
Analyzing Persistent Memory Crash
Consistency of WineFS with Vinter

Bachelor’s Thesis
submitted by

cand. inform. Paul Wedeck
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Lukas Werling, M.Sc.

13. Juni 2023 – 13. Oktober 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I
did not use any source or auxiliary means other than these referenced. This thesis
was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, October 13, 2023

iv

Abstract

Persistent memory (PM) is a recent storage technology. Contrary to classical stor-
age devices, PM has a different persistency model that adds new challenges in en-
suring that each persisted state is valid. This is especially relevant for file systems
because they are supposed to remain consistent regardless of random crashes.

WineFS is a novel PM file system. It attempts to retain a high performance for
aged file systems. Based on the assumption that hugepages improve the file ac-
cess performance, it features a novel memory allocator that attempts to minimize
fragmentation and preferably serve allocation requests with hugepages. We used
the testing framework Vinter to analyze WineFS for crash consistency. Vinter
traces a test sequence and simulates crashes and their results at potentially inter-
esting positions. Crash images are generated based on the persistency model of
the platform, to ensure that each crash state could actually happen.

To aid our analysis, we modified Vinter in several aspects. We added a mech-
anism to load precreated PM images and generate code coverage for the tested
file system. Additionally, we achieved significant performance improvements us-
ing output compression and multi-threading. During our analysis, we discovered
several minor and two potentially critical bugs and we propose fixes to all newly
discovered bugs. We confirmed all previously reported crash consistency bugs in
WineFS and validated that all proposed bug fixes resolve their respective bug in
our test cases.

v

vi CHAPTER 0. ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 3

2 Background 5
2.1 Crash Consistency . 5
2.2 Intel Optane Persistent Memory 6
2.3 WineFS . 7

3 Related Work 9
3.1 Vinter . 9
3.2 Chipmunk . 10

3.2.1 WineFS . 11

4 Approach 13
4.1 Vinter Modifications . 13

4.1.1 Multithreading . 14
4.1.2 Aged Images . 16
4.1.3 FS-Dump . 17
4.1.4 Time . 19
4.1.5 Coverage . 20
4.1.6 Crash Image Exploration Limit 21

4.2 WineFS . 21

5 Results 23
5.1 cmpxchg16b . 23

5.1.1 movdir64b . 25
5.1.2 Tree Bug Fix . 25
5.1.3 Date Bug Fix . 26

1

2 CONTENTS

5.2 Relaxed Mode . 26
5.2.1 Bug Fix . 27

5.3 Extended Attributes . 28
5.3.1 Setxattr Bug Fix . 29
5.3.2 Listxattr Bug Fix . 29

5.4 Fallocate . 30
5.5 Truncate . 31

5.5.1 Bug Fix . 31
5.6 Unlink . 32

5.6.1 Bug Fix . 33
5.7 Issue 1 . 33
5.8 Issue 3 . 34
5.9 Issue 5 . 35
5.10 Other Bugs . 35

5.10.1 Write . 35
5.10.2 Fallocate . 36

5.11 Performance Improvements . 37
5.11.1 Test Quality . 37
5.11.2 Vinter CPU Usage . 38
5.11.3 Vinter Execution Phases 40
5.11.4 Naive Parallel Test Execution 40
5.11.5 Parallel Semantic State Extraction 42
5.11.6 Parallel Test Execution 42
5.11.7 FS-Dump . 43

5.12 Aged Images . 43
5.13 Coverage . 45
5.14 Vinter . 47

6 Conclusion 49
6.1 Future Work . 51

Bibliography 53

Chapter 1

Introduction

Persistent memory (PM) [5] [34, pp. 11] is a recent storage technology that pro-
vides fast, bytewise access. PM is accessed using regular load and store instruc-
tions. These unique properties necessitate a new persistency model. Block devices
can usually write a single block of at least 512 bytes atomically. On PM, only eight
bytes of memory can be stored atomically. Stores to PM may be reordered both
by the compiler and the processor. Further, a memory barrier must be used in en-
suring that a store has been persisted. Because a system may encounter a crash at
any time, the exact persistency semantics of modifying a storage device are very
important to ensure that the stored data is always consistent after a crash. Due to
its alternative persistency model, achieving crash consistency is more challenging
on PM than on regular block devices. File system are supposed to remain consis-
tent over long times. Therefore, it is critical that they are not corrupted by system
crashes [15, ch. 35].

WineFS [18] is novel PM file system based on PMFS [16]. Its main design
goal is to improve the long term performance of file mappings. This is achieved
by an alternative memory allocator and a per-CPU journal. If a file is mapped
into userspace, the mappings may be done using hugepages. The novel memory
allocator attempts to serve as many allocation requests as possible with aligned
2MB extents that may than be used as hugepages. Access to a file that is mapped
using hugepages causes less pagefaults and is therefore faster. WineFS provides
two consistency modes. The so-called strict mode guarantees that all file system
operations are atomic and synchronous while the so-called relaxed mode does not
guarantee that write operations are atomic.

The goal of this Bachelor’s thesis is to analyze WineFS for crash consistency
bugs using Vinter. Additionally, we evaluate if Vinter is suited for testing new
file systems. Vinter [23] is a testing framework designed to test crash consistency
of PM applications. It has been successfully used to find multiple bugs in PM
file systems like NOVA and PMFS. Vinter traces the execution of a series of PM

3

4 CHAPTER 1. INTRODUCTION

operations and generates simulated crash states at potentially interesting points.
Then it attempts to recover from this crash and extracts the application state at this
point in time. This allows users to determine if an operation generated unexpected
intermediate states which indicate a crash consistency issue.

To aid our analysis, we modified Vinter in several aspects (see Chapter 4). We
added code to extract additional file system state and improve the performance of
the extraction process. Further, we improved the overall performance of Vinter
using multithreading. To evaluate our code coverage, we added a mechanism to
generate coverage reports of the tested file system during Vinter tests. During our
analysis, we discovered two potentially critical and various minor bugs. Except
for two regular bugs (one critical and one minor bug), all bugs can solely occur
due to crashes and can be reliably reproduced using Vinter. Additionally, we
reproduced various previously published [30] crash consistency bugs in WineFS.
In Chapter 5, we describe all reproduced and newly discovered bugs and evaluate
our Vinter modifications.

Chapter 2

Background

2.1 Crash Consistency

Data on storage devices is expected to survive over a long time despite power
losses or system crashes [15, ch. 42]. Such events may happen at any time. It is
therefore necessary that the persisted state is at all times consistent. A state transi-
tion is called atomic [15, ch. 26] if no intermediate state between the original and
the target state is visible. The amount of memory that can be stored by atomic op-
erations is often too limited for practical use. For example, Intel Optane PM only
guarantees that writes of up to eight bytes are atomic [5]. Under such guarantees
many basic file system operations cannot be executed atomically [23].

Transactions [15, ch. 26] are an alternative method to execute multiple opera-
tions as a single atomic operation. However, hardware support for transactions is
not generally available [6, 36]. Software implementations, on the other hand, are
possible with one technique being journaling.

Journaling Journaling [15, ch. 42)] prevents inconsistent intermediate states by
means of an additional auxiliary data structure called the journal. Before any
modification of the actual data is executed, the operation is first written to the
journal. Journaling is employed by several file systems including WineFS [18].

Only when all modifications contained in a transaction were successfully writ-
ten to the journal, the actual modification is executed. This can be ensured by a
write barrier that prevents all following write operations from executing before all
previous operations are completed.

If the system crashes before the journal entry has been successfully written, the
crash recovery code may ignore the entry. In this case, the recovered state is the
previous state. If the system crashes at a later point, the crash recovery code will
attempt to execute all modifications included in the journal entries. Therefore, the

5

6 CHAPTER 2. BACKGROUND

recovered state fully includes the operations described in the journal. If the initial
state was consistent and the operation in the journal maintains consistency, the
data structure will always recover to a consistent state.

Alternatively, a file system might choose to write the previous data to the jour-
nal and then use this knowledge to undo the operations in the journal. This variant
of journaling is used by WineFS. [18]

The crash recovery code can determine if a certain journal entry is complete
in different ways. Methods include a special end marker that is written after the
actual entry. However, this requires a additional memory barrier. More sophis-
ticated file systems may include a checksum over the rest of the entry in each
journal entry. This way, an incomplete journal entry is automatically inconsistent
and can be safely skipped without jeopardizing data consistency.

2.2 Intel Optane Persistent Memory
Intel Optane persistent memory [7] is a specific implementation of persistent
memory by Intel. The memory modules are in DDR4 DIMM form factor. They
can be used both in so called memory mode and app direct mode. In memory
mode, the module functions as additional memory [34, p. 298] without requir-
ing explicit application support while in app direct mode, the module functions
as additional storage (PM). On Intel processors, Optane is accessed like regular
memory. Some file systems offer a feature called DAX which provides direct
access to files stored in PM via memory mapped files [5].

ADR Systems supporting Intel Optane PM require Asynchronous DRAM Re-
fresh (ADR) [6]. ADR ensures that all pending writes queued at the memory
controller are successfully executed in case of a power failure. Under ADR, it is
necessary to first flush a modified cache line and then insert a memory barrier to
ensure that the modified data is persistent. Extended ADR (eADR) additionally
guarantees that CPU caches are successfully flushed in case of a power failure.
eADR, therefore, eliminates the need for flush operations to ensure crash consis-
tency and simplifies PM access.

Transactional Memory Transactional memory [11, p. 1445] is a CPU exten-
sion allowing applications to execute multiple memory operations transactionally.
The transaction maintains a read-set and a write-set at cache line granularity. The
read-set contains all cache lines that were accessed by load instructions while
the write-set contains all cache lines that were accessed by store instructions. If
the memory contained by the read-set is modified or the memory contained by
the write-set is accessed in any way from the outside, the processor aborts the

2.3. WINEFS 7

transaction. If the transactions succeeds, the changes in the write-set are visible
atomically.

As transactional memory is implemented at the cache layer, ADR guarantees
are not sufficient to maintain crash consistency. On the other hand, eADR guar-
antees that such transactions are committed atomically [5, 36].

2.3 WineFS
WineFS [18] is novel PM file system based on PMFS. Its main design goal is to
improve the performance of aged file systems.

On PM, memory mapped files are significantly faster than traditional read-
/write system calls. Hugepages generate less page faults and TLB misses than
4KB pages. Therefore, an accessing program may experience increased perfor-
mance if a memory mapped file is mapped via hugepages. Allocated memory
can only be mapped as a hugepage if it consists of extents of appropriate size and
alignment.

Depending on the order and location of memory allocations and deallocations,
the free PM regions may become fragmented into small extents. This makes it
increasingly difficult to allocate contiguous and properly aligned chunks of mem-
ory [15, ch.16], resulting in reduced performance.

Allocator WineFS introduces a novel memory allocator that attempts to in-
crease the number of hugepages that can be allocated in aged file systems by
proactively minimizing fragmentation. This allocator keeps a pool of aligned and
unaligned memory. The aligned pool contains memory suitable for hugepages
while the other contains the remaining memory.

Memory allocations are broken down into a multiple allocations of 2MB or
smaller. 2MB allocations are served via the aligned pool, always resulting in
hugepage mappings. The allocator first attempts to serve smaller allocations with
the unaligned pool. Only if this is not possible it will use memory from the aligned
pool.

On deallocation, the file system attempts to merge adjacent unaligned memory
regions and if possible convert it into new aligned regions.

WineFS protects its metadata with an undo-journal. Contrary to log-structured
file systems, a journaling file system reuses previous memory. Therefore, a journal
requires less memory allocations and causes less fragmentation.

WineFS provides two consistency modes. The strict mode guarantees that all
file system operations are atomic and synchronous while the relaxed mode does
not guarantee atomic write operations.

8 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

3.1 Vinter

Vinter [23] is a tool to automatically find inconsistent crash states in PM appli-
cations. It has been successfully used to discover bugs in several file systems
including NOVA and PMFS.

Vinter uses dynamic binary translation to record accesses to PM and certain
events relevant for crash consistency like fences and cache line flushes. This
requires no modification to the source code of the file system. It has a testing
pipeline of multiple programs starting with the tracer. First, the tracer records a
so called pre-failure trace that contains all writes to PM and all relevant serial-
ization and persistence events. Additionally, the traced program may also issue
checkpoint hypercalls that separate different semantic operations.

This trace is then analyzed by the crash image generator to generate differ-
ent PM states that could have been restored after a system crash. Possible crash
states depend on the assumed memory persistence model. When assuming the x86
model, stores are only guaranteed to be persisted after certain ordering points.
Vinter generates new crash states at these ordering points by only partially ap-
plying in-flight changes. Care must be taken that the applied subset is actually
allowed under the memory model. Specifically, on x86 operations on the same
cache line are ordered with respect to each other [32]. Otherwise, the generator
may generate crash states that could not exist on a real system, leading to false
positives.

