
Fast and Power-Efficient System
Suspend Using Persistent Memory

Bachelor’s Thesis
submitted by

Fabian Meyer
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Yussuf Khalil, M.Sc.

May 9, 2023 – October 11, 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and

that I did not use any source or auxiliary means other than these referenced.

This thesis was carried out in accordance with the Rules for Safeguarding Good

Scientific Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, October 11, 2023

iv

Abstract

Suspend is an important mechanism to reduce the power consumption of an

unused computer system, at the cost of some latency for returning to the working

state. The ACPI specification defines several low-power system states such as

suspend-to-RAM (S3) and suspend-to-disk (S4), but these compromise either on

the power reduction (S3) or wake latency (S4) aspects. In this thesis, we present a

novel mode of system suspend based on S3, but using persistent memory to store

the working context, called suspend-to-PMem. In contrast to S3, which has to

supply uninterrupted power to DRAM, suspend-to-PMem is able to completely

power off all devices. We implement our design entirely within the system

firmware, using an FPGA-based PCI Express device to improve compatibility

between PMem and commodity hardware. We show that our implementation

has a lower overall energy consumption than S3 after only one hour in suspend.

The wake latency is increased by up to 9 times compared to S3 mainly due to the

FPGA’s initialization time.

v

vi CHAPTER 0. ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 3

2 Background 7
2.1 Firmware Fundamentals . 7

2.2 System Suspend . 9

2.2.1 Types of Sleep . 10

2.2.2 Power State Transitions 11

2.2.3 Performance Characteristics 12

2.3 Related Work . 13

2.4 Coreboot . 14

2.4.1 Platform Initialization Stages 15

2.4.2 Platform Specialization 17

2.4.3 Device Communication and Drivers 18

2.4.4 EFI Variables . 19

2.4.5 Logging . 20

2.5 Intel Optane . 21

3 Design 23
3.1 Requirements . 23

3.2 Suspend . 24

3.3 Resume . 27

4 Implementation 31
4.1 Firmware Customization . 31

4.2 PCIe Device Handling . 34

4.3 FPGA Driver . 35

4.4 Memory Management . 37

1

2 CONTENTS

4.5 EFI Variables . 38

4.6 System Power Off . 39

4.7 Kernel Modifications . 39

4.8 Development, Deployment, and Recovery 40

4.8.1 Deployment . 41

4.8.2 Failure Modes During Development 42

4.8.3 Safeguarding Code Paths 42

4.8.4 Firmware Debugging . 43

5 Evaluation 45
5.1 Test Setup and Methods . 45

5.2 Reliability . 48

5.3 Wake Latency . 49

5.4 Power Consumption . 50

5.5 Suspend Latency . 55

5.6 Discussion . 56

6 Conclusion 59
6.1 Future Work . 60

Bibliography 63

Chapter 1

Introduction

Reducing the energy consumption of computer systems is becoming an increas-

ingly important task, both in the data center and the consumer space. Data centers

aiming to reduce their energy cost can suspend or power off temporarily unused

computing hardware [48], for example by consolidating virtual machines [47].

Yet, the latency of waking up inactive hardware must be minimized to avoid

performance degradation. In the consumer space, the European Union is even

mandating stricter power limits [43], citing the environmental impact of computer

systems’ electricity consumption. These regulations incentivize device manufac-

turers to implement low-power idle states. The wake-up latency of such devices

is equally important because consumers expect a device to be ready when needed.

Several low-power system states are defined by the Advanced Configuration

and Power Interface (ACPI) specification [45, ch. 16.1]. The operating system (OS)

can freely choose to enter one of these states by calling into the respective ACPI

methods and via CPU instructions. This can be in reaction to a hardware event

such as the press of a power button, or due to a software command. Entering

into a low-power state allows the system to reduce its power consumption in

times of low or zero system load by selectively turning off devices. Yet, exiting a

low-power state to resume processing at regular speed is associated with some

amount of lost time to re-enable devices and restore system state (wake latency).

It is generally difficult to design a system state that minimizes power con-

sumption and wake latency simultaneously. For example, power state S3, or

suspend-to-RAM, has relatively low wake latency as the system context is present

in DRAM. Conversely, S3 has to keep main memory powered the entire time. This

power state is often entered by laptops while their lid is closed. S3 improves upon

battery life compared to the fully-powered state because other devices besides

main memory are powered off [48]. Yet, it still drains the battery faster than if

main memory was also powered off.

An even lower power state is available in the form of hibernate, or suspend-to-

3

4 CHAPTER 1. INTRODUCTION

disk, which uses ACPI power state S4. With hibernate, the main memory contents

are written to a hibernate file on disk and restored on the next boot. As a result,

main memory can be powered off along with all other devices. The ACPI speci-

fication defines two modes for entering S4: OS-initiated and firmware-initiated.

With OS-initiated S4, the operating system is responsible for saving all context to

disk. Likewise, with firmware-initiated S4, the OS delegates this task to firmware,

a process known as S4BIOS [45, ch. 16.1.4]. Support for firmware-initiated S4 is

optional, and operating systems nowadays generally utilize OS-initiated S4 [18].

On the one hand, hibernate reduces the system power consumption to effectively

zero, apart from stray currents. On the other hand, the process of copying from

storage to memory increases the wake latency significantly compared to sus-

pend [48]. Specific timings are determined by the size of the hibernate file, which

is itself dependent on the size of RAM installed, and the speed of the storage

device, such as a hard disk drive (HDD) or solid-state drive (SSD).

In this thesis, we propose a hibernate-inspired extension to system suspend

using persistent memory (PMem): suspend-to-PMem. Upon receipt of a request

to enter the S3 state, system memory is copied to PMem and restored on wake-up.

This allows powering off the system DRAM, as well as the PMem device, for a

near-zero power consumption like in hibernate. Yet, we hope to achieve much

lower wake latency than with hibernate. Ideally, wake latency would be close to

regular (unmodified) suspend-to-RAM.

The proposed design for suspend-to-PMem will be built directly into the

firmware, as opposed to the operating system. We argue that this allows for

a lower wake latency as the entire resume can happen transparently to the

operating system; there is no need to bootstrap the OS at all before memory can

be restored. Furthermore, implementing suspend-to-PMem in firmware allows

for OS independence. In theory, a commercial system with built-in PMem could

have its OS reinstalled, upgraded, or even changed to a completely different OS

without affecting its ability to power off main memory on suspend. In practice,

we discovered some caveats within the implementation that did necessitate OS

kernel modifications as we will show in Section 4.7.

A key goal of our work is the practical implementation and evaluation on

commercially available hardware. There are three prerequisites to this goal: first, a

commodity persistent memory device; second, a firmware which is easily adapted

with custom source code; and third, a hardware that can run the given firmware

and also supports the chosen persistent memory.

Persistent Memory. We will be using Intel Optane Persistent Memory [16]

(“Optane”) for our design, since it is readily available. Optane, which was first

introduced commercially in 2017 [4], is a non-volatile storage technology. There-

5

fore, it can be powered off during suspend without data loss. It offers traditional

load/store semantics with byte-addressability, similar to DRAM-based memories.

For a single Optane DIMM, the maximal read and write bandwidths are 6.6GB/s
and 2.3GB/s, respectively [49]. The read performance is good enough to support

sufficiently fast copy operations on wake-up.

Firmware. While the source code of commercial firmware is usually not avail-

able, the Coreboot project makes an attempt at building an open-source and

portable alternative firmware [40]. Coreboot is structured around a multi-stage

architecture that performs minimal device initialization before yielding control to

a payload such as a bootloader, or directly to an embedded OS kernel. Additional

components can be added on top of the base firmware, such as a configuration

interface for firmware settings [34]. Most of Coreboot’s code is generic and can

be ported to a mainboard model by setting the appropriate compile-time flags, but

some parts require implementing C functions or ACPI machine language code.

These mainboard specialization capabilities are useful for our design since we

can hook into existing functions to perform the suspend and restore.

Hardware. Given the choice of PMem and firmware, the hardware choice is

severely limited. The firmware should not need to be ported; instead, it should be

possible to directly flash an unmodified version of Coreboot such that we have a

stable target to test against, and to focus development efforts on the suspend im-

plementation. Since we were unable to obtain Coreboot-supported hardware that

is natively capable to interface with Optane, a key part of this thesis will be about

integrating Optane with the firmware using additional hardware. Specifically,

prior work by Khalil on asynchronous copy offloading for Intel Optane Persistent

Memory [24] resulted in the development of an FPGA-based PCIe device that can

be integrated into most systems. Their design achieves saturation of Optane’s

bandwidth at the cost of up to 100 times higher latency. While we plan to use this

FPGA implementation to increase Optane hardware compatibility, the additional

latency has to be taken into account during the evaluation.

In the following chapters, we describe and evaluate our approach to PMem-

backed system suspend in detail. We begin by introducing the relevant technolo-

gies and provide an overview of related works in Chapter 2. In Chapters 3 and 4,

we describe the theoretical design and practical implementation, respectively.

Afterwards, in Chapter 5, we evaluate the implementation’s performance on real

hardware. Chapter 6 provides insight into potential further research and forms

the conclusion of this thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we set the stage for the rest of the thesis. First, we introduce the

fundamentals of system firmware and its interactions with the operating system.

Second, we discuss the general behavior of system suspend. This is followed

up by an overview of prior art regarding modified system suspend. Then, we

provide some background information on the Coreboot firmware, which is used

in our implementation. Finally, we introduce Intel Optane as an implementation

of persistent memory and discuss its suitability for our design.

2.1 Firmware Fundamentals
A computer system typically consists of hardware, firmware, an operating system

(OS), and software application layers. Each successive layer depends on the

preceding layers to perform its duties. The firmware is primarily responsible for

low-level hardware interactions, which includes setup of the hardware at system

power on, known as platform initialization, as well as some general device and

power management tasks. The firmware is generally stored “within the computer

hardware in read-only memory (ROM) or electrically erasable programmable

read-only memory (EEPROM)” [32, p. 7].

Similarly to how an operating system provides information about the system,

as well as run-time services, to its applications, the firmware makes available

information about the hardware and the firmware’s own capabilities to the OS.

Much of this cooperation is guided by the Unified Extensible Firmware Interface

(UEFI) [46], Advanced Configuration and Power Interface (ACPI) [45], and System

Management BIOS (SMBIOS) [9] specifications. Any references to “firmware”

within this thesis are generally intended to mean UEFI-, ACPI-, and SMBIOS-

compliant firmware implementations; similarly, we assume any OS to be UEFI-,

ACPI-, and SMBIOS-compatible.

7

8 CHAPTER 2. BACKGROUND

The ACPI specification defines a large set of nested data structures collectively

known as ACPI tables. These tables are created by the firmware and intended to

be read by the OS, allowing it to retrieve descriptions of “system information,

features, and methods for controlling those features.” This includes, among other

things, information about hardware devices that “cannot be detected or power

managed using some other hardware standard” [45, ch. 5]. In other words, the

information contained within ACPI tables abstracts certain information about

the system hardware, allowing the OS to be implemented in a more generic way,

instead of having to contain code specific to every hardware that it should run on.

ACPI tables may be simple with a fixed structure and provide static infor-

mation, or they may be dynamic, containing data objects and functions that

need to be evaluated. These dynamic tables are specified in a format known as

ACPI Machine Language (AML). Usually, firmware authors will write code in

the human-readable ACPI Source Language (ASL), which is then compiled to

AML byte code [45, ch. 19]. An ACPI-compatible OS includes an AML interpreter,

sometimes referred to as an AML virtual machine, to interpret the AML code.

AML code may contain complex logic and execution flow control, perform I/O

and memory accesses, trigger interrupts, and generally perform many privileged

operations [45, ch. 20]. Since all AML is interpreted by the OS, it is possible

for the OS to validate and potentially modify the AML instructions before they

are executed. This might happen in response to AML code that is found to be

generally incorrect, or simply incompatible with the type of OS. The Linux kernel

includes runtime features to override individual pieces of AML code and to insert

completely new methods [31].

In addition to ACPI, CPU architectures may offer other means of interacting

with the firmware from within an OS. The Intel 64-bit architecture supports an

operating mode known as SystemManagement Mode (SMM) for such purposes. A

special interrupt, the SystemManagement Interrupt (SMI), will cause the processor

to enter SMM. SMM executes code located within the firmware’s SMI handler

within a separate and protected address space. The processor state is restored

to its state prior to the SMI when the SMI handler finishes executing [21, vol. 1,

ch. 2.1]. By setting additional memory registers before triggering an SMI, the OS

can make requests to the firmware such as entering a different power state. The

memory location of these registers is defined within ACPI tables.

The OS can further trigger special interrupts known as BIOS interrupts to

invoke a firmware operation or retrieve pieces of data. One of these interrupts is

BIOS interrupt 15h. By setting the AX register to hexadecimal value E820 when

invoking interrupt 15h, the OS can retrieve the firmware’s memory table. This

table contains a mapping of memory regions, defined by their start address and

size, to memory region types. The region type indicates whether the region

is reserved by firmware, reserved by a hardware device, etc., or whether it is

2.2. SYSTEM SUSPEND 9

G2: Soft Off G0: Working

S1

G1: Sleeping

S2

S5

S3

S4

Wake Event

S4BIOS
Handler

ACPI Boot

SLP_EN (SLP_TYPx=S5)
or

PWRBTN_OR

SLP_TYPx=?S0

S4BIOS_REQ
to SMI_CMD

SLP_EN
(SLP_TYPx=S4)

SLP_EN

Figure 2.1: ACPI power states G2 (“Soft Off”), G0 (“Working”), and G1 (“Sleeping”).

To further differentiate the “Sleeping” state, sleep types S1–S4 are used. Special

types S0 and S5 are associated with the “Working” and “Soft Off” power states,

respectively. Transitions between states are triggered via external events or

internal changes to register values, such as the SLP_EN (sleep enable) register.

When entering sleep, the SLP_TYPx registers indicate the sleep type.

available for the OS to freely use [45, ch. 15]. For reference, the Linux command-

line program dmesg returns the E820 memory table as part of its output.

The SMBIOS specification defines further tabular data structures that an

SMBIOS-compatible firmware must make available. These tables also contain

system information, including information about the hardware and firmware

vendors, serial numbers, firmware versions, among many other characteristics [9].

Information like the mainboard serial number are not found within ACPI tables

and make SMBIOS an important part of the firmware.

2.2 System Suspend
The behavior and mechanisms related to system power management are defined

in the ACPI specification [45, ch. 7, ch. 16]. It specifies different power states and

power state transitions, along with the methods of transitioning between power

states from within the operating system or as a response to external events, such

as the power button being pressed. For the purposes of this thesis, we need to

mainly consider the power states and transitions related to sleeping and waking,

or suspend and resume, which are shown in Figure 2.1.

An ACPI-compliant computer system can be in one of three main power states,

namely G0 (“Working”), G1 (“Sleeping”), or G2 (“Soft Off”).

10 CHAPTER 2. BACKGROUND

In the G0 state, the system is actively working, although each individual device

may be placed in any of its supported power states, including being powered off.

According to the ACPI specification, “[i]n the G0 state, [. . .] some work will be

taking place in the system” [45, ch. 16.1].

In contrast, the system is not working when in the G1 state. Neither the

CPU nor any other devices are operating, “except possibly to generate a wake

event” [45, ch. 16.1]. When entering into G1 from G0, the system is said to

enter a sleeping state. While sleeping, system context, such as the contents of

main memory, is saved by the operating system and/or firmware. Devices are

transitioned into lower power states to achieve a reduction in power consumption,

however, this depends on the particular device, the targeted sleep state, and

whether the device is intended to wake the system. The occurrence of a wake

event may transition the system back into G0. The saved system context is then

restored and the system resumes its work.

The third power state, G2, is called the “Soft Off” state. In G2, the system is

logically off, in that no work is being done and no context is saved. Yet, “power

may still be applied to parts of the platform in this state, and as such, it is not safe

to disassemble” [45, ch. 16.1]. A system in G2 can transition to G0 by booting.

