: As machine
RX7900XTX consists of 96 Compute Units, which are capable of processing four
SIMD32 waves [79] each, it can process up to 4 ·96 = 384 subgroups truly parallel.
Thus, inserting one file (which consists of 64 small pages, processed by eight
subgroups and thus one workgroup) produces a much lower difference between
those two machines than inserting ten or 22 of those files in parallel.

Nevertheless, we observe an interesting behavior in the left values of both
diagrams. The leftmost value of all measurements is lower, which is a bit odd.
The first run clears the DDT, whereas subsequent runs do not clear the DDT. This
is the only difference between those runs, which hints to a Vulkan-related issue
with the memory allocator. However, that behavior is not solely originating from
Vulkan-internal problems. As our implementation does not implement the directory
from Section 4.2.1, a growing DDT implies more pointer chasing operations. Thus,
an integration of the directory would speed-up the DDT process. However, pointer
chasing alone does not explain why the first run is that much lower, compared to
the second run. For isolating the issue’s cause, we modified the heaviest of our
benchmarks the following way: Instead of inserting 22 random files, we introduced
a case distinction. Each “even” run of the benchmark inserts random files with
random blocks, while each “uneven” run of the benchmark inserts the same file
containing 64 similar blocks each. This benchmark showed that the deduplication
process of the uneven runs took longer, with nearly the double amount of execution
time. Thus, we conclude that our locking mechanism is a bottleneck. As our
locking mechanism locks each page of the table exclusively, regardless if it is
accessed read-only or read/write, the insertion of 22 files with 64 equivalent blocks
has less parallelization potential. To solve this issue, we suggest upgrading our
lock to a reader/writer lock.

Another interesting observation we made is that a larger DDT buffer influences
the performance: With a bigger DDT buffer, the execution time is constantly higher,
but shows the same asymptotic execution time as in Figure 6.6.

Takeaway

We saw that our deduplication process’s performance was steady in a real-world
scenario. Even 22 parallel file deduplications with 64 small-page-sized blocks
each provided a steady throughput of around 3.8 GB/s on machine “RX7900XTX”,
which is nearly double the maximum bandwidth of Intel Optane. Furthermore,
deduplicating one file of that size provides a throughput of around 3.31 GB/s on
machine “RX7900XTX”, which is again above the maximum bandwidth of Intel
Optane. Those numbers are a lower limit, as the dedup’s performance does not
depend on the block sizes. However, we found that the simple lock has been a
bottleneck that, according to our results, would be solved with a reader/writer lock.

98 CHAPTER 6. EVALUATION

(a) Measuring all sizes (b) Zoomed view on small sizes

Figure 6.7: Single file write of our advanced GPU4FS pipeline, depicted in Fig-
ure 5.7 — without write-data shader stage, utilizing Vulkan approach
for synchronization. The pipeline outperforms the original GPU4FS
shader at around 128 KiB–2 MiB.

6.4 Shader Pipeline
Although we measured our two features independently of each other, it is important
to consider the overall performance of our shader pipeline. This section compares
our shader pipeline with the results from GPU4FS’s implementation prior to our
changes [10].

We evaluate both the Vulkan approach and the GPU4FS approach, as presented
in Section 5.3. Both approaches are initially evaluated without the write-data
shader, to gain insights into the overall pipeline performance. Afterwards, an
evaluation with the write-data shader follows. We then summarize implications for
GPU4FS and give recommendations for further development.

6.4.1 The Vulkan Approach
This section presents the evaluation of the Vulkan approach, initially without and
afterwards with activated write-data shader.

Without Write-Data Shader

Figure 6.7 details the performance of the Vulkan approach without writing actual
file data. The only written data consists of checksums, inodes, indirect blocks, and
directory entries — as those values where written prior to the write-data shader.

We observe that our implemented pipeline outperforms the Intel Optane band-
width, depending on the used machine, at about 128 KiB to 2 MiB. The perfor-
mance of machine “Laptop Nvidia” does not drop afterwards — it rises up to the

6.4. SHADER PIPELINE 99

largest measured size. Machine “RX7900XTX” has a lower maximum through-
put than machine “Laptop Nvidia”. This is not surprising, based on the results
from Section 6.2.2. However, machine “Optane” performs poorly in terms of
throughput, and does not show comparable results — although its GPU is theoret-
ically faster than the GPU of machine “Laptop Nvidia”. Given the fact that two
machines with two completely different GPUs perform significantly better lets us
conclude that machine “Optane” suffers from the overall configuration of PCIe
3.0 slot, slow RAM, and old CPU — from which the first two facts also apply
to machine “RX7900XTX”. However, all three GPUs outperform Intel Optane’s
performance by far when crossing the 2 MiB mark.

As Intel Optane shines with low latency [13], it is important to take a closer
look on the pipeline’s small page performance, as seen in Figure 6.7b. There, we
observe that the Vulkan approach can compete with the original shader — at least
on machine “RX7900XTX”. Machine “Laptop Nvidia” is slower than machine
“RX7900XTX”, which stems from the overall higher load induced by the complete
pipeline: The latency of scheduling the different tasks onto the fewer compute
units with the Vulkan synchronization of multiple compute commands manifests
in a lower throughput.

To classify our results, we measured the original GPU4FS shader on machine
“Optane”, although machine “Optane” showed strange behavior within the complete
evaluation process. This has two major reasons: Only machine “Optane” is,
obviously, Intel Optane ready. Thus, machine “RX7900XTX” and “Laptop Nvidia”
would not give any implications for comparing the write throughput on Intel
Optane. Additionally, our pipeline puts high pressure on the overall system as well
as the PCIe bus. The original GPU4FS shader has only three mapped buffers, one
dispatched shader, and its most complex task is writing bytes onto NVM. Therefore,
the original shader does not show the same strange behavior — although we do not
reach the measured bandwidth limits from Maucher [10].

With Write-Data Shader

After evaluating the pipeline without writing any data to drive, we enable the
write-data shader and run the same benchmark. Our measurements are depicted
in Figure 6.8. Unsurprisingly, we observe a slowdown, especially for large pages.
Machine “Optane” again performs poorly in terms of throughput, which was
already observed in Figure 6.7. However, machine “RX7900XTX” and machine
“Laptop Nvidia” are less influenced by the write data shader within small sizes.
They start to slow down after the 2 MiB mark. This was expected, as both machine
“RX7900XTX” and machine “Laptop Nvidia” write into DRAM with as many
workgroups as there are pages. However, as soon as the benchmark switches to
large pages, the write-data shader writes 2 MiB instead of 4 KiB per workgroup.

100 CHAPTER 6. EVALUATION

Figure 6.8: Single file write of our GPU4FS pipeline, depicted in Figure 5.7 —
with write-data shader. Utilizing Vulkan approach for synchronization.
The throughput drops in comparison to Figure 6.7, especially for large
pages.

6.4.2 The GPU4FS Approach

Complementary to the Vulkan approach (Section 5.3.1), we present the results of
the GPU4FS approach (Section 5.3.2) in the following section.