Depending on the trace, the amount of possible crash states may be too large
to analyze. Therefore, the crash image generator uses a heuristic to only generate
crash states that are relevant for crash consistency.

These crash states are then passed to the tester. The tester then runs on the
crash recovery code and a program to extract the semantic state for each trace. If

9

10 CHAPTER 3. RELATED WORK

any one these trace is not recoverable, the sequence of operations was not crash
consistent.

The tester can also analyze multiple traces for stronger crash consistency guar-
antees. For example, it can test if all crash states at one checkpoint result in the
same state or if all crash states between two checkpoints result in only the original
or in a single final state. It is, however, not guaranteed that multiple intermedi-
ate or final states indicate a violation of the crash consistency guarantees of the
operation.

Test Specification Each Vinter test is based on a test file and a virtual machine
(VM) file. A test file specifies which file system operations should be performed.
A VM file specifies how a virtual machine with a specific file system may be
started. This includes specific arguments how the VM is configured, where the
kernel image is located, and where the PM region is inside the address space
of the VM. Additionally, the VM file provides the VM command that is used
during crash state generation. The initial trace command and crash state extraction
command consist of a prefix specified in the VM file and a suffix specified in the
test file. The prefix is commonly a file system specific command to mount the file
system, while the suffix is commonly test specific. For the trace command, the
suffix is usually a list of operations that may lead to inconsistent crash states. The
suffix of the state extraction command is a test specific command to output the
visible state of the file system.

3.2 Chipmunk
Chipmunk [30] is an alternative approach to detect crash consistency bugs in PM
file systems. It has already been successfully used to find bugs in multiple file
systems including WineFS.

Chipmunk does not trace PM accesses directly but traces calls to certain ker-
nel functions that file systems use to write to PM. Functions calls are traced via
the Kprobes and Uprobes debugging mechanisms which requires no source code
modifications. However, this approach requires that these function calls may not
be inlined by the compiler.

Chipmunk generates test cases via Automatic Crash Explorer (ACE) and Syz-
kaller. ACE exhaustively generates sequences of file system operations with a
certain length based on a pre-defined structure. Syzkaller starts with a set of ini-
tial test cases and then generates new ones based on code coverage gathered by
previous runs.

Similarly to Vinter, Chipmunk generates possible crash states based on the
persistence model. If the number of possible crash states at any ordering point is

3.2. CHIPMUNK 11

small by some measure, Chipmunk generates all possible crash states. Otherwise,
only a subset of all possible crash states is generated.

Chipmunk tests the consistency of each crash state by comparing the state of
the file system with known valid post-crash states. Then it attempts to create and
subsequently delete a file in all directories, validating that the file system is in a
usable state. If any of these tests fails, Chipmunk outputs a bug report for this
crash state.

3.2.1 WineFS
The authors of Chipmunk have found at least three confirmed crash consistency
bugs in WineFS. They also found another possible bug. Further analysis will be
part of this thesis. All confirmed bugs occurred in the write system call.

One bug was caused by a missing store fence after updating file metadata.
This means that the new size and last-modified time of the file may not have been
serialized when the system call returns.

Another bug was caused by a missing cache-line flush after writing data at an
unaligned starting address. If a write to PM is not aligned to eight bytes or has
a smaller size, WineFS will use a store instruction that goes through the cache.
Specifically, it incorrectly determined that if the write extent does not end on an
eight byte boundary, it is only necessary to flush the last cache-line if the total size
of the write operation is not aligned to the length of a cache-line [20].

WineFS uses a B-tree per inode to store which blocks represent which part
of the content of the inode. If this B-tree contained just one data block before
a write operation and the write operation does not require additional blocks, this
data block would not be marked as copy-on-write. If the system crashes while
only parts of the write operation have been executed, the crash recovery program
will not revert these changes. Therefore, such a write operation is not atomic,
violating the atomicity guarantee of the strict mode [21], [22, inode.h, inode.c and
pmfs.h]. [29]

12 CHAPTER 3. RELATED WORK

Chapter 4

Approach

Our goal is to analyze the crash consistency of the file system WineFS using Vin-
ter. Vinter is a testing framework that allows tracing file system operations and
simulates crashes at certain points. Based on this information, we can decide if
a crash during a certain operation may lead to an invalid file system state. Crash
consistency is very important for a file system because users expect it to retain its
content over long times. Losing at least parts of the content of the file system due
to a simple system crash is not acceptable.

WineFS and Vinter are specialized on persistent memory (PM). PM is a recent
storage technology that allows byte-granular access to its data using regular load
and store instructions. Traditional storage devices are accessed based on blocks
using special commands. Due to its alternative access method, PM introduces new
challenges in ensures that a file system remains consistent after a crash.

4.1 Vinter Modifications

We decided to modify Vinter in several aspects to better suite our needs. Due to
long wait times, we improved the performance of Vinter using multi threading.
Further, we introduce a mechanism to starts tests using a prepared file system
image instead of a clean image. We experienced issues with the system clock of
the VMs created by Vinter. To mitigate these issues, we propose changes to make
the generated timestamps of each file system more consistent between each VM
instance and between different test runs. Vinter has to extract the file system state
of each generated crash state. We improved both the performance and amount
of data generated in this process. This enabled us to detect the bugs described
in Section 5.3. Finally, we introduce a mechanism to generate coverage reports
about the tested file system. This allows us to determine how much of WineFS we
already covered with our tests.

13

14 CHAPTER 4. APPROACH

Most of these changes were not strictly necessary to detect or verify any bug
we discovered. However, they helped us analyzing WineFS. It was a common oc-
currence that we executed Vinter in short succession after making small changes
to the test files or the source code of WineFS. Particularly the performance im-
provements made this process more stringent and less time consuming.

4.1.1 Multithreading
Testing a file system using Vinter is inherently parallel because the different tests
do not interact or interdepend. Vinter instances can run fully independent of each
other, as long as each instance has a distinct test file and VM file combination.
However, each individual Vinter instance is single threaded and runs one VM
instance at most. The VM runner creates multiple threads but we observed that
it effectively only utilizes a single core. This leads to poor core utilization and
unnecessary wait times when running fewer tests than CPU cores are available.
During our experiments, it was a common occurrence that we worked on a single
test case.

The work process was that we executed Vinter, analyzed the results, and then
made minor modifications to the test parameters. We repeated this process numer-
ous times. The most time consuming part of this process was waiting for Vinter
to finish. Therefore, the performance of Vinter proved to be a bottleneck.

Parallel Semantic State Extraction Vinter extracts the semantic state of each
generated crash image. Using deduplication, Vinter drastically reduces the amount
of crash states presented to the user. However, Vinter has to run the state extraction
step for each crash image. While the deduplication requires at least some synchro-
nization, the state extraction itself can be parallelized. Further, the deduplication
step is just a single hash table access and therefore a negligible overhead.

Implementation Vinter uses a snapshot mechanism to speedup VM load
times. A snapshot is recorded once per Vinter test run and then resumed multiple
times. The VM requires exclusive access to this snapshot. Therefore, we create a
separate copy of this image for every spawned VM.

The state extraction is executed in a separate process. Vinter has to spawn a
new process and wait for its completion. A naive implementation might spawn
multiple processes and wait for their completion in some order. This leads to
theoretical performance losses if the processes terminate in a different order than
our arbitrary wait order. Under Linux, a process is generally capable of waiting
for any of its children to complete [12, wait(2)]. However, Vinter is written in
Rust and we are not aware that the process API of Rust [3] exposes this feature.

4.1. VINTER MODIFICATIONS 15

As far as we are aware, Rust only support waiting for the termination of a specific
child.

Therefore, we decide to use a thread pool. We submit a new task to this pool
for every external process. This task than waits for the termination of the child.
Because we start the processes outside of the thread pool, we use a semaphore to
limit the number of concurrently running child processes.

Evaluation Using parallel state extraction, we achieved a speedup of the
state extraction phase of up to factor 20 for 32 cores. A few tests with particularly
short extraction times only achieved a factor of 1.9 or 3.4. If we sum the duration
of the average extraction time for all tests with and without parallelization, we
achieved a speedup of 18. This shows a clear performance improvement for this
specific stage.

Overall, we achieved much lower speedups. A run of all Vinter tests is faster
by a factor of 2.6. Selected tests achieve speedups of up to factor 6. In general,
tests that run longer benefit more from parallel semantic state extraction. This
highlights that this modifications is qualified to reduce wait times where this issue
is the most pressing.

Parallel Test Execution Parallel semantic state extraction has the issue that the
core utilization of each Vinter instance fluctuates. Running the tests sequentially
leads to poor core utilization during the significant single threaded part of each
run. As each test is highly multi threaded, running the tests in parallel might lead
to performance degradation because the maximum number of active threads is
significantly higher than cores are available. Under this assumption, we decided
to execute multiple test files in the same Vinter instance to better manage core
utilization. We achieved this by creating a single worker thread pool sized by the
number of processor cores or a user-defined value. As a first step we queue the
first, sequential part of each test run on this thread pool. Once all tests have been
queued, we wait for the sequential part to finish and run the previously parallelized
part of each test run.

In our tests, this did not lead to any significant performance improvement over
naive parallelization.

Crash State Generation For an unmodified Vinter version, the state extraction
phase clearly determines the overall execution time. Using parallel semantic state
extraction, the performance determining factor becomes the crash image genera-
tion phase.

Crash images are currently generated iteratively. While some level of par-
allelization might be possible, it would require significant modifications to the

16 CHAPTER 4. APPROACH

existing code. Introducing new bugs to this part of Vinter risks generating illegal
crash states or hiding crash states that indicate the presence of crash consistency
bugs. Due to previous performance improvements and the risk and effort involved,
we did not further pursuit to parallelize state generation.

4.1.2 Aged Images

A major design goal of WineFS is to improve performance of aged file systems.
Specifically, it attempts to maintain a pool of memory regions that may be used
for huge pages. This implies that WineFS may behave differently and thereby
introduce new bugs on aged file systems.

Implementation

We introduced a load_pmem parameter to test configurations and VM configu-
rations. The parameter in the test file overwrites the parameter in the VM file if
present. This allows to both base test cases on specific initial states and executing
arbitrary test cases on an aged image.

Vinter uses the vinter_trace.py script to start a VM. It already has a
functioning parameter to load initial PM states. This is used for crash state gener-
ation and semantic state extraction. We use this parameter to load an precreated
PM image in the initial tracer run.

Further, we modify the crash state generator to use this image as the initial
state of our PM. This is necessary because the VM only records the modifications
to the PM but not the initial state.

Full Images

To test the behavior of the memory allocator if it has only few pages available, we
created a custom file system image. We first create two dummy files, then a file
that fills approximately 1/3 of the file system and then a dummy directory with
a single dummy file in the directory. All dummy files had a size of a few bytes.
Then we created a file that allocated all remaining memory. Finally, we deleted all
dummy files and directories. This ensures that the file system has enough memory
for at least two files and a directory with one file and each file may have at least a
page of content.

We used this mechanism to execute all existing Vinter tests on this file system
image. Thereby, we discovered the unlink bug. We described this bug in Sec-
tion 5.6. This bug is in its nature not dependent on the general file system state.
However, with a clean file system image, our test case only generates a single il-

4.1. VINTER MODIFICATIONS 17

legal intermediate state. Using our aged file system, it generates varying numbers
of illegal intermediate states.

4.1.3 FS-Dump

Vinter comes with a tool to extract the state of a file-system called fs-dump. Dur-
ing each state extraction process, fs-dump is called to extract the state of each
crash state. We observed that this process experiences significant performance
degradation for large files. Files filled with null bytes cannot be prevented when
testing allocate and truncate operations. Further, fs-dump prints the escape se-
quence \u0000 for every null byte. Therefore, the output size of such files
is highly inflated. This worsens the original performance issue if such files are
present.

Most Vinter tests do not create particularly large files. Therefore, this is not
problematic for most regular tests. We still experienced performance degradation
in some cases. Further, we observed that the performance issues are mostly based
on the size of the output.

Compression

We decided to compress the output of fs-dump to represent the contents of the file
more compactly. We propose a simple compression scheme that replaces consec-
utive occurrences of a single character with the number of occurrences and the
specific character. This reduces the minimal output size to O(log n) from O(n),
for n input characters. Such a compression scheme works well if the file is mostly
filled with a single character. It is easier for the human eye to see small differences
between such files, compared to files that are filled with random values. Further,
such files are very easy to create. The behavior of a file system is mostly inde-
pendent of the actual content of a file or a write operation. Therefore, it is only a
small limitation for Vinter tests to preferably create such files.