2.2.1 Types of Sleep
Several sleep types are defined as part of the G1 state, namely S1, S2, S3, and

S4; they differ in how system context is saved, and the power states of hardware

devices. S1 sleep preserves all system context except for CPU caches, which are

flushed by the OS prior to entering S1. The hardware is responsible for saving

“the context of the CPU, memory, and chipset” [45, ch. 16.1.1]. S2 sleep preserves

only the contents of system memory while stopping system clocks and powering

off the CPU entirely. On resume from S2, execution starts from the CPU’s boot

vector, i.e., within firmware. The firmware must re-initialize the CPU, cache, and

memory controller, before jumping to the ACPI wakeup vector located within

the OS [45, ch. 16.1.2]. S3 sleep is similar to S2, but is intended to place hardware

devices in lower power states than S2 would. Therefore, S2 can support more

device wake events than S3, but S3 consumes less power [45, ch. 16.1.3]. S3 is

also known as suspend-to-RAM or simply suspend [18]. S4 sleep is “the lowest-

power, longest wake-latency sleeping state supported by ACPI” [45, ch. 16.1.4].

When entering S4, the OS and firmware are intended to power off all devices,

including system memory. The memory contents are to be saved by copying them

to non-volatile storage, such as a hard disk drive (HDD) or solid-state drive (SSD),

prior to powering off the memory. S4 sleep can be initiated directly by the OS, in

which case the OS must save the memory context and restore it when waking.

Alternatively, the ACPI specification defines an S4BIOS transition that is optional

2.2. SYSTEM SUSPEND 11

for firmware to implement. For S4BIOS, the OS invokes a firmware command,

causing the firmware to perform entry into S4 via its S4BIOS handler, in which

case the firmware is responsible for saving the memory context and for restoring

memory when waking. S4 is also known as suspend-to-disk or hibernate [18].

In addition to S1–S4, the ACPI specification defines S0 and S5. These identifiers
do not refer to sleep states, but represent the power states G0 and G2, respectively.

In other words, a transition to S0 is equivalent to placing the system into the

“Working” state, while a transition to S5 is identical to placing the system into

the “Soft Off” state.

2.2.2 Power State Transitions
The ACPI standard defines, as part of its Hardware Specification [45, ch. 4], several

power management-related control registers. For our purposes, the most relevant

of these registers is the PM1 control register, located in system I/O or memory

space and discoverable via the “FADT” ACPI table (Fixed ACPI Description Table)

[45, ch. 4.8.3.2]. PM1 bit 13 is called the SLP_EN (sleep enable) bit; setting SLP_EN to

1 starts the transition into a sleeping state. PM1 bits 10–12 are called the SLP_TYPx

fields and indicate the type of sleep to enter. Each sleep state (S0–S5) is associated

with an AML data object (_S0–_S5) that resolves to the 3-bit value that, when

written into SLP_TYPx, causes the associated sleep state to be entered.

As shown in Figure 2.1, several power state transitions are possible. For

instance, the system can transition from a “Working” state (G0 / S0) to a “Soft

Off” (G2 / S5) state in two ways. The first method involves setting the SLP_EN

bit to 1 while the SLP_TYPx bits are set to the value of _S5. The second method

involves a power button override, i.e., performing a long-press of the power

button to force a system power off (indicated as PWRBTN_OR). The transition to G0

is hardware-initiated and happens via booting. A transition into G1 is possible by

setting SLP_ENwith SLP_TYPx set to one of _S1, _S2, _S3, or _S4. Alternatively,

when the firmware supports the S4BIOS transition, triggering an SMI with the

SMI command register SMI_CMD set to the value of S4BIOS_REQ will cause the

firmware to save system memory to non-volatile storage before transitioning to

S4 [45, ch. 16.1]. S4BIOS_REQ is a field found in the “FADT” ACPI table; a value of

zero indicates that S4BIOS is not supported [45, ch. 5.2.9].

In this work, we are mainly concerned with the S3 sleep, or suspend-to-RAM.

When the OS intends to enter S3, it begins by freezing user space processes,

before traversing the device tree to let each device driver handle the transition

to suspend, saving device context if needed and placing the device into a lower-

power state. Every CPU except the boot CPU will be disabled [18, 44]. Some

devices cannot be power-managed by the OS; additionally, the firmware needs to

prepare for the transition. The OS invokes the ACPI methods _PTS (Prepare to

12 CHAPTER 2. BACKGROUND

Sleep) and _GTS (Going to Sleep), which perform platform-specific operations to

achieve these tasks. Afterwards, the OS saves some final context and stores the

ACPI wakeup vector, such that it is able to resume later. The OS then sets SLP_EN

with a SLP_TYPx of _S3 [45, ch. 6.5]. Generally, the southbridge will trigger an

SMI, known as a Sleep SMI, in reaction to these register writes [44]. This lets the

firmware power off any remaining device, such as the boot CPU.

2.2.3 Performance Characteristics
A system in the “Working” state (G0 / S0) is going to have the highest power

consumption out of all power states, because devices will be in higher device

power states compared to G1 or G2. The advantage of G0 over other states is the

immediate ability to do work.

In contrast, “Soft Off” (G2 / S5) will essentially power off all devices and a

complete ACPI boot is required to enter G0, at which point the system is able

to do work. For that reason, G2 offers the lowest power consumption out of all

power states, but has a considerable wake latency.

The power consumption and wake latency of the G1 “Sleeping” state depends

entirely on the sleep type. S1 sleep generally powers off very few devices, resulting

in little reduction of the system power consumption, with the benefit of a low

wake latency. S2 sleep powers off most devices and loses all system context except

for system memory, therefore requiring another platform initialization on wake,

resulting in more power savings than S1 at the cost of higher wake latency. S3

sleep (suspend-to-RAM) performs similarly to S2, with potentially slightly lower

power consumption and slightly higher wake latency due to lower device power

states compared to S2. S4 sleep (suspend-to-disk, hibernate) powers off all devices

including system memory. It is the most similar to S5 (“Soft Off”) in that regard

and essentially requires a full boot to resume. The power consumption while

in S4 is minimal at the cost of significantly higher wake latency [45, ch. 16.1.4].

While the wake latencies of S1–S3 depend mostly on the devices installed in the

system, the wake latency of S4 is also dependent on the size of system memory

and the speed of the disk to which the hibernate file is saved.

Xi et al. [48] further explore the suspend and resume process, particularly of

S3 sleep, in data center environments. Their work investigates the performance of

power state transitions from the level of the operating system and a hardware per-

spective. Crucially, the influence of firmware on power state transition latencies

is missing from their analysis. The authors show that the presence of additional

hardware such as network cards, graphics subsystems, and USB host devices

can significantly increase suspend and wake latencies. Additionally, operating

systems differ in their implementations of resuming from suspend, and there are

large performance opportunities in parallelizing device wake-up.

2.3. RELATED WORK 13

2.3 Related Work
There exists some previous work on modifying system suspend to improve upon

power consumption, latency, and other metrics.

A similar idea to the one described in this thesis, namely suspending to Phase-

Change Memory (PCM), was proposed by Zi et al. [50]. The authors implemented

their design in software only, using a modified version of the QEMU system

emulator. When the operating system sends a sleep command, QEMU transfers

the DRAM contents to a simulated PCM device. When a wake-up event is received,

the contents of the simulated PCM are transferred back into DRAM. The specifics

of the PCM simulation are missing from the paper, including the performance

behavior that was modeled. Due to hardware unavailability, no real-world energy

measurements were performed, either, and there is no statement how much (if

any) additional power requirements of the PCM memory were taken into account.

Instead, the authors compute the theoretical energy consumption of their system

based on the full load, idle, and sleep time percentages. They claim energy savings

of 80.3% for a system that is fully loaded 10% of the time, idle 2% of the time,

and sleeping 88% of the time, assuming power consumptions of 95W when fully

loaded, 6.25W when idle, and 2.5W when sleeping. The source of these numbers

is unclear and a consumption of 2.5W while sleeping is surprising, as we would

assume a suspend to non-volatile storage, such as PCM, to fully power off the

system. Meanwhile, latency of the wake-up or “resume” phase is increased from

16 s to 41 s compared to regular suspend-to-RAM, although the paper neglects to

specify the amount of system memory at which these measurements were taken.

Another series of experiments shows that the wake latency depends strongly on

the amount of system memory, reaching up to 66 s at 1GiB of system memory.

Additionally, CPU performance is reduced by up to 6% at run-time due to kernel

modifications. The paper lacks an explanation for how a modified suspend can

lead to regressions in run-time performance. For their experiments, the authors

mention that “there is a few program running in the guest OS” [sic.], but control

neither the exact CPU load during idle phases, nor the amount of memory utilized.

Furthermore, the experimental results indicate a wake latency that is consistently

more than 2× larger than the associated suspend latency. The applicability of this

result to hardware storage devices is questionable, as the write performance of

non-volatile storage is generally lower than its read performance [33,49]. As such,

we would expect the overhead during suspend to be higher than the overhead

during resume. Overall, while we agree with the premise of suspending to non-

volatile storage for improved power consumption, more work is needed to achieve

a realistic design and obtain real-world performance and energy measurements.

Kim et al. [25] propose an instant on/off system based on a combination

of DRAM and non-volatile RAM (NVM). While the kernel resides entirely in

14 CHAPTER 2. BACKGROUND

NVM, only some user processes are allowed to reside in NVM. On power-off,

the processes in DRAM are lost, but the kernel, CPU registers, and non-code

pages of user processes that were saved to NVM remain available after an instant

off/instant on cycle. This approach results in an instant off latency that is 17-45×
lower than shutdown or suspend, and an instant on latency that is 161-244× lower

than boot or resume. The paper demonstrates that a suspend-like state using

non-volatile storage can lead to good performance. However, it should be noted

that the inability to retain all user processes may limit the applicability of this

strategy in some scenarios.

In [14], Ho et al. propose to split the hibernation disk image into multiple

parts according to a priority analysis. The most urgent memory pages such as

kernel memory are loaded immediately after restore, at which point interaction

with the system is already possible. Then, the other parts of the hibernation

image are loaded in sequence to minimize page faults. This technique results

in a nearly constant resume latency, as opposed to basic hibernate, for which

the resume latency grows linearly with the number of processes. We could

investigate if incorporating a similar priority analysis into our basic design, either

as an extension or in future research, would similarly improve wake-up latency.

Swap-before-hibernate [27] is a hibernation procedure which uses flash stor-

age and a multi-step suspend to speed up the restore. The authors determine

that most memory pages are clean disk-backed pages and need not be written to

secondary storage at all. Of the remaining memory pages, those that are swap-

pable can be written to a swap file on flash storage. Only non-swappable pages

are written to the hibernate file. Resuming from this state requires about 20% of

the time required by regular suspend-to-disk on Linux. We may use the insights

about clean disk-backed pages to avoid unnecessary work in our design, however,

our approach is based on suspend instead of hibernate. Also, we do not explore

adding a swapping step to our persistent memory approach because this can only

lead to a speed-up when swap storage is indeed faster than PMem.

2.4 Coreboot
We will be implementing our approach within the Coreboot firmware, or, more

specifically, within the Dasharo distribution of Coreboot. In this section, we

provide an overview of Coreboot, focusing on the relevant aspects for our work.

Coreboot is a modular, open-source firmware implementation that enjoys

broad compatibility with various CPU architectures [34, 40]. Notably, it supports

both 32-bit and 64-bit variants of x86 CPUs from Intel and AMD, as well as

ARM CPUs. It is worth highlighting that Coreboot recently implemented 64-bit

execution, which is enabled for certain mainboards [30]. However, in most cases,

2.4. COREBOOT 15

Coreboot is still limited to 32-bit execution. Additionally, at the time of writing,

even with 64-bit execution enabled, certain parts of Coreboot such as the System

Management Interrupt handler are still constrained to 32-bit. Since the operating

system sets up the CPU again upon handover from the firmware, the OS is not

affected by whether Coreboot runs in 32-bit or 64-bit mode.

Coreboot is inherently generic and concerns itself almost exclusively with

platform initialization. Section 2.4.1 describes this process in more detail. Follow-

ing platform initialization, Coreboot launches a preconfigured binary known as

the payload [39]. A common payload is TianoCore EDK II (EDK II, edk2), which

is Intel’s reference implementation of UEFI [19]. EDK II, which is an abbreviation

for EFI Development Kit, provides UEFI platform services as well as user-facing

features, such as a UEFI shell [15, ch. 5].

Dasharo is a commercial Coreboot distribution developed by 3mdeb [1]. Com-

pared to upstream Coreboot, it shares much of the same code, with some changes

and additions. As an example, Dasharo includes a graphical user interface for

changing UEFI settings. Most Dasharo variants include an EDK II payload and

are configured to boot into operating systems installed on storage media. 3mdeb

further performs validation of their code against a limited set of platforms [2].

2.4.1 Platform Initialization Stages
Figure 2.2 shows the boot process of Coreboot on x86 architectures starting at

hardware power on. The following description of the stages is adapted from the

Coreboot documentation on architecture [35]. After a CPU reset, the platform

first enters into the bootblock stage. The bootblock is written in assembly lan-

guage. It performs the most basic platform initialization, such as setting the stack

pointer, initializing timers, and switching the CPU from 16-bit real-mode to 32-bit

protected mode. Notably, main memory is not initialized in the early stages of

Coreboot. The bootblock sets up the CPU cache to be used as RAM (Cache-as-

RAM, CAR) for the heap and stack [28]. The stages following the bootblock may

be compressed with LZ4 or LZMA compression. Each stage decompresses the

following stage, if needed, before loading it.

If verified boot is enabled, the next stage after the bootblock is the verstage:

“The verstage is where the root-of-trust starts. It’s assumed that it

cannot be overwritten in-field (together with the public key) and it

starts at the very beginning of the boot process. The verstage installs a

hook to verify a file before it’s loaded from CBFS or a partition before

it’s accessed. The verified boot mechanism allows trusted in-field

firmware updates combined with a fail-safe recovery mode.” [35]

16 CHAPTER 2. BACKGROUND

bootblock verstage romstage postcar payload
ramstage

SMM

Assembly

Power on

ADA SPARK

C

Cache-As-RAM (CAR)

DRAM

time

coreboot
stages

coreboot
source

language

code/heap
memory
location

Figure 2.2: Coreboot stages on x86. Platform initialization starts in the bootblock

which is written in Assembly language. For transitioning to code written in C

and ADA SPARK, the CPU cache is set up as a RAM substitute. The romstage and

postcar switch from Cache-As-RAM to proper DRAM. The ramstage performs

final initialization tasks before handing over control to the payload. Reentry into

the firmware is possible in System Management Mode (SMM), which executes in

an environment similar to that of the ramstage.

The next stage is the romstage, which performs “early device” initialization.

This includes initialization of the DRAM. On some platforms, most commonly

Google Chrome OS devices [13] [36], USB controllers are initialized during this

stage. Certain console outputs and debug devices also need to be part of early

initialization to be useful while developing Coreboot; this topic is further explored

in Section 2.4.5. Early initialization of devices is distinctly different from later

device initialization, which is performed in a more modular way via drivers and

can make use of higher-level primitives. In contrast, early initialization has to

perform low-level I/O operations to set up hardware.

The romstage then loads the postcar stage, which moves execution to regular

DRAM. At this point, the CPU cache is no longer used as RAM.

The final stage of Coreboot is the ramstage (RAM stage). This stage performs

the bulk of the platform initialization work such as setting up on-chip devices,

PCI, graphics, and TPM devices. It also configures the CPU such that it is able

to enter into System Management Mode (SMM). SMM is not executed as part of

platform initialization but may be executed in response to a System Management

Interrupt (SMI). The ramstage writes ACPI tables, SMBIOS tables, and other data

into RAM for the payload or operating system to access.

Finally, the ramstage loads the payload, which may be any arbitrary exe-

cutable. Common payloads include EDK II, SeaBIOS, and GRUB2 [39]. EDK II

2.4. COREBOOT 17

was introduced in the introductory paragraph of Section 2.4. SeaBIOS is “an

open source implementation of a 16bit X86 BIOS.” It is the default BIOS for the

QEMU and KVM virtualization softwares, but can also run on real x86 hardware

when used with Coreboot [8]. GRUB2 by the GNU project is a boot loader, suited

to booting into a diverse set of operating systems [11]. Instead of loading an

operating system via a boot loader such as GRUB2, it is also possible to load the

Linux operating system directly as a Coreboot payload.