Towards PCIe Limitations

Our presented results tried to mitigate all limitations which do not originate from
our design. This ensures that we benchmarked the overall design without being
influenced by limitations that are not in our control. However, as the following
section is our recommendation for further research, we compare the GPU4FS
config buffer VRAM- vs. DRAM-mapped. Figure 6.9 depicts those results. We
observe that a VRAM-mapped config buffer is highly favorable, especially when it
comes to larger file sizes. This is not surprising, as the PCIe 3.0 bus of machine
“RX7900XTX” significantly slows the pipeline down. However, mapping the
command buffer on VRAM violates the original goal of GPU4FS, as it introduces
copy operations on the CPU. This violation is easily resolved by utilizing GPU-side
caches, as proposed in the original design [10].

Without Write-Data Shader

Figure 6.10 shows major differences in comparison to Section 6.4.1.
Machine “RX7900XTX” is always faster than or as fast as the original GPU4FS

shader. Although the Vulkan approach showed this behavior already for large sizes
(Figure 6.7a), the GPU4FS approach is additionally faster within small sizes on
both machine “RX7900XTX” and machine “Laptop Nvidia” (Figure 6.10b). This

6.4. SHADER PIPELINE 101

(a) Measuring all sizes (b) Zoomed view on small sizes

Figure 6.9: Advanced GPU4FS Pipeline without write-back, comparing config
buffer location DRAM-mapped vs VRAM-mapped. The VRAM-
mapped variant performs better than its DRAM-mapped counterpart.

(a) Measuring all sizes (b) Zoomed view on small sizes

Figure 6.10: Single file write of our advanced GPU4FS pipeline, depicted in Fig-
ure 5.7 — without write-data shader stage. Utilizing GPU4FS ap-
proach for synchronization. Machine “Laptop Nvidia” and machine
“RX7900XTX” are faster than the Vulkan approach (Figure 6.7b) at
small sizes.

102 CHAPTER 6. EVALUATION

Figure 6.11: Multi file write (8 files) of our advanced GPU4FS pipeline — with-
out write-data shader. Comparing GPU4FS approach with Vulkan
approach. We observe that pipelining and out-of-order execution is
favorable.

observation is emphasized within Figure 6.11: Writing multiple files benefits
from a pipelined out-of-order execution, especially when it comes to smaller sizes.
Contrary to the Vulkan approach, the buffers must not be synchronized over the
whole system, but rely on consistency within VRAM [99, 135]. This mitigates PCIe
and DRAM latency, which is another explanation for the higher throughput within
small sizes. Additionally, we observe that the throughput of calculating larger sizes
is lower with the GPU4FS approach (Figure 6.10a) than with the Vulkan approach
(Figure 6.7a). This behavior must originate from the volatile-mapped buffers and
the concurring nature of the GPU4FS approach.

With Write-Data Shader

To conclude our measurements, we present the GPU4FS approach with enabled
write-data shader in Figure 6.12a. We compare those results with the original
GPU4FS shader, and include a measurement of the maximum Optane throughput
at a given size with disabled advanced features (yellow line). This maximum
throughput is reached by using only the block pointer and the write-data shader,
with the maximum amount of writing workgroups. We observe that our pipeline
performs well, especially for large page sizes (Figure 6.12a). However, the max-
imum throughput of the Vulkan approach is not reached, which comes from the
volatile-mapped buffers and concurring nature of the GPU4FS approach. Machine
“Optane” tends to benefit from the pipelining of small page writes (Figure 6.12b,
yellow), in comparison to the original implementation which uses only one work-
group for each file write (Figure 6.12b, blue). After rising up to a plateau of around

6.4. SHADER PIPELINE 103

(a) Measuring all sizes (b) Zoomed view on small sizes

Figure 6.12: Single file write of our advanced GPU4FS pipeline, depicted in Fig-
ure 5.7 — with write-data shader stage. Utilizing GPU4FS approach
for synchronization. The GPU4FS approach is faster than the Vulkan
approach at small sizes (Figure 6.8), while Optane shows an unex-
pected high throughput for small sizes.

6 GB/s, the raw write performance drops dramatically down to around 1–1.5 GB/s.
This could be caused by both a saturated Optane DIMM or a saturated GPU, al-
though a saturated Optane DIMM is more likely [13]. However, after dropping
once, the performance of the Optane DIMM stays constant in both pipelining and
non-pipelining. This is also the crossover point where our pipeline exceeds the
Optane DIMMs performance. It is important to notice that we cannot compare our
results directly, as machine “RX7900XTX” does not write to Optane but DRAM.
However, the yellow line indicates that at around 2 MiB, Optane is the bottleneck,
not our pipeline. Although this is also the point where the write-data shader writes
2 MiB instead of 4 KiB per workgroup, we came to the former conclusion, as this
is the expected maximum bandwidth for Optane [13].

Considering Figure 6.12b, we observe that the bottleneck for dealing with
small files are the advanced features. However, with respect to Section 6.2.2, our
benchmark results are influenced by many factors: Starting the pipeline needs some
time, as we benchmark the setup process within the shaders. Additionally, we face
unfair scheduling on the GPU and have no way of controlling the shader execution.
Thus, spawning more pipeline stages involves spawning more spinlocking threads,
which can influence our results. Thirdly, we had to bypass the lower level caches
by setting our buffers volatile, and thus miss more performance. Furthermore, we
faced some Optane-related uncertainties, which we detail in Section 6.4.3.

104 CHAPTER 6. EVALUATION

(a) Writing to Optane (b) GPU4FS pipeline

Figure 6.13: File write with an increasing amount of files, comparing Optane’s
throughput with the GPU4FS pipeline’s throughput. With a growing
pressure, the pipeline reaches a higher throughput. In parallel, Op-
tane’s throughput reduces with a higher load.

6.4.3 Towards Low Pressure

Our results from the last section imply that Intel Optane provides a much higher
throughput when it is under low pressure: The proposed bandwidth limit of 2
GB/s [13, 24] seems to only show up when the DIMM is under higher load. We
found comparable results within a benchmark of parallel 4 KiB block writes [13],
although it is not clear if its authors tested one or multiple interleaved Optane
DIMMs. However, to address our hypothesis, we measured the Optane performance
with an increasing load of 4 KB page writes. We compared those results with a
multi-file write of our GPU4FS pipeline to find out where the crossover point of
“GPU-based parallelization benefiting” and “Intel Optane bandwidth suffering”
lies. To ensure that our changes were flushed to Optane, we mapped its address
space via mmap() [101] with the “MS_SYNC” flag set. Our measurements are
depicted in Figure 6.13 and indicate that Optane provides a high throughput when
being under low pressure. However, as the pressure increases, Optane starts to
drop performance, until it falls below the expected 2 GB/s bandwidth border. We
also validated our measurements via a parallel writing implementation on the CPU,
where we wanted to employ a msync() [136] call to flush the CPU caches to
Optane. However, the msync() call always responded with an “Invalid Argument”
error, which might indicate that the synchronization flag of mmap() is also not
working properly. Thus, our observations need further research. Our next steps
include debugging the msync() call as well as the mmap() call to see if the
CPU flushes actually take place. One possible way to start debugging is by placing
Kprobes [137] on the responsible kernel functions.

6.5. DISCUSSION 105

However, our results from Figure 6.13 indicate that the GPU4FS pipeline
performs well under load and gets faster the more it is under pressure. We measured
the load with the GPU4FS approach up to an amount of 8 files with 64 MiB each,
and saw an increase of throughput with each file until we reached a maximum of
81 GB/s. This lets us conclude that the pipeline design is feasible for a high load.