This compression scheme has the downside that it inflates the output size if the
contents do not properly fit into the compression scheme. To reduce the impact
of this, we do not use this compression scheme if a character is different from its
preceding and succeeding character. Such characters are combined into a string
literal.

Further, we compare the size of the file and the size of the compressed contents
and only output the compressed string if it is smaller. If the file size is smaller or
equal in size, we output the raw file contents. Note that both string may contain
unprintable characters which will be represented by an escape sequences. This
may inflate the actual output size. Therefore, this heuristic might underestimate

18 CHAPTER 4. APPROACH

the size of both variants. In our tests, files generated during Vinter tests experience
a significant reduction in output size.

For small sizes, the uncompressed content string makes up only small parts
of the overall output strings. We measured that the performance overhead is neg-
ligible. Additionally, the raw output is generally more readable for such files.
Therefore, we decided to not compress small files. As this is a trade off, there is
no objective optimal value. We arbitrarily decided on 128 bytes as the separating
file size.

Performance Evaluation

We evaluated the performance of fs-dump by allocation a file filled with null bytes
and subsequently dumping the content of the file using fs-dump. This approach
enables us to create files larger than the physical size of the file system. However,
it has the limitation that fs-dump outputs a null byte as 6 bytes (\u0000). Addi-
tionally, fs-dump outputs a static amount of metadata. For example, dumping an
empty file generates 377 bytes of output. Dumping a file of 106 null bytes gener-
ates 6 · 106 + 386 bytes of output. Other file sizes follow this pattern. Therefore,
the output size can be roughly estimated by multiplying the file size with 6.

For a file filled with 500 null bytes (output size is 3381 bytes), the VM execu-
tion time using the baseline version is 7.38 seconds. The highest file size where
we successfully generated results was 5623 bytes (output size 34121 bytes). This
took approximately 115 minutes. The next highest test would have been with a
file size of 7499 bytes but this failed to do a builtin 9999 second timeout of Vinter.

A VM execution without any tasks requires approximately 2.19 seconds. For
106 bytes the VM execution time is only 2.59 seconds. Such a file is reasonably
small and the slowdown is acceptable. This is significantly faster than what we
achieved using the baseline version.

For larger files, the slowdown is more significant. Using our compression
scheme, we tested files with sizes up to 109 bytes. For a file size of 109 bytes,
the VM execution time was 39.6 seconds. This highlights that there is still opti-
mization potential. However, for crash consistency testing, files of a few kilobytes
to a few megabytes are most common. For such files, our compression scheme
provides a significant improvement in comparison to the baseline version.

UTF-8

An unmodified fs-dump version interprets the file content as a UTF-8 string. This
means that printable characters get a reasonable representation and unprintable
characters are printed using special escape sequences. However, some files do not
contain valid UTF-8 data. In this case, fs-dump crashes.

4.1. VINTER MODIFICATIONS 19

This is unacceptable because some bugs (see Section 5.1) cause files to be
filled with unexpected values which are not necessarily valid UTF-8. Therefore,
we propose to read the file as bytes, convert each byte to a character and collect
all these chars into a string. A byte may have values between 0 and 255. During
the conversion to a character, this value is interpreted as a unicode codepoint. All
of these codepoints are valid, therefore this cannot fail. Collecting them to a full
string cannot fail either because each combination of these characters is legal.
Note that this will misinterpret most texts that are not ASCII. However, such texts
are rare in crash consistency testing because they offer no benefit over ASCII text.

Extended Attributes

WineFS supports extended attributes [12, xattr(7)]. These attributes are key value
pairs that contain metadata about a file. We added code to fs-dump to list and
extract all extended attributes of a file. This enabled us to discover the bugs de-
scribed in Section 5.3.

4.1.4 Time

Vinter utilizes a mechanism to speed up VM startup by creating a snapshot once
and then continuing it for every VM invocation. We noticed that the initial VM
had a correct system time. However, the VM is not aware that it was temporarily
halted. Therefore, its system time starts at the last moment of the previous VM
instance. To verify the truncate bug (see Section 5.5) we discovered, it was nec-
essary that the VM system time is consistent between VMs. This means that a
timestamp generated at a later point in time is always younger than one generated
before it.

We achieved this using the hwclock [17] tool from util-linux. QEMU provides
a real time clock (RTC) by default [13]. Hwclock can force the kernel to synchro-
nize its internal clock with the RTC. By executing such a command every time the
VM is resumed, we can make sure that system time in each VM progresses and is
consistent regarding other VMs.

Further, we configured QEMU to start the VM time at a predefined point in
time. Therefore, timestamps do not depend on the time the test was started. How-
ever, the run time of each test depends on external factors like other concurrently
running tests. Further, Vinter is not fully deterministic. Specifically, the number
of generated crash states varies. Therefore, the number of VM invocations and
further their timestamps will vary.

20 CHAPTER 4. APPROACH

4.1.5 Coverage
We created a mechanism to record the code coverage of each test case. For this,
we used the builtin gcov [4] coverage support of the Linux kernel.

The mechanism works as follows:
Relevant parts of the linux kernel (in our case the WineFS file system) are com-
piled with coverage generation enabled. After running each test, a debugfs is
mounted at /sys/kernel/debug. Linux places generated coverage files there.
These files are collected into a single archive. A prepared file of sufficient size is
passed to the VM as a virtual drive. The VM copies the contents of the archive to
the virtual drive. Vinter extracts this archive on the host system.

We collect the coverage for all VM invocations. These are merged using
gcov-tool to a single set of coverage files for each test case. The coverage
report mechanism was implemented on top of the Parallel Test Execution modifi-
cation. Therefore, multiple Vinter tests may be execution inside a single instance.
We merge all per test coverage reports into a global report for this Vinter invoca-
tion.

For reason we did not further investigate, the VM fails to resume from a snap-
shot if the virtual drive is present. Therefore, we disabled snapshot loading when
we are recording coverage information. The snapshot mechanism can be safely
disabled because it is merely a performance optimization. In our tests, the snap-
shot mechanism reduces the startup time of a VM from 2.186 to 0.064 seconds.
While this is certainly a performance degradation, Vinter is still reasonably fast.
We did these benchmark using the same system as all our other benchmarks. We
described the system in Section 5.11.

GCC We compile Linux using the GNU Compiler Collection (GCC) [14] which
includes a widely used C compiler. Gcov [14, pp. 250, ch. 10] is a tool included
in GCC. A program must be compiled with special options, to generate coverage
data.

Coverage information is usually stored as files in the file system. Therefore,
generating coverage using gcov is transparent to most programs. Some programs
like the Linux kernel do not run in an environment that provides a file system. In
this case, the program has to interact with gcov to extract coverage information.
The details of this process differ between GCC versions. In case of the Linux
kernel, the coverage files are stored in the aforementioned debugfs.

WineFS is based on Linux 5.1 which was released in 2019 [35]. The gcov
support in Linux was updated to GCC 10.1 in 2020 [1]. This makes it necessary
to compile Linux with a GCC version older than 10.1.

We use a Fedora 38 system which only provides recent GCC versions. There-
fore, we diverted to compiling an old GCC compiler ourselves.

4.2. WINEFS 21

4.1.6 Crash Image Exploration Limit

We based our work on a version of Vinter that fails to properly limit the amount
of generated crash images. For every fence, Vinter chooses multiple random sub-
sets of cachelines at which to generate crash images. For each subset, it creates
multiple crash images by partially applying the writes to these cache lines.

If the number of possible combinations for a random subset is reasonably
small, it generates all possible crash images. Otherwise, Vinter generates only
two crash images at this location. One where the state is random and one where
all modifications have been applied.

However, Vinter failed to properly test how many combinations are possible.
Therefore, Vinter always tried to generate all possible crash images. This bug was
initially discovered and fixed during a parallel running Bachelor’s thesis.

We assumed that all existing limits in Vinter worked as intended but were
insufficient at limiting the number of crash states for our use case. Therefore, we
introduced a new limit. We decided to limit the number of crash images that may
be generated for each subset to 100. Using this fix, we no longer experienced
unreasonable amounts of crash images.

4.2 WineFS

We included WineFS in Vinter (see Section 3.1). This requires a kernel image and
a VM configuration file. To compare different modified version of WineFS, we
created multiple kernel images and VM files.

Vinter only provides a minimal initramfs [24] based on Busybox. The initramfs
is an archive that provides the first user mode programs. Most VM configurations
share a single initramfs. If a file system requires special files, it should have a
separate initramfs. Due to the structure of Vinter, it is advisable to have only few
initramfs images. Specifically, it should not be specific to one kernel image.

Therefore, WineFS should not be built as a separate module file. We adapted
the NOVA kernel configuration file for WineFS. The only important change is that
we disabled NOVA and instead included WineFS as a builtin module. We modi-
fied the source code of WineFS slightly to set the default log level of WineFS to
verbose. This additional information has been proven useful to investigate several
bugs not related to crash consistency. We described these bugs in Section 5.10.

We based our VM file for WineFS on the VM file for NOVA. We achieved this
by referencing our WineFS build artifacts instead of the NOVA build and changing
the file system in all commands to WineFS. Depending on the specific test run,
we enabled the strict mode using the strict option.

While using Vinter, we noticed that some part of the testing pipeline hangs if

22 CHAPTER 4. APPROACH

a file contains null bytes. This is a common occurrence when using the truncate
operation to increase the size of a file (see Section 5.5). Therefore, we sanitized
each command that outputs file contents using cat -v [8, ch. 3.1]

Vinter uses virtual PM devices. The NOVA configuration used one with a
size of five megabytes. However, WineFS failed to initialize a file system on this
PM device. While investigating this issue, we added additional debug messages
to pmfs_init_blockmap to determine why the function failed. After further
investigation, we discovered that WineFS fails to initialize on PM devices which
are smaller than 9 MB. After increasing the size to 16 MB, WineFS could be
successfully initialized and mounted. We did not further modify the VM file.

We did not change the runtime behavior except for additional debug informa-
tion. Therefore, none of our source code modifications could have affected the
existence of any bug we detected or reproduced.

Chapter 5

Results

Our goal was to analyze the crash consistency of the novel persistent memory file
system WineFS. A file system is expected to safely store its data over long periods.
It is expected to retains its content even if it crashes during an operation.

Persistent memory is a recent storage technology that provides byte-wise ac-
cess using regular memory instructions. Traditional storage devices are block de-
vices which must be accessed via special commands. Therefore, PM file systems
encounter new challenges in ensuring crash consistency.

We used the testing framework Vinter for analyzing the crash consistency of
WineFS. For some tests, modifications to Vinter were required. Additionally, we
significantly improved the performance of Vinter. While this was not required, it
greatly eased our task.

We found multiple new bugs in WineFS and reported them on the WineFS
issue tracker at https://github.com/utsaslab/WineFS/issues. Additionally, we suc-
cessfully reproduced all previously reported WineFS bugs [30] using Vinter. In
this chapter we will describe all bugs, how we reproduced them and propose bug
fixes where appropriate. Further, we evaluate our attempted performance im-
provements for Vinter and we describe our results using the Aged Images and
Coverage mechanisms. Our Vinter modifications and benchmarks can be found at
https://github.com/paulwedeck/vinter.

5.1 cmpxchg16b

We discovered two instances where cmpxchg16b with the lock prefix is used to
modify 16 bytes values in WineFS. WineFS inherits this behaviour from PMFS.
Both use this to update inode fields without additional crash consistency measures.
Specifically, to set the file length together with the file timestamps and the inode
tree root block together with the tree height.

23

https://github.com/utsaslab/WineFS/issues
https://github.com/paulwedeck/vinter

24 CHAPTER 5. RESULTS

This is based on the assumption that the full 16B write is persisted atomi-
cally [16]. While this might be true for some CPUs, this is not architecturally
guaranteed. The movdir64b instruction is the only architecturally guaranteed way
of persisting more than 8B atomically [33].

Vinter handles a lock cmpxchg16b instruction conservatively and inter-
prets it as two eight byte writes. Therefore, crash images with only the first half
of the operation are generated. Crash images with only the second 8B write are
not generated because the 16B must be in the same cacheline and x86 intra-cache
line ordering guarantees that the second write must be persisted after the first one
Section 3.1. If only the first half is executed, invalid intermediate states are visible
and the file system operation is not atomic which violates the atomicity guarantees
of WineFS.

Inode
Height: 1

Pointers

DataData

cmpxchg

Inode
Height: 0

Pointers

DataData

Inode
Height: 0

Pointers

DataData

Figure 5.1: From left to right: Intermediate states that occur during a truncate
operation. In this example, the truncate necessitates decreasing the tree height. If
the operation fails, it is retried during recovery. The file system cannot distinguish
between state two and three. If state two occurs, it assumes that the new root
block has already been applied. During read operations, the file system will only
traverse to the first layer, reading pointers from the inner block instead of the
intended data block.