All Coreboot stages are compiled and linked separately and can access a

different set of library functions. This complicates writing unified code that works

in multiple stages, such as in the ramstage and in System Management Mode.

Coreboot internally makes heavy use of preprocessor macros to differentiate

stages and available library functions. Following the bootblock, most of Coreboot

is written in C language code. There are, however, some exceptions. For instance,

Coreboot’s graphics initialization library libgfxinit is written in SPARK, a subset

of the Ada language with formal verification features [38].

2.4.2 Platform Specialization
Specializations of Coreboot for different hardware are added directly to the Core-

boot source tree. The src directory contains several sub-directories for specialized

implementations of different components:

• src/arch - processor architecture (x86, ARM, etc.);

• src/cpu - CPU brand and model;

• src/ec - mainboard embedded controller;

• src/mainboard - mainboard;

• src/northbridge - CPU northbridge;

• src/southbridge - CPU southbridge;

• src/soc - system-on-chip;

• src/arch - Super I/O controllers.

The combination of modules compiled and linked into a firmware binary is decided

by an elaborate system of GNU make configuration files. The starting point for

adapting a Coreboot build is a .config file in the root directory. In this file, global

build flags can be set, such as the type of mainboard and CPU specializations

to link against, whether to build with Trusted Platform Module (TPM) support,

whether to enable boot media locking, and many more. Each included module

can make further choices. For example, a given mainboard may force a certain

CPU architecture, which may in turn toggle support for the Timestamp Counter

(TSC) register.

The abstract parts of Coreboot are defined in header files. Implementation files

make heavy use of weak linkage to provide default implementations, allowing

18 CHAPTER 2. BACKGROUND

any of the specialized modules to override them. For instance, the x86 System

Management Mode (SMM) trap handler only performs basic SMM setup before

handing over control to specialized implementations. Many similar examples

exist, such as functions for customizing boot memory regions, restoring devices

on S3 resume, among others.

2.4.3 Device Communication and Drivers
Coreboot handles communication with many different types of devices over

different communication channels, such as:

• system bus

• system management bus (SMBus)

• PCI and PCIe

• General Purpose I/O (GPIO)

• generic memory-mapped devices

• I
2
C, UART

• XHCI and USB

The communication with these devices is generally architected as two layers of

abstraction. The first layer implements low-level communication primitives; it

is used directly by “early device” initialization before and during the romstage.

The second layer consists of “devicetree” definitions that are used to generate

device information as part of the ACPI tables, and also for use by Coreboot itself.

Each mainboard will contain a set of devicetree entries that define its associated

devices. An example of such a device tree definition, taken from the Coreboot

documentation [37], is shown in Listing 2.1. It would be beyond the scope of this

thesis to explain every part of that entry. However, note the chip declaration in

the example, which indicates that the devicetree entry has an associated structure

located at drivers/i2c/generic/chip.h. When in the ramstage, Coreboot will

attempt to detect the presence of a matching device. If found, ACPI table data will

be generated for the device, containing information from the devicetree entry as

well as the chip structure [37]. Furthermore, Coreboot will initialize the chip via

its driver. This allows for device operations to be performed directly within the

firmware.

When adding support for new hardware, one must consider the Coreboot

stage during which the hardware will be accessed. If the hardware will be needed

solely within the ramstage, creating a devicetree entry with an associated driver

is a simple method to add support. Device detection will be handled by existing

logic within Coreboot. Operations such as enabling or disabling the device will

be called by Coreboot at the appropriate time. If the hardware is to be used in

2.4. COREBOOT 19

Listing 2.1: An example devicetree entry.

1 device pci 15.0 on

2 chip drivers/i2c/generic

3 register "hid" = ""ELAN0000""

4 register "desc" = ""ELAN Touchpad""

5 register "irq" = "ACPI_IRQ_LEVEL_LOW(GPP_A21_IRQ)"

6 register "detect" = "1"

7 register "wake" = "GPE0_DW0_21"

8 device i2c 15 on end

9 end

10 end # I2C #0

earlier boot phases or within SystemManagement Mode, a device driver cannot be

used. Then, one must manually execute the lower-level communication primitives

within platform specialization functions to set up and tear down the device.

2.4.4 EFI Variables
The term “EFI variables” refers to non-volatile key-value storage managed by the

firmware. The UEFI Specification defines related runtime services as well as the

variable format [46, ch. 8.2]. The prototype of the UEFI Runtime Service function

SetVariable is shown in Listing 2.2. Each variable is identified by a combination

of an EFI GUID (Globally Unique Identifier) [46, appendix A] and a null-terminated

string representing the variable name. The data can be any binary buffer. The UEFI

specification reserves several variables with “architecturally defined meanings”

under a fixed vendor GUID, but allows for arbitrary additional variables, as long

as they are saved with a different vendor GUID or GUIDs [46, ch. 3.3].

Listing 2.2: Prototype of the UEFI function SetVariable.

1 typedef EFI_STATUS SetVariable (

2 IN CHAR16 *VariableName,

3 IN EFI_GUID *VendorGuid,

4 IN UINT32 Attributes,

5 IN UINTN DataSize,

6 IN VOID *Data

7);

In Coreboot, EFI variables are usually stored on the CMOS chip. As such,

power needs to be supplied by a CMOS battery for the EFI variables to be persisted,

but a continuous supply of mains power is not necessary.

20 CHAPTER 2. BACKGROUND

Notably, the Linux kernel exposes EFI variables via a virtual filesystem [22].

On Ubuntu 22.04, this filesystem is mounted at /sys/firmware/efi/efivars in

read-write mode. This way, firmware behavior can be modified within the OS,

without needing to implement a graphical menu as part of the firmware itself.

2.4.5 Logging
Coreboot reserves a region in main memory, called cbmem, to store console

messages and other data about the state of the system [41]. While the cbmem

region is reserved by firmware, the operating system is allowed read access. The

cbmem console is implemented as a ring buffer and while it may be truncated due

to limited capacity, it is not automatically emptied. As such, console logs from

previous system boot-ups may be present, as long as power to main memory was

not lost. A cbmem command-line utility exists to read the stored log messages

from within an operating system. Unfortunately, this type of log output is not

useful for debugging a system that fails to boot into the operating system for that

reason.

Several other console outputs besides cbmem are configurable when compiling

Coreboot [42]:

• Serial: Coreboot can perform input and output via certain non-USB serial

ports, though serial ports on add-in cards like PCIe serial cards have only

limited support, and few modern mainboards are produced with on-board

serial ports.

• EHCI debug port: A limited set of chipsets are supported for debugging

Coreboot via the debug port of an EHCI controller. Every USB 2 host

controller is an EHCI controller [6], but the EHCI debug port is an optional

feature; furthermore, specialized software and/or hardware are required to

receive data from the system’s debug port.

• spkmodem: The console can be output via the computer’s sound card and

the signal interpreted by specialized software running on another computer

connected to the audio output.

• Network: For NE2000-compatible (legacy) Ethernet cards, Coreboot can

send the log files via network to another networked system.

• POST card: Power-On Self Test (POST) cards are built into somemainboards

or can be added via PCI. These cards can display a single byte that Coreboot

outputs on I/O port 80.

In summary, Coreboot debug methods and access to its console output is un-

fortunately quite limited. This can partly be explained by it being a firmware;

that is, executing with much of the system hardware still uninitialized. Notably,

2.5. INTEL OPTANE 21

any console output that requires additional hardware cannot be used to debug

situations where booting fails before the point at which the hardware would be

set up. Furthermore, some work towards adapting existing log methods to newer

hardware, such as modern network cards, could prove to be beneficial.

2.5 Intel Optane
The brand name Optane refers to two product lines by Intel, which are both based

on the 3D XPoint storage technology. 3D XPoint was developed jointly by Intel

and Micron and first announced in 2015. In 2017, Intel introduced the first Optane

SSDs [4]. In 2019, they followed up with Intel Optane Persistent Memory, which is

available in a DIMM format similar to traditional DRAM modules [16, 20]. The

Optane DIMM connects directly to the processor’s integrated memory controller

via the memory bus [49]. Unlike DRAM, however, Intel Optane Persistent Memory

is non-volatile, that is, no data is lost when the storage device is powered off. In

this thesis, we consider only the DIMM variant, and any mentions of Optane shall

refer to Intel Optane Persistent Memory.

Performance. Yang et al. [49] provide a thorough performance analysis of

Optane DIMMs. For a single first-generation Optane DIMMwith 256GB capacity,

they measured a maximal read bandwidth of 6.6GB/s and a maximal write

bandwidth of 2.3GB/s. The achievable bandwidth for a given workload depends

on many factors such as the number of bytes read or written per access. According

to the manufacturer, the bandwidth is also different between capacities [16], and

we can assume between different product generations. In this thesis, we will be

working with a single 128GB Optane DIMM of the PMem 100 series, which is a

first-generation Optane DIMM.

Hardware compatibility. Not all CPUs readily support Optane DIMMs, but it

is possible to integrate Optane into systems lacking native support using additional

hardware. For instance, Khalil [24] have implemented a solution based on a field-

programmable gate array (FPGA) PCIe card. Specifically, they used an Intel Stratix

10 DX FPGA [17] to interface with Optane. Their design achieves saturation of

Optane’s bandwidth at the cost of up to 100 times higher latency. In essence,

by using an intermediate hardware device between the CPU and Optane, better

hardware compatibility can be achieved at the cost of some performance.

22 CHAPTER 2. BACKGROUND

Chapter 3

Design

In the previous chapter, we have introduced related works for improving upon

system suspend, both from a power consumption and from awake latency perspec-

tive. We have also provided prerequisite knowledge regarding the architecture

of the open-source Coreboot firmware. Finally, we have discussed Intel Optane

Persistent Memory as a form of DRAM-like, non-volatile storage, and the usage

of an intermediate device to improve compatibility between mainstream systems

and Intel Optane Persistent Memory.

Building on this foundation, we present our design for an alternative imple-

mentation of system suspend, called suspend-to-PMem. Although suspend-to-

PMem is based on S3 sleep, we deviate from S3 as defined in the ACPI specification

by offloading DRAM contents to Optane while in suspend. This allows the system

to be powered off entirely, thereby minimizing power consumption compared to

regular S3. The design is specifically intended to work at the firmware layer and

uses an FPGA as the intermediary for interfacing with Optane.

3.1 Requirements
We identify three main aspects that we consider mandatory for a successful

implementation of suspend-to-PMem:

Reliability. Suspend-to-PMem is intended to serve as a replacement for regular

S3 sleep. As such, the same outward behavior must be observed, otherwise any

operating system code dependent on that behavior may malfunction. Crucially,

suspend-to-PMem needs to fully persist main memory upon suspend entry, then

perform a full restore upon wake, and finally resume execution from the operating

system wake vector. Any data loss could lead to a system fault or crash, such that

the hardware has to be manually power-cycled, negating any of the benefits.

23

24 CHAPTER 3. DESIGN

Low wake latency. For suspend-to-PMem to serve as a competitive suspend

mode even when suspending for short time periods, it should be relatively fast

to resume to the operating system. Optimally, the time between the wake signal

and completed wake-up would not exceed the time required by S3 for the same

operation.

Low power consumption. Suspend mainly exists to reduce power consump-

tion while the system is not utilized. During regular S3, only very few components

continue to be powered. Most importantly, as main memory contents are kept

in volatile storage, this storage must be powered. The same is not true when

offloading main memory to persistent storage: In that case, all components can be

turned off without data loss. This trivially reduces the power consumption during

the suspended state. Yet, there is additional work done when entering and exiting

suspend to perform the copy and restore, which also involves additional hard-

ware. An implementation should ideally reduce the overall energy consumption

for the entire store-shutdown-restore-resume process compared to unmodified S3.

Further metrics besides the three main requirements can be used to qualitatively

and quantitatively measure an implementation’s efficacy.

In addition to wake latency, the suspend latency, i.e., the time between the

suspend request and system shutdown, may be considered. We do not prioritize

the suspend latency as much as the wake latency because as a device enters

suspend, it is supposedly not utilized any more, and its operator may not care

about its state as much. On the other hand, a device waking from suspend is

likely intended to be used immediately and any latency should be minimized.

Moreover, we aim to achieve complete transparency to the operating system.

Only the firmware layer should be concerned with the mode of suspend, leaving

the operating system kernel and all user-space applications unaffected. This

approach greatly improves compatibility with different operating systems, as it

obviates the need to significantly change their code in addition to the firmware

code.

Since we are working at the firmware level, some platform-specific code will

be required. The scope of our design will be limited to 12th generation (“Alder

Lake”) Intel Core CPUs, i.e., a 64-bit x86 platform. Similar designs may be possible

for different vendors and CPU architectures.

3.2 Suspend
The first phase to consider for our design is the phase of entering into a suspended

state. Fundamentally, the following steps must be performed:

3.2. SUSPEND 25

1. Detect that the system is about to suspend.

2. Find and initialize the PMem device.

3. Copy the entirety of system memory to PMem.

4. Backup the ACPI wakeup vector to be restored on resume.

5. Set a variable to inform the following boot about the presence of suspended

memory.

6. Power off the system.

The remainder of this section will provide detailed descriptions of each step in

order of execution.

Detecting suspend. There are multiple candidate methods for detecting that

the system is about to suspend. Note that suspend is triggered by the operating

system, and as such, the firmware cannot actively monitor this situation. Instead,

we require some kind of hook to be executed by the OS. This leaves at least the

following options:

• Adapt the ACPI machine language code for _PTS or _GTS.

• Implement the suspend logic in System Management Mode and execute in

response to a System Management Interrupt.

Each option has some benefits and drawbacks. Interacting with PMem hardware

from within AML code to perform a full-memory store may be quite complex.

Additionally, as it is the operating system’s task to execute AML, the code may not

be executed exactly in the intended way or at all. There is no guarantee that the

system will actually enter suspend when _PTS is called as the OS may still abort

the suspend. While _GTS may be suitable since it is called later, it is deprecated

since ACPI 5.0A [45, ch. 16.1].

An implementation inside the SMI trap handler is theoretically ideal, as regular

C code can be used, which is executed in the firmware itself. Additionally, code

running in SMM has higher privileges than the OS. It is trivial to access firmware

memory to gather additional information about the state of the system, such

as memory regions and devices. Yet, since an SMI is the final step of entering

suspend, much of the hardware will already be disabled and may need to be

reinitialized. There is also no support for 64-bit addressing in Coreboot’s SMM, so

memory accesses within the trap handler are limited to the lower 4GiB region.

For our design, we chose to focus on SMMmostly due to the ability to program

in C. The FPGA device hosting Optane, which is connected to the system via PCIe,

is able to access all of the system memory using Direct Memory Access (DMA).

The task of storing all memory to the device will consequently not be hindered.

26 CHAPTER 3. DESIGN

Device initialization. When the SMI trap handler is executed and we have

determined that this was due to a request for S3 sleep, we first need to initialize

the PMem device. This entails locating the PCIe device address based on the

FPGA’s vendor and device identifiers. Any PCI-to-PCI bridges on the path to the

device must be initialized for this to succeed. The FPGA uses memory-mapped

I/O which means that its Base Address Register (BAR) must be mapped. Due to

Coreboot’s SMM being constrained to 32-bit addressing, the BAR must be located

entirely within the lower 4GiB of memory.

Then, the FPGA registers located within the BAR region must be initialized.

This includes the setup of two command queues, implemented as ring buffers,

and located separately in main memory. One of the queues (the write queue)

represents pending store requests, while the other (the read queue) represents

pending load requests.

Storing memory. By updating the write or read queue and updating a queue

end pointer within the FPGA registers, the FPGA performs a store from main

memory to Optane or a load from Optane into main memory, respectively. Each

request can be for up to 1MiB of data. The addresses must be 64 byte-aligned.

When suspending, we need to treat main memory as a series of 1MiB regions

and create a store request for each. In case the write queue length is insufficient

for the amount of chunks left to write, we must wait for the FPGA to signal that

at least one of the prior requests has been served before creating another.