6.4.4 Vulkan-related Issues
During our evaluation, we found that iterative executions of the pipeline within
the same program instance result in different behavior. We covered this behavior
already during our “growing DDT” test from Section 6.3. Especially machine
“Laptop Nvidia” was influenced by an iterative run, reducing its throughput to a
maximum of 4 (GPU4FS approach) to 9 (Vulkan approach) GB/s. However, ma-
chine “RX7900XTX” was majorly influenced by an iterative version of the small
size benchmarks, which manifested in factor-3-worse results. Interestingly, ma-
chine “RX7900XTX” showed consistent results in the field of 2–64 MiB, but lost
throughput to a maximum of 8 (GPU4FS approach) to 12 (Vulkan approach) GiB/s
at 128 MiB. An explanation for these numbers is the L3 cache of its GPU [138],
which might mitigate Vulkan-related overhead on VRAM. Overall, those observa-
tions let us conclude that the setup process influences the execution time, especially
during subsequent runs in the same program instance. However, as GPU4FS is
thought as a daemon, it must absolve the setup process only once. Although the iter-
ative benchmarks showed lower throughput, they still crossed Optane’s bandwidth
limit at around 2 MiB of input size and thus imply the same qualitative results.
However, those Vulkan-related issues need further investigation and validation, for
which we suggest porting our implementation to another GPGPU API.

6.5 Discussion
After evaluating our implemented features, we found several implications for
further GPU4FS development. This section summarizes our takeaways and gives
further implications for the overall file system.

The evaluation of our checksumming approach leads to several conclusions:
Processing large pages is not bottlenecked by our checksumming procedure. We
showed that the approach scales with the amount of blocks to process and outper-
forms Optane by far when checksumming large or huge pages. The small page
checksumming is bottlenecked by the checksumming speed of one checksum, if
the mmap() [101] call works as assumed. However, we optimized the GLSL
variant of small pages as much as possible. It faces no divergent branches and
SIMD parallelization across all 256 lanes. Thus, the only way to potentially gain

106 CHAPTER 6. EVALUATION

more performance lies in porting the algorithm to a computational-optimized API
like AMD HIP [139].

During its evaluation, the deduplication process showed consistent performance
with a growing DDT. We observed that the throughput of the deduplication process
stays consistent with an increasing amount of parallely processed blocks. Addi-
tionally, we identified the locking mechanism to be one bandwidth-limiting factor
in some special cases, although we always observed a higher throughput than
Intel Optane’s maximum bandwidth. When it comes to the GPU4FS integration,
deduplication delays the write-data shader’s execution. It needs to wait for the
checksum calculation before making a decision. Thus, the write-data shader also
needs to wait for the checksumming and even deduplication process before it can
start with its task. Compared to a raw checksumming implementation where the
write-data shader starts immediately with its task, this costs additional performance.
However, we encourage future work on doing speculative write backs to Optane,
which may be interrupted and canceled by the deduplication shader.

Our measurements found that pipelining within GPU4FS is beneficial. How-
ever, given the restrictions from Vulkan and GLSL, we had to reimplement many
techniques in a relatively hacky way. Our implementation faces bypassed caches,
busy-waiting, and unfair GPU scheduling, which puts high pressure onto GPUs.
However, our results showed that a pipelined execution is not just theoretically
interesting. We found that many CPU-related concepts like preemption and inter-
thread communication are required to implement file system features efficiently.
Especially the “cooperative groups” feature from CUDA [140] would replace
our spinlocks efficiently. Additionally, the unusual configurations of machine
“RX7900XTX” and machine “Optane” should be revised to suit their GPU’s theo-
retical capabilities. Furthermore, our observations from Section 6.4.4 encourage
the evaluation of our pipeline with an API built solely for GPGPU — as e.g., AMD
HIP [139].

6.6. FUTURE WORK 107

6.6 Future Work
After discussing our evaluation results, we give advice for continuing our work.
Those were already outlined in Section 5.1.3 and Section 5.2.3, which is why we
present a summary of them.

Update and Deletion

Both update and deletion support are not implemented in GPU4FS, and therefore
not within our thesis. During their implementation in GPU4FS, we motivate con-
sidering our advice for extending checksumming (Section 5.1.3) and deduplication
(Section 5.2.3) with those capabilities.

Speculative Write-Back

Within Section 5.3.2 and Section 6.5, we motivated a speculative write-back. It
should hide the latency of the deduplication process by writing data to Optane
speculatively, with the possibility to get interrupted by the deduplication shader.

6.6.1 Checksumming
Section 5.1.4 outlines our future work suggestions for checksumming. Those in-
clude checksum validation during read, RAID functionalities as well as a validation
of more checksum algorithms. Our first suggestion depends on a working read
path within GPU4FS. Therefore, we motivate implementing the read path.

6.6.2 Deduplication
Our deduplication process is extensible with our suggestions from Section 5.2.4.
They include two paging approaches for exchanging DDT entries with PMem, indi-
rect block deduplication, and checksums for DDT entries. Additionally, we provide
advice for the file system’s unmounting and remounting procedures. Moreover,
we motivated an extension from fixed-size chunking to variable-sized chunking
in Section 4.2.2. Furthermore, we addressed the boundary-shift problem within
GPU4FS’s fixed-size chunking in Section 5.2.3.

During our evaluation, we found that the integration of an additional directory
as described in Section 4.2.1 as well as a reader/writer lock provide performance
benefits. Additionally, the directory structure extends the potential paging mecha-
nisms, as it makes it feasible to exchange DDT entries directly with PMem without
loading the DDT tree into VRAM. Therefore, we suggest an evaluation of both
approaches.

108 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this thesis, we extended the NVM file system GPU4FS with two advanced file
system features: Checksumming and Deduplication. Our goal was to find out if the
GPU is suitable for modern file system tasks, while reducing as much load on the
CPU as possible. Design-related goals were little additional overhead as well as
a high degree of parallelization and overall performance. One checksum-specific
goal was to decouple the file system design from the used checksum algorithm.

Our checksumming design is able to utilize different checksum algorithms.
After fetching a block from drive, the design immediately exposes its according
checksum blocks without the need to follow a pointer chain. The design is fur-
thermore extendible to larger indirect blocks, while giving the ability to reduce
checksum-related overhead even further by allocating larger checksum blocks.

The deduplication design introduces only 64 bytes of overhead per stored block
into the file system. Its design follows the extendible hashing strategy, which
utilizes a radix tree to organize DDT entries efficiently. The extendible hashing
strategy allows saving as many sequential pointer chasing operations as possible,
while providing a fine-granular lock on SIMD-level to ensure the tree’s consistency.

Finally, we conclude that our implementation performs great for large and
huge pages, and sustains its performance under growing load. Although the new
Optane numbers imply that the performance of a “small page, few files” insertion is
dominated by the overall pipeline, we still believe that the pipeline’s performance
is enough to saturate most desktop systems — especially with appropriate caching
strategies for small transactions. However, those small, few file transactions do not
put much pressure on the CPU. Thus, we conclude that GPU acceleration is most
sensible when there is moderate to high load to process. Smaller transactions can
be handled by the CPU to saturate Optane’s bandwidth. Thus, a GPU4FS hybrid
mode might be the option of choice, which combines both high Optane throughput
and less stalling CPU cores.