Specifically, if only the new root block is persisted but not the new tree height,
the file contents are lost (see Figure 5.1). This is obviously unacceptable.

This behavior was previously reported [25] using Chipmunk but the bug was
not confirmed. We investigated this issue and found its root cause based on the
provided reproduction steps.

When Vinter updates the file length together with the file timestamps, the new
timestamps might be lost if a crash occurs during an append operation. Tools like
GNU make [9] only work correctly if the last modification time is correctly up-
dated on every file modification. Due to clock drift and time synchronization, the
file timestamps are commonly wrong or inconsistent and therefore untrustworthy.

This indicates that a fix for this bug is not strictly necessary. However, it is at
least advisable that both steps are reversed, so that an updated timestamp without

5.1. CMPXCHG16B 25

data modifications is observable but not vice versa. Regardless, we propose a bug
fix in Subsection 5.1.3.

5.1.1 movdir64b
Future processors [31] will feature the movdir64b instruction which can persist 64
bytes atomically. The only precondition is that the address is aligned to 64 bytes.

Using this instruction, a possible bug fix for both issues would be to copy the
first 64 bytes of the inode, modify the respective fields and persist these changes
with movdir64b. This is correct for both operations because the inode is larger
than 64 bytes and is aligned to 128 bytes [22, inode.h].

Because movdir64b is not commonly available, this is not a general solution.

5.1.2 Tree Bug Fix
The erroneous operation is only used for decreasing the height of the inode tree.
The increase operation is not affected. The decrease operation is only executed in
__pmfs_truncate_blocks.

This operation can only be safely executed if both the height and root block
is updated atomically. However, the root block field is eight bytes long. It is
unclear if the full 64 bit width is actually required but any changes to the data
layout would break compatibility to existing file system instances and drivers.
Otherwise, either a software transaction or operations that can atomically update
more than eight bytes are necessary.

Therefore, we propose to wrap all inode modifications in __pmfs_trun-
cate_blocks in the path where the height must be decreased in a software
transaction. This transaction should only contain the inode and should be com-
mitted just after all modifications have been executed. Using this modification,
Vinter no longer detects any invalid crash states.

Alternative Approach Crash recovery of a truncate operations works by just
retrying the operation. We tested the alternative approach where we just reset the
height if the root was not modified. A truncate operation should always modify
both fields but not just one. Therefore, this should only do anything if we expe-
rience a crash where the cmpxchg was not fully executed. By reverting the first
half, we simulate that the crash occurred just before the cmpxchg and not in the
middle.

We implemented this by adding the old height and root to the truncate list.
This approach bears similarities to the fix to the other truncate bug we discovered
(see 5.5).

26 CHAPTER 5. RESULTS

This approach has the benefit that it does not require a software transaction.
However, it makes deep assumptions about how a truncate operation is executed.
Future changes to the truncate code must aware of that.

5.1.3 Date Bug Fix
The erroneous operation only occurs if a write operation appends a file without
requiring additional blocks. We propose to disable the fast write path for such
writes at least in strict mode. For relaxed mode, we propose to execute the times-
tamp update before the file length update. This should have a lower performance
impact than disabling the path completely which requires a potentially expensive
software transaction. This behavior is not ideal because the only part of the write
that has actually been executed is the timestamp update. However, it is not too
undesirable and correct.

5.2 Relaxed Mode
We discovered a bug that occurs when updating the contents of a file in relaxed
mode. This bug only occurs if the write goes through the fast write path which
can only be the case if just a single PM page is modified.

Timestamp: old
Content: ooo

Timestamp: old
Content: Noo

Timestamp: old
Content: NNo

Timestamp: old
Content: NNN

Timestamp: new
Content: NNN

Timestamp: old
Content: ooo

Timestamp: new
Content: Noo

Timestamp: new
Content: NNo

Timestamp: new
Content: NNN

Timestamp: old
Content: ooo

Timestamp: new
Content: Noo

Timestamp: new
Content: NNo

Timestamp: new
Content: NNN

Timestamp: new
Content: ooo

Invalid Operation/Current Behavior:

Ideal Operation:

Proposed Operation:

Figure 5.2: Visible crash states for writing three bytes to a file for an unmodified
WineFS, an ideal write implementation and our proposed bug fix. The three yel-
low/dashed states are invalid, the blue/dotted state is valid but only occurs with
our porposed bug fix.

In the fast write path, the new timestamp is written after the file contents have
been modified. Therefore, crash states can be observed where the write has been

5.2. RELAXED MODE 27

partially or fully completed without updating the timestamps (see row one in Fig-
ure 5.2). We previously explained in Section 5.1 that missing timestamp updates
should be considered a bug.

5.2.1 Bug Fix
To fix this bug, we propose to modify pmfs_file_write_fast by moving
the code to update the vfs and WineFS inodes before the code to actually write the
data. Note that this function originally consisted of two paths. One where only
the timestamp is updated and one where the timestamp and file length is updated.
The file length update has a similar bug which we described in Section 5.1. We
proposed to move the timestamp update, if no file length update is necessary,
before the code to update the inode content.

It must be noted that the inode update and subsequent write must be separated
by a pmfs_flush_buffer(pi, 1, true) call. This flushes the inode and
guarantees the persistence of all changes using a memory barrier. The result of
this change is that no crash states can be observed where the file has been modified
without also updating the timestamps.

Timestamp Update On the other hand, crash states are possible where the
timestamps has been modified without any changes to the file (see row three in
Figure 5.2). For this operation, we modify the mtime and ctime of the inode. The
mtime is supposed to track the time of the last modification while the ctime tracks
the time of the last status change. [15, ch. 39] We are not aware that WineFS gives
any explicit guarantees concerning their semantics. It is explicitly stated that using
relaxed mode “data operations are not atomic and may be partially completed on a
crash” [18]. As updating the timestamp is part of a write operation, only updating
the timestamp is a valid way of partially completing the operation.

It is also not wrong to record that this inode was modified, even though the
modification only actually modified the timestamps. Without the bug fix, both
timestamps are already modified if the new and old file contents are identical.
Therefore, this behavior may even occur without a crash. We conclude that this
behavior is correct.

Alternative Approaches We also considered to atomically update the times-
tamps together with at least some modified data. In this case, the new times-
tamp would atomically become visible with the first modified data (compare row
two/three in Figure 5.2). However, the timestamp update itself requires writing
two 4 byte values. Additionally, the file contents are stored outside of the inode.
We are not aware of any hardware support to persist more than eight bytes in total

28 CHAPTER 5. RESULTS

to completely different physical addresses. Therefore, such a fix would require a
software transaction.

While the behavior described above is not ideal, we consider a transaction to
be an unreasonable overhead for such a minor issue.

5.3 Extended Attributes
WineFS supports only one, predefined extended attribute (xattr) [12, xattr(7)]
called file_type. It can hold the value mmap or sys. The file type is saved in a
special per inode memory region for extended attributes. Further, each inode has
a boolean field called huge_aligned_file. The huge_aligned_file
field is not publicly accessible but can be manipulated by modifiying file_-
type. The huge_aligned_file flag is also set if an allocation to the inode
is larger than 2MB. If this flag is set, the file should be allocated using hugepages
(2MB pages). This is a part of the novel allocator implemented in WineFS [18].

If a file that has the huge_aligned_file flag is copied, the new file will
not automatically inherit this flag. Some programs will also copy the extended
attributes of a file. A file that has the huge_aligned_file flag, will have the
file_type attribute set to mmap. When the program attempts to set file_-
type to mmap on the new file, it will get the huge_aligned_file flag. If the
xattr is set to sys, huge_aligned_file is set to false. Thereby, the allocator
behavior for the old file is also propagated to the new file.

listxattr During a listxattr [12, listxattr(2)] operation on a directory, WineFS
checks if each file in the directory has the huge_aligned_file flag set. If
this condition is true, it sets the flag on the directory.

During all listxattr and getxattr operations, WineFS checks if the huge_-
aligned_file flag is set and if the file_type attribute does not exist. If
both hold true, it creates a new file_type attribute with the value mmap.

If a program attempts to read the attribute before executing a listxattr opera-
tion, the attribute may not exist. Further, this flag persists even if the condition is
no longer true.

It defies our expectations that a system call like listxattr modifies the external
state of a file system. However, we are not aware that WineFS make any contrary
guarantees.

Further, even if the file system is mounted with the read-only option [12,
mount(2)], such listxattr or getxattr system call may still create the file_type
extended attribute. If the underlying condition that lead to this decision is no
longer true, the attribute persists. This is even the case if the condition has been
observed while the file system is mounted as read-only.

5.3. EXTENDED ATTRIBUTES 29

We are of the opinion that no operation executed while the file system is read-
only should influence the future external states of the file system. Therefore, we
consider it to be invalid behaviour to permanently set the file_type attribute
during listxattr and getxattr operations.

setxattr The setxattr [12, setxattr(2)] system call is responsible for creating and
modifying extended attributes. We discovered that multiple setxattr operations are
not crash consistent.

Creating an extended attribute with the value mmap is atomic. Creating an ex-
tended attribute with the value sys yields an intermediate state where the attribute
cannot be read.

Modifying an existing attribute always yields two intermediate states. In one
intermediate state, the attribute cannot be read. Additionally, there is an interme-
diate state where the file has the mmap flag but its parent directory has no extended
attributes. It is unclear if this state is invalid. However, WineFS guarantees that
metadata operations are always atomic. Therefore, no intermediate state may ex-
ist at all. If an extended attribute exists according to listxattr, it should always be
readable. Therefore, we consider all states where the attribute is not readable to
be invalid.

5.3.1 Setxattr Bug Fix

To fix the bugs concerning setxattr, we propose to include all data that may be
modified during such an operation in a transaction. Currently, only the inode is
included in the transaction and only if the attribute is first created. We propose
to include the inode data unconditionally in the transaction. Further, the external
memory region for extended attributes should also be included in the transaction.
For a create operation, this should obviously be done after the region has been
allocated. These changes require that the size of the transaction is increased by
another entry.

Using this modification, Vinter no longer generated intermediate states for any
tested setxattr operations. This indicates that these changes are qualified to fix this
bug.

5.3.2 Listxattr Bug Fix

To fix the bug concerning listxattr, we propose to add a new function that checks
if an inode should have an implicit file_type extended attribute. This function
checks if the huge_aligned_file flag is set or the inode is a directory and all
files in the directory have this flag set. If both conditions are true and the file does

30 CHAPTER 5. RESULTS

not yet have a file_type attribute, it should return true. Otherwise, it should
return false.

In the WineFS handler for listxattr, we remove the code that sets the huge_-
aligned_file flag if all files in the directory have this flag set and the code
that sets file_type to mmap if the huge_aligned_file flag is set. There
is an abort condition that checks if the inode has no memory region for extended
attributes. We extend this condition to also check if the file has no implict file_-
type attribute.

We modify the WineFS handler for getxattr by removing the code that sets the
file_type attribute. Further, we remove the code that aborts if no memory re-
gion for extended attributes exists. We only read the file_type value from the
extended attribute region if it exists. Otherwise, we check if the implicit file_-
type attribute exists. If it exists, we set the returned file_type to mmap. If
neither an explicit nor an implicit file_type attribut exists, we return that this
attribute does not exist.

This ensures that a getxattr always presents the same file_type value re-
gardless if a listxattr has been executed before. Further, executing a getxattr or
listxattr on a read-only file system no longer create a new file_type attribute
on relevant files.

5.4 Fallocate

We discovered a bug in the fallocate [12, fallocate(2)] system call that is related
to the bugs described in Section 5.3. An fallocate operation that allocates 2MB
of storage to a previously empty file sets the huge_aligned_file flag. This
flag is part of the internal state of a file but gets exposed during a listxattr system
call if the file_type extended attribute does not yet exist. By this proxy, this
flag becomes part of the external state of the file.

Fallocate requires a transaction but this transaction does not include the part
of the inode where this flag is located. Further, the operation does not flush the
huge_aligned_file flag. Therefore, this new value of the flag might not be
persisted after the operation has been completed. We observed simulated crash
state where the fallocate operation has completed but the file_type extended
attribute does not exist. This violates the guarantee of WineFS that all metadata
operations are synchronous.

Further, the flag might have been set even if the operation has been aborted.
Spuriously setting this flag is not invalid behavior but it violates the atomicity
guarantee of WineFS.

5.5. TRUNCATE 31

Bug Fix We propose to include the complete inode in the transaction used by
fallocate. This ensures that the flag is flushed if the transaction is committed and
any changes are reverted if the transaction fails.

