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ABSTRACT
Advanced Vector Extension (AVX) instructions operate on
wide SIMD vectors. Due to the resulting high power con-
sumption, recent Intel processors reduce their frequency
when executing complex AVX2 and AVX-512 instructions.
Following non-AVX code is slowed down by this frequency
reduction in two situations: When it executes on the sibling
hyperthread of the same core in parallel or – as restoring the
non-AVX frequency is delayed – when it directly follows the
AVX2/AVX-512 code. As a result, heterogeneous workloads
consisting of AVX-512 and non-AVX code are frequently
slowed down by 10% on average.
In this work, we describe a method to mitigate the fre-

quency reduction slowdown for workloads involving AVX-
512 instructions in both situations. Our approach employs
core specialization and partitions the CPU cores into AVX-
512 cores and non-AVX-512 cores, and only the former ex-
ecute AVX-512 instructions so that the impact of potential
frequency reductions is limited to those cores. To migrate
threads to AVX-512 cores, we configure the non-AVX-512
cores to raise an exception when executing AVX-512 in-
structions. We use a heuristic to determine when to migrate
threads back to non-AVX-512 cores. Our approach is able
to reduce the frequency reduction overhead by 70% for an
assortment of common benchmarks.

CCS CONCEPTS
• Computer systems organization → Single instruction,
multiple data; Multicore architectures; • Hardware → Plat-
form power issues.
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1 INTRODUCTION
The end of Dennard scaling, i.e. keeping the power density
constant by scaling the threshold voltage, has lead to increas-
ing power density and to a situation where the performance
of processors is mainly limited by their power consump-
tion [26]. The limited power budget, both in terms of the
maximum heat conducted by the cooling system to maintain
acceptable temperatures as well as in terms of the maximum
current provided by the power supply, leads to situations
where either parts of the chip have to be deactivated (dark
silicon [26]) or the chip has to operate at a reduced frequency
(dim silicon [13]).

An example for the latter can be found in the variable
turbo frequencies of current processors depending on the
number of active cores – when fewer cores are active, the
resulting power headroom can be utilized to increase the
frequency and improve performance [22]. However, even
within a single core, power consumption varies based on the
type of instructions executed as complex instructions cause
more switching activity on the chip. As a result, different
maximum frequencies are possible for different instruction
mixes.

The AVX2 and AVX-512 instructions found in current Intel
CPUs operate on wide 256-bit and 512-bit vectors and there-
fore consume particularly large amounts of energy per oper-
ation. As a result, recent CPUs have started to reduce their
operating frequency when executing such instructions [4].
This frequency reduction, while necessary for such power-
intensive code, can negatively affect other code as well, for
two reasons:
(1) Restoring the previous higher frequency is delayed. Each

frequency change causes some overhead [21] as the
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Figure 1: The frequency reduction caused by AVX-512
instructions can affect unrelated non-AVX code in two
different ways: Restoring the non-AVX frequency is
delayed (a) and frequency reductions affect other hy-
perthreads of the same core (b). The hatched region
indicates non-AVX code slowed down by the AVX-512
frequency reduction. Some AVX2 instructions cause
similar effects, albeit with lesser impact.

system has to wait for voltages to change and for the
frequency to stabilize. Therefore, in order to prevent
excessive numbers of frequency changes, current In-
tel CPUs delay restoring the clock speed even if no
more AVX2 or AVX-512 instructions are executed [5].
As a result, in heterogeneous applications which fre-
quently switch between power-intensive AVX2/AVX-
512 execution phases and less power-intensive non-
AVX phases, the latter can be temporarily slowed down
as the frequency is still reduced due to the preced-
ing power-intensive code (see Figure 1a). This can be
observed, for example, in the nginx web server [15]:
When the web server is used with an SSL library using
AVX-512, the whole workload is slowed down by 10%.
The frequent short sections of AVX-512-enabled code
for cryptography cause reduced CPU frequencies for
the rest of the web server.

(2) The frequency reduction affects the sibling hyperthread.
If one hyperthread in an SMT system executes AVX-
512 or AVX2 code, the core has to reduce its frequency.
Other hyperthreads of the same core are equally af-
fected by the frequency reduction, even if they are
not executing AVX2 or AVX-512 instructions (see

Figure 1b). For instance, an AVX-512-enabled deep-
learning application has been shown to slow down
other tasks on the same system by 10% [9].