109

110 CHAPTER 7. CONCLUSION

Bibliography

[1] R.R. Schaller. “Moore’s law: past, present and future.” In: IEEE Spectrum
34.6 (1997), pp. 52–59. DOI: 10.1109/6.591665.

[2] Balaji Venu. Multi-core processors - An overview. 2011. arXiv: 1110.
3535 [cs.AR].

[3] Michael J Flynn. Flynn’s Taxonomy. 2011.

[4] AMD. AMD Ryzen 7000-Serie Desktop-Prozessoren. 2023. URL: https:
//www.amd.com/de/processors/ryzen#Ryzen%E2%84%A2-
7000 (visited on 06/10/2023).

[5] Axel Habermaier and Alexander Knapp. “On the correctness of the SIMT
execution model of GPUs.” In: Programming Languages and Systems:
21st European Symposium on Programming, ESOP 2012, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24-April 1, 2012. Proceedings 21.
Springer. 2012, pp. 316–335.

[6] Pedro Trancoso and Maria Charalambous. “Exploring graphics proces-
sor performance for general purpose applications.” In: 8th Euromicro
Conference on Digital System Design (DSD’05). IEEE. 2005, pp. 306–
313.

[7] Fawad Murtaza. AMD Compute Units vs. Nvidia CUDA Cores: What’s the
Difference? 2021. URL: https://www.makeuseof.com/comput
e-units-vs-cuda-cores-whats-the-difference/ (visited
on 06/10/2023).

[8] Ohad Rodeh, Josef Bacik, and Chris Mason. “BTRFS: The Linux B-Tree
Filesystem.” In: ACM Trans. Storage 9.3 (Aug. 2013). ISSN: 1553-3077.
DOI: 10.1145/2501620.2501623. URL: https://doi.org/
10.1145/2501620.2501623.

[9] Jeff Bonwick et al. “The zettabyte file system.” In: Proc. of the 2nd Usenix
Conference on File and Storage Technologies. Vol. 215. 2003.

111

https://doi.org/10.1109/6.591665
https://arxiv.org/abs/1110.3535
https://arxiv.org/abs/1110.3535
https://www.amd.com/de/processors/ryzen#Ryzen%E2%84%A2-7000
https://www.amd.com/de/processors/ryzen#Ryzen%E2%84%A2-7000
https://www.amd.com/de/processors/ryzen#Ryzen%E2%84%A2-7000
https://www.makeuseof.com/compute-units-vs-cuda-cores-whats-the-difference/
https://www.makeuseof.com/compute-units-vs-cuda-cores-whats-the-difference/
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623

112 BIBLIOGRAPHY

[10] Peter Maucher. “GPU4FS: A Graphics Processor-Accelerated File Sys-
tem.” In: (2022).

[11] Intel. Intel Optane Memory. 2023. URL: https://www.intel.
com/content/www/us/en/products/details/memory-
storage/optane-memory.html (visited on 07/20/2023).

[12] Ivy B Peng, Maya B Gokhale, and Eric W Green. “System evaluation of the
intel optane byte-addressable nvm.” In: Proceedings of the International
Symposium on Memory Systems. 2019, pp. 304–315.

[13] Joseph Izraelevitz et al. “Basic performance measurements of the intel op-
tane DC persistent memory module.” In: arXiv preprint arXiv:1903.05714
(2019).

[14] Khronos Group. Khronos Vullkan Registry. 2023. URL: https://
registry.khronos.org/vulkan/ (visited on 05/20/2023).

[15] Vamsee Kasavajhala. “Solid state drive vs. hard disk drive price and
performance study.” In: Proc. Dell Tech. White Paper (2011), pp. 8–9.

[16] SATA-IO Board Members. Serial ATA International Organization. URL:
https://sata-io.org/system/files/specifications/
SerialATA_Revision_3_1_Gold.pdf (visited on 08/20/2023).

[17] Qiumin Xu et al. “Performance analysis of NVMe SSDs and their implica-
tion on real world databases.” In: Proceedings of the 8th ACM International
Systems and Storage Conference. 2015, pp. 1–11.

[18] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating
systems: Three easy pieces. Arpaci-Dusseau Books, LLC, 2018.

[19] Jian Yang et al. “An empirical guide to the behavior and use of scalable
persistent memory.” In: 18th USENIX Conference on File and Storage
Technologies (FAST 20). 2020, pp. 169–182.

[20] Lukas Werling, Christian Schwarz, and Frank Bellosa. Towards Less CPU-
Intensive PMEM File Systems. 2021. URL: https://www.betri
ebssysteme.org/wp-content/uploads/2021/09/FGBS_
Herbst2021_Folien_Werling.pdf (visited on 08/06/2023).

[21] Man pages. tmpfs. URL: https://man7.org/linux/man-pages/
man5/tmpfs.5.html (visited on 07/11/2023).

[22] PASC. The Open Group Base Specifications Issue 7, 2018 edition. 2018.
URL: https://pubs.opengroup.org/onlinepubs/9699919
799/ (visited on 08/17/2023).

https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://registry.khronos.org/vulkan/
https://registry.khronos.org/vulkan/
https://sata-io.org/system/files/specifications/SerialATA_Revision_3_1_Gold.pdf
https://sata-io.org/system/files/specifications/SerialATA_Revision_3_1_Gold.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

BIBLIOGRAPHY 113

[23] Avantika Mathur et al. “The new ext4 filesystem: current status and future
plans.” In: Proceedings of the Linux symposium. Vol. 2. Citeseer. 2007,
pp. 21–33.

[24] Peter Maucher. GPU4FS-Code. 2022. URL: https://git.scc.kit.
edu/itec-os/research/maucher/gpu4fs-code (visited on
05/29/2023).

[25] Various authors. FAT. URL: https://www.win.tue.nl/~aeb/
linux/fs/fat/fat-1.html (visited on 07/11/2023).

[26] Haris Volos et al. “Aerie: Flexible file-system interfaces to storage-class
memory.” In: Proceedings of the Ninth European Conference on Computer
Systems. 2014, pp. 1–14.

[27] Youngjin Kwon et al. “Strata: A cross media file system.” In: Proceedings
of the 26th Symposium on Operating Systems Principles. 2017, pp. 460–
477.

[28] Rohan Kadekodi et al. “SplitFS: Reducing software overhead in file sys-
tems for persistent memory.” In: Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 2019, pp. 494–508.

[29] Chris Borrelli. “IEEE 802.3 cyclic redundancy check.” In: application
note: Virtex Series and Virtex-II Family, XAPP209 (v1. 0) (2001).

[30] Theresa Maxino. “Revisiting fletcher and adler checksums.” In: (2006).

[31] Ryan Mangipano. Bit Flips: Was That a Zero or a One? Dec. 15, 2009. URL:
https://www.itprotoday.com/cloud-computing/bit-
flips-was-zero-or-one (visited on 08/23/2023).

[32] Bart Preneel. “Cryptographic hash functions.” In: European Transactions
on Telecommunications 5.4 (1994), pp. 431–448.

[33] Tenkasi V Ramabadran and Sunil S Gaitonde. “A tutorial on CRC compu-
tations.” In: IEEE micro 8.4 (1988), pp. 62–75.