5.5 Truncate

WineFS provides the truncate operation which reduces or increases the size of a
file. When increasing the size, the new region is filled with null bytes. Using the
truncate operation, we discovered intermediate states where the truncation was
successful but the timestamps pointed to the recovery time and not time where
the operation was executed. This occurs because inodes that are supposed to be
truncated are saved in “a so-called truncate list, which is a linked list of inodes
which require further processing in case of a power failure” [22, inode.c:2070].
However, these entries only contain the inode number and the new length but not
the new timestamp of the inode.

This means that the time of crash recovery influences the recovered state. Such
behavior does not violate any guarantees made by WineFS because the operations
are under all circumstances both synchronous and atomic. However, the result of
the operation differs between the normal and the recovery path. Contrary to other
timestamp bugs, this is generally not an issue because the timestamp is updated
under all circumstances. However, a user might rather be interested in the last time
an application interacted with an inode than the last time the memory associated
with the inode was modified.

5.5.1 Bug Fix

As a bug fix, we propose to extend the truncate list with two additional fields
that each records the mtime and ctime of the truncate operation. Additionally, we
add a marker field that signals if the list entry contains a mtime and ctime field.
These fields should be added at the end of the pmfs_inode_truncate_item
struct. The timestamp fields should be 32bit long because their target field has this
size. For the marker field, a single byte is sufficient. The truncate items are stored
behind each inode. WineFS allocates 128 bytes to each inode, regardless of the
actual size of the data structures. With our modifications, additional 9 bytes to
a total of 115 bytes are used. Therefore, the format is compatible with previous
WineFS versions.

It must be noted that older WineFS versions will not read these regions. To
prevent this bug, both the driver before and after the crash must have these modi-
fications.

32 CHAPTER 5. RESULTS

On each truncation operation, at least one timestamp is updated. We move
the time that this timestamp is determined before the truncate operation. This can
be achieved by moving the update code in __pmfs_truncate_blocks to
pmfs_notify_change just before the pmfs_truncate_add call. Further,
we move the ctime update in pmfs_unlink before the pmfs_truncate_add
call. These operations are not relevant for crash consistency because they only up-
date the fields in the RAM inode. The subsequent PM operation is executed in the
same way but with potentially insignificantly older timestamps.

We write the new mtime and ctime to the truncate list entry just after the
truncate size in pmfs_truncate_add. Right after this, we set the marker to a
non-zero value.

Finally, we check the marker flag in pmfs_recover_truncate_list
just above the pmfs_setsize. If the flag is zero, the entry contains timestamp
information. In this case, we read the new mtime and ctime from the truncate
list and write it to the RAM inode. Otherwise, we use the current time as mtime
and ctime. This resembles the original, bugged behaviour. If we just did not
modify the inode, the timestamp would not change at all, hiding that the inode
was modified.

This has the potential issue that WineFS versions without this bug fix might
write values other than zero to the marker. We did not experience this behavior in
our tests. However, this is a general issue with modifying the data structures of
WineFS, as we are not aware of any guarantees concerning the content of unused
memory regions.

5.6 Unlink
We discovered a crash consistency bug in the unlink operation where a crash-
ing unlink operation updates the timestamps of an inode. As this operation is
supposed to be atomic under WineFS, only the initial state or a state where the
operation has completed is legal.

If the unlink operation unlinks the last link of the inode, WineFS writes an
entry to the truncate list. This truncate list entry truncate the inode’s size to its
current size. The other modifications in the unlink operation (including the decre-
mentation of the link counter to zero) are executed inside a transaction. If the
file system crashes some time after the truncate list entry has been written, the
transaction may have been completed or rolled back.

During recovery, the truncate list is processed. If the unlink transaction has
succeeded, the inode link counter is now zero and the inode will be deleted. Oth-
erwise, the truncate operation is executed which is supposed to not modify the
inode. However, the truncate update also updates the timestamps of the inode to

5.7. ISSUE 1 33

the current system time. Therefore, crash states are visible were the inode exists
but has been spuriously updated.

5.6.1 Bug Fix
We propose to only update the size of an inode in the truncate list, if the new size
differs from its current size.

This can be achieved by modifying the pmfs_recover_truncate_list
function. Currently, the size update is only executed if the i_nlink field of the
inode is not zero. We propose to add the condition that the i_size field of the
inode is not equal to the truncate size of the entry. Note that the truncatesize is
stored in little endian and should be first converted to the system endianess if this
is not little endian.

When combining this bug fix with the fix for the truncate bug (see Section 5.5),
the code for the timestamp update of the inode must naturally be guarded behind
the size condition as well.

5.7 Issue 1
The WineFS bug Issue 1 [28] was caused by a missing fence in the fast write
path. Such a write always consists of writing some data to the file and a fol-
lowing metadata update. The metadata update was correctly written and flushed.
However, the strict mode guarantees that each operation has completed when the
system call returns. This requires that a fence is executed after the last persistent
memory operation, which was not the case.

By design, Vinter tests are commonly a series of shell commands containing
checkpoint hypercalls. Most operations (e.g., write, truncate) require a sequence
of multiple system calls, commonly starting with an open and ending with a close
system call. Therefore checkpoints only occur after a sequence of system calls.
However, WineFS guarantees that each individual operation is atomic and syn-
chronous [18].

In this specific case, under some circumstances, a following close operation
executes the missing fence instructions, thereby hiding the bug from a naive Vinter
test. To better match the crash consistency guarantees of WineFS, a checkpoint
must be inserted after every WineFS related system call. To reproduce this bug
in Vinter, we decided to write a custom program that explicitly executes each
necessary system call interleaved with checkpoint hypercalls.

With this approach we can reproduce the issue. Further, we can verify that the
previously published bug fix [19] correctly works for our test case. Therefore, we
do not propose a bug fix of our own.

34 CHAPTER 5. RESULTS

While it is possible to reproduce this bug in Vinter, the general design of Vinter
makes specifying such tests complex. Vinter is designed to test file systems on
the level of shell programs. However, file systems like WineFS define their crash
consistency semantics on the level of system calls. Vinter tests neither stronger nor
weaker guarantees. If two write system calls are executed during a shell command,
WineFS guarantees that each is atomic. However, Vinter can only test if the full
operation including both writes is atomic. This is a stronger atomicity guarantee
than WineFS provides.

In our case, the fence executed by a close system call is falsely accounted
to the preceding write. Therefore, Vinter falsely assumes that the operation is
synchronous. To better fit tests to the guarantees made by the file system, Vinter
should be extended to allow specifying test cases on a system call basis.

5.8 Issue 3
The WineFS bug Issue 3 [26] was caused by a missing cache line flush. This
bug occurs when writing a multiple of eight bytes at an address that is not eight
byte aligned. In this case, WineFS erroneously does not flush the last, partially
written cache line. Therefore, the content of the last cache line might not be
persisted.

This violates the guarantee of WineFS that all operations are synchronous in
strict mode. Additionally, crash states where the data in the last cache line was not
modified are possible. This is invalid in strict mode. In relaxed mode the same be-
havior occurs. This is legal behavior. However, even a following synchronization
system call [12, sync(2), fsync(2)] is unable to persist the requested modifications.
Therefore, this bug is also present in relaxed mode.

Reproduction Reproducing this bug using shell commands is difficult because
the bug only manifests for very specific write system calls. The specific amount
and order of write system calls is very important for testing the correctness and
crash consistency of a file system. However, for most regular use cases, the spe-
cific write calls are an irrelevant implementation detail. Therefore, only few com-
mands allow specifying a preferred write size and most commands do not make
any guarantees regarding their write behavior at all. We discovered an edge case
in the dd command of Busybox v1.35.0 where it uses the preferred block size as
write size if both the source and target is a file. This enabled us to reproduce this
bug.

Bug Fix We can verify that the previously published bug fix [20] solves this
issue for our test case. Therefore, we do not propose a bug fix of our own.

5.9. ISSUE 5 35

5.9 Issue 5
The WineFS bug Issue 5 [27] manifested in an operation where parts of a file
were overwritten. The normal write path in WineFS creates a transaction where
the affected old blocks are deleted and replaced with new blocks. Then, the new
content is written to these blocks. If this transaction aborts, the new blocks are
again deleted and the old blocks with their old content are still present. The data
blocks are stored in a tree. If this tree has height zero, the single block is not
replaced but modified in place. Therefore, a transaction abort cannot roll back the
modification [22].

Bug Fix This behavior can be observed using the preexisting Vinter test test_-
update-middle which creates a 2201 < 4096 byte long file and overwrites six
of these bytes using one write call. Specifically, we can observe a total of five
intermediate states where only parts of the second write call are executed.

Additionally, we can verify that the previously published bug fix [21] no longer
leads to any invalid intermediate states, indicating that it successfully fixes this
bug. Therefore, we do not propose a bug fix of our own.

5.10 Other Bugs
We discovered two additional bugs that are not related to crash consistency. Both
are caused by incorrect error propagation. Specifically, we triggered them by exe-
cuting file system operations on a WineFS instance that had no remaining storage
capacity.

5.10.1 Write
One bug manifested in the write system call. The Linux write system call may, for
various reasons, write less data than requested. Therefore, it must be executed in
a loop until either an error occurs or the full operation is completed. If no further
bytes can be written, the write system call must either return zero or indicate an
error. When a write operations return zero once, subsequent writes must either
actually write some bytes or return an error [12, write(2)]. In our case write in-
finitely returns zero. Programs expecting conforming file systems may therefore
experience infinite loops.

This bug can be reproduced by first creating a new file and allocating all avail-
able memory to this file. This can be achieved using the fallocate system call
or shell command [12, fallocate(2)]. Subsequent append operations (e.g., via the
>> shell operator) fail due to lack of available memory. This bug also manifests

36 CHAPTER 5. RESULTS

if the allocate operation leaves an aligned hole of at least 4096B and a subse-
quent file system operation attempts to write to this region, requiring a memory
allocation.

The allocation failure is not correctly propagated to the write function. There-
fore, the write function only reports that zero bytes have been written. This can
be experienced using the BusyBox v1.35.0 version of the dd command or the
command echo abcd >> file with file replaced by the prepared file.

Bug Fix As a bug fix to this issue we propose to modify the WineFS func-
tion pmfs_find_and_alloc_blocks such that in case of an error the vari-
able err is returned. Additionally, the function __pmfs_xip_file_write
should set status to the result of pmfs_get_xip_mem if it is negative. A
negative result of pmfs_get_xip_mem implies than an error occurred which
already aborts the write operation. However, if no bytes have been written the
functions returns the error code stored in status which otherwise remains zero,
falsely indicating no error.

5.10.2 Fallocate

The other bug manifested in the fallocate system call. To reproduce this bug, one
must create a new file and allocate all available memory to it. Next, create a new,
empty file. A subsequent attempt to allocate 4097B bytes to this new file will
crash the kernel.

Like PMFS, WineFS uses a B-tree to manage the data in each inode [16].
For file sizes up to 4096B the height of this tree remains at its initial value of
zero. It is necessary to increase the height for larger allocations. This can be
achieved by calling the WineFS function pmfs_increase_btree_height
with appropriate arguments.

Increasing the height requires allocating blocks for the inner nodes of the tree.
This will fail because we previously drained the file system of free blocks.

While pmfs_increase_btree_height correctly stops on an allocation
failure, it does not propagate this error to the calling function __pmfs_alloc_-
blocks. This function subsequently attempts to populate the tree with blocks
using recursive_alloc_blocks. The id of the root block is initialized to
zero and was not modified because allocating it failed.

Therefore, recursive_alloc_blocks attempts to get the memory be-
hind the block with the id zero which is interpreted as an invalid reference and is
therefore mapped to the null pointer. When recursive_alloc_blocks sub-
sequently attempts to traverse the tree, it attempts to read from the root block. This
results in a null pointer dereference in the kernel which kills the calling process.

5.11. PERFORMANCE IMPROVEMENTS 37

Bug Fix As a bug fix to this issue, we propose to modify pmfs_increase_-
btree_height to propagate a negative return value of pmfs_new_blocks
to its caller. This can be achieved by returning the variable errval if its value is
negative. Otherwise, the function should return zero to indicate no error.

5.11 Performance Improvements
We modified Vinter in several ways to reduce wait times while running crash
consistency tests. To evaluate the impact of these changes, we did several perfor-
mance benchmarks.

A Vinter test is fully specified by a VM file and a test file. These files further
reference an initramfs and a kernel image. To maintain comparability between
different Vinter variants, we used the same set of files for all tests. We used an
original initramfs image.

For most tests, we used the time [12, time(1)] command to record the execu-
tion time of each program. In this section, the execution time is “the elapsed real
time between invocation and termination” [12, time(1)] of a program. In a few
cases, we used integrated time measuring functions to determine the execution
time of each phase of a program. In this case, we use the sum of the execution
times of all phases as a proxy for the overall execution time.