Core scheduling – i.e., restricting the type of threads exe-
cuting in parallel on the hyperthreads of the same core – has
been suggested as a solution for the second scenario [19].
However, it causes significant performance degradation due
to reduced CPU utilization in some cases [9] and does not
solve the problem present in the first scenario.
In this paper we present a different kind of core special-

ization which is able to improve performance of workloads
using AVX-512 instructions in both scenarios through im-
proved scheduling of AVX-512-heavy code. Our prototype
detects when a thread starts using AVX-512 instructions and
then restricts the thread to a subset of the cores to limit fre-
quency changes to those cores only. These cores prioritize
AVX-512 code in order to reduce the performance impact on
non-AVX-512 code. When the thread stops using AVX-512
instructions, the scheduling restrictions have to be removed
again. To detect the end of AVX-512 phases, we employ a
heuristic: As AVX-512 is commonly used for CPU-heavy
computation phases with little I/O, we assume that the AVX-
512 phase has finished by the time of the next system call,
at which point we allow execution on non-AVX-512 cores
again.
We describe an implementation of our design based on

the Linux kernel and the MuQSS scheduler [14] and show
that the prototype can significantly improve performance
for different types of workloads. In a single-process web
server workload, our prototype was able to reduce the slow-
down caused by AVX-512 by 71%, and in multi-process batch
workloads the prototype reduced the impact of a parallel
AVX-512-heavy background process by 70%.

2 AVX-INDUCED FREQUENCY CHANGES
Intel CPUs reduce their frequency when executing AVX2
and AVX-512 instructions. To demonstrate the impact of the
frequency changes on different types of workloads, we exe-
cuted a number of benchmarks involving AVX2 or AVX-512
instructions and measured the CPU time required on a sys-
tem with an Intel Xeon Gold 6130 processor using the Linux
4.18.19 kernel. Figure 2 shows the results of this experiment.
Our workloads cover both scenarios described in Section 1.
As an example for a single-process workload, we executed a
web server scenario similar to the one described in [15]. We
configured nginx to serve a static website via TLS using the
ChaCha20-Poly1305 encryption scheme and configured the
OpenSSL library to use either AVX-512, AVX2, or neither for
encryption and decryption. To simulate the effect on non-
AVX web application code, we let the web server compress
the files on-the-fly with the Brotli compression algorithm.
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Figure 2: CPU time required to run several benchmarks either alone with support for different instruction sets
(nginx+openssl) or in parallel with an instance of the x265 video encoder configured to use AVX, AVX2, or AVX-
512. The CPU used for the experiments provides a maximum all-core turbo frequency of 1.9GHz for AVX-512,
2.4GHz for AVX2, and 2.8GHz for other code (including AVX). In all experiments, the frequency reduction caused
by complex SIMD instructions (AVX2 and AVX-512) slows down the rest of the workload.

Such heterogeneous single-process workloads are affected by
the delay when restoring higher frequencies. We measured
the CPU time required per HTTP request. As the processor
reduced its frequency when executing the AVX-512 variant
of OpenSSL’s cryptography routines, the benchmark was
slowed down by 10.7%, even though less than 1% of the CPU
time was spent in OpenSSL. As an example for multi-process
workloads where a power-intensive workload on one hyper-
thread reduces performance for code running on the sibling
hyperthread, wemeasured the performance of various bench-
marks from the Parsec 3.0 [7] benchmark suite and Phoronix
Test Suite v9.0.1 [2]. We executed these in parallel with an
instance of the x265 video encoder configured to use either
AVX-512 or AVX2 instructions or neither. x265 is an example
for an application that profits from the usage of AVX-512
instructions [27]. As Linux frequently scheduled x265 on the
same core as the benchmarks, the benchmarks were slowed
down by 4.1% on average for AVX2 and by 11.3% for AVX-
512. Note that our analysis in Section 4.3 rules out increased
resource contention among sibling hyperthreads as the main
reason for this slowdown, leaving only the reduced average
frequency as an explanation.
Although Intel refers to the frequencies triggered by