[34] Craig Partridge, Jim Hughes, and Jonathan Stone. “Performance of check-
sums and CRCs over real data.” In: ACM SIGCOMM Computer Communi-
cation Review 25.4 (1995), pp. 68–76.

[35] John Fletcher. “An arithmetic checksum for serial transmissions.” In: IEEE
transactions on Communications 30.1 (1982), pp. 247–252.

[36] Rajeev Sobti and Ganesan Geetha. “Cryptographic hash functions: a
review.” In: International Journal of Computer Science Issues (IJCSI) 9.2
(2012), p. 461.

https://git.scc.kit.edu/itec-os/research/maucher/gpu4fs-code
https://git.scc.kit.edu/itec-os/research/maucher/gpu4fs-code
https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html
https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html
https://www.itprotoday.com/cloud-computing/bit-flips-was-zero-or-one
https://www.itprotoday.com/cloud-computing/bit-flips-was-zero-or-one

114 BIBLIOGRAPHY

[37] I Damgard, Collision-Free Hash Functions, and Public-Key Signature
Schemes. EuroCrypt 87, LNCS, Vol. 304. 1988.

[38] Ralph C Merkle. “One way hash functions and DES.” In: Advances in
CryptologyâC”CRYPTOâC™89 Proceedings. Springer. 2001, pp. 428–
446.

[39] Ralph Charles Merkle. Secrecy, authentication, and public key systems.
Stanford university, 1979.

[40] Ralph C Merkle. “One way hash functions and DES.” In: Conference on
the Theory and Application of Cryptology. Springer. 1989, pp. 428–446.

[41] Ivan Damgard. “A design principle for hash functions.” In: CRYPTO 1989
(1990), pp. 416–427.

[42] Ronald Rivest. RFC1321: The MD5 message-digest algorithm. 1992.

[43] National Institute of Standards and Technology. Secure Hash Standard
(SHS). Tech. rep. Federal Information Processing Standards Publications
(FIPS PUBS) 180-4. Washington, D.C.: U.S. Department of Commerce,
2015. DOI: 10.6028/NIST.FIPS.180-4.

[44] Antoine Joux. “Multicollisions in iterated hash functions. Application to
cascaded constructions.” In: Advances in Cryptology–CRYPTO 2004: 24th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 2004. Proceedings 24. Springer. 2004, pp. 306–316.

[45] John Kelsey and Tadayoshi Kohno. “Herding hash functions and the
Nostradamus attack.” In: Advances in Cryptology-EUROCRYPT 2006:
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28-June 1, 2006.
Proceedings 25. Springer. 2006, pp. 183–200.

[46] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. “Salvaging
Merkle-Damgård for practical applications.” In: Advances in Cryptology-
EUROCRYPT 2009: 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings 28. Springer. 2009, pp. 371–388.

[47] Eli Biham and Orr Dunkelman. “A framework for iterative hash functions-
HAIFA.” In: Cryptology ePrint Archive (2007).

[48] Guido Bertoni et al. “Cryptographic sponges.” In: online] http://sponge.
noekeon. org (2011).

[49] Jack O’Connor et al. Blake3 - One function, fast everywhere. 2021.
URL: https://github.com/BLAKE3-team/BLAKE3-specs/
blob/master/blake3.pdf (visited on 05/10/2023).

https://doi.org/10.6028/NIST.FIPS.180-4
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf

BIBLIOGRAPHY 115

[50] Jean-Philippe Aumasson et al. “BLAKE2: simpler, smaller, fast as MD5.”
In: Applied Cryptography and Network Security: 11th International Con-
ference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings
11. Springer. 2013, pp. 119–135.

[51] Jean-Philippe Aumasson. “Too much crypto.” In: Cryptology ePrint
Archive (2019).

[52] Ralph C Merkle. “A digital signature based on a conventional encryption
function.” In: Advances in CryptologyâC”CRYPTOâC™87: Proceedings
7. Springer. 1988, pp. 369–378.

[53] OpenMP. The OpenMP API specification for parallel programming. URL:
https://www.openmp.org/ (visited on 08/17/2023).

[54] Rayon-RS. Crate rayon. URL: https://docs.rs/rayon/latest/
rayon/ (visited on 08/17/2023).

[55] Guido Bertoni et al. “Keccak sponge function family main document.” In:
Submission to NIST (Round 2) 3.30 (2009), pp. 320–337.

[56] National Institute of Standards and Technology. Secure Hash Standard
(SHS). Tech. rep. Federal Information Processing Standards Publications
(FIPS PUBS) 202. Washington, D.C.: U.S. Department of Commerce,
2015. DOI: 10.6028/NIST.FIPS.202.

[57] Jack O’Connor et al. Blake3 - One function, fast everywhere. 2022.
URL: https://github.com/BLAKE3-team/BLAKE3 (visited on
05/10/2023).

[58] Dutch T Meyer and William J Bolosky. “A study of practical deduplica-
tion.” In: ACM Transactions on Storage (ToS) 7.4 (2012), pp. 1–20.

[59] Qinlu He, Zhanhuai Li, and Xiao Zhang. “Data deduplication techniques.”
In: 2010 international conference on future information technology and
management engineering. Vol. 1. IEEE. 2010, pp. 430–433.

[60] Wen Xia et al. “A comprehensive study of the past, present, and future of
data deduplication.” In: Proceedings of the IEEE 104.9 (2016), pp. 1681–
1710.

[61] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. “Side chan-
nels in cloud services: Deduplication in cloud storage.” In: IEEE Security
& Privacy 8.6 (2010), pp. 40–47.

[62] Restic. Restic. 2023. URL: https://restic.net/ (visited on
08/05/2023).

https://www.openmp.org/
https://docs.rs/rayon/latest/rayon/
https://docs.rs/rayon/latest/rayon/
https://doi.org/10.6028/NIST.FIPS.202
https://github.com/BLAKE3-team/BLAKE3
https://restic.net/

116 BIBLIOGRAPHY

[63] Matthew Miller. Objective Review: Immutable variants are the majority of
Fedora Linux in use. URL: https://discussion.fedoraproje
ct.org/t/objective-review-immutable-variants-are-
the-majority-of-fedora-linux-in-use/79288 (visited on
08/05/2023).

[64] Trevor Dunlap, William Enck, and Bradley Reaves. “A Study of Appli-
cation Sandbox Policies in Linux.” In: Proceedings of the 27th ACM on
Symposium on Access Control Models and Technologies. 2022, pp. 19–30.

[65] Flatpak authors. Flatpak. URL: https://flatpak.org/ (visited on
08/05/2023).

[66] Docker authors. Docker. URL: https://www.docker.com/ (visited
on 08/05/2023).

[67] Jibin Wang et al. “I-sieve: An inline high performance deduplication
system used in cloud storage.” In: Tsinghua Science and Technology 20.1
(2015), pp. 17–27.

[68] Sean Quinlan and Sean Dorward. “Venti: A new approach to archival data
storage.” In: Conference on file and storage technologies (FAST 02). 2002.

[69] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. “A low-
bandwidth network file system.” In: Proceedings of the eighteenth ACM
symposium on Operating systems principles. 2001, pp. 174–187.

[70] William J Bolosky et al. “Single instance storage in Windows 2000.” In:
Proceedings of the 4th USENIX Windows Systems Symposium. Seattle,
WA. 2000, pp. 13–24.