Further, for some tests, we recorded the CPU time each program spends in user
and kernel mode. The CPU time is the sum of the time the program spends on each
processor core. By adding the user and kernel space CPU time, we determine how
long the program spends running on the CPU in total.

All tests were executed on a Fedora 38 system with two 16 core Intel Xeon
E5-2630 processors and 64 GB of RAM. We used two SATA SSDs as storage.
During our tests, no other significant unrelated load was on the system.

We compare three different versions of Vinter. The first version serves as a
baseline for our benchmarks. It has no modifications that are relevant for per-
formance. We test the version opt1 which implements parallel semantic state
extraction. Further, we test the version opt2 which implements parallel semantic
state extraction and parallel test execution as described in Subsection 4.1.1.

5.11.1 Test Quality
We did tests to verify that the execution time of Vinter does not change signif-
icantly between test runs. For this, we recorded the execution time of each test
case using the baseline version.

We measured that the execution time varies only slightly for most test cases. It
is visible in Figure 5.3 that few test cases form multiple clusters with low variation.

38 CHAPTER 5. RESULTS

After further investigation, we can verify that the execution time of most test cases
is highly dependent on the number of generated crash states (see Figure 5.4).
Because Vinter is not fully deterministic, the number of crash states can vary
between test runs and therefore the execution time of each test varies as well.
However, if we sum the execution time of all n-th executions of each test, the total
time does not form clusters and has a reasonable variance. All effects that we will
further describe have a significance beyond this margin of error.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Te
st

 In
de

x

Real Time Divided By Average Real Time Per Test

test-append (17)
test-atime (16)

test-chmod (15)
test-chown (14)

test-ctime-mtime (13)
test-hello-world (12)

test-link-hard (11)
test-link-sym (10)

test-mkdir-rmdir (9)
test-rename (8)

test-rename-dir (7)
test-rename-long-name (6)

test-touch (5)
test-touch-long-name (4)

test-unlink (3)
test-update-middle (2)

sum (1)

Figure 5.3: Relative execution time of twenty test runs for all Vinter tests. The
execution time form one or two clusters which itself have limited variance.

5.11.2 Vinter CPU Usage

Using the data generated in the aforementioned tests, we compare the execution
time and CPU time of each test. Note that these tests were all executed on the
baseline version. We created a linear regression to predict the CPU time using the
execution time. This regression is Tcpu = 0.97 · Treal + 0.79 s. The R2 metric
indicates how well the regression explains the relationship. It ranges from 0 to
1. We achieved a R2 value of 0.992. This indicates that our model is reasonably
accurate to describe the relationship between execution time and CPU time.

The execution time of our shortest test was 11 seconds. Therefore, the linear
term dominates the model. Further, the CPU time and execution time is in general
almost identical. Only small parts of Vinter utilize multiple cores at all and at
each time the CPU usage is dominated by a single thread. We conclude that

5.11. PERFORMANCE IMPROVEMENTS 39

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

N
or

m
al

ize
d

Re
al

 T
im

e

Normalized Crash State count

test-hello-world data points
test-hello-world regression

test-rename-long-name data points
test-rename-long-name regression

test-touch-long-name data points
test-touch-long-name regression

test-update-middle data points
test-update-middle regression

Figure 5.4: Normalized plot of number of crash states and execution times for
selected tests for twenty test runs. There is a strong correlation between execution
time and number of crash states. The crash states form multiple clusters. The
data was normalized by subtracting the average and dividing it by the standard
deviation.

40 CHAPTER 5. RESULTS

each Vinter instance only effectively utilizes a single CPU core. Therefore, it is
a reasonable approach to execute multiple Vinter instances in parallel to improve
the CPU usage and reduce wait times. The baseline version of Vinter already
features example scripts to execute Vinter instances in parallel.

5.11.3 Vinter Execution Phases
Each Vinter execution consists of the phases pre failure trace, crash state genera-
tion, and crash state extraction. We analyze the relative impact of each phase in
the baseline version, to determine to optimization potential.

We characterize a phase as dominating if the execution time of long tests is
mainly caused by this phase.

Figure 5.5 clearly shows that in our tests, the execution time of the trace phase
is mostly static. It ranges from 5 to 8 seconds. No correlation between a long trace
phase and an overall long test is visible. The overall execution time of each test
ranges from a few seconds to multiple minutes. While this phase can certainly be
optimized, the overall impact for the baseline version is negligible for most tests.
Relevant speedups may be achieved for some faster tests. However, performance
improvements for these tests are less relevant.

Particularly for long tests, the state extraction phase dominates overall perfor-
mance. It is therefore reasonable to optimize this phase first. We accomplished
this with Parallel Semantic State Extraction. This was implemented in opt1.

The state generation phase makes up small parts of the overall execution time
for the baseline version. Note that there is a correlation between a longer gener-
ation phase and a longer overall execution time. This is to be expected because
generating more crash states should take a longer time and more crash states cause
a longer extraction phase. Further, we already describes that a higher number of
crash states correlates with a longer overall execution time.

Figure 5.6 shows that using opt1 the dominant phase is the state generation
phase. Therefore, further performance improvements should be directed towards
this phase. The state extraction phase still makes up relevant parts of the overall
execution time of most longer tests. The trace phase becomes more relevant for
the overall execution time. However, the optimization potential for this phase is
still limited and not particularly significant for longer tests.

5.11.4 Naive Parallel Test Execution
To measure the impact of naive parallelization, we executed all Vinter tests in
parallel. Because we already determined that the execution time of Vinter is rea-
sonably stable, we did only five test runs. The average execution time was 615
seconds with a standard deviation of 15 seconds.

5.11. PERFORMANCE IMPROVEMENTS 41

 0

 100

 200

 300

 400

 500

 600

test-update-middle

test-unlink

test-touch-long-name

test-touch

test-rename-long-name

test-rename-dir

test-rename

test-mkdir-rmdir

test-link-sym

test-link-hard

test-hello-world

test-ctime-mtime

test-chown

test-chmod

test-atime

test-append

all

Av
er

ag
e

Ti
m

e
pe

r P
ha

se
 [S

ec
on

ds
]

Trace Phase
Image Generation Phase

State Extraction Phase

opt1baseline

Figure 5.5: Average execution time of each phase per test. The state extraction
phase clearly dominates the overall execution time. Using opt1, the state extrac-
tion phase and overall execution time is clearly reduced. (15 iterations per test and
version)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

test-update-middle

test-unlink

test-touch-long-name

test-touch

test-rename-long-name

test-rename-dir

test-rename

test-mkdir-rmdir

test-link-sym

test-link-hard

test-hello-world

test-ctime-mtime

test-chown

test-chmod

test-atime

test-append

all

Av
er

ag
e

Ti
m

e
pe

r P
ha

se
 [s

] Trace Phase
Image Generation Phase

State Extraction Phase

Figure 5.6: Average execution time of each phase per test. The state extraction
phase is clearly faster than using the baseline version. The crash image generation
phase is now clearly the dominant phase. (opt1 version, 15 iterations)

42 CHAPTER 5. RESULTS

The average sum of the execution time of all Vinter tests was 2507 seconds
with a standard deviation of 78 seconds. While this is a significant improvement,
we would expect much higher improvements.

For a computer with 32 CPU cores, we would expect multi threading without
additional optimizations to reach a maximum speedup of 32. We would expect
this approach in particular to yield a maximum speedup of the number of parallel
processes. Because we use 16 tests, we would expect a maximum speedup of 16.

We expect an attempt at process-level parallelization to be limited by the
longest execution time of each individual process. The longest average execu-
tion time of a test was 523 seconds for the test test_rename-dir. Compared
to the sequential run time of 2507 seconds, the maximum speedup for this set of
test cases is quite limited. As we already achieved an average execution time of
615 seconds, we already exhausted most of the optimization potential.

5.11.5 Parallel Semantic State Extraction
To determine the performance impact of parallel semantic state extraction, we
measured the execution time of each Vinter test using the version opt1. We
executed this test five times. The average sum of the execution time of all Vinter
tests was 560 seconds with a standard deviation of 29 seconds. As we previously
mentioned, sequentially executing all test takes 2507 seconds on average. This is
a significant improvement and faster than process-level parallelization.

Further, we executed all tests using the version opt1 in parallel. This fur-
ther reduces the execution time to 228.9 seconds with a standard deviation of 3.5
seconds during five tests. This is a speedup of more than factor 2.6 compared to
process-level parallelization using the baseline version.

We also compared the individual execution time of different tests. In selected
tests, we reached a speedup of 6.

The state extraction phase itself often experienced a much higher speedup (see
Figure 5.5). However, relevant parts of Vinter are still single-threaded. Therefore,
this optimization is not qualified to cause comparable global speedups.

5.11.6 Parallel Test Execution
Executing highly multi threaded programs in parallel may lead to performance
degradation due to high CPU contention. Therefore, we propose to execute all
tests in the same process with a unified thread pool. With this approach, we
reached an average execution time of 223.16 seconds with a standard deviation of
4.1 seconds. We executed a total of five tests. This is not a significantly different
result compared to executing opt1 in parallel. We conclude that this modification
does not lead to noticeable performance improvements.

5.12. AGED IMAGES 43

5.11.7 FS-Dump

We evaluated the performance differences between a baseline fs-dump version and
a modified version that implements our content compression scheme. These tests
were executed on the same computer as our Vinter tests. We compare the execu-
tion time of the vinter_trace.py tool for different commands and initramfs
instances. The baseline initramfs uses a baseline fs-dump while the compression
initramfs contains an fs-dump that implements our content compression scheme.
During our tests, we did not use any advanced Vinter features like PM tracing or
snapshot loading.

We measured the execution time the VM required to execute an empty shell
command. During 20 iterations, we measured an average baseline time of 2.185
seconds with a standard deviation of 0.04 seconds.

Figure 5.7 clearly shows that our content compression scheme provides a ma-
jor speedup for most test cases. Overall, our fs-dump version induces no signif-
icant overhead for small file sizes and a tolerable overhead for reasonably large
files. Note, that files larger than the backing storage of their file system are not
common in Vinter tests.

For very large file sizes, the execution time of our fs-dump version followed a
quadratic curve. We measured the maximum VM execution time for this version
at 109 bytes with 39.56 seconds. During our tests, the generated files were signif-
icantly smaller. If a test requires such large files, additional optimizations might
be advisable.

In comparison, the baseline version of fs-dump Between 5kB and 7kB, our
benchmarks started to fail due to a builtin 9999 second timeout of Vinter.

5.12 Aged Images

We executed all existing Vinter tests using an image which had only a small
amount of available capacity left. While creating this image, we discovered two
WineFS bugs that are not related to crash consistency. We described this bugs in
Section 5.10.

We first noticed the unlink bug (see Section 5.6) using the aged image mech-
anism. Vinter discovers more invalid intermediate states when using an aged file
system than using a clean image. However, we later noticed that this bug also oc-
curs with a clean file system. Therefore, this mechanism was not strictly necessary
to discover this bug.

These out-of-memory bugs occured in common use cases and specifically on
the first allocation in each operation. This indicates that this aspect of WineFS is
mostly untested. Therefore, it may be promising to test more complex series of

44 CHAPTER 5. RESULTS

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1×106 1×107 1×108 1×109

VM
 E

xe
cu

tio
n

Ti
m

e
[S

ec
on

ds
]

File Size (Null Bytes) [Bytes]

Without Compression
With Compression

Figure 5.7: Execution time of the Vinter VM while creating and dumping files of
different sizes using two fs-dump versions (with- and without compression). The
version with compression is significantly faster. The data for the version without
compression is limited by a builtin Vinter timeout of 9999 seconds. Note that the
output string of the VM is approximately 6 times larger than the file size.

5.13. COVERAGE 45

operations or allocator states to uncover additional bugs.

5.13 Coverage

Using our coverage mechanism described in Subsection 4.1.5, we analyzed the
code coverage of our tests for WineFS. Some WineFS bugs only occur in the
relaxed mode while others only occur in the strict mode. Therefore, we generated
our coverage data using two Vinter runs (one for each mode) and then merged the
coverage data.

We achieved a total line coverage of 71.9% for the WineFS code base. This
value does not include code in the Linux kernel not related to WineFS.

Such a low code coverage indicates that relevant parts of the code base are
untested. Therefore, we inspected which parts of WineFS are untested and if
further tests for these code regions should be done.

If the superblock of a WineFS partition has the wrong magic number or mis-
matches its checksum, WineFS attempts to restore it using a redundant copy.
Damage to the superblock might corrupt the whole file system. Therefore, such
a recovery mechanism is very useful. We originally achieved no coverage on this
mechanism which is unsurprising because the superblock should not be corrupted
during normal operations. Therefore, we created a new test that determines the
crash consistency of this feature. To trigger the mechanism, we copied random
data to the start of the file system. Using the logs generated by WineFS, we can
verify that this triggered the mechanism. However, we did not discover any invalid
intermediate states.