ACPI wakeup vector. The ACPI wakeup vector is located within the APCI

tables. It indicates the address within the OS from which to resume execution

when waking from suspend. The OS writes this value before entering suspend

such that the firmware is able to read it when resuming. In our case, the ACPI

tables will be recreated by Coreboot at the next boot. Hence, to be able to resume,

we need to backup the ACPI wakeup vector within PMem.

Marking as suspended. Any system boot could potentially be a resume, and

we need a method of marking whether this is the case. This can be done with a

custom EFI variable. We let a Boolean value “1” denote a suspend state, and either

the absence or a Boolean value “0” denote that there is no memory to restore.

After all storage and the ACPI wakeup vector have been saved to PMem, we

create or update the EFI variable such that it contains Boolean value “1”.

Powering off. The goal of this thesis is to fully power down the system during

suspend. We do this after all previous steps have been taken, that is, all memory is

saved, the ACPI wakeup vector is backed up, and an EFI variable is set to indicate

3.3. RESUME 27

this fact. To achieve this, we need to power off all devices including PCIe devices

and bridges. Finally, the CPU must be placed into power state S5 (soft power-off),

at which point the system will be effectively shut down.

3.3 Resume
The second phase to consider is the boot process following a suspend. This results

in the following high-level algorithm to be executed as early as possible during

boot:

1. Read the variable that is set by suspend to determine whether memory

needs to be restored.

2. Reset the variable such that subsequent boot processes do not resume from

the same memory.

3. Find and initialize the PMem device.

4. Copy PMem contents to system memory, except for firmware memory

regions.

5. Restore the ACPI wakeup vector.

6. Jump to the wakeup vector, i.e., into the suspended operating system.

The remainder of this section will provide detailed descriptions of each step in

order of execution.

Reading suspend state. At the end of suspend entry, we set an EFI variable

to denote that the system is now suspended. This variable needs to be read at

boot to differentiate between a resume and a non-resume boot. If the variable is

present and set to “1”, we continue with the remaining steps. Otherwise, i.e., if

the variable is absent or set to “0”, the boot continues as a regular boot instead.

Resetting suspend state. The following boot should not be treated as a suspend

exit, too, unless there was another suspend entry immediately preceding it. We

reset the EFI variable to “0” accordingly. It would again be set to “1” in case of

another suspend; otherwise, it will stay as “0” and not interfere with the regular

boot process.

The reset must always happen immediately after the variable has been read

to prevent a possible failure condition. Suppose the reset was positioned later in

the resume algorithm. Any failure between reading the variable and resetting it

could crash the system. In this situation, the variable would still read as “1” on

the next boot attempt, possibly triggering the same failure again. This condition

is prevented by resetting the variable early, allowing for a second boot attempt to

not hit the faulty code path.

28 CHAPTER 3. DESIGN

Furthermore, it is imperative to not execute the system from the same mem-

ory image, unless the system is entirely side effect-free or all side effects are

idempotent. This is because resuming from the same image twice may cause

the same side effect twice. For any non-idempotent side effect, by definition its

second execution will result in a different outcome than the first. This can lead to

inconsistent system states, crashes, and potentially data loss.

Device initialization. Like in suspend entry, we also need to interact with

PMem during suspend exit. The same steps as described in 3.2 are performed to

find and initialize the FPGA via PCIe and create its command queues.

Loading memory. This step represents the bulk of the resume algorithm.

Ideally, resuming from suspend-to-PMem would lead to memory contents that

are exactly identical to memory contents resulting from regular S3 resume, given

identical memory contents at suspend entry. This is to satisfy our “transparency”

design requirement. At least, memory regions belonging to the operating system

and userspace must be fully restored to ensure a valid system state when resuming

execution within the OS. Some memory regions belonging to the firmware cannot

be reasonably restored to the same state they were in when entering suspend.

For example, the code performing the restore algorithm resides in one of these

regions, as does its stack and heap, and any device information managed by the

firmware.

To perform a memory load while not interfering with the firmware execution,

we utilize the firmware’s memory table (see Section 2.1). We assume that the

memory table covers the entire physical address space while containing no over-

lapping entries. Now, we iterate over its entries. Regions marked as belonging

to firmware or marked as hardware-reserved are skipped. Regions marked as

available for use by the operating system will need to be restored.

To restore a region, we write instructions into the FPGA’s write queue such

that it loads the associated data from Optane and places it into the region. Specif-

ically, we need to treat the region as a series of 64 byte-aligned chunks up to

1MiB in length, due to the FPGA’s requirements. For each chunk, we create

a load request. In case the read queue length is insufficient for the amount of

chunks left to load, we must wait for the FPGA to signal that at least one of the

prior requests has been served before creating another.

Restoring the wakeup vector. As described in the previous step, we do not

restore memory regions belonging to firmware as part of this algorithm. Notably,

the ACPI tables are locatedwithin firmware regions, and as such, the ACPI wakeup

vector set by the OS is not automatically restored. Yet, we have prepared for this

3.3. RESUME 29

fact by saving the ACPI wakeup vector separately within PMem, as described in

Section 3.2, and can read it back such that a jump into the operating system is

possible.

Additionally, the ACPI wakeup vector read from PMem must be written into

the ACPI tables by the firmware as part of this step. Because regular S3 keeps

main memory intact, the OS is allowed to assume that writing the ACPI wakeup

vector once into the ACPI tables is sufficient for any number of transitions to

S3. In case of another suspend, it may not write its ACPI wakeup vector again.

In this situation, our suspend algorithm would read an incorrect value and be

unable to complete the resume from this second suspend.

Jumping to the OS. The resume algorithm ends with an exit from firmware

code. The firmware places the processor and memory controller into the expected

state for a resume, and finally executes a jump to the ACPI wakeup vector [45, ch.

16.1.3.1].

This procedure effectively skips part of the boot process, and instead loads a

previously stored operating system back into memory, and resumes execution

there. The hardware will have been initialized in a similar way to a regular boot

or regular resume. The ACPI, SMBIOS, and other tables will have been created

as well, as implied by the need of the OS to access this data at runtime. Yet, the

firmware would usually continue by loading a payload into memory and start

executing it. This is not needed as the system should resume from where it left

off instead of booting a new instance of the OS.

30 CHAPTER 3. DESIGN

Chapter 4

Implementation

In this chapter, we present a practical implementation of suspend-to-PMem, taking

into consideration the requirements and theoretical design discussed in Chapter 3.

We implement our functionality into version 1.1.1 of Dasharo’s Coreboot distribu-

tion for MSI Z690-A PRO mainboards [3]. All source code references within the

following paragraphs refer to parts of that distribution, unless otherwise noted.

To interface with Optane, we make use of the FPGA designed by Khalil [24]

and adapt its existing Linux kernel driver to function at the firmware layer. An

Optane DIMM is installed directly on the FPGA, which is itself connected to the

system via PCIe. It is possible to map the FPGA into a region of memory such

that several of its internal registers can be read and written by performing regular

reads and writes to memory addresses. Furthermore, the FPGA expects memory

to be allocated for command queues, which are used to submit requests to the

FPGA. One queue contains read requests, i.e., requests to copy from PMem to

main memory; a second queue contains write requests, i.e., requests to copy from

main memory to PMem. By writing the queue start addresses and sizes into the

FPGA’s registers, along with keeping a pointer to the current tail element of

each queue, the FPGA is able to process the read and write requests on behalf of

the CPU. As the FPGA is only able to transfer up to 1MiB of data per request,

larger transfers must be split in multiple chunks. To avoid running out of queue

space, the FPGA’s registers must be regularly polled for the amount of completed

requests, such that the associated elements can be invalidated and later reused.

4.1 Firmware Customization
The first step in implementing suspend-to-PMem functionality within Coreboot

is determining where the additional code should be inserted. According to the

fundamental design, we need to hook into the sleep SMI handler as well as the

31

32 CHAPTER 4. IMPLEMENTATION

boot process. Some more minute aspects of the implementation require additional

insertion points.

As described in Section 2.4.2, Coreboot contains a large number of weakly-

linked functions that hook into the firmware processes to allow for platform-

specific behavior. Some of these functions are well-suited as insertion points for

suspend-to-PMem functionality; other parts of the implementation require direct

modification of the firmware code.

We now discuss each relevant code location in turn.

mainboard_smi_sleep. Coreboot implements a generic sleep SMI handler func-

tion for Intel SoCs in smihandler_southbridge_sleep, located at src/soc/intel/

common/block/smm/smihandler.c. This function is responsible for detecting the

target sleep type (S0–S5) from hardware registers, then entering it. In between de-

tecting and entering sleep, however, a call to mainboard_smi_sleep(u8 slp_typ)

is made. We implement this hook to serve as an entry point to the “suspend” part

of our design. We simply check for a request to enter S3 by comparing slp_typ

against the ACPI_S3 constant, and execute our suspend logic in case of equality;

for any other sleep type, we simply return, allowing the default behavior to run.

Our suspend logic fundamentally consists of the steps described in Section 3.2.

Additionally, a mechanism is implemented using EFI variables that allows suspend-

to-PMem to be disabled and regular S3 to be executed, which is useful for per-

forming experiments, and is explored in more detail in Section 4.5. We also need

to initialize a heap memory allocator, which is further described in Section 4.4.

Then, the FPGA connected to Optane is located on the PCIe bus. It is initialized

and the entirety of system memory is written to PMem. We also define an “info

block” containing the ACPI wakeup vector, which we obtain by walking the ACPI

tables, and save this to PMem as well.

Finally, an EFI variable is written to indicate that the system is suspended,

and it is powered off.

Boot state machine. In Section 2.4.1, we introduced the different platform

initialization stages. We implement the “resume” part of our design as part of the

ramstage to take advantage of existing device initialization mechanisms and to

have access to information such as the memory table, which is only constructed

in the ramstage. The ramstage is implemented within src/lib/hardwaremain.c

in the form of a state machine. Its sequencing is shown in Figure 4.1.

From the state diagram, we can determine that our resume handler must

be inserted immediately after write_tables. If it was inserted earlier, the mem-

ory table would be unavailable; if it was inserted later, time would be wasted

loading a payload that would be overwritten by the memory restore. Unfortu-

4.1. FIRMWARE CUSTOMIZATION 33

pre_device

dev_init_chips dev_enumerate dev_resources

dev_enabledev_initpost_device

os_resume_check os_resume

write_tables

payload_load payload_boot

Bus enumeration
and device init

ramstage start

Create Coreboot
and ACPI tables

Need to resume
from suspend?

no

yes

Load payload and
start executing

Figure 4.1: The ramstage state machine. Execution begins in pre_device and

ends in payload_boot, at which point the payload takes over. Because our resume

implementation needs access to the Coreboot memory table, it must be inserted

after write_tables. os_resume_check and os_resume are part of regular S3 and

not relevant for suspend-to-PMem.

nately, no weakly-linked function is available for that exact point during the

execution, necessitating a direct modification of the existing code. We chose to

call the resume handler in the beginning of payload_load. The resulting state

function is shown in Listing 4.1. First, the EFI variable that determines the sus-

pend state is checked by calling s3pmem_should_resume. If this call indicates

a pending resume, the firmware is prepared for hand-over to the OS by call-

ing arch_bootstate_coreboot_exit, before proceeding with the custom resume

logic in s3pmem_boot_resume. The resume logic consists of the steps defined in

Section 3.3. We use bootmem_walk to iterate the memory regions in ascending

order and load every region with the BM_MEM_RAM tag, indicating a memory region

belonging to the OS. We also walk the ACPI tables again to find the wakeup

vector location and set it to the value stored in the “info block” during suspend.

bootmem_platform_add_ranges. This function is called as part of platform ini-

tialization and is used to register custom memory ranges. Its usage as part of this

work will be further explored in Section 4.4.

mainboard_suspend_resume. While we do not use this weakly-linked function

in our implementation, we include it here, as it may be relevant for adjacent

or future work. As shown in Figure 4.1, if os_resume_check determines that

34 CHAPTER 4. IMPLEMENTATION

Listing 4.1: Adapted payload loading state to perform a restore from PMem if

necessary.

1 static boot_state_t bs_payload_load(void *arg)

2 {

3 if (s3pmem_should_resume()) {

4 arch_bootstate_coreboot_exit();

5 int ret = s3pmem_boot_resume();

6 if (ret) {

7 printk(BIOS_ERR, "s3pmem: Failed OS resume, attempt cold boot\n");

8 }

9 // ret == 0 means we successfully resumed, so we won’t reach here.

10 }

11 payload_load();

12 return BS_PAYLOAD_BOOT;

13 }

the device needs to resume, it sets os_resume as the next state. os_resume

then calls acpi_resume, which allows the platform to prepare for resume via

mainboard_suspend_resume before jumping to an Assembly routine that per-

forms the jump to OS code. Because this hook requires all memory contents to

be present already, it is only relevant for regular S3, but not suspend-to-PMem.

4.2 PCIe Device Handling
In Section 2.4.3, we have seen that there are multiple levels of abstraction for

adding hardware support to Coreboot. While it would be more convenient to use

a PCIe device driver to instantiate the FPGA, this functionality is only available

during the ramstage, but not in SMM. As we perform the suspend entry in SMM,

our implementation is constrained to lower-level PCIe primitives.

PCIe enumeration. To communicate with a PCI/PCIe device, it must first

be located on the PCI/PCIe bus. We assume that any bridges in front of the

device have already been enabled by Coreboot when booting into a resume, or

by Linux when entering suspend. We define a function pcie_locate_device

that iterates over the PCI address space until it finds a device matching the ex-

pected vendor and device identifiers; for our FPGA, these are 0x3345 and 0x0001,

respectively. Coreboot’s functions pci_s_read_config16(dev, PCI_VENDOR_ID)

and pci_s_read_config16(dev, PCI_DEVICE_ID) can be used to obtain both iden-

tifiers, where dev refers to a PCI address. The device may then need to be enabled

by updating its command register to contain the “master” and “memory” bits.

4.3. FPGA DRIVER 35

These allow the device to become the bus master, i.e., write to the PCI bus, and to

use memory-mapped I/O [29, ch. 7.5.1.1].

Memory-mapped I/O. We exclusively use memory-mapped I/O (MMIO) in-

stead of port-based I/O to communicatewith the FPGA. This is done by configuring

a specific Base Address Register (BAR) with the start address of a memory region.

The FPGA’s internal registers can then be read and written simply by reading from

or writing to locations within that memory region. For our FPGA, the relevant

BAR is BAR0, and it uses 64-bit addressing with memory prefetching. While a

single BAR is normally 32 bits wide, 64-bit addressing is possible by combining

BAR0 and BAR1 into a double-wide register [29, ch. 7.5.1.2]. In our case, Coreboot

is limited to 32-bit execution and therefore 32-bit memory accesses, so that the

upper half is simply set as all zeroes.

Notably, the BAR size is determined by the device, and the start address must

be an integer multiple of that size. It is possible to determine the BAR size by

writing all ones into the register and reading it back; the lower bits will be all

zeroes, indicating the address alignment [29, ch. 7.5.1.2.1]. In our case, we expect

a BAR0 size of 4MiB which implies that the lower 22 bits must be zeroes. Any

other result is treated as a failure and the suspend or restore is aborted.

We verify the state of MMIO by reading a static value from the device registers,

more specifically the DMA engine’s version number, to ensure the device is set

up correctly.

Disabling devices. When powering off the system as the last step of suspending

it to persistent memory, all remaining PCI and PCIe devices must be disabled. We

define a function pcie_busmaster_disable_on_bus that recursively visits each

PCI/PCIe bus. For every device on the bus, the “master” bit is unset such that the

device performs no further writes to the bus.

4.3 FPGA Driver
The FPGA’s behavior was designed and implemented by Khalil [24], along with a

Linux kernel driver and userspace library. Much of the functionality needed for

suspend-to-PMem is already implemented as part of this kernel driver. However,

adapting the existing code for use at the firmware layer was a major undertaking

due to the wildly different API surfaces of Linux and Coreboot.

Adapting the Linux device driver. The FPGA’s Linux driver is implemented

as an out-of-tree kernel module and is composed of three parts: a PCIe driver,

a character device driver, and a memory management unit (MMU) driver [24].