[71] Michael O Rabin. “Fingerprinting by random polynomials.” In: Technical
report (1981).

[72] Wen Xia et al. “FastCDC: A fast and efficient content-defined chunking
approach for data deduplication.” In: 2016 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 16). 2016, pp. 101–114.

[73] Wen Xia et al. “P-dedupe: Exploiting parallelism in data deduplication
system.” In: 2012 IEEE Seventh International Conference on Networking,
Architecture, and Storage. IEEE. 2012, pp. 338–347.

[74] Samer Al-Kiswany et al. “StoreGPU: exploiting graphics processing
units to accelerate distributed storage systems.” In: Proceedings of the
17th international symposium on High performance distributed computing.
2008, pp. 165–174.

https://discussion.fedoraproject.org/t/objective-review-immutable-variants-are-the-majority-of-fedora-linux-in-use/79288
https://discussion.fedoraproject.org/t/objective-review-immutable-variants-are-the-majority-of-fedora-linux-in-use/79288
https://discussion.fedoraproject.org/t/objective-review-immutable-variants-are-the-majority-of-fedora-linux-in-use/79288
https://flatpak.org/
https://www.docker.com/

BIBLIOGRAPHY 117

[75] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. “Shredder: GPU-
accelerated incremental storage and computation.” In: FAST. Vol. 14. 2012,
p. 14.

[76] Ronald Fagin et al. “Extendible hashing a fast access method for dynamic
files.” In: ACM Transactions on Database Systems (TODS) 4.three (1979),
pp. 315–344.

[77] Moohyeon Nam et al. “{Write-Optimized}Dynamic Hashing for Persistent
Memory.” In: 17th USENIX Conference on File and Storage Technologies
(FAST 19). 2019, pp. 31–44.

[78] David Luebke et al. “GPGPU: general-purpose computation on graph-
ics hardware.” In: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. 2006, 208–es.

[79] AMD. RDNA3 Instruction Set Architecture. 2023. URL: https://
www.amd.com/system/files/TechDocs/rdna3-shader-
instruction-set-architecture-feb-2023_0.pdf (visited
on 07/31/2023).

[80] Nick Evanson. GPU Architecture Deep Dive: Nvidia Ada Lovelace, AMD
RDNA 3 and Intel Arc Alchemist. 2023. URL: https://www.tec
hspot.com/article/2570-gpu-architectures-nvidia-
intel-amd/ (visited on 07/31/2023).

[81] Mark Wyse. “Understanding GPGPU Vector Register File Usage.” In:
2018. URL: https://api.semanticscholar.org/CorpusID:
13107618.

[82] David M. Koppelman. GPU Microarchitecture Note Set 6-Warps and
Branch Divergence. URL: https://www.ece.lsu.edu/koppel/
gp/2020/lsli06-br-diverg.pdf (visited on 07/31/2023).

[83] Khronos. SPIR Overview. URL: https://www.khronos.org/
spir/ (visited on 07/31/2023).

[84] Khronos. The OpenGLÂ® Shading Language, Version 4.60.7. URL: http
s://registry.khronos.org/OpenGL/specs/gl/GLSLang
Spec.4.60.pdf (visited on 05/31/2023).

[85] Google. Shaderc. URL: https://github.com/google/shaderc
(visited on 07/31/2023).

[86] Khronos Group. OpenGL Overview. 2023. URL: https://www.
khronos.org/opengl/ (visited on 05/20/2023).

https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.techspot.com/article/2570-gpu-architectures-nvidia-intel-amd/
https://www.techspot.com/article/2570-gpu-architectures-nvidia-intel-amd/
https://www.techspot.com/article/2570-gpu-architectures-nvidia-intel-amd/
https://api.semanticscholar.org/CorpusID:13107618
https://api.semanticscholar.org/CorpusID:13107618
https://www.ece.lsu.edu/koppel/gp/2020/lsli06-br-diverg.pdf
https://www.ece.lsu.edu/koppel/gp/2020/lsli06-br-diverg.pdf
https://www.khronos.org/spir/
https://www.khronos.org/spir/
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://github.com/google/shaderc
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/

118 BIBLIOGRAPHY

[87] Benjamin Kenwright. “Getting Started with Computer Graphics and the
Vulkan API.” In: SIGGRAPH Asia 2017 Courses. SA ’17. Bangkok, Thai-
land: Association for Computing Machinery, 2017. ISBN: 9781450354035.
DOI: 10.1145/3134472.3136556. URL: https://doi.org/
10.1145/3134472.3136556.

[88] Khronos. Setup. URL: https://vulkan-tutorial.com/Drawi
ng_a_triangle/Setup (visited on 07/09/2023).

[89] Khronos Group. Khronos Vullkan Registry. 2023. URL: https://
registry.khronos.org/vulkan/specs/1.3-extensions/
html/ (visited on 07/09/2023).

[90] Khronos Group. Command Buffers. 2023. URL: https://registry.
khronos.org/vulkan/site/spec/latest/chapters/cmd
buffers.html (visited on 07/09/2023).

[91] Khronos. Pipelines — Common. URL: https://registry.khrono
s.org/vulkan/site/spec/latest/_images/pipelineme
sh.svg (visited on 07/03/2023).

[92] Andrew Waterman et al. “The RISC-V instruction set manual.” In: Volume
I: User-Level ISAâC™, version 2 (2014).

[93] Khronos. Compute Pipelines. URL: https://registry.khronos.
org/vulkan/site/spec/latest/chapters/pipelines.
html#pipelines-compute (visited on 07/03/2023).

[94] Khronos. Compute Shader. URL: https://vulkan-tutorial.
com/Compute_Shader#page_Compute-pipelines (visited on
07/09/2023).

[95] Khronos Group. Resource descriptors. 2023. URL: https://regis
try.khronos.org/vulkan/site/spec/latest/chapters/
descriptorsets.html#descriptorsets-storagebuffer
(visited on 07/09/2023).

[96] Khronos Group. Dispatching Commands. 2023. URL: https://regis
try.khronos.org/vulkan/site/spec/latest/chapters/
dispatch.html (visited on 07/09/2023).

[97] Khronos Group. Synchronization and Cache Control. 2023. URL: https:
//registry.khronos.org/vulkan/site/spec/latest/
chapters/synchronization.html (visited on 07/09/2023).