AVX2/AVX-512 instructions as “AVX 2.0 and AVX-512 fre-
quencies” [4] – the latter being as much as 30% lower as the
corresponding non-AVX frequency when all cores are active
– the criteria for frequency selection are more complex than
implied by this naming. In particular, instructions from the
AVX-512 instruction set extension can operate on 256-bit
registers with lower impact on the frequency. Intel [5] clas-
sifies 512-bit and 256-bit operations further as either heavy
instructions (floating point operations and multiplications)

and light instructions. The AVX2 frequency is selected when
more than one heavy 256-bit instructions is executed per
two cycles [18] or when light 512-bit instructions are exe-
cuted. The AVX-512 frequency is selected when more than
one heavy 512-bit instructions is executed per two cycles.
Furthermore, combinations of light 512-bit instructions and
sufficient numbers of heavy 256-bit instructions can also trig-
ger a switch to the AVX-512 frequency. Finally, executing any
SIMD or floating-point instruction causes some frequency
reduction if the upper 256-bit half of the 512-bit registers
contains valid contents [10].
This shows that register usage alone does not determine

the resulting frequency when executing a specific piece of
code. An example for AVX-512 code that does not cause a
transition to the AVX-512 frequency is provided by older
versions of the glibc library in the form of memset() and
similar functions. These functions use 512-bit instructions
for sufficiently large buffers but do not use any heavy AVX-
512 instructions, so the processor only selects the AVX2
frequency. Nevertheless, the usage of 512-bit instructions is a
good indicator for the expected frequency reduction for most
applications. Our approach as described in the next sections
therefore uses the detection of any AVX-512 instruction to
guide its scheduling decisions.
For some programs which use AVX-512 registers but do

not trigger transitions to the lowest frequency level, the
approach described in the next sections might not yield sat-
isfactory results, though. We discuss this issue and potential
countermeasures in Section 5.
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Figure 3: Our design detects usage of AVX-512 instruc-
tions and restricts the corresponding thread to a sub-
set of the system’s cores.

3 APPROACH
We present a design that is able to reduce the slowdown
caused by AVX-512 instructions both in single-process as
well as multi-process scenarios. Figure 3 shows the basic
principle of our design, which divides cores into AVX-512
cores and non-AVX-512 cores. We employ core specialization
to run AVX-512 code on the AVX-512 cores only, which
limits frequency reductions to those cores. As the AVX-512
cores then mostly execute AVX-512 code, little non-AVX-512
code is affected by the frequency changes, which reduces the
performance overhead caused by the AVX-512 instructions.
Our approach consists of three main parts:

Initially, all threads are allowed to execute on all cores of
the system. As soon as a thread executes AVX-512 instruc-
tions, though, the thread is marked as an AVX-512 thread and
its execution is restricted to the AVX-512 cores. We describe
the mechanism to detect execution of AVX-512 instructions
before they are able to reduce the frequency of a non-AVX-
512 core in Section 3.1.
The core restriction will eventually lead the scheduler to

migrate the thread to an AVX-512 core. In Section 3.2, we de-
scribe the scheduler modifications necessary to ensure quick
migration to the appropriate core as well as good utilization
of all cores. In particular, the latter means that AVX-512 cores
have to be allowed to execute non-AVX-512 code when they
would otherwise be idle, but AVX-512 threads have to be
prioritized to achieve good overall throughput.
For heterogeneous programs consisting of AVX-512 and

non-AVX-512 execution phases, the system has to determine
when the thread is unlikely to execute further AVX-512 in-
structions in the near future. As described in Section 3.3,
we solve this problem with a heuristic and assume that the
AVX-512 phase has finished when the application executes
the next system call. In that situation, our design marks
the thread as a non-AVX-512 thread again and removes the
scheduling restrictions so that the thread can be executed on
non-AVX-512 cores. As suggested by related work [20] we
additionally implement a fixed-timeout policy for scenarios
where this assumption is wrong.