36 CHAPTER 4. IMPLEMENTATION

We need neither the MMU nor the character device driver for suspend-to-PMem

because transfers are initiated by a single thread and for large memory regions.

The remaining pieces include code to initialize the FPGA’s BAR, data structures

to work with its registers, methods for probing its physical and virtual functions,

and code for writing to and reading from the device. The latter aspect is further

split into the setup of read and write request queues, methods for adding requests

to these queues, and polling the queues to ensure requests are fully handled.

There is no direct equivalent for kernel functions such as pci_resource_len,

pci_enable_device, or pci_iomap [23, include/linux/pci.h, l. 1248, l. 1948] [23,

include/asm-generic/pci_iomap.h] within Coreboot. These are used by the

Linux driver to determine the PCIe BAR size, enable the device for bus mastering,

and perform MMIO mapping, respectively.

Therefore, much of the device initialization required a fully custom implemen-

tation using low-level primitives as described in the previous section. Fortunately,

most of the data structures could be used with only minor changes and the in-

troduction of a few additional typedef statements. While the Linux driver is

protected against concurrent accesses via locking, Coreboot neither provides suit-

able locking mechanisms, nor are they necessary. Both during boot and within

SMM, execution is limited to a single processor and is never done concurrently.

The remaining code had to be fully refactored to not use any PCIe virtual func-

tions, not rely on Linux data types such as hashmaps or scatterlists, and execute

in a fully synchronous manner. A custom memory allocator is implemented to

satisfy requests for heap memory, which is further described in Section 4.4.

Queue setup. The FPGA uses separate queues for read and write requests,

with each queue implemented as a ring buffer. We allocate both queues on heap

memory with an allocation size of 1MiB, resulting in a capacity of approximately

32, 000 elements at a size of 32B per element. Some capacity is lost due to a

peculiarity in the FPGA’s DMA engine, whereby every 128th element becomes a

link element and must always point to its immediate successor instead of carrying

request data. Every non-link element consists of source address and destination

address fields, as well as a field indicating whether the element is valid or invalid,

among others. An element is considered valid when it represents a pending

request and invalid when it does not, e.g., because it was already processed. After

a queue is allocated and its link elements are initialized, its start pointer and size

are assigned to registers within the FPGA’s BAR0 region. At that point, requests

can be created by writing to elements within the queue.

Data transfer. Read and write requests are implemented in an analogous man-

ner. A read, in this case, refers to a data transfer from Optane into main memory,

4.4. MEMORY MANAGEMENT 37

while a write refers to a data transfer from main memory to Optane. Both reads

and writes are handled entirely by the FPGA such that the full 64-bit address

space is available even if the CPU is in 32-bit protected mode. None of the transfer,

except for creating the requests, is handled by the CPU.

The index of the first free element within a queue is stored on the heap next to

its elements. This allows for the address to be computed in O(1) time. Care must

be taken to always advance this index beyond any link elements and wrap around

to the beginning of the queue once the end is reached. Additionally, writes to the

first 1GiB are likely to fail, as this region is reserved by Optane. To accommodate,

we offset each device address by that amount. After a transfer request is created

within the queue, we write the new queue tail index to a register within the

FPGA’s BAR space. The FPGA monitors this register and reacts to the change by

processing the queue.

Queue polling. To synchronize the FPGA’s transfer speed and the creation of

new requests, the FPGA exposes a pointer to the last element that it has processed.

When polling, each element between the previous completion pointer and the

new completion pointer is marked as invalid. This frees the elements for re-use.

When transferring large amounts of data, such as a transfer of the entire contents

of system memory, it is imperative to poll the queue between the creation of

requests to ensure that all requests can be processed.

4.4 Memory Management
We need to perform some amount of memory management, both to reserve a

region for memory-mapped I/O (MMIO), and to allocate temporary data structures

for working with the FPGA. When working with memory, it must be considered

that Coreboot is constrained to 32-bit execution. As a result, all data structures

and MMIO regions must be placed within the lower 4 GiB.

Coreboot’s boot state machine transitions through the write_tables state

right before loading the payload. As part of this state, a call to the weakly-

linked bootmem_platform_add_ranges(void) is made, allowing platform-specific

memory regions to be added. We implement this function and reserve two regions

via calls to bootmem_add_range(u64 start, u64 size, BM_MEM_RESERVED).

Dynamic allocation. We implemented a simple memory allocator within the

4MiB region starting at address 0x400000 (4MiB), which was otherwise unused

as reported by Coreboot’s memory table. A capacity of 4MiB fits all temporary

data as well as the FPGA’s read and write queues, which occupy slightly more

than 1MiB each. When initialized, the memory allocator places a struct at

38 CHAPTER 4. IMPLEMENTATION

the beginning of the region containing a start address pointer, the capacity, and

consumed amount. Invoking s3pmem_malloc(u32 size) returns a 64-byte-aligned

pointer and increments the consumed amount, or returns NULL if size is too large

to fit. s3pmem_malloc_zero(u32 size) allocates memory that is 0-filled. All data

is ephemeral and required at once; therefore, no deallocation is needed.

Memory-mapped I/O (MMIO). A dedicated memory region is reserved for

the FPGA’s MMIO such that there is no overlap with any data that should be

stored on PMem. The FPGA requires 4MiB of memory, the start address of which

is written to its Base Address Register 0 (BAR0). PCI requires BAR0 to be aligned

to the size of the region. Indeed, we were able to reserve 4MiB of memory at

address 0x40000000 (1GiB).

4.5 EFI Variables
EFI variables are used to store two important pieces of information:

• S3PmemEnabled: whether to use suspend-to-PMem instead of regular S3

• SuspendToPmem: whether the system was suspended and memory contents

are waiting to be loaded from Optane

While EFI variables can store arbitrary binary data, our implementation only

requires Boolean data for the aforementioned settings. As such, we have imple-

mented utility functions to simplify working with EFI variables to store Boolean

data. int efivars_set_bool(const char *name, bool value) is used to write

a Boolean value to the variable of the given name, creating it if necessary. int

efivars_get_bool(const char *name, bool *value) is used to read a Boolean

value of the given name and store it at the memory location pointed to by value.

Fortunately, Coreboot’s low-level primitives for working with EFI variables are

part of the compilation targets for every stage including SMM, using an identical

interface throughout.

S3PmemEnabled is read at the start of the SMI handler. If efivars_get_bool

returns a non-zero value, the variable is likely to be missing, which is the case

on the first suspend after the firmware is flashed. In this case, suspend-to-PMem

defaults to being enabled and the variable is created with a value of true. If

the variable is present but false, the sleep SMI handler returns and Coreboot

performs a regular S3. If it is true, however, our suspend implementation executes.

At the end of our implementation, the EFI variable SuspendToPmem will be set to

true, too. On the next boot, this variable is read to detect whether our resume

implementation needs to be executed instead of performing a regular boot into

the payload.

4.6. SYSTEM POWER OFF 39

4.6 System Power Off
As the final step of entering suspend, the system needs to be powered off, that

is, placed into the S5 “soft off” state. The steps of our Intel x86 platform-specific

power_off procedure are shown in Listing 4.2. As this procedure is executed as

part of the SMI handler for S3 sleep, the previous power management registers

must be overwrittenwith a request to enter S5 instead. Coreboot’s SMI handler has

already disabled further SMIs from reaching the firmware at this point. Therefore,

setting SLP_EN does not trigger another SMI, but lets the hardware receive and

act on the S5 request. The CPU is placed into a loop executing the hlt instruction

until it is powered off.

Listing 4.2: Powering off an Intel x86 platform.

1 void power_off(void)

2 {

3 // Prevent GPIO events from waking the system

4 pmc_clear_all_gpe_status();

5 pmc_disable_all_gpe();

6

7 // Disable all PCI busmastering

8 pcie_busmaster_disable_on_bus(0, smihandler_soc_disable_busmaster);

9

10 // Disable the watchdog timer

11 if (is_wdt_enabled())

12 wdt_disable();

13

14 // Clear any previously requested SMI sleep state and request S5

15 pmc_clear_pm1_status();

16 pmc_disable_pm1_control(~0);

17 pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT));

18

19 // Halt the CPU

20 halt();

21 }

4.7 Kernel Modifications
Somemodifications of the Linux kernel are necessary to achieve a reliable suspend.

This is due to certain implementation details of the FPGA that we describe in

the following paragraphs. Such modifications would not be needed with a pure

Optane implementation.

40 CHAPTER 4. IMPLEMENTATION

Power management. When entering suspend, the Linux kernel checks for

the “power management” capability on each PCIe device, and if the capability is

present, places the device into a low power state. While the FPGA does report this

capability, it does not implement any power management-related functionality.

As a result, when the kernel attempts to power-manage the FPGA, the FPGA

enters a failed state. This must be prevented such that the FPGA can be accessed

during the sleep SMI handler. Additionally, none of the PCI bridges in front of

the FPGA may be power-managed.

When transitioning the system to a lower power state, the Linux kernel calls

pci_target_state(struct pci_dev *dev, bool wakeup) to “find an appropri-

ate low power state for a given PCI device” [23, drivers/pci/pci.c, l. 2631 ff.].

We patch it to match dev->vendor and dev->device against the known vendor

and device identifiers of either the PCI host bridge, the PCI-to-PCI bridge in

front of the FPGA, or the FPGA itself. In case of a match, a fixed power state

of PCI_D0, or fully powered, is returned; otherwise, the function is allowed to

continue [29, ch. 5.3.1].

BAR0 remapping. The FPGA exposes 511 “VFs”, or virtual functions, each

with their own registers. The combined BAR space of all VFs exceeds 4GiB,
which Coreboot is unable to reserve. The Linux kernel detects this and performs a

remapping of BAR space. This places the physical BAR0 beyond the 4GiB address

boundary that is accessible in 32-bit SMM, preventing any communication with

the FPGA.

On boot, the kernel calls pci_assign_resource(struct pci_dev *dev, int

resno) to assign or potentially re-assign memory regions to PCI devices [23,

drivers/pci/setup_res.c, l. 325 ff.]. We patch it to match the vendor and device

identifier against the FPGA’s vendor and device identifier. In case of a match,

return 0, indicating that the existing resource assignment is accepted; otherwise,

the function is allowed to continue. The kernel will then simply keep the BAR

assignment previously set by Coreboot although the VFs are incorrectly mapped.

4.8 Development, Deployment, and Recovery
In this section, we explore some peculiarities of the development process along

with methods of debugging and recovery that were discovered during this thesis,

in the hope that they may help others also working on Coreboot.

4.8. DEVELOPMENT, DEPLOYMENT, AND RECOVERY 41

4.8.1 Deployment
Building a Coreboot image from source consists of many steps, and we will not

explore all of them in detail, as that would be beyond the scope of this work. In

any case, a set of shell scripts were developed as part of this thesis that automate

the building and flashing procedure almost entirely. We recommend against

building and flashing manually as it is very error-prone and can potentially lead

to a damaged mainboard. The tools and development guide included with the

Dasharo distribution of Coreboot are also a good starting point, however, one

will most likely need to adapt them to the platform at hand. A general summary

of the steps required for building an image follows.

• Ensure all dependencies are installed and present. Refer to the Dasharo

guide to determine the requirements.

• Remove any output from previous builds, if necessary.

• Copy the mainboard-specific config into the root directory. For example:

$ cp configs/config.msi_ms7d25_ddr5 .config

• Update config settings as needed. For instance, disable boot media locking,

set the presence of an SMI handler, and enable cbmem logging during SMM.

• Update git submodules used for 3rd-party code.

• Run Dasharo’s docker image to execute make to build the image.

• Use the included cbfstool to update SMBIOS data within the image.

• Use the included vboot utility to sign the image.

To deploy a Coreboot image onto the target system’s EEPROM or flash storage, the

flashrom command-line program [10] is used. UEFI “Secure Boot” must be disabled

to allow for re-programming of the firmware. When flashing a mainboard for

the first time, it is highly recommended to create a backup of both the previous

firmware image as well as the SMBIOS serial number and system UUID. The

respective command lines are shown below.

1 flashrom -p internal -r backup.rom

2 dmidecode -s baseboard-serial-number >serial_number.txt

3 dmidecode -s system-uuid >system_uuid.txt

Before replacing the current firmware, a “dry run” of flashrom can validate the sys-

tem state for flashing. This is done by running flashrom as flashrom -p internal,

where -p internal specifies that the internal programmer located on the main-

board itself shall be used. flashrom may indicate errors such as an unsupported

chipset, read-only EEPROM regions, among others. In such cases, it is unsafe to

flash; otherwise, one may continue, and perform either a full flash when flashing

a mainboard for the first time, or perform a much faster partial flash if only some

code has changed. The respective command lines are shown below.

42 CHAPTER 4. IMPLEMENTATION

1 # full flash of the entire EEPROM

2 flashrom -p internal -w coreboot.rom --ifd -i bios

3

4 # partial flash, only update code regions

5 flashrom -p internal -w coreboot.rom --fmap -i RW_SECTION_A -i RW_SECTION_B

4.8.2 Failure Modes During Development
When developing firmware on real hardware, one also has to consider potential

failure modes. During the development of our implementation, we encountered

multiple failures that can be placed into two broad categories.

Flashing error. This failure occurs when the flashing software or hardware

cannot correctly write the new firmware image into EEPROM; we encountered

this multiple times while working on this thesis. After the write-erase cycle is

done, flashrom performs a verification of the written sections. This step may

finish with an indication that some bytes were not correctly written. While the

check is prone to produce false-positives in case writing succeeded but reading

failed, it should be treated with care, since any actual failure to write may prevent

the system from booting. In the case of flashing errors, we were always able to

re-run flashrom with the same image to achieve a successful flash.

Programming error. This failure occurs when the firmware code is changed

in such a way that it consistently triggers a fault, infinite loop, or any other

kind of bug such that booting into a working operating system for re-flashing is

made impossible. This situation is very easy to create especially when working

directly with the code responsible for boot, which was required for this project.

In such a case, the EEPROM cannot be flashed via the internal programmer and

an external programmer has to be used instead. This programmer has to be

physically placed firmly on the EEPROM chip, connected to a secondary system,

and used to flash back the original vendor firmware image. We found this process

to be significantly more time-consuming and error-prone than using flashrom

with the internal programmer. It usually required multiple attempts with each

attempt taking approximately 15 minutes. While our mainboard provided a “USB

flash-back” feature intended to enable flashing via a USB thumb drive inserted in

a dedicated USB port, we did not get this to work.

4.8.3 Safeguarding Code Paths
Because programming errors can lead to a significant time investment for restoring

the mainboard to working condition, or even result in irreparable damage to

4.8. DEVELOPMENT, DEPLOYMENT, AND RECOVERY 43

the mainboard in case of improper operation of the external programmer, we

recommend introducing safeguards into all code under test. This would be any

Boolean expression that can be made to evaluate to either true or false on

different boots, without requiring that the previous boot attempt succeeded. By

introducing conditional statements, any added or changed functionality can be

made to execute only if the safeguard expression evaluates to true; otherwise,

the unmodified, known-good code would be executed instead. If the code under

test contains programming errors that would usually prevent the system from

booting, and as such prevent flashing of a non-faulty firmware image, letting the

safeguard evaluate to false and rebooting will execute the known-good code

path. Then, the fault can be corrected and another firmware image can be flashed.

Ideally, the safeguard expression would be deterministic and controllable by

the human operator. This could be any input to the system that can be read in

the relevant firmware stage. It may be difficult, however, to obtain an external

input early in the boot process when only a limited set of devices are initialized.

In that situation, a random bit generator can be used.

We investigated the operations available at early boot stages to identify a

source of randomness. Our findings revealed that the second least-significant

bit of the CPU’s timestamp counter (TSC) had an approximately 50% chance of

being 0 or 1. Surprisingly, we did not observe a similar distribution on the last bit,

which always read as 1. While using a random bit like this may require multiple

reboots before the code under test is executed, this can still save time compared

to using an external programmer or having to order replacement hardware.

4.8.4 Firmware Debugging
In Section 2.4.5, we looked at each of Coreboot’s primary console outputs and

logging capabilities. We found none of the hardware outputs particularly useful

due to severely limited support for recent devices. The test system’s mainboard

did not include an on-board serial output. As a result, we exclusively referred to

cbmem to retrieve log messages.