[98] Khronos. Memory model. URL: https://www.khronos.org/ope
ngl/wiki/Memory_Model#Ensuring_visibility (visited on
07/09/2023).

https://doi.org/10.1145/3134472.3136556
https://doi.org/10.1145/3134472.3136556
https://doi.org/10.1145/3134472.3136556
https://vulkan-tutorial.com/Drawing_a_triangle/Setup
https://vulkan-tutorial.com/Drawing_a_triangle/Setup
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/
https://registry.khronos.org/vulkan/site/spec/latest/chapters/cmdbuffers.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/cmdbuffers.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/cmdbuffers.html
https://registry.khronos.org/vulkan/site/spec/latest/_images/pipelinemesh.svg
https://registry.khronos.org/vulkan/site/spec/latest/_images/pipelinemesh.svg
https://registry.khronos.org/vulkan/site/spec/latest/_images/pipelinemesh.svg
https://registry.khronos.org/vulkan/site/spec/latest/chapters/pipelines.html#pipelines-compute
https://registry.khronos.org/vulkan/site/spec/latest/chapters/pipelines.html#pipelines-compute
https://registry.khronos.org/vulkan/site/spec/latest/chapters/pipelines.html#pipelines-compute
https://vulkan-tutorial.com/Compute_Shader#page_Compute-pipelines
https://vulkan-tutorial.com/Compute_Shader#page_Compute-pipelines
https://registry.khronos.org/vulkan/site/spec/latest/chapters/descriptorsets.html#descriptorsets-storagebuffer
https://registry.khronos.org/vulkan/site/spec/latest/chapters/descriptorsets.html#descriptorsets-storagebuffer
https://registry.khronos.org/vulkan/site/spec/latest/chapters/descriptorsets.html#descriptorsets-storagebuffer
https://registry.khronos.org/vulkan/site/spec/latest/chapters/dispatch.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/dispatch.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/dispatch.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/synchronization.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/synchronization.html
https://registry.khronos.org/vulkan/site/spec/latest/chapters/synchronization.html
https://www.khronos.org/opengl/wiki/Memory_Model#Ensuring_visibility
https://www.khronos.org/opengl/wiki/Memory_Model#Ensuring_visibility

BIBLIOGRAPHY 119

[99] Type Qualifier (GLSL). Khronos. 2023. URL: https://www.khro
nos.org/opengl/wiki/Type_Qualifier_(GLSL) (visited on
07/11/2023).

[100] imported_obfuscator. Difference between coherent and volatile qualifier.
URL: https://community.khronos.org/t/difference-be
tween-coherent-and-volatile-qualifier/72254 (visited
on 08/22/2023).

[101] Michael Kerrisk. mmap(2) – Linux manual page. URL: https://
man7.org/linux/man-pages/man2/mmap.2.html (visited on
08/20/2023).

[102] Jason Power, Mark D Hill, and David A Wood. “Supporting x86-64 address
translation for 100s of GPU lanes.” In: 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE.
2014, pp. 568–578.

[103] Stephen Tweedie. “Ext3, journaling filesystem.” In: Ottawa Linux Sympo-
sium. Vol. 20. 0. Ottawa Congress Centre Ottawa, Ontario, Canada. 2000,
p. 0.

[104] Various authors. Ext4 Design. 2014. URL: https://ext4.wiki.
kernel.org/index.php/Ext4_Design (visited on 06/10/2023).

[105] Various authors. Ext4 Metadata Checksums. 2013. URL: https://
ext4.wiki.kernel.org/index.php/Ext4_Metadata_
Checksums (visited on 05/30/2023).

[106] Usha A Joglekar, Bhushan M Jagtap, and Koninika B Patil. “Deploying De-
Duplication on Ext4 File System.” In: International Journal of Engineering
Research and Technology (2014).

[107] Various Btrfs authors. Deduplication. URL: https://btrfs.rea
dthedocs.io/en/latest/Deduplication.html (visited on
06/11/2023).

[108] Zygo et al. BEES. URL: https://github.com/Zygo/bees (visited
on 06/12/2023).

[109] Mark Fasheh et al. Duperemove. URL: https://github.com/
markfasheh/duperemove (visited on 06/12/2023).

[110] Various contributors. OpenZFS. URL: https://github.com/
openzfs/zfs/blob/master/include/sys/spa.h (visited on
05/28/2023).

https://www.khronos.org/opengl/wiki/Type_Qualifier_(GLSL)
https://www.khronos.org/opengl/wiki/Type_Qualifier_(GLSL)
https://community.khronos.org/t/difference-between-coherent-and-volatile-qualifier/72254
https://community.khronos.org/t/difference-between-coherent-and-volatile-qualifier/72254
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://ext4.wiki.kernel.org/index.php/Ext4_Design
https://ext4.wiki.kernel.org/index.php/Ext4_Design
https://ext4.wiki.kernel.org/index.php/Ext4_Metadata_Checksums
https://ext4.wiki.kernel.org/index.php/Ext4_Metadata_Checksums
https://ext4.wiki.kernel.org/index.php/Ext4_Metadata_Checksums
https://btrfs.readthedocs.io/en/latest/Deduplication.html
https://btrfs.readthedocs.io/en/latest/Deduplication.html
https://github.com/Zygo/bees
https://github.com/markfasheh/duperemove
https://github.com/markfasheh/duperemove
https://github.com/openzfs/zfs/blob/master/include/sys/spa.h
https://github.com/openzfs/zfs/blob/master/include/sys/spa.h

120 BIBLIOGRAPHY

[111] Truenas. ZFS Deduplication. 2023. URL: https://www.truen
as.com/docs/references/zfsdeduplication/ (visited on
06/20/2023).

[112] OpenZFS. Workload tuning. URL: https://openzfs.github.io/
openzfs-docs/Performance%20and%20Tuning/Workload
%20Tuning.html (visited on 07/12/2023).

[113] Various GitHub users. Add content-defined chunking for better dedupli-
cation. URL: https://github.com/openzfs/zfs/issues/
11400 (visited on 07/12/2023).

[114] Matt Ahrens. Zero performance overhead OpenZFS dedup. URL: https:
//openzfs.org/w/images/8/8d/ZFS_dedup.pdf (visited on
07/11/2023).

[115] OpenZFS. Checksums and Their Use in ZFS. 2023. URL: https://
openzfs.github.io/openzfs-docs/Basic%20Concepts/
Checksums.html (visited on 06/20/2023).

[116] Various OpenZFS authors. OpenZFS - DDT.h. 2023. URL: https:
//github.com/openzfs/zfs/blob/master/include/sys/
ddt.h (visited on 06/20/2023).

[117] M AdelsonVelskii and Evgenii Mikhailovich Landis. An algorithm for
the organization of information. Tech. rep. JOINT PUBLICATIONS
RESEARCH SERVICE WASHINGTON DC, 1963.

[118] Oracle. The dedup property. 2010. URL: https://docs.oracle.
com/cd/E19120- 01/open.solaris/817- 2271/gjhav/
index.html (visited on 06/21/2023).

[119] Oracle. ZFS Data deduplication. 2014. URL: https://docs.ora
cle.com/cd/E37831_01/html/E52872/shares__shares_
_general__data_deduplication.html (visited on 06/21/2023).

[120] Truenas. Truenas. URL: https://www.truenas.com (visited on
06/20/2023).

[121] Jian Xu and Steven Swanson. “{NOVA}: A log-structured file system
for hybrid {Volatile/Non-volatile} main memories.” In: 14th USENIX
Conference on File and Storage Technologies (FAST 16). 2016, pp. 323–
338.