Additionally, WineFS supports multiple file system features that we did not
test:

• We discovered that code regarding redo journaling is untested. WineFS
inherits this code from PMFS but does not use this kind of journaling [18].
Therefore, covering this code is neither relevant nor achievable for testing
WineFS.

• We did not test any code related to mmap. Using mmap, the application is
responsible for most crash consistency aspects. Further, the crash consis-
tency guarantees of WineFS for mmap and related operations are unclear.

• WineFS provides several ioctl [12, ioctl(2)] commands. These commands
are not standardized and we are not aware of any further documentation.
Therefore, it is unclear what their intended crash consistency guarantees
are.

46 CHAPTER 5. RESULTS

• WineFS is an exportable file system [2]. This is a special interface that
enables referencing files independently of their current name and location.
Such references are required for remote file systems like NFS. While test-
ing this feature is certainly interesting, it is complicated to achieve using the
current Vinter setup. Further, it raises the question what the crash consis-
tency semantics in such a situation are.

• The lseek system call [12, lseek(2)] provides options to detect holes in a file
which are not backed by storage and are implicitly filled with zeros. This
enables programs to skip these regions while reading a file. Even if a region
is reported as backed by storage, it might still be filled with zeros. While it
is not mandatory for a file system to support these options, WineFS provides
support for them. Vinter only considers the content of a file to be part of the
file system state. There is no clear semantic under which circumstances a
file system may or may not fill a hole (e.g., add zeroed backing storage to
the file region).

However, WineFS guarantees that each file system operation is atomic and
synchronous in strict mode. Therefore, it might be interesting to test if all
operations that fill a hole execute this atomically. Is it, however, question-
able if such a bug has any further implications because filling a hole in a
file only modifies the state representation while the file retains its semantic
state.

• When storage is allocated to a file, WineFS preferably uses PM from the
same NUMA node where the file access occurred [18]. Vinter uses a VM
which emulates a single CPU core and that naturally only has a single
NUMA node. Therefore, we did not achieve any coverage of code related to
NUMA-awareness. However, we doubt that this would uncover additional
crash consistency bugs because the NUMA code does not functionally alter
any PM operation.

• We did not achieve code coverage on various mount options. Some of them
are related to features that we did not test for other reasons. Further, none of
the untested mount options have any relation to crash consistency. There-
fore, we see no reason to create additional tests for them.

• WineFS has support for remounting the file system. We did not test this
functionality. However, the only code unique to remounting writes the new
mount time to the superblock. This field is not exposed and therefore not
relevant for crash consistency. In general, remounting a file system should
not alter its state and the code does not indicate that it does change the file

5.14. VINTER 47

system state. Therefore, it is questionable in what way this operation may
be tested.

• Linux provides an interface called direct I/O [12, open(2)]. WineFS sup-
ports this interface but it uses the same functions like regular read and write
operations. Therefore, it is highly unlikely that testing WineFS using direct
I/O would uncover crash consistency bugs that are unique to this interface.

In conclusion, further tests are certainly possible

5.14 Vinter
During our analysis, we created various Vinter tests. This process is very error-
prone because Vinter has severe issues with tests that spuriously run a long time
or do not terminate at all. We discovered that the VM terminates by a builtin
9999 seconds (more than 2 hours) timeout if the program output is larger than a
few kilobytes or contains null bytes. During our tests, a successful VM execution
terminated within a minute, usually even within a few seconds.

Vinter provides no information to distinguish between a naturally long running
Vinter test and one that will eventually fail due to the VM timeout. We gathered
this information by manually monitoring how old each child process of Vinter
was and then terminating the Vinter run if a child process got to old. However,
Vinter VMs only print their output after they successfully terminated. Therefore,
no terminal output is generated by VMs that fail. Why a VM execution hanged
can only be judged by experience or by manually executing the VM with only
parts of the workload. By escaping null bytes and compressing the content of
large files, we were able to address most of these issues for our tests. However,
this only mitigates the underlying issue because other programs might still output
null bytes.

Vinter tests are a series of shell commands. For write operations, a user has
only limited control on how many file system operations are used by each com-
mand. However, precise control of each operation is very important for testing
file systems because they define their crash consistency semantics on this level. If
a shell command decided to split a single large write operation into many small
ones, Vinter will correctly discover one intermediate state for every write system
call. This is not what was intended when creating the test and it severely increases
the execution time of such a test. Further, Vinter tests should only contain as few
operations as necessary because each additional operation causes additional crash
images which slows down the testing process.

To verify our bug fixes, we created various kernel images. Vinter requires a
new VM configuration per kernel image where only the path to the kernel image

48 CHAPTER 5. RESULTS

is modified. If any other aspect of the VM configuration must be modified, it is
necessary to manually modify all VM configurations. While this is not ideal, dur-
ing our tests, we did only few modifications to our VM configurations. Therefore,
this is only a minor issue.

To understand how an invalid crash state is created, it is necessary to determine
a corresponding crash image, the exact store operations that lead to the state, and
the file system functions that executed these stores. This process is mostly manual.
Further, Vinter only allows to dump all stores that have been executed which is
usually a very large list which must be manually reduced to only the relevant
section. A crash image is always generated at a specific fence. The most relevant
extract of the store trace could be automatically generated by outputting all stores
between the previous and current fence and highlighting the writes that are part of
the crash image.

While Vinter has several aspects that require unnecessary manual engagement,
the output of Vinter was always reliable. We did not experience any issue with
Vinter where invalid crash states did not occur or illegal crash images were gen-
erated.

Chapter 6

Conclusion

It is very important that the data stored in a file system is consistent even if the
system crashes during a file system operation. We analyzed a novel persistent
memory (PM) file system called WineFS for crash consistency. Persistent memory
is a recent storage technology that provides fast, byte-wise access.

WineFS [18] provides the crash consistency guarantee that all metadata oper-
ations are always atomic and synchronous. Synchronous means that the modifi-
cations done by all operations that have completed before the system crashes are
visible after the crash. It provides the so-called strict mode where data operations
are also atomic and synchronous. Further, WineFS provides the so-called relaxed
mode where data operations may be partially completed and are not necessarily
synchronous.

Our goal was to to verify if WineFS conforms to these guarantees and if not, to
modify WineFS accordingly. We used the testing framework Vinter which traces
a series of file system operations and simulates crashes at potentially interesting
positions.

We discovered and fixed various crash consistency bugs in WineFS using Vin-
ter. Additionally, we were able to reproduce all crash consistency bugs in WineFS
that have been previously discovered using Chipmunk [30]. Further, we were able
to confirm and fix a previously unconfirmed bug in WineFS (see Section 5.1). We
published all bugs discovered by us and their fixes in the WineFS issue tracker.

We analyzed all bug fixes proposed by us or other people on the WineFS issue
tracker for crash consistency. For each bug, we applied the respective bug fix to
WineFS and rerun the Vinter test we created to reproduce the bug. In all cases,
Vinter no longer generated any invalid crash states. By its nature, Vinter cannot
prove the absence of potentially invalid crash states [18]. However, this result
strongly indicates that all proposed bug fixes are qualified to fix their respective
bug.

The WineFS issue tracker contains multiple bugs without any relation to crash

49

50 CHAPTER 6. CONCLUSION

consistency. We did not further consider these bugs nor their respective fixes
because our focus is on crash consistency.

While we discovered various bugs in WineFS, only few bugs are critical. We
discovered two non crash consistency related bugs (see Section 5.10). Both bugs
occur because of failed error propagation if WineFS runs out of storage. One
bug leads to a null pointer dereference in the kernel which terminates the calling
process which is obviously critical. The other bug leads to processes infinitely
retrying to write to a file. This might still severely impact programs that would
usually behave well if the file system runs out of storage space.

Most of the crash consistency bugs we discovered leads to invalid, spurious, or
missing timestamp updates. While this is clearly erroneous behavior, timestamps
are notoriously unreliable. Therefore, these bugs are not critical.

We detected several bugs in the extended attributes support of WineFS. Un-
der some circumstances, these attributes exist but cannot be read. This might
cause issues for programs that are not well behaving or not particularly robust
for unexpected file system states. Extended attributes are an optional file system
feature. Further, some file systems like WineFS only allow specialized attributes
with predefined values. For these reasons, a program generally should not depend
on extended attributes and only few do. Therefore, the impact of these bugs is
limited.

We further analyzed a previous unconfirmed bug (see Section 5.1). This bug
may lead to data loss which is obviously critical. However, existing physical ma-
chines provide stronger atomicity guarantees. On these systems, this bug cannot
occur.

We conclude that WineFS still has many minor bugs but only few critical ones.
Further, all bugs only concerned an inode which was modified during the test.
Even if any of these bugs is triggered, the damage to the file system is minimal
and the overall data integrity is still ensured. This indicates that WineFS still has
to mature but is already reasonably stable.

With few exceptions, an unmodified Vinter version would have been capable
to detect our newly discovered bugs. However, Vinter has severe issues with tests
that spuriously run a long time or do not terminate at all. Most of these issues
occur because Vinter fails to properly dump the file system state if the generated
file contains null bytes or the files in the tested file system are larger than a few
kilobytes. Further, even if Vinter works correctly, the overall performance is poor.
Therefore, Vinter tests must be specifically designed to terminate at all and to not
create to many unnecessary crash states to keep the performance at a reasonable
level. While we addressed these issues to some degree, these are still relevant
design considerations which hinder the main goal of using Vinter.

While the test creation process has some issues, Vinter is still very capable of
detecting crash consistency bugs, once a test case has been created. In Section 6.1

6.1. FUTURE WORK 51

we describe multiple Vinter modifications that would have further improved the
capabilities of Vinter. While further improvements to Vinter should be pursuit,
Vinter is overall already reasonably capable of testing a file system.

6.1 Future Work
Fine Granular Testing During our tests, we experienced that WineFS pro-
vides stronger crash consistency guarantees than can be easily tested with Vinter.
Specifically, in strict mode, each file system operation is synchronous. This se-
mantic is translated to a Vinter test by inserting a checkpoint between each file
system operation. However, Vinter tests are usually a series of shell commands.
Each shell command executes multiple system calls, often to open, modify, and
close the file. Vinter cannot insert a checkpoint in the middle of a command.
Therefore, such Vinter tests cannot determine if a single operation is synchronous.

To circumvent this issue, we wrote custom programs that explicitly called each
required system call and inserted a checkpoint in between. While this works for
few test cases, it is currently complex to create new or modify existing test cases.

It might be possible to automatically detect relevant system calls and insert
checkpoints between them to better match the provided crash consistency guaran-
tees. Alternatively, Vinter test cases could feature an advanced set of commands
that allows specifying tests at the same granularity as system calls.

Vinter Performance In Section 5.11 we described how we improved the perfor-
mance of Vinter significantly. However, further optimizations might be possible.

Only tests for the same VM file can be executed in parallel using the same
Vinter instance. When executing tests for different VM files, the test runs must be
executed sequentially. This could be improved to either execute each tests for a
list of VMs or by passing tuples of test files and VM files to Vinter.

When executing only few tests, it might be interesting to further parallelize
the execution of each individual test. This could be achieved by generating crash
states in parallel. In our tests, this phase made up between 21% and 71% of each
Vinter invocation while using parallel semantic state extraction. Specifically, long
Vinter runs spend a big portion in this phase. Performance improvements are
most needed for long Vinter runs. This can primarily be achieved by optimizing
the crash state generation phase.

Automated Result Analysis Vinter is good at finding potentially erroneous
crash states and testing for properties like atomicity and single final state. An
atomic and single final state consistent operation is usually fully correct in terms

52 CHAPTER 6. CONCLUSION

of crash consistency. However, beyond these properties, there is no mechanism to
specify which crash states are at all legal for a given test.

Manually deciding if a crash state is valid is very error prone. If Vinter was
able to decide if a crash state is invalid, the workload on the user could be reduce
significantly. A simple approach would be to specify valid crash states in each
Vinter test.

Chipmunk solves this issue using an oracle that automatically generates valid
file system states. “The oracle runs the original workload on a fresh file system
instance in parallel with log replay.” [30] Such a mechanism would also be useful
for Vinter. Note that such a system must be adapted to the respective crash consis-
tency guarantees of each file system. For example, WineFS in relaxed mode may
only partially execute a write system call while only the initial and completed state
are valid in strict mode.

Bibliography

[1] https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/log/kernel/gcov/gcc_4_7.c. Ac-
cessed: 2023-08-15.

[2] Making filesystems exportable. https://docs.kernel.org/
filesystems/nfs/exporting.html. Accessed: 2023-09-26.