The console/console.h header provides a printk function that is widely

used across the Coreboot codebase for appending log messages [3, src/include/

console/console.h, l. 55]. Its usage is similar to printk contained within the

Linux kernel interface in that it receives a log level, a format string, and a variadic

number of format parameters. An example for its usage is shown in Listing 4.3.

We found printk critical during the implementation of suspend-to-PMem for the

ability to retrieve almost any amount of system information and filter it on the

command line using tools such as grep. cbmem can survive system resets as long

as main memory is not explicitly cleared or unpowered as part of the reset.

While developing the resume phase, there was a need to receive debug output

44 CHAPTER 4. IMPLEMENTATION

Listing 4.3: Logging with printk.

1 #include <console/console.h>

2

3 void foo(int *p)

4 {

5 printk(BIOS_INFO, "%s(%p): value=%d\n", __func__, p, *p);

6 // prints: "[INFO] foo(0x...): value=..."

7 }

even when the jump into the operating system failed or the OS refused to proceed

from there. An investigation of alternative output methods revealed a colored

framebuffer set up by Coreboot and located at address 0x80000000. By looping

over the framebuffer in 4-byte increments, which corresponds to neighboring

pixels on the screen, we could output different-colored stripes to indicate how far

execution had progressed before failing. A benefit of this approach is its trivial

portability to Assembly language for use in the Linux kernel. Listing 4.4 shows

sample code to set an area of the framebuffer to a blue color. The relevant Linux

kernel source file, in this case, is arch/x86/realmode/rm/wakeup_asm.S, with

further wakeup logic located in arch/x86/realmode/rm/trampoline_64.S [23].

The framebuffer debugging strategy is no longer useful once the kernel has set

up paging as it relies on a fixed memory location.

Listing 4.4: Writing to the framebuffer from Linux to show a blue stripe on screen

(Assembly language).

1 mov $0x2000, %cx

2 movl $0x80000000, %eax

3 fbloop1:

4 movl $0x000000FF, (%eax)

5 add $4, %eax

6 dec %cx

7 jnz fbloop1

Chapter 5

Evaluation

In this chapter, we provide a framework for evaluating suspend-to-PMem on

hardware and use it to quantify the success of our implementation. In Chapter 3,

we formulated three main requirements for the implementation: reliability, low

wake latency, and low power consumption. First, we describe the hardware and

test setup for evaluating suspend-to-PMem. Then, for each of the requirements,

we state the measurement process in detail as well as giving an analysis of the

results. Finally, we will discuss some secondary quantitative and qualitative

criteria for evaluation.

5.1 Test Setup and Methods
For the test system, we used an MSI Z690-A PRO WIFI model mainboard with

an Intel Core i7-12700K CPU (8 “performance” cores with 2× hyperthreading +

4 “efficiency” cores) and 4× 8 GB DDR5-5600 RAM (CL40-40-40). This specific

mainboardwas chosen because of pre-existing support by the Dasharo distribution

of Coreboot [2]. The power supply is a be quiet! System Power 9 CM 500W and is

80 PLUS Bronze rated. 80 PLUS is a “performance specification and certification

program for internal power supply units (PSUs)” [5]. An 80 PLUS Bronze rating,

in the case of a 230V internal PSU sold in the EU, indicates an efficiency of 85%

at 20% load, 88% at 50% load, and 85% at 100% load, respectively.

On this system, we installed Ubuntu 22.04 LTS with Linux kernel v6.1.33

patched according to Section 4.7. The firmware has been built and flashed using

the shell scripts developed as part of this thesis (see Section 4.8.1). Swapping of

memory pages to disk is disabled.

In addition to the test system, we used additional equipment for controlling

the benchmark operations and for performing measurements. First, we attached

a PiKVM to the test system. PiKVM is a Raspberry Pi microcomputer-based

45

46 CHAPTER 5. EVALUATION

hardware kit capable of virtually pressing power and reset buttons, reading LED

states, capturing graphics output, among other features [7]. In addition to a

graphical user interface, PiKVM offers a query and command interface via HTTP

and WebSocket. Second, we connected a GWINSTEK GPM-8213 Digital Power

Meter to the test system’s power supply. This power meter is capable of measuring

both apparent power (in VA) as well as active power (inW) [12]. According to

our own measurements, the power meter’s measurements update approximately

three times per second. They can be read via a USB, RS232, or LAN interface.

To conduct the experiments, coordinate devices, and collect measurement

data, a virtual server located on the same VLAN was used. We will refer to this

virtual server as the “controller.” We determined the network latency between

the controller and all other relevant devices to be consistently lower than 1ms.

Benchmark runs. We performed 4 benchmarks for regular S3 and 4 bench-

marks for suspend-to-PMem. The benchmarks were performed with system

memory usages of 1GiB, 4GiB, 8GiB, and 16GiB, representing approximately

3%, 12.5%, 25%, and 50% of total system memory. A particular memory usage

was achieved by first retrieving the current memory usage from /proc/meminfo,

then allocating and filling memory pages according to the missing amount.

Each benchmark targets 100 successful iterations, or “runs,” of a suspend-

resume cycle. A run contains the following steps to be executed by the controller:

1. Ensure the system is powered on andworking, that is, it responds to network

requests.

2. Ensure the system’s memory usage is equal to the targeted memory usage.

3. Trigger a suspend entry by executing systemctl suspend via SSH.

4. Wait for the power LED to indicate system power off. This is detected via a

low-latency WebSocket connection to PiKVM.

5. Wait 5 seconds.

6. Press the power button via the PiKVM HTTP interface.

7. Wait for the power LED to indicate system power on. This is detected via a

low-latency WebSocket connection to PiKVM.

8. Wait for the system to come online, that is, start responding to network

requests.

9. Retrieve kernel and cbmem logs.

A run is successful when all of the steps are executed successfully. A step may fail

when either the request to the device fails, such as failure to connect to the test

system via SSH, or a timeout is hit. For instance, we only wait for up to 60 s for
the system to come online before considering that step, and therefore the entire

run, as failed.

5.1. TEST SETUP AND METHODS 47

Timing measurements. For our timing measurements, we had to rely on time

information from multiple sources. On the firmware side, we introduced calls to

printk (see Section 4.8.4) with timestamps, to be read via cbmem log retrieval.

These timestamps are derived from the CPU’s TSC (Time Stamp Counter) register,

and although they have a high resolution of microseconds or better, are only

useful for computing durations and the relative time of events. For suspend

entry, we collect TSC timestamps at the beginning of our sleep SMI handler,

when copying starts, and when copying ends. Because the system is powered off

afterwards, the cbmem log would be lost. We store the timestamps as part of the

info block that contains the ACPI wake vector, which is read back during resume,

and print the timestamps then. For resume, we collect TSC timestamps at the

beginning of our resume subroutine, after the info block has been read, and after

all memory has been restored. The info block is very small and fits in a single

64-byte read request. Hence, we can assume that the time at which it was read

closely corresponds to the time at which the FPGA was fully initialized.

We retrieve additional timestamps from the Linux kernel logs of the test system.

By executing journalctl -kb -o short-iso-precise, we are able to retrieve

log lines with absolute timestamps in microsecond resolution. The log lines

containing PM: suspend entry and PM: suspend exit messages are particularly

relevant. The former marks the handover from the kernel to firmware when

suspending. The latter marks the jump back into the kernel on resume.

Furthermore, we can associate each action taken by the controller with a high-

resolution timestamp. We made sure that the test system’s and controller’s system

clocks were synchronized. The list of all timestamps and durations collected is

shown in Table 5.1. Throughout the following sections, we will refer to the

timestamps via the symbols defined therein.

Symbol Definition
Tstart (3.) Controller requests suspend

Tksuspend Kernel logs PM: suspend entry

Tpoweroff (4.) PiKVM reports system power LED as off

Tpowerclick (6.) Controller presses the power button via PiKVM

Tpoweron (7.) PiKVM reports system power LED as on

Tkresume Kernel logs PM: suspend exit

Tonline (8.) Test system starts responding to ping

∆tstore Duration of writing to PMem on suspend

∆tload Duration of reading from PMem on resume

∆tinit Time between resume start and completed info block read

Table 5.1: The timestamps and durations collected. Timestamps are shown in the

order of events. Numbers refer to the steps of a benchmark run.

48 CHAPTER 5. EVALUATION

Power measurements. For each benchmark run, we collected a list of power

measurements using the GPM-8213 Digital Power Meter at intervals of approxi-

mately 0.3 s, which is close to the maximum data rate we could achieve. Each data

point was individually associated with a high-resolution timestamp before being

stored by the controller. We determined that there was no significant time offset

between a change in power consumption and a change in the value reported by

the power meter besides the 0.3 s resolution.

5.2 Reliability
According to the first requirement as defined in Section 3.1, the reliability of our

implementation must be evaluated. The term “reliability” refers to the ability

to enter and resume from a suspended state, restoring the operating system to

working condition with identical memory contents compared to the memory con-

tents at suspend entry. In the case of suspend-to-PMem, reliability is determined

by the ability to fulfill the designed behavior according to Sections 3.2 and 3.3.

Non-reliability may arise when any step of the suspend or resume algorithms fail.

In that case, the implementation may hang and not reach power off on suspend

entry; or, the implementation may fail to restore the operating system to working

condition with identical memory contents on resume. The reliability of regular

S3 suspend must also be measured to obtain a baseline reliability value.

Results. We compute the reliability as the number of successful runs divided

by the number of total runs.

The results for regular S3 are shown in Table 5.2. Overall, reliability did not

differ much between memory usages, with 3 to 4 failures per 100 successful runs.

The percentage of successful runs to total runs varies between 96% and 97%. In

every failure case, the log files indicate a timeout while waiting for the system to

come back online, although the power LED has shown a powered system state

for at least 60 s. We manually observed a few of these failures and are able to

confirm that the system was powered, outputting an empty image to the display,

indicating a failure in firmware.

Table 5.3 shows the results for suspend-to-PMem. Again, the reliability is

mostly constant across memory usages, although it is higher than with regular

S3 at 10 to 14 failures per 100 successful runs. The percentage of successful runs

to total runs varies between 88% and 91%. An investigation of the failure cases

shows identical behavior to regular S3, with the system failing to come back

online, while being powered and outputting an empty image to the display.

5.3. WAKE LATENCY 49

1 GiB 4 GiB 8 GiB 16 GiB
100/103 (97.1%) 100/103 (97.1%) 100/103 (97.1%) 100/104 (96.2%)

Table 5.2: Reliability of regular S3 suspend for different memory usages. (#Success

/ #Runs)

1 GiB 4 GiB 8 GiB 16 GiB
100/110 (90.9%) 100/113 (88.5%) 100/112 (89.3%) 100/114 (87.7%)

Table 5.3: Reliability of suspend-to-PMem for different memory usages. (#Success

/ #Runs)

5.3 Wake Latency
The second requirement, as defined in Section 3.1, is low wake latency. Therefore,

the wake latency when using suspend-to-PMem must be measured and compared

to the wake latency of regular S3.

Results. We compute the wake latency as ∆t1 = Tkresume − Tpoweron. We can

also compute the time it takes for the system to come back online, that is, start

responding to ping requests. This result is of interest because the kernel needs

to be fully initialized to reach this state. We compute this additional latency as

∆t2 = Tonline − Tkresume. From the Coreboot logs, we obtain ∆tinit, i.e., the time

required to initialize the FPGA, and∆tload, i.e., the time required to copy memory

contents from PMem to RAM. Trivially, since these operations are part of the

total wake process, it follows that∆t1 > ∆tinit +∆tload. Only successful runs are

considered because failed runs will be missing at least one of these values.

The results for regular S3 are shown in Table 5.4 and the results for suspend-

to-PMem are shown in Table 5.5. The system memory usage did not significantly

influence the wake latency of either mode. However, the wake latency of suspend-

to-PMem is consistently higher than regular S3, with a slowdown between 8.71×
and 9.11×. The time for the system to come online (∆t2) is not significantly
different between suspend modes and memory usages.

Figure 5.1 further shows time spent on different parts of the resume process.

The chart was created by splitting each run into its time components, then

graphing the median of each component. We can clearly see that the FPGA

initialization (∆tinit) along with copying data between PMem and RAM (∆tload)
are responsible for most of the total wake latency. The additional overhead,

calculated as ∆t1 − ∆tinit − ∆tstore, is very similar to the total wake latency

of regular S3. Notably, the large initialization time is a result of the FPGA’s

architecture, as it has to perform a “memory training” step each time.

50 CHAPTER 5. EVALUATION

1 GiB 4 GiB 8 GiB 16 GiB
∆t1 2.23± 0.32 2.27± 0.30 2.25± 0.28 2.17± 0.39
∆t2 2.50± 1.39 2.34± 1.18 2.52± 1.56 2.54± 1.37

Table 5.4: Resume times for regular S3. Shown are the times between power on

and kernel resume (∆t1) and between kernel resume and system online (∆t2) for
different memory usages.

1 GiB 4 GiB 8 GiB 16 GiB
∆t1 19.63± 0.38 19.72± 0.35 19.62± 0.34 19.78± 0.35
∆t2 2.93± 1.97 2.48± 1.35 2.50± 1.24 2.91± 2.24
∆tinit 9.06± 0.01 9.06± 0.01 9.06± 0.01 9.06± 0.01
∆tload 8.11± 0.00 8.11± 0.00 8.11± 0.00 8.11± 0.00

Table 5.5: Resume times for suspend-to-PMem. Shown are the times between

power on and kernel resume (∆t1), between kernel resume and system online

(∆t2), and the time components of initializing PMem (∆tinit) and restoring RAM

(∆tload), for different memory usages.

5.4 Power Consumption
The third and final requirement, as defined in Section 3.1, is low power con-

sumption. While regular S3 powers off most components, it keeps main memory

powered. Suspend-to-PMem is able to power off the entire system at the cost

of some additional energy to transfer data between RAM and PMem. For this

reason, we need to evaluate both the energy required to suspend and to resume,

as well as the power consumption in the suspended state. Importantly, the device

may stay suspended for any amount of time. At some point, the energy saved

while suspended will likely offset the energy required to enter and exit from the

suspended state, resulting in a “break-even” point.

Results. We measured the power consumption simultaneously to the other

measurements as described in Section 5.1. From this data set, we are able to

approximate both the energy consumption as well as the average power con-

sumption for any given time interval. We note that power is the amount of

energy transferred or converted per unit time. As a result, integrating the power

measurements over a given interval yields the energy consumed. The average

power consumption can then be computed by dividing the energy consumed by

the length of the interval.

Figure 5.2 visualizes the power measurements for each benchmark that was

performed. The charts show all of the runs’ power measurement curves overlaid

5.4. POWER CONSUMPTION 51

1 GiB 4 GiB 8 GiB 16 GiB
Memory usage

0

5

10

15

20

Ti
m

e
(s

)
S3
Online

PMem: Overhead
PMem: Init

PMem: Load

Figure 5.1: Wake latency components. Shown is the median of each contributing

timespan. “S3” is the median wake latency of regular S3. “Online” represents

additional time until the system responds to ping requests. “PMem: Init” is time

spent initializing PMem, “PMem: Load” is time spent restoring RAM, and “PMem:

Overhead” is any remaining part suspend-to-PMem’s median wake latency.

on top of each other. Every run’s power measurement curve was offset along the

time axis such that time 0 aligns with the request to initiate suspend (Tstart). It

can be seen that the power measurement curves and timings are very consistent

across runs for any given benchmark. As expected, unmodified S3 has only a

slight peak in energy consumption before entering a low power state. In contrast,

suspend-to-PMem spends a significant amount of time consuming much more

power than while the system is idle. Yet, it reaches a lower power consumption

than S3 while the device is suspended. When resuming, both S3 and suspend-

to-PMem start with an initial peak in power consumption before leveling off.

Suspend-to-PMem’s power consumption at resume is further split into two clearly

visible sections. As mentioned in Section 5.3, we assume that the first, slightly

lower-power section represents memory training of the FPGA, while in the second

section, the system is actively restoring system memory from PMem.