[122] Jan Kára. “Ext4, btrfs, and the others.” In: Proceeding of Linux-Kongress
and OpenSolaris Developer Conference. 2009, pp. 99–111.

https://www.truenas.com/docs/references/zfsdeduplication/
https://www.truenas.com/docs/references/zfsdeduplication/
https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/Workload%20Tuning.html
https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/Workload%20Tuning.html
https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/Workload%20Tuning.html
https://github.com/openzfs/zfs/issues/11400
https://github.com/openzfs/zfs/issues/11400
https://openzfs.org/w/images/8/8d/ZFS_dedup.pdf
https://openzfs.org/w/images/8/8d/ZFS_dedup.pdf
https://openzfs.github.io/openzfs-docs/Basic%20Concepts/Checksums.html
https://openzfs.github.io/openzfs-docs/Basic%20Concepts/Checksums.html
https://openzfs.github.io/openzfs-docs/Basic%20Concepts/Checksums.html
https://github.com/openzfs/zfs/blob/master/include/sys/ddt.h
https://github.com/openzfs/zfs/blob/master/include/sys/ddt.h
https://github.com/openzfs/zfs/blob/master/include/sys/ddt.h
https://docs.oracle.com/cd/E19120-01/open.solaris/817-2271/gjhav/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-2271/gjhav/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-2271/gjhav/index.html
https://docs.oracle.com/cd/E37831_01/html/E52872/shares__shares__general__data_deduplication.html
https://docs.oracle.com/cd/E37831_01/html/E52872/shares__shares__general__data_deduplication.html
https://docs.oracle.com/cd/E37831_01/html/E52872/shares__shares__general__data_deduplication.html
https://www.truenas.com

BIBLIOGRAPHY 121

[123] Jesse David Dinneen and Ba Xuan Nguyen. “How Big Are Peoples’ Com-
puter Files? File Size Distributions Among User-managed Collections.” In:
Proceedings of the Association for Information Science and Technology
58.1 (2021), pp. 425–429.

[124] Se Kwon Lee et al. “{WORT}: Write optimal radix tree for persistent
memory storage systems.” In: 15th USENIX Conference on File and
Storage Technologies (FAST 17). 2017, pp. 257–270.

[125] Dirk Pflueger. Fundamental Algorithms. URL: https://www5.in.t
um.de/lehre/vorlesungen/fundalg/slides/fundalg08.
pdf (visited on 07/12/2023).

[126] Alan Jay Smith. “Cache memories.” In: ACM Computing Surveys (CSUR)
14.3 (1982), pp. 473–530.

[127] Donald Ervin Knuth. “Sorting and searching.” In: The art of computer
programming 3 (1998).

[128] Pengfei Zuo, Yu Hua, and Jie Wu. “{Write-Optimized} and {High-
Performance} hashing index scheme for persistent memory.” In: 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 2018, pp. 461–476.

[129] Khronos. Core Language (GLSL). URL: https://www.khrono
s.org/opengl/wiki/Core_Language_(GLSL) (visited on
05/30/2023).

[130] Khronos. Compute Shader. URL: https://www.khronos.org
/opengl/wiki/Compute_Shader#Limitations (visited on
05/31/2023).

[131] Khronos. Understanding Vulkan Synchronization. Mar. 2021. URL: ht
tps://www.khronos.org/blog/understanding-vulkan-
synchronization (visited on 05/31/2023).

[132] Wikipedia. List of AMD graphics processing units. URL: https://en.
wikipedia.org/wiki/List_of_AMD_graphics_processi
ng_units (visited on 05/31/2023).

[133] Khronos and various developers. VK_EXT_pageable_device_local
_memory(3) Manual Page. 2023. URL: https://registry.khr
onos.org/vulkan/specs/1.3-extensions/man/html/
VK_EXT_pageable_device_local_memory.html (visited on
08/04/2023).

[134] Anjan Roy. BLAKE3 on GPGPU. 2022. URL: https://itzmeanjan.
in/pages/blake3-on-gpgpu.html (visited on 08/15/2023).

https://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg08.pdf
https://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg08.pdf
https://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg08.pdf
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Compute_Shader#Limitations
https://www.khronos.org/opengl/wiki/Compute_Shader#Limitations
https://www.khronos.org/blog/understanding-vulkan-synchronization
https://www.khronos.org/blog/understanding-vulkan-synchronization
https://www.khronos.org/blog/understanding-vulkan-synchronization
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_pageable_device_local_memory.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_pageable_device_local_memory.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_pageable_device_local_memory.html
https://itzmeanjan.in/pages/blake3-on-gpgpu.html
https://itzmeanjan.in/pages/blake3-on-gpgpu.html

122 BIBLIOGRAPHY

[135] Philip Taylor. Vulkan memory dependencies. URL: https://github.
com/philiptaylor/vulkan-sync/blob/master/memory.
md (visited on 08/18/2023).

[136] Michael Kerrisk. msync(2) – Linux manual page. URL: https://
man7.org/linux/man-pages/man2/msync.2.html (visited
on 08/20/2023).

[137] Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. Kernel
Probe (Kprobes). URL: https://docs.kernel.org/trace/
kprobes.html (visited on 08/21/2023).

[138] AMD. AMD Radeon RX7900XTX. URL: https://www.amd.com/
de/products/graphics/amd-radeon-rx-7900xtx (visited
on 08/26/2023).

[139] AMD. HIP Documentation. URL: https://rocm.docs.amd.com/
projects/HIP/en/latest/ (visited on 08/14/2023).

[140] Mark Harris and Kyrylo Perelygin. Cooperative Groups: Flexible CUDA
Thread Programming. URL: https://developer.nvidia.com/
blog/cooperative-groups/ (visited on 08/14/2023).

https://github.com/philiptaylor/vulkan-sync/blob/master/memory.md
https://github.com/philiptaylor/vulkan-sync/blob/master/memory.md
https://github.com/philiptaylor/vulkan-sync/blob/master/memory.md
https://man7.org/linux/man-pages/man2/msync.2.html
https://man7.org/linux/man-pages/man2/msync.2.html
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/kprobes.html
https://www.amd.com/de/products/graphics/amd-radeon-rx-7900xtx
https://www.amd.com/de/products/graphics/amd-radeon-rx-7900xtx
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/

	Abstract
	Contents
	Introduction
	Background
	Storage Devices
	Block-Addressable Devices
	Byte-Addressable Devices

	File Systems
	Organization

	Checksum Algorithms
	Cyclic Redundancy Check
	Fletcher Checksum
	Cryptographic hash functions
	BLAKE3
	Discussion

	Deduplication
	Motivation
	Chunk Sizes
	Discussion
	Hashing Techniques

	GPU Programming
	Towards GPU Architectures
	Programming Model
	Vulkan

	Related Work
	GPU4FS
	Essentials
	Block Pointer Design
	Block Design

	EXT4
	Btrfs
	ZFS
	Checksumming
	Deduplication

	Additional File Systems
	NOVA
	User Space File Systems

	Design
	Checksumming
	Block Pointer Design
	Block Design
	Discussion

	Deduplication
	File System Design
	Discussion

	Implementation
	Checksumming
	Checksum Algorithm — BLAKE3
	File System Integration
	Future Work — Update and Deletion
	Future Work — Outlook

	Deduplication
	Preparing the Deduplication Shader
	Deduplication Shader
	Future Work — Update and Deletion
	Future Work — Outlook

	Resolving RAW Conflicts
	The Vulkan Approach
	The GPU4FS Approach

	Evaluation
	Testing Methodology
	Machine "Optane"
	Machine "RX7900XTX"
	Machine "Laptop Nvidia"

	Checksumming
	Checksumming — Raw Algorithm
	Checksumming — GPU4FS Integration

	Deduplication
	Shader Pipeline
	The Vulkan Approach
	The GPU4FS Approach
	Towards Low Pressure
	Vulkan-related Issues

	Discussion
	Future Work
	Checksumming
	Deduplication

	Conclusion
	Bibliography