[3] std::process - rust. https://doc.rust-lang.org/std/process/
index.html. Accessed: 2023-09-26.

[4] Using gcov with the linux kernel. https://www.kernel.org/doc/
html/v4.14/dev-tools/gcov.html. Accessed: 2023-08-15.

[5] Persistent memory FAQ. https://www.intel.com/content/
www/us/en/developer/articles/troubleshooting/
persistent-memory-faq.html, 2 2020. Accessed: 2023-05-
13.

[6] eADR: New opportunities for persistent memory ap-
plications. https://www.intel.com/content/
www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.
html, 1 2021. Accessed: 2023-05-13.

[7] Memory tiering: A new approach to solving modern data challenges.
https://www.intel.com/content/www/us/en/products/
docs/memory-storage/optane-persistent-memory/
memory-tiering-improving-data-management-paper.
html, 4 2022. Accessed: 2023-05-13.

[8] GNU coreutils 9.3. https://www.gnu.org/software/
coreutils/manual/coreutils.html, 2023. Accessed: 2023-08-
15.

53

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/kernel/gcov/gcc_4_7.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/kernel/gcov/gcc_4_7.c
https://docs.kernel.org/filesystems/nfs/exporting.html
https://docs.kernel.org/filesystems/nfs/exporting.html
https://doc.rust-lang.org/std/process/index.html
https://doc.rust-lang.org/std/process/index.html
https://www.kernel.org/doc/html/v4.14/dev-tools/gcov.html
https://www.kernel.org/doc/html/v4.14/dev-tools/gcov.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/persistent-memory-faq.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/persistent-memory-faq.html
https://www.intel.com/content/www/us/en/developer/articles/troubleshooting/persistent-memory-faq.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/memory-tiering-improving-data-management-paper.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/memory-tiering-improving-data-management-paper.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/memory-tiering-improving-data-management-paper.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/memory-tiering-improving-data-management-paper.html
https://www.gnu.org/software/coreutils/manual/coreutils.html
https://www.gnu.org/software/coreutils/manual/coreutils.html

54 BIBLIOGRAPHY

[9] GNU make. https://www.gnu.org/software/make/manual/
make.html, 2 2023. Accessed: 2023-08-03.

[10] Intel® 64 and IA-32 architectures software developer’s manual. https:
//cdrdv2.intel.com/v1/dl/getContent/671200, 3 2023. Ac-
cessed: 2023-05-23.

[11] Intel® C++ compiler classic developer guide and reference. https:
//cdrdv2-public.intel.com/767250/cpp-compiler_
developer-guide-reference_2021.8-767249-767250.
pdf, 3 2023. Accessed: 2023-05-14.

[12] Linux man-pages - manual pages for GNU/Linux. https://
mirrors.edge.kernel.org/pub/linux/docs/man-pages/
man-pages-6.05.tar.xz, 8 2023. Accessed: 2023-08-02.

[13] QEMU user documentation. https://www.qemu.org/docs/
master/system/qemu-manpage.html, 2023. Accessed: 2023-08-
08.

[14] Using the GNU compiler collection. https://gcc.gnu.org/
onlinedocs/gcc.pdf, 2023. Accessed: 2023-08-15.

[15] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Sys-
tems: Three Easy Pieces. Arpaci-Dusseau Books, 1.00 edition, 8 2018.

[16] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for
persistent memory. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, New York, NY, USA, 2014. Association
for Computing Machinery. https://doi.org/10.1145/2592798.
2592814.

[17] Bryan Henderson. hwclock(8) manual page. https:
//github.com/util-linux/util-linux/blob/
ab7fe95ad7495adac41a4d79f4771c1b4cbe1fc0/
sys-utils/hwclock.8.adoc, 6 2023.

[18] Rohan Kadedodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad Shir-
wadkar, Greg Ganger, Aasheesh Kolli, and Vijay Chidambaram. WineFS: a
hugepage-aware file system for persistent memory that ages gracefully. In
Proceedings of the 28th ACM Symposium on Operating Systems Principles
(SOSP ’21), 10 2021.

https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2-public.intel.com/767250/cpp-compiler_developer-guide-reference_2021.8-767249-767250.pdf
https://cdrdv2-public.intel.com/767250/cpp-compiler_developer-guide-reference_2021.8-767249-767250.pdf
https://cdrdv2-public.intel.com/767250/cpp-compiler_developer-guide-reference_2021.8-767249-767250.pdf
https://cdrdv2-public.intel.com/767250/cpp-compiler_developer-guide-reference_2021.8-767249-767250.pdf
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/man-pages-6.05.tar.xz
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/man-pages-6.05.tar.xz
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/man-pages-6.05.tar.xz
https://www.qemu.org/docs/master/system/qemu-manpage.html
https://www.qemu.org/docs/master/system/qemu-manpage.html
https://gcc.gnu.org/onlinedocs/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc.pdf
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
https://github.com/util-linux/util-linux/blob/ab7fe95ad7495adac41a4d79f4771c1b4cbe1fc0/sys-utils/hwclock.8.adoc
https://github.com/util-linux/util-linux/blob/ab7fe95ad7495adac41a4d79f4771c1b4cbe1fc0/sys-utils/hwclock.8.adoc
https://github.com/util-linux/util-linux/blob/ab7fe95ad7495adac41a4d79f4771c1b4cbe1fc0/sys-utils/hwclock.8.adoc
https://github.com/util-linux/util-linux/blob/ab7fe95ad7495adac41a4d79f4771c1b4cbe1fc0/sys-utils/hwclock.8.adoc

BIBLIOGRAPHY 55

[19] Rohan Kadekodi. Issue 1 fix. https://github.com/utsaslab/
WineFS/pull/7/, 12 2021. Accessed: 2023-08-02.

[20] Rohan Kadekodi. Issue 3 fix #8. https://github.com/utsaslab/
WineFS/pull/8/, 12 2021. Accessed: 2023-06-01.

[21] Rohan Kadekodi. [wip] issue 5 fix. https://github.com/
utsaslab/WineFS/pull/6/, 12 2021. Accessed: 2023-06-01.

[22] Rohan Kadekodi. Winefs source code. https:
//github.com/utsaslab/WineFS/tree/
b4017d0fa5fd2b526e870b0338c311829e5f4464/Linux-5.
1/fs/winefs, 1 2022. Accessed: 2023-06-06.

[23] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. Vinter: Auto-
matic Non-Volatile memory crash consistency testing for full systems. In
2022 USENIX Annual Technical Conference (USENIX ATC 22), pages 933–
950, Carlsbad, CA, July 2022. USENIX Association. https://www.
usenix.org/conference/atc22/presentation/werling.

[24] Rob Landley. Ramfs, rootfs and initramfs. https://
www.kernel.org/doc/html/latest/filesystems/
ramfs-rootfs-initramfs.html, 10 2005. Accessed: 2023-
08-15.

[25] Hayley LeBlanc. Possible crash consistency issue with truncate using
multiple file descriptors · issue #9 · utsaslab/winefs · github. https:
//github.com/utsaslab/WineFS/issues/9, 1 2022. Accessed:
2023-08-31.

[26] Hayley LeBlanc and Rohan Kadekodi. Possible crash consistency issue
with write · issue #3 · utsaslab/winefs · github. https://github.com/
utsaslab/WineFS/issues/3, 12 2021. Accessed: 2023-08-31.

[27] Hayley LeBlanc and Rohan Kadekodi. Write may not be atomic with
respect to crashes in strict mode · issue #5 · utsaslab/winefs · github.
https://github.com/utsaslab/WineFS/issues/5, 12 2021.
Accessed: 2023-08-31.

[28] Hayley LeBlanc and Rohan Kadekodi. Possible crash consistency bug with
write() · issue #1 · utsaslab/winefs · github. https://github.com/
utsaslab/WineFS/issues/1, 1 2022. Accessed: 2023-08-31.

https://github.com/utsaslab/WineFS/pull/7/
https://github.com/utsaslab/WineFS/pull/7/
https://github.com/utsaslab/WineFS/pull/8/
https://github.com/utsaslab/WineFS/pull/8/
https://github.com/utsaslab/WineFS/pull/6/
https://github.com/utsaslab/WineFS/pull/6/
https://github.com/utsaslab/WineFS/tree/b4017d0fa5fd2b526e870b0338c311829e5f4464/Linux-5.1/fs/winefs
https://github.com/utsaslab/WineFS/tree/b4017d0fa5fd2b526e870b0338c311829e5f4464/Linux-5.1/fs/winefs
https://github.com/utsaslab/WineFS/tree/b4017d0fa5fd2b526e870b0338c311829e5f4464/Linux-5.1/fs/winefs
https://github.com/utsaslab/WineFS/tree/b4017d0fa5fd2b526e870b0338c311829e5f4464/Linux-5.1/fs/winefs
https://www.usenix.org/conference/atc22/presentation/werling
https://www.usenix.org/conference/atc22/presentation/werling
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html
https://github.com/utsaslab/WineFS/issues/9
https://github.com/utsaslab/WineFS/issues/9
https://github.com/utsaslab/WineFS/issues/3
https://github.com/utsaslab/WineFS/issues/3
https://github.com/utsaslab/WineFS/issues/5
https://github.com/utsaslab/WineFS/issues/1
https://github.com/utsaslab/WineFS/issues/1

56 BIBLIOGRAPHY

[29] Hayley LeBlanc, Rohan Kadekodi, and YozoraHoshifuru. Issues ·
utsaslab/WineFS · GitHub. https://github.com/utsaslab/
WineFS/issues?q=is%3Aissue, 1 2022. Accessed: 2023-06-01.

[30] Hayley LeBlanc, Shankara Pailoor, Om Saran K. R. E., Isil Dillig, James
Bornholt, and Vijay Chidambaram. Chipmunk: Investigating crash-
consistency in persistent-memory file systems, 5 2023.

[31] David Mulnix, Arijit Biswas, Ruchira Sasanka, Vinodh Gopal,
Wajdi Feghali, Mahesh Wagh, Alberto Villarreal, and Dan Zim-
merman. Technical overview of the 4th gen intel® xeon®

scalable processor family. https://www.intel.com/
content/www/us/en/developer/articles/technical/
fourth-generation-xeon-scalable-family-overview.
html, 7 2022. Accessed: 2023-08-03.

[32] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Persis-
tency semantics of the Intel-X86 architecture. Proc. ACM Program. Lang.,
4(POPL), 12 2019. https://doi.org/10.1145/3371079.

[33] Andy Rudoff. 8 byte atomicity & larger store operations.
https://groups.google.com/g/pmem/c/6_5daOuEI00/
m/rEJnjKzCCAAJ, 11 2020. Accessed: 2023-08-03.

[34] Steve Scargall. Programming Persistent Memory. Apress Berkeley, CA, 1
2020.

[35] Linus Torvalds. Linux 5.1. https://lkml.org/lkml/2019/5/5/
278, 5 2019. Accessed: 2023-08-15.

[36] Pantea Zardoshti, Michael Spear, Aida Vosoughi, and Garret Swart. Un-
derstanding and improving persistent transactions on optaneâ„¢ dc memory.
In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 348–357, 2020.

https://github.com/utsaslab/WineFS/issues?q=is%3Aissue
https://github.com/utsaslab/WineFS/issues?q=is%3Aissue
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://doi.org/10.1145/3371079
https://groups.google.com/g/pmem/c/6_5daOuEI00/m/rEJnjKzCCAAJ
https://groups.google.com/g/pmem/c/6_5daOuEI00/m/rEJnjKzCCAAJ
https://lkml.org/lkml/2019/5/5/278
https://lkml.org/lkml/2019/5/5/278

	Abstract
	Contents
	Introduction
	Background
	Crash Consistency
	Intel Optane Persistent Memory
	WineFS

	Related Work
	Vinter
	Chipmunk
	WineFS

	Approach
	Vinter Modifications
	Multithreading
	Aged Images
	FS-Dump
	Time
	Coverage
	Crash Image Exploration Limit

	WineFS

	Results
	cmpxchg16b
	movdir64b
	Tree Bug Fix
	Date Bug Fix

	Relaxed Mode
	Bug Fix

	Extended Attributes
	Setxattr Bug Fix
	Listxattr Bug Fix

	Fallocate
	Truncate
	Bug Fix

	Unlink
	Bug Fix

	Issue 1
	Issue 3
	Issue 5
	Other Bugs
	Write
	Fallocate

	Performance Improvements
	Test Quality
	Vinter CPU Usage
	Vinter Execution Phases
	Naive Parallel Test Execution
	Parallel Semantic State Extraction
	Parallel Test Execution
	FS-Dump

	Aged Images
	Coverage
	Vinter

	Conclusion
	Future Work

	Bibliography