52 CHAPTER 5. EVALUATION

0 10 20 30
Time (s)

0

50

100

150

Po
we

r (
W

)
1 GiB (n=100)

0 10 20 30
Time (s)

0

50

100

150

Po
we

r (
W

)

4 GiB (n=100)

0 10 20 30
Time (s)

0

50

100

150

Po
we

r (
W

)

8 GiB (n=100)

0 10 20 30
Time (s)

0

50

100

150

Po
we

r (
W

)

16 GiB (n=100)

(a) Unmodified S3

0 20 40 60
Time (s)

0

50

100

150

200

Po
we

r (
W

)

1 GiB (n=100)

0 20 40 60
Time (s)

0

50

100

150

200

Po
we

r (
W

)

4 GiB (n=100)

0 20 40 60
Time (s)

0

50

100

150

200

Po
we

r (
W

)

8 GiB (n=100)

0 20 40 60
Time (s)

0

50

100

150

200

Po
we

r (
W

)

16 GiB (n=100)

(b) Suspend-to-PMem

Figure 5.2: Suspend power consumption over time for different memory usages.

Time 0 marks the suspend request. S3 enters a low power state quickly. Suspend-

to-PMem requires more energy initially, however, it achieves a better reduction.

5.4. POWER CONSUMPTION 53

Phase 1 GiB 4 GiB 8 GiB 16 GiB
Suspend 23± 15 26± 14 35± 15 24± 17
Resume 212± 34 205± 31 212± 30 204± 43
Sum 234± 37 232± 33 247± 31 228± 46

Table 5.6: Average energy consumption in Joule for different memory usages

(regular S3 suspend).

Phase 1 GiB 4 GiB 8 GiB 16 GiB
Suspend 4024± 29 4031± 27 4048± 25 4000± 24
Resume 2289± 41 2293± 35 2291± 36 2301± 33
Sum 6313± 53 6325± 46 6339± 46 6301± 42

Table 5.7: Average energy consumption in Joule for different memory usages

(suspend-to-PMem).

We also computed the total energy consumption during the suspend and

resume phases of each run. Tables 5.6 and 5.7 show the averages of these values

for regular S3 and suspend-to-PMem, respectively, along with their sums. For

suspend, the time between the initiation of suspend and reaching power off was

used for integration. For resume, the time between pressing the power button

and reaching kernel resume was used. A few observations can be made about

these results. For one, the energy consumed during S3 resume is about one order

of magnitude higher than during S3 suspend, while suspend-to-PMem actually

consumes less energy during resume than during suspend. Still, suspend-to-

PMem consumes between 25.67× and 27.58× more energy than regular S3 in

total.

Tables 5.7 and 5.8 show the approximate suspend power consumption for

both modes. These results were computed by integrating the power consumption

during the suspended state and dividing by the length of that interval. The

beginning of suspend is marked by the time at which the system is powered off,

while the end is marked by the time at which the power button is pressed to

initiate resume. To remove artifacts caused by imprecise timings, only the middle

50% of the interval were used for the calculation. Looking at the results, it can

be seen that regular S3 consumes, on average, between 2.03W and 2.19W while

suspended. Suspend-to-PMem consumes much less power during the same phase,

at 0.23W to 0.33W.

Figure 5.3 shows the energy consumption over time for both modes of suspend.

For short suspend durations, regular S3 has a lower total energy consumption than

suspend-to-PMem because the energy cost of entering and exiting from suspend

54 CHAPTER 5. EVALUATION

1 GiB 4 GiB 8 GiB 16 GiB
2.03± 0.18 2.19± 0.17 2.12± 0.14 2.08± 0.23

Table 5.8: Average power in Watts while suspended for different memory usages

(regular S3 suspend).

1 GiB 4 GiB 8 GiB 16 GiB
0.33± 0.10 0.30± 0.09 0.31± 0.10 0.23± 0.07

Table 5.9: Average power in Watts while suspended for different memory usages

(suspend-to-PMem).

is much lower. However, suspend-to-PMem has a lower power consumption

during suspend. From this, we can calculate the break-even point for each pair

of benchmarks, where a pair is just two benchmarks with equal memory usage,

one for regular S3 and one for suspend-to-PMem. This results in a break-even

point ranging from 54min to 60min. In other words, it is safe to assume that

for a suspend duration of more than one hour, suspend-to-PMem will be more

energy efficient than S3.

0 20 40 60 80 100 120
Time (min)

0

2

4

6

8

10

12

14

16

En
er

gy
 (k

J)

Unmodified S3
Suspend-to-PMem
Break-even

Figure 5.3: Energy consumption over time for different memory usages. The

break-even point is marked for each pair of benchmarks. The break-even point is

the time at which the energy consumption of suspend-to-PMem is equal to that

of regular S3.

5.5. SUSPEND LATENCY 55

5.5 Suspend Latency
We consider the suspend latency, that is, the time between the suspend request

and system power off, as a secondary performance characteristic. A device is

usually suspended while not in use, and as such, its state might not be as important

as a device that is needed again, and is therefore resuming. Still, it is possible that

the device is told to suspend just before it is needed again; in that situation, a

long time spent suspending would be detrimental, as this will further delay the

time until a successful resume.

Results. We computed the suspend latency as ∆ts = Tpoweroff − Tstart. For

suspend-to-PMem, we could also measure the time required to copy memory

contents into PMem, denoted as ∆tstore. As storing memory is one part of the full

resume process, it follows that ∆ts > ∆tstore.

1 GiB 4 GiB 8 GiB 16 GiB
∆ts 0.63± 0.02 0.63± 0.02 0.63± 0.02 0.62± 0.02

Table 5.10: Suspend times for regular S3. Shown are the times between requesting

suspend and power off (∆ts) for different memory usages.

1 GiB 4 GiB 8 GiB 16 GiB
∆ts 22.94± 0.06 23.02± 0.04 23.04± 0.07 22.87± 0.03
∆tstore 22.32± 0.05 22.39± 0.01 22.42± 0.07 22.24± 0.02

Table 5.11: Suspend times for suspend-to-PMem. Shown are the times between

requesting suspend and power off (∆ts), as well as the time component of pre-

serving RAM (∆tstore) for different memory usages.

Tables 5.10 and 5.11 show the suspend latency for both modes of suspend. The

timings are nearly identical for all memory usages, though a slowdown between

36.63× and 36.86× can be observed for suspend-to-PMem as compared to regular

S3. ∆tstore contributes majorly to this difference, with an average 97.27% of the

total suspend latency spent on PMem writes.

56 CHAPTER 5. EVALUATION

5.6 Discussion
The goal of this thesis was to design and implement a novel mode for system

suspend using persistent memory. By storing the contents of main memory in

PMem while suspended, the system can be powered off entirely, reducing the

overall energy consumption compared to traditional S3 suspend.

As described in Section 3.1, we consider three key requirements for a successful

implementation of suspend-to-PMem: reliability, lowwake latency, and low power

consumption. Additionally, aspects such as the suspend latency and transparency

to the operating system can be evaluated. Based on the experimental results

and the implementation at hand, we believe suspend-to-PMem to be a viable

alternative to existing modes of system suspend, and consider our implementation

to be successful according to the requirements.

In Section 5.2, we evaluated the reliability of suspend-to-PMem in comparison

to S3. While the percentage of successful benchmark runs is slightly reduced

for suspend-to-PMem, regular S3 did not achieve full reliability, either. This is

a surprising result, as we would expect S3 to be very well-tested on all system

components, including the CPU, mainboard, firmware, and operating system, due

to its prevalence. Hence, there may be other factors at play, such as a combination

of system components that do not integrate properly. One must also consider that

the usage of an intermediate device, more specifically the FPGA, as an interface

to Optane introduces substantial complexity in terms of configuring PCIe and

initiating data transfers. We believe that the reliability of suspend-to-PMem may

be improved by using a more direct connection between the CPU and persistent

memory.

The wake latency, i.e., the time required to resume from a suspended state,

is clearly dominated by the FPGA initialization and PMem reads, as previously

shown by Figure 5.1. The FPGA’s initialization time is mostly due to a “memory

training” step. If it were possible to avoid memory training whenever the system

is powered on, the wake latency could be reduced by as much as 46%. There is

also clearly some overhead present for restoring DRAM contents from PMem. In

Section 2.5, we briefly discussed Optane’s performance, citing a read bandwidth of

up to 6.6GB/s for a single Optane DIMM with a capacity of 256GB. Assuming a

similar read bandwidth for our 128GB capacity DIMM, a 32GiB read is expected

to take 5.2 s. As shown in Table 5.5, we observed load times of 8.11 s, i.e., a 55%
increase over the theoretical duration; however, the amount read is slightly less

than 32GiB because firmware memory regions are not restored. Still, the overall

wake latency is consistently lower than 20 s, which is likely sufficient for many

applications.

The power consumption, as evaluated in Section 5.4, is where suspend-to-

PMem truly shines. While suspended, regular S3 consumes, on average, between

5.6. DISCUSSION 57

2.03W and 2.19W. In contrast, suspend-to-PMem consumes only 0.23W to

0.33W. Unfortunately, the energy requirements associated with entering and

exiting suspend are much higher in the case of suspend-to-PMem. This is, how-

ever, entirely offset when the break-even point, shown in Figure 5.3, is reached;

for a suspend duration exceeding just one hour, suspend-to-PMem consumes less

total energy than S3. There is potential to improve this even further by avoiding

memory training and reducing data transfer overheads. If possible, the FPGA

may be eliminated entirely from the design to limit the energy overhead of PMem

to just Optane. Additionally, Table 5.7 has shown that writing to PMem is the

main contributor to suspend-to-PMem’s energy consumption. Our current imple-

mentation copies the entire DRAM contents, even including unused regions. By

parsing the page tables when entering suspend, it may be possible to avoid storing

unused regions, reducing the amount of data written and thereby improving the

total energy consumption.

We can estimate the improvements in break-even times based on these ideas.

Figure 5.2 shows that the power consumption is constant during suspend entry

and nearly constant during resume. Therefore, we can compute an approximate

reduction in energy consumption by considering the reduction in suspend and

resume latencies. First, avoiding memory training saves 9.06 s according to

Table 5.5. Based on Table 5.7, this reduces the total energy consumption by up

to 1063 J, resulting in a break-even point between 44min and 49min. Second,
if we assume zero-overhead transfer, a 32GiB write to Optane would take just

14.94 s [49], while a 32GiB read would take just 5.2 s as discussed previously. This
optimization alone would result in a break-even point between 39min and 44min.
Third, we may consider parsing page tables to reduce the amount of data written

and read. At 25% memory usage, this optimization alone would result in a break-

even point between 15min and 17min. Now, if all optimizations were combined,

we would expect to see a break-even point of 31min to 35min at 100% memory

usage, or only 12min to 13min at 25% memory usage. With all optimizations,

the overall wake latency may be as low as 7.65 s at 100% memory usage or 3.75 s
at 25% memory usage. This represents slowdowns of approximately 3.5× and

1.7×, respectively, when compared to regular S3.

We also provided some further evaluation criteria in Section 3.1. The suspend

latency, forwhich experimental results were provided in Section 5.5, is consistently

at around 23 s for our implementation. This represents a nearly 37× slowdown

compared to regular S3. However, we believe this to be an acceptable compromise,

as there is little difference between a system currently entering suspend and a

system that is already suspended from the perspective of the system’s operator.

Furthermore, suspend-to-PMem offers much better resilience against power loss

compared to traditional S3. As PMem does not need to be continuously powered,

there is no data loss in case of a power outage while the system is suspended,

58 CHAPTER 5. EVALUATION

unlike with regular S3, which requires an uninterrupted supply of power to

DRAM. Finally, our implementation achieves good transparency to the operating

system, which is entirely unaware of the suspend mode. Two minor modifications

of the Linux kernel were described in Section 4.7, but these are only needed to

correct problems with the FPGA architecture. The FPGA incorrectly reports its

capability to be power-managed via PCIe and exposes too many PCIe virtual

functions to fit within the memory region reserved by Coreboot. Any aspect

concerning the suspend itself is achieved solely through additions in firmware.

Chapter 6

Conclusion

Suspending computer systems while they are not utilized can reduce the overall

energy consumption over the system’s lifetime. This is important for data centers

and private consumers alike, as it allows for cost savings and may lead to a

reduced environmental impact. The time required to wake a device from suspend

is also important to avoid a performance degradation.

In this thesis, we have proposed a novel suspend mechanism called suspend-

to-PMem. When entering suspend, the contents of main memory are copied to

a persistent memory device based on Intel Optane Persistent Memory, and the

system is fully powered off. A system suspended in this mode resumes by booting,

but instead of loading a new instance of the operating system, the previous system

state is restored from Optane.

We implemented this design as part of the open-source Coreboot firmware,

using an FPGA-based PCI Express device to interface with Optane. To this end,

we integrated a Linux device driver into the firmware layer, adapting it to a vastly

different execution context. The device setup at the PCIe layer is implemented

using low-level PCIe primitives. As part of our work, we further developed meth-

ods for automatically building and flashing Coreboot to a device, and established

processes to overcome the constraints in debugging system firmware.

By evaluating the implementation on real hardware, we were able to show

that suspend-to-PMem is a viable suspend strategy. When considering the energy

consumption, this initial implementation already consumes less energy than

traditional S3 after one hour in suspend. We found that there is significant

potential for future improvements regarding power consumption, and also wake

latency, by implementing suspend-to-PMem without an intermediate device.

59

60 CHAPTER 6. CONCLUSION

6.1 Future Work
To conclude this thesis, we want to provide some ideas to further extend suspend-

to-PMem and improve its performance.

Integrating directly with Optane. In Section 5.6, we have already stated that

much of the performance overhead is caused by using an FPGA as the interface

to Optane. For instance, the FPGA has to perform memory training on every

resume. It also increases the data transfer latency [24]. Along with the simple

presence of an additional device in the system, these aspects currently result in

a significant energy consumption for entering and exiting suspend. However,

the FPGA served an important role in our work, as it enabled the use of Optane

on consumer hardware. Furthermore, Coreboot only has limited support for

64-bit execution, such that memory accesses are mostly constrained to the lower

4GiB. This did not cause problems for us, as the FPGA performs all data transfers

between DRAM and Optane on behalf of the CPU, and is capable of accessing the

full 64-bit address space.

Copying used pages only. Our current resume implementation fully restores

every non-firmware memory region. As a result, the wake latency is effectively

the same across different memory usages, as shown in Section 5.3. We believe

that suspend-to-PMem’s wake latency can be substantially improved by parsing

the operating system’s page tables to only restore pages that are in use. When this

parsing step is performed at suspend entry, the suspend latency also decreases, as

unused pages need not be written to PMem in the first place. Finally, as shown by

Table 5.7, writing to PMem is the main contributor to suspend-to-PMem’s energy

consumption. Reducing the amount written may lead to a much earlier break-

even point when comparing suspend-to-PMem’s overall energy consumption to

that of S3.

On-demand paging. In Section 2.3, we already looked at work by Ho et al. [14]

related to restoring only “urgent” pages at resume. Essentially, the memory pages

can be further categorized into three categories: disk-backed and clean, non-disk-

backed and urgent, non-disk-backed and non-urgent. Clean, disk-backed pages

do not need to be restored at all [27]. Urgent pages such as kernel memory would

be restored exactly like in our current implementation. Non-urgent pages, such

as pages of userspace applications, can be restored on-demand by the OS. This

could be achieved by marking these pages as backed by the PMem and exposing

it as a storage device to the OS. They would then only be restored once a page

fault occurs, decreasing the initial wake latency.

6.1. FUTURE WORK 61

Suspend-to-idle. Operating systems may use a different suspend mode called

suspend-to-idle (S2I) that is almost entirely software-based, giving them more

control compared to ACPI-based sleep [18]. We did not investigate S2I as part

of this thesis as it relates only minimally to system firmware. With S2I, the OS

sets up address range monitoring, then executes an MWAIT instruction to allow

the processor to enter a low-power state. It resumes processing when some

predefined event occurs, such as an interrupt, or on a write to the monitored

address range [21, vol. 2B, ch. 4, pp. 160-162]. The OS can use S2I to emulate S3

sleep, in which case the outward behavior would appear similar, but suspend-to-

PMem would not be triggered.