3.1 Making AVX-512 Instructions Fault
To determine when to place a thread on an AVX-512 core, it
is necessary to know whether and when the thread executes
AVX-512 instructions. Current CPUs do not provide amethod
to receive a notification when the CPU is about to reduce
its frequency1. Previous work on core scheduling for AVX-
512 applications [19] instead uses the arch_status interface
provided by Linux. This interface provides an estimate of
the time since the last usage of 512-bit registers which is
used for long-term categorization of threads as either AVX-
512 threads or non-AVX-512 threads. This technique has a
number of downsides, though. First, Linux only samples reg-
ister usage during context switches, causing short sections of
AVX-512 code to frequently go unnoticed if the application
executes the vzeroupper instruction afterwards to clear the
registers. Second, and more importantly, information about
register usage is only available after AVX-512 instructions
have been executed, at which point the frequency has already
been reduced. For these reasons, the technique is not usable
for workloads which frequently switch between AVX-512
and non-AVX-512 phases such as the web server example
described in Section 1. In such scenarios, the operating sys-
tem must be able to prevent execution of an instruction if it
would otherwise cause a frequency reduction on a core that
is supposed to execute at higher frequencies.
Our design adapts the trap-and-migrate technique de-

scribed by Li et al. [20]. It configures the non-AVX-512
cores in a way that they raise an exception when execut-
ing AVX-512 instructions. The exception handler then marks
the thread as an AVX-512 thread and migrates it to an AVX-
512 core. To raise an exception for AVX-512 instructions,
we leverage the fact that the CPU only allows execution
of those instructions if the operating system provides con-
text switch code for the corresponding registers. Modern x86
CPUs provide support for the XSAVE instructionwhich allows
fine-grained control over CPU context saving. This feature
can be configured with the XCR0 register which describes
which registers shall be saved to memory [3, ch. 13]. AVX-
512 instructions may only be executed when the opmask,
ZMM_Hi256, and Hi16_ZMM bits of that register are set, as
those bits control context switching for the registers spe-
cific to AVX-512. We clear these bits on non-AVX-512 cores
but let them remain set on AVX-512 cores, as only those
cores are supposed to execute AVX-512 instructions without
exceptions.

3.2 Scheduler Changes for Core
Specialization

Once threads have been marked as AVX-512 threads, the
threads must only be executed on AVX-512 cores. AVX-512
1See Section 5 for a discussion of such interfaces.
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Figure 4: In our prototype, separate runqueues achieve
static prioritization and efficient task stealing. The
“default” thread type is introduced to prevent star-
vation of non-AVX-512 OS tasks pinned to AVX-512
cores.

cores should execute normal threads only if no AVX-512
threads are runnable to minimize the non-AVX-512 code af-
fected by the frequency reduction of AVX-512 code. A central
part of our approach therefore is a modification of the sched-
uler to implement this policy. In particular, we modified the
MuQSS scheduler [14] for the Linux kernel to add support
for different core types and hard prioritization of AVX-512
thread on top of the existing scheduling algorithm.
The MuQSS scheduler has two advantages over the de-

fault CFS scheduler: First, it provides slightly more efficient
migration of threads between cores, which is relevant as core
specialization can cause more thread migration compared
to regular scheduling. The performance advantage per mi-
gration is only 10%, though, so it is likely that our design
can be ported to other schedulers without significant perfor-
mance implications. Second, MuQSS has lower complexity
compared to CFS and makes modifications easier.
By default, MuQSS maintains one runqueue per physi-

cal core (i.e., per each pair of hyperthreads). To be able to
efficiently implement different behavior for AVX-512 and
normal (non-AVX-512) threads, we replicate the runqueues
of the cores and introduce one runqueue per thread type and
core as shown in Figure 4. The main scheduling routine is
modified so that non-AVX-512 cores do not pick threads from
the AVX-512 runqueue, whereas AVX-512 cores try to pick a
thread from their local AVX-512 runqueue. If that runqueue
is empty, AVX-512 cores try to pick a thread from another
core’s AVX-512 runqueue, potentially migrating AVX-512
threads from non-AVX-512 cores to the AVX-512 core in the
process. Only if no AVX-512 thread is available, AVX-512
cores will pick a normal thread to maximize CPU utilization,
even if that thread is then affected by reduced frequencies.

As AVX-512 threads are prioritized on AVX-512 cores, the
execution of normal threads is preempted if an AVX-512
thread becomes runnable. If a thread becomes an AVX-512

thread while executing on a non-AVX-512 core, the scheduler
sends an inter-processor interrupt (IPI) to a random AVX-
512 core that is currently not executing AVX-512 threads to
force a scheduler invocation and a subsequent migration of
the thread. If a thread becomes an AVX-512 thread while all
AVX-512 cores are busy executing AVX-512 threads, no IPI
is required – instead, as soon as one of the cores runs out of
local AVX-512 threads, it will inspect the runqueues of all
non-AVX-512 cores as described above and will migrate one
AVX-512 thread if possible.

To improve cache locality, threads are sometimes limited
to specific cores. Such restriction of the CPU affinity of the
threads can happen via manual invocation of the taskset
tool or can be automatically configured by applications or
the kernel and requires special treatment in our scheduler.
We identified two main corner cases:

(1) Threads which do not use AVX-512 can be restricted to
AVX-512 cores. If a non-AVX-512 thread is restricted
to AVX-512 cores, it can be starved as it has a lower
priority than any AVX-512 thread. We observed this
condition mainly for operating system tasks and never
for processes started by the user. Therefore, we in-
troduce a mechanism to limit core specialization to
processes outside of the operating system.
We introduce a third “default” thread type which is
used for all threads which did not inherit a non-default
thread type from their parent and have themselves not
yet been classified. Classification happens either by
manual specification of the thread type via a system
call or via execution of AVX-512 instructions. We intro-
duce a third runqueue on each core for these default
threads. As shown in Figure 4, the threads are exe-
cuted on both AVX-512 and non-AVX-512 cores, with
a priority equal to normal threads on the former and
AVX-512 threads on the latter to prevent starvation.

(2) Conversely, threads which execute AVX-512 instructions
can be restricted to non-AVX-512 cores. If a thread is
restricted to non-AVX-512 cores but executes an AVX-
512 instruction, the policy described above starves
the thread as the thread is not able to migrate to an
AVX-512 core. We only observed this case if the user
actively configured the CPU affinity of threads. Our
prototype detects this special case by intersecting the
CPU affinity mask with the mask of AVX-512 cores and
in response temporarily allows execution of AVX-512
instructions on the non-AVX-512 core while the thread
is running.

3.3 Detecting Non-AVX-512 Code
Scheduling of AVX-512 threads is restricted in our design.
The threads of applications consisting of AVX-512 phases
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and non-AVX-512 phases will eventually stop executing AVX-
512 code and enter a non-AVX-512 phase. In this case, the
scheduling restrictions should be removed and the thread
should be migrated to a non-AVX-512 core. It is, however,
not as easy to detect the absence of AVX-512 instructions
than it is to detect their attempted execution, as the CPU
does not provide any method to receive a notification when
no instruction of a certain type is executed. Therefore, our
prototype has to depend on heuristics to estimate the length
of AVX-512 phases instead.

The main observation leading to the heuristic used in our
design is that AVX-512 is predominantly used to speed up
compute-heavy execution phases. Those phases usually per-
form no I/O and few other system calls2. Therefore, system
calls are a good indicator that such an AVX-512 phase is over.
On each kernel entry on an AVX-512 core, our prototype
marks the current thread as a normal thread, removes the
scheduling restrictions, and invokes the scheduler to sched-
ule any (prioritized) AVX-512 thread instead. Eventually, a
non-AVX-512 core will then pick up the previous thread,
which will thereby automatically be migrated away from the
AVX-512 core.

As a fall-back for workloads that do not execute any sys-
tem calls over long periods of time, we suggest periodically
resetting the thread type to normal after a fixed timeout, sim-
ilar to existing approaches suggested by related work [20].
If, however, the thread still executes AVX-512 instructions
at the time of the timeout, changing the thread type will
result in two migrations in quick succession of the thread to
a non-AVX-512 core and back to an AVX-512 core. As thread
migrations cause overhead, the timeout therefore needs to
be long enough to provide a sensible upper bound on the
rate of migrations and the resulting overhead. While we im-
plemented a timeout of 2ms in our prototype, we found that
the system-call-based policy is sufficient for the benchmarks
in our evaluation.