We believe that suspend-to-PMem could also be implemented as part of an

operating system, allowing for its use alongside S2I-based sleep. Notably, the OS

cannot power off the entirety of DRAM when using such a modified S2I design,

as that would necessitate at least a partial boot to resume. Lee et al. [26] have

recently explored a mechanism by which the OS is able to power-manage DRAM

sub-arrays individually. For S2I-based suspend-to-PMem implemented entirely

within the OS, a viable strategy may entail offloading as many memory pages as

possible onto PMem when entering suspend, then powering off unused parts of

DRAM. Any pages that must stay present in DRAM should be consolidated such

that the minimum amount of sub-arrays has to be supplied with power.

62 CHAPTER 6. CONCLUSION

Bibliography

[1] 3mdeb Sp z o.o. Dasharo homepage. url: https://www.dasharo.com/.

Accessed: 2023-09-30.

[2] 3mdeb Sp z o.o. Supported hardware: Overview. url: https://docs.

dasharo.com/variants/overview/. Accessed: 2023-09-30.

[3] The Coreboot Project 3mdeb Sp z o.o. Release msi_ms7d25_v1.1.1

- Dasharo/coreboot. url: https://github.com/Dasharo/coreboot/

releases/tag/msi_ms7d25_v1.1.1. Accessed: 2023-10-09.

[4] Ars Technica. Intel’s first Optane SSD: 375GB that you can also use as

RAM. url: https://arstechnica.com/information-technology/2017/

03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram/.

Accessed: 2023-06-22.

[5] CLEAResult Consulting Inc. What is 80 PLUS? url: https://www.

clearesult.com/80plus/. Accessed: 2023-10-02.

[6] Intel Corporation. Enhanced Host Controller Interface Specifica-
tion for Universal Serial Bus, March 2002. url: https://www.intel.

com/content/www/us/en/products/docs/io/universal-serial-bus/

ehci-specification-for-usb.html. Accessed: 2023-09-27.

[7] Maxim Devaev. PiKVM - Open and inexpensive DIY IP-KVM on Raspberry

Pi. url: https://pikvm.org/. Accessed: 2023-10-02.

[8] SeaBIOS developers. SeaBIOS. url: https://www.seabios.org/SeaBIOS.

Accessed: 2023-10-02.

[9] DMTF. System Management BIOS (SMBIOS) Reference Specification (Version
3.7.0), July 2023. url: https://www.dmtf.org/sites/default/files/

standards/documents/DSP0134_3.7.0.pdf. Accessed: 2023-10-02.

[10] flashrom developers. flashrom documentation. url: https://www.

flashrom.org/. Accessed: 2023-10-08.

63

https://www.dasharo.com/
https://docs.dasharo.com/variants/overview/
https://docs.dasharo.com/variants/overview/
https://github.com/Dasharo/coreboot/releases/tag/msi_ms7d25_v1.1.1
https://github.com/Dasharo/coreboot/releases/tag/msi_ms7d25_v1.1.1
https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram/
https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram/
https://www.clearesult.com/80plus/
https://www.clearesult.com/80plus/
https://www.intel.com/content/www/us/en/products/docs/io/universal-serial-bus/ehci-specification-for-usb.html
https://www.intel.com/content/www/us/en/products/docs/io/universal-serial-bus/ehci-specification-for-usb.html
https://www.intel.com/content/www/us/en/products/docs/io/universal-serial-bus/ehci-specification-for-usb.html
https://pikvm.org/
https://www.seabios.org/SeaBIOS
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.7.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.7.0.pdf
https://www.flashrom.org/
https://www.flashrom.org/

64 BIBLIOGRAPHY

[11] Free Software Foundation, Inc. GNU GRUB Manual 2.06. url: https://www.

gnu.org/software/grub/manual/grub/grub.html. Accessed: 2023-10-02.

[12] Good Will Instrument Co., Ltd. GPM-8213 Digital Power Meter:

User Manual. url: https://www.gwinstek.com/en-US/products/

downloadSeriesDownNew/11551/1553. Accessed: 2023-10-02.

[13] Google. Developer Information for Chrome OS De-

vices. url: https://www.chromium.org/chromium-os/

developer-information-for-chrome-os-devices/. Accessed: 2023-10-01.

[14] Chien-Chung Ho, Sheng-Wei Cheng, Yuan-Hao Chang, Yu-Ming Chang,

Sheng-Yen Hong, and Che-Wei Chang. Efficient hibernation resuming

with classification-based prefetching scheme for embedded computing

systems. SIGAPP Appl. Comput. Rev., 15(1):33–43, March 2015. https:

//doi.org/10.1145/2753060.2753064.

[15] Intel Corporation. EDK II Minimum Platform Specification. url: https:

//tianocore-docs.github.io/edk2-MinimumPlatformSpecification/

draft/. Accessed: 2023-10-01.

[16] Intel Corporation. Intel
®
Optane

TM
Persistent Memory Data

Sheet. url: https://www.intel.com/content/www/us/en/

products/docs/memory-storage/optane-persistent-memory/

optane-dc-persistent-memory-brief.html. Accessed: 2023-06-23.

[17] Intel Corporation. Intel
®
Stratix

®
10 DX FPGA. url: https://www.intel.

com/content/www/us/en/products/details/fpga/stratix/10/dx.html.

Accessed: 2023-10-04.

[18] Intel Corporation. The Linux Kernel: System Sleep States. url:

https://docs.kernel.org/admin-guide/pm/sleep-states.html. Ac-

cessed: 2023-06-27.

[19] Intel Corporation. What is TianoCore? url: https://www.tianocore.org/.

Accessed: 2023-10-01.

[20] Intel Corporation. Intel Optane DC Persistent Memory Readies

for Widespread Deployment. url: https://newsroom.intel.de/news/

intel-optane-dc-persistent-memory-readies-for-widespread-deployment/

#gs.gyg13n, October 2018.

[21] Intel Corporation. Intel®64 and IA-32 Architectures Software Developer’s
Manual, March 2023.

https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.gwinstek.com/en-US/products/downloadSeriesDownNew/11551/1553
https://www.gwinstek.com/en-US/products/downloadSeriesDownNew/11551/1553
https://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices/
https://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices/
https://doi.org/10.1145/2753060.2753064
https://doi.org/10.1145/2753060.2753064
https://tianocore-docs.github.io/edk2-MinimumPlatformSpecification/draft/
https://tianocore-docs.github.io/edk2-MinimumPlatformSpecification/draft/
https://tianocore-docs.github.io/edk2-MinimumPlatformSpecification/draft/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://docs.kernel.org/admin-guide/pm/sleep-states.html
https://www.tianocore.org/
https://newsroom.intel.de/news/intel-optane-dc-persistent-memory-readies-for-widespread-deployment/#gs.gyg13n
https://newsroom.intel.de/news/intel-optane-dc-persistent-memory-readies-for-widespread-deployment/#gs.gyg13n
https://newsroom.intel.de/news/intel-optane-dc-persistent-memory-readies-for-widespread-deployment/#gs.gyg13n

BIBLIOGRAPHY 65

[22] The kernel development community. efivars - a (U)EFI variable filesystem.

url: https://docs.kernel.org/filesystems/efivarfs.html. Accessed:

2023-09-27.

[23] The kernel development community. Linux kernel stable tree v6.1.33.

url: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.

git/tree/?h=v6.1.33. Accessed: 2023-10-09.

[24] Yussuf Khalil. FPGA-accelerated non-volatile memory access. Master’s

thesis, Operating Systems Group, Karlsruhe Institute of Technology (KIT),

Germany, October 2022.

[25] Hyojeen Kim, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H.

Noh. Building fully functional instant on/off systems by making use of

non-volatile RAM. In 2011 IEEE International Conference on Consumer
Electronics (ICCE), pages 675–676, 2011.

[26] Seunghak Lee, Ki-Dong Kang, Hwanjun Lee, Hyungwon Park, Younghoon

Son, Nam Sung Kim, and Daehoon Kim. Greendimm: Os-assisted dram

power management for dram with a sub-array granularity power-down

state. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’21, pages 131–142, New York, NY, USA,

2021. Association for Computing Machinery. https://doi.org/10.1145/

3466752.3480089.

[27] Shi-wu Lo, Wei-shiuan Tsai, Jeng-gang Lin, and Guan-shiung Cheng. Swap-

before-hibernate: A time efficient method to suspend an OS to a flash

drive. In Proceedings of the 2010 ACM Symposium on Applied Comput-
ing, SAC ’10, pages 201–205, New York, NY, USA, 2010. Association for

Computing Machinery. https://doi.org/10.1145/1774088.1774129.

[28] Yinghai Lu, Li-Ta Lo, Gregory R. Watson, and Ronald G. Minnich. CAR: Us-

ing Cache as RAM in LinuxBIOS. Technical report, Advanced Computing

Laboratory, Los Alamos National Laboratory, 2006.

[29] PCI-SIG. PCI Express®Base Specification Revision 4.0 Version 1.0, September

2017.

[30] Martin Roth (The Coreboot Project). Announcing coreboot re-

lease 4.19. url: https://blogs.coreboot.org/blog/2023/01/28/

announcing-coreboot-release-4-19/, January 2023. Accessed:

2023-09-25.

https://docs.kernel.org/filesystems/efivarfs.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.1.33
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.1.33
https://doi.org/10.1145/3466752.3480089
https://doi.org/10.1145/3466752.3480089
https://doi.org/10.1145/1774088.1774129
https://blogs.coreboot.org/blog/2023/01/28/announcing-coreboot-release-4-19/
https://blogs.coreboot.org/blog/2023/01/28/announcing-coreboot-release-4-19/

66 BIBLIOGRAPHY

[31] Zhang Rui. Linux ACPI Custom Control Method How To. url: https:

//docs.kernel.org/firmware-guide/acpi/method-customizing.html.

Accessed: 2023-10-07.

[32] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts, 9th
Edition. Wiley, 2012. https://books.google.de/books?id=9VMcAAAAQBAJ.

[33] Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. Im-

proving phase change memory performance with data content aware

access. In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2020, pages 30–47, New York, NY, USA,

2020. Association for Computing Machinery. https://doi.org/10.1145/

3381898.3397210.

[34] Jiming Sun, Marc Jones, Stefan Reinauer, and Vincent Zimmer. Building
coreboot with Intel FSP, pages 55–95. Apress, Berkeley, CA, 2015. https:
//doi.org/10.1007/978-1-4842-0070-4_4.

[35] The Coreboot Project. Coreboot 4.21 documentation: Coreboot architecture.

url: https://doc.coreboot.org/getting_started/architecture.html.

Accessed: 2023-09-25.

[36] The Coreboot Project. Coreboot 4.21 documentation: Distributions. url:

https://doc.coreboot.org/distributions.html. Accessed: 2023-10-01.

[37] The Coreboot Project. Coreboot 4.21 documentation: Driver Devicetree

Entries. url: https://doc.coreboot.org/drivers/dt_entries.html.

Accessed: 2023-10-05.

[38] The Coreboot Project. Coreboot 4.21 documentation: libgfxinit - Native

Graphics Initialization. url: https://doc.coreboot.org/gfx/libgfxinit.

html. Accessed: 2023-10-07.

[39] The Coreboot Project. Coreboot 4.21 documentation: Payloads. url:

https://doc.coreboot.org/payloads.html. Accessed: 2023-09-25.

[40] The Coreboot Project. Coreboot for end users. url: https://www.coreboot.

org/users.html. Accessed: 2023-06-28.

[41] The Coreboot Project. Coreboot wiki: Cbmem console. url: https:

//www.coreboot.org/Cbmem_console. Accessed: 2023-10-03.

[42] The Coreboot Project. Coreboot wiki: Console and outputs. url: https:

//www.coreboot.org/Console_and_outputs. Accessed: 2023-09-27.

https://docs.kernel.org/firmware-guide/acpi/method-customizing.html
https://docs.kernel.org/firmware-guide/acpi/method-customizing.html
https://books.google.de/books?id=9VMcAAAAQBAJ
https://doi.org/10.1145/3381898.3397210
https://doi.org/10.1145/3381898.3397210
https://doi.org/10.1007/978-1-4842-0070-4_4
https://doi.org/10.1007/978-1-4842-0070-4_4
https://doc.coreboot.org/getting_started/architecture.html
https://doc.coreboot.org/distributions.html
https://doc.coreboot.org/drivers/dt_entries.html
https://doc.coreboot.org/gfx/libgfxinit.html
https://doc.coreboot.org/gfx/libgfxinit.html
https://doc.coreboot.org/payloads.html
https://www.coreboot.org/users.html
https://www.coreboot.org/users.html
https://www.coreboot.org/Cbmem_console
https://www.coreboot.org/Cbmem_console
https://www.coreboot.org/Console_and_outputs
https://www.coreboot.org/Console_and_outputs

BIBLIOGRAPHY 67

[43] The European Commission. Regulation: Ecodesign regulation for comput-

ers and servers (EU) No 617/2013. Official Journal of the European Union,

url: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:

32013R0617, 2018.

[44] Ubuntu Wiki. Kernel Reference: S3. url: https://wiki.ubuntu.com/

Kernel/Reference/S3. Accessed: 2023-10-04.

[45] UEFI Forum, Inc. ACPI Specification 6.5. url: https://uefi.org/specs/
ACPI/6.5/. Accessed: 2023-06-28.

[46] UEFI Forum, Inc. UEFI Specification 2.10. url: https://uefi.org/specs/
UEFI/2.10/. Accessed: 2023-09-27.

[47] Yefu Wang and Xiaorui Wang. Performance-controlled server consol-

idation for virtualized data centers with multi-tier applications. Sus-
tainable Computing: Informatics and Systems, 4(1):52–65, 2014. https:

//www.sciencedirect.com/science/article/pii/S2210537914000031.

[48] Sam Likun Xi, Marisabel Guevara, Jared Nelson, Patrick Pensabene, and

Benjamin C Lee. Understanding the critical path in power state transition

latencies. In International Symposium on Low Power Electronics and Design
(ISLPED), pages 317–322. IEEE, 2013.

[49] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve

Swanson. An empirical guide to the behavior and use of scalable persistent

memory. In 18th USENIX Conference on File and Storage Technologies (FAST
20), pages 169–182, Santa Clara, CA, February 2020. USENIX Association.

https://www.usenix.org/conference/fast20/presentation/yang.

[50] Chenyang Zi, Chao Zhang, Qian Lin, Zhengwei Qi, and Shang Gao.

Suspend-to-PCM: A new power-aware strategy for operating system’s

rapid suspend and resume. In W. Eric Wong and Tinghuai Ma, editors,

Emerging Technologies for Information Systems, Computing, and Manage-
ment, pages 667–674, New York, NY, 2013. Springer New York.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R0617
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R0617
https://wiki.ubuntu.com/Kernel/Reference/S3
https://wiki.ubuntu.com/Kernel/Reference/S3
https://uefi.org/specs/ACPI/6.5/
https://uefi.org/specs/ACPI/6.5/
https://uefi.org/specs/UEFI/2.10/
https://uefi.org/specs/UEFI/2.10/
https://www.sciencedirect.com/science/article/pii/S2210537914000031
https://www.sciencedirect.com/science/article/pii/S2210537914000031
https://www.usenix.org/conference/fast20/presentation/yang

	Abstract
	Contents
	Introduction
	Background
	Firmware Fundamentals
	System Suspend
	Types of Sleep
	Power State Transitions
	Performance Characteristics

	Related Work
	Coreboot
	Platform Initialization Stages
	Platform Specialization
	Device Communication and Drivers
	EFI Variables
	Logging

	Intel Optane

	Design
	Requirements
	Suspend
	Resume

	Implementation
	Firmware Customization
	PCIe Device Handling
	FPGA Driver
	Memory Management
	EFI Variables
	System Power Off
	Kernel Modifications
	Development, Deployment, and Recovery
	Deployment
	Failure Modes During Development
	Safeguarding Code Paths
	Firmware Debugging

	Evaluation
	Test Setup and Methods
	Reliability
	Wake Latency
	Power Consumption
	Suspend Latency
	Discussion

	Conclusion
	Future Work

	Bibliography