3.4 Valid 512-bit Register State
In our prototype, we slightly modify the policy described
in the last section to handle one special case: As the con-
text switch code of Linux does not preserve 512-bit register
state if context switch support is disabled as described in
Section 3.1, migrating a thread with valid 512-bit register
content to a non-AVX-512 core would cause the content to be
corrupted. It would be possible to modify Linux to preserve
the state. However, to reduce implementation complexity,
we instead leave the type of the thread unchanged and pre-
vent migration if our prototype detects valid 512-bit register

2In a setup with 28 threads on a 28-core system, each thread of the x265
video encoder used in this paper executes one futex system call on average
every 5 milliseconds.
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Figure 5: CPU time required to run various bench-
marks. The Parsec benchmarks were executed in par-
allel with an instance of the x265 video encoder which
was configured to use either AVX-512 instructions or
neither AVX2 nor AVX-512. Our prototype noticeably
reduces the influence of this background process on
the benchmark.

contents. In practice, this limitation is of little relevance:
Most software uses the vzeroupper instruction directly af-
ter each AVX-512 phase to clear the register state, as simply
having valid 512-bit register state is enough to make many
non-AVX-512 instructions trigger frequency changes [10].

4 EVALUATION
To demonstrate the potential of our prototype in terms of
performance improvement, we evaluated the prototype on a
system with an Intel Xeon Gold 6130 CPU and 24GB DDR4-
2666 RAM. We tested our prototype with the single-process
scenario from Section 2 consisting of the nginx web server
and OpenSSL as an example for an interactive single-process
workload, and we tested the two-process scenarios with x265
and the Parsec benchmarks as examples for non-interactive
two-process workloads. For these benchmarks, we measured
the performance with our prototype and compared it to re-
sults using the unmodified MuQSS scheduler, both using the
Linux 4.17 kernel. For our experiments, we disabled kernel
page-table isolation as we expect future systems to imple-
ment more efficient hardware mitigations against the corre-
sponding attacks.
As the main performance metric, we selected the overall

CPU time required to execute the benchmark. Our prototype
modifies the scheduling policy and might in some cases af-
fect the number of cores used by the benchmark. As overall
system throughput and per-core performance improvement
is the main goal of our approach, the CPU time is a better

30



Automatic Core Specialization for AVX-512 Applications SYSTOR ’20, June 2–4, 2020, Haifa, Israel

indication for performance than the wall-clock time required.
The results of our performance measurements are shown in
Figure 5. We describe and discuss the results in Sections 4.1
and 4.2.
Besides raising the average CPU frequency, core special-

ization and the required thread migrations have a number
of other impacts on performance. Migrations of threads be-
tween cores can introduce overhead, but core specialization
can also improve cache effectiveness as has been shown in
other research [17, 25]. Therefore, we also perform a perfor-
mance analysis based on performance counters to show that
the performance improvement is mainly caused by the im-
provement of the average CPU frequency. This experiment
is described in Section 4.3.

4.1 Single-ProgramWorkload
As an example for a heterogeneous single-programworkload
with AVX-512-heavy execution phases and non-AVX phases,
we replicate the nginx web server example used in related
work to demonstrate the problem of AVX-512 frequency re-
duction [15]. We let the nginx web server serve a static file
with on-the-fly compression using the brotli compression al-
gorithm to simulate some page generation overhead, and we
let the web server serve the file over HTTPS provided by the
OpenSSL library. We let the web server use the ChaCha20-
Poly1305 encryption algorithm and select either the AVX-512
implementation of the algorithm or disable both AVX-512
and AVX2. In our prototype, three cores were designated
as AVX-512 cores. As shown in Figure 5, with the unmodi-
fied MuQSS scheduler AVX-512 reduces the throughput by
the web server by 6.0%. In our prototype, however, perfor-
mance with AVX-512 OpenSSL matches the non-AVX-512
implementation more closely, with only 1.7% slowdown. The
impact of AVX-512 on the benchmark’s performance was
therefore reduced by 71%.

4.2 Two-ProgramWorkloads
As examples for heterogeneous two-program workloads con-
sisting of an AVX-512-enabled program and a non-AVX-512
program, we execute several benchmarks from the Parsec
3.0 benchmark suite [7] alongside an instance of the x265
video encoder configured to use either AVX-512 or AVX. In
all cases, x265 was configured to use 32 threads. Such a large
number of threads allows the CPU-intensive background
task to exploit phases where I/O bound tasks leave cores idle.
As x265 by default reduces its own priority, we modified the
application to run all threads at default priority. Our pro-
totype was configured to use half of the system’s cores as
AVX-512 cores. As Figure 5 shows, the Parsec benchmarks
are slowed down if x265 uses AVX-512. If core specializa-
tion is used, the slowdown shrinks from 12.3% down to 3.7%,

meaning that the impact of the frequency reduction was
reduced by 70%. Note that the overhead determined in this
experiment is different to the values shown in Section 2 due
to the different scheduler (MuQSS vs. CFS) and the resulting
differences in co-scheduling.

The results show that in all cases some slowdown remains.
We expect that the reason for this slowdown is that x265
often cannot not fully utilize its cores, as data dependen-
cies limit the exploitable parallelism. In this case, the bench-
mark might be scheduled in parallel on the same core as
x265. Performance counter analysis of Parsec vips showed
that our prototype reduces the number of cycles spent at
“AVX-512 frequencies” by the Parsec vips benchmark by 70%,
but 30% remain despite core specialization, which supports
the hypothesis that co-scheduling of the two processes still
takes place. While this effect seems like a significant disad-
vantage compared to “hard” core scheduling which never
schedules AVX-512 tasks alongside non-AVX-512 tasks on
the same core, it actually is not: Any approach which never
co-schedules AVX-512 threads and non-AVX-512 threads on
the same cores will inevitably cause hyperthreads to idle,
whereas our approach fully utilizes all available hyperthreads
and therefore improves the overall throughput of the proces-
sor.
We repeated the two-program experiments with most of

the PTS benchmarks used in Section 23. PTS build-linux-
kernel showed a reduction of the AVX-512-induced slow-
down from 9.4% down to 1.6%, i.e., the impact of the fre-
quency reduction was reduced by 83%. For the other PTS
benchmarks, our setup – equal numbers of AVX-512 and
non-AVX-512 cores – produced excessive speedup as the
system started to increase its frequencies above the all-core
turbo frequency, which eclipsed any performance improve-
ment due to reduced AVX-512 overhead. The reason for this
behavior was that the benchmarks were not able to fully
utilize the non-AVX-512 cores either due to their I/O-heavy
nature or their low number of threads. See Section 5 for a
discussion of the ideal number of AVX-512 cores. We plan to
rerun the benchmarks with optimized allocation of AVX-512
cores as part of future work.

4.3 Microarchitectural Analysis
The goal of our prototype is to show that core specialization
can reduce the impact of AVX-512 frequency reduction on the
performance of non-AVX-512 code. However, while our ex-
periments show significant performance improvements, they
do not prove that increased average CPU frequency is the
reason for the results. In particular, in the past core specializa-
tion has been shown to affect cache effectiveness as each core
only has to hold parts of the working set and the contents of

3We excluded mysqlslap due to its excessive runtime.
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Figure 6: CPU frequency for some of the benchmarks
shown in Figure 5. Core specialization noticeably re-
duces the frequency impact of the AVX-512 code.

different core’s caches complement each other [17, 25]. To
determine the reason for the performance changes caused by
our prototype, we therefore first measure the average CPU
frequency experienced by the benchmark and then perform
a performance counter analysis.

The results of the frequency measurements are shown in
Figure 6. Whereas AVX-512 reduces the average frequency
for the benchmarks down to 2.47GHz from 2.77GHz, our
approach causes a significant frequency improvement again,
yielding an average frequency of 2.70GHz across the bench-
marks. The frequencies are closely correlated to the respec-
tive performance. For example, the nginx benchmark shows
a rather low frequency difference as the web server often trig-
gers AVX2 frequencies even if OpenSSL is not configured to
use AVX2 or AVX-512, which corresponds to the comparably
low performance difference described in Section 4.1.

We conduct an analysis of the instructions per cycle (IPC)
to determine the impact of other factors such as changed
cache miss rates. For the AVX-512 nginx benchmark, the IPC
difference is minor. Whereas the web server executes 1.043
instructions per cycle with an unmodified MuQSS sched-
uler, our prototype increases the IPC by 1.6%, resulting in a
throughput of 1.06 instructions per cycle. This IPC change is
comparably small which supports the assumption that the
frequency change is the main reason for the overall perfor-
mance improvement. For the parsec benchmarks, the IPC
improves by 2.8% on average – more than for nginx, but still
not enough to explain the significantly larger performance
difference. Furthermore, the different Parsec benchmarks
showed varying behavior and the IPC results showed little
correlation to performance, with fluidanimate and vips even
suffering from reduced IPC in our prototype.

To determine the reason for the nginx IPC difference,
we conduct a top-down performance counter analysis [28]
which provides a method to attribute the IPC to different
parts of the microarchitecture. The analysis shows that nginx
is more often backend-bound in our prototype but experi-
ences fewer stall cycles due to bad speculation. The former is
likely a sign of increased data access stalls due to cache line
bouncing between different cores, whereas the latter is a sign
of improved instruction cache effectiveness due to the code
being partitioned into different private caches. As the small
IPC difference shows, however, the two effects cancel each
other out and the fraction of time spent retiring instructions
is very similar.
For the parsec benchmarks, a top-down performance

counter analysis is not viable: On a system with hyperthread-
ing the IPC experienced by one hyperthread always depends
on the code executed on the other hyperthread, so differ-
ent scheduling of two processes significantly distorts the
IPC measurements for one of the processes. Therefore, we
use perf [1] to directly compare the branch misprediction
and cache miss ratio of the Parsec benchmarks. The branch
misprediction ratio correlates with the improved IPC, as
all benchmarks show slightly fewer mispredicted branches.
The cache miss ratio, instead, does not appear to correlate
with IPC: Whereas blackscholes and fluidanimate show a
slightly worse cache miss ratio, the other benchmarks show
improved cache hit rates. In particular, vips experiences 37%
fewer cache misses per cache reference despite having lower
IPC in our prototype.

5 DISCUSSION
The AVX-512 instruction set extension often enables signif-
icant speedup – for example, the x265 video encoder used
in this paper gains almost 20% throughput for some con-
figurations [27]. However, the frequency reductions caused
by the AVX-512 code often slow down other non-AVX-512
code. Our evaluation showed that our approach is able to
mitigate most of that slowdown for a range of benchmarks.
However, our prototype still has a number of limitations,
some of which can be easily resolved and some of which
are caused by limitations of the underlying hardware. We
will discuss those limitations in the following and sketch out
potential solutions.

Detection of AVX-512 support: At startup, most software
using AVX-512 checks for available instruction sets via the
CPUID instruction. The return values of this instruction, how-
ever, are not only affected by the type of processor but also by
the operating system support for specific instruction sets. In
our case, when our prototype disables support for AVX-512
instructions on the non-AVX-512 cores, the corresponding
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bits returned by CPUID are affected as well. Therefore, de-
pending on the initial core of an application, the application
might either detect support for AVX-512 or not and will sub-
sequently use only the detected instruction sets. Due to this
nondeterminism, we simply modified the workloads to al-
ways use AVX-512 if requested, independent from the result
of the CPU feature detection logic of x265.

A generic fix for this problem is available as well, however:
In virtual machines, the CPUID instruction can be intercepted
to present a specific CPU feature set to virtual machines.
Techniques such as Dune [6] could be used to intercept CPUID
instructions executed by regular processes as well and could
be used to present a uniform CPU feature set independent
from the core on which the application is running.

Imprecise detection of energy-intensive code: Our current
prototype only isolates threads based on whether the thread
executes AVX-512 instructions or not. Current Intel CPUs,
however, provide three distinct frequency levels, so a solu-
tion with three types of cores would be required for optimal
packing of code running at AVX-512, AVX2, or normal fre-
quencies. Such a solution requires a different mechanism
to categorize code, though, as the current mechanism only
detects execution of AVX-512 instructions.
Not all AVX-512 instructions cause a transition to the

same frequency level, though. For example, glibc provides
implementations of memset() and similar functions using
AVX-512 instructions that do not cause a transition to the
lowest frequency level, and neither do very short sections
of energy-intensive 512-bit FMA operations. Similarly, the
mechanism is not able to detect AVX2 instructions which
cause a frequency reduction. On current hardware, however,
we were unable to identify a better mechanism to detect
energy-intensive code and to intercept it before any fre-
quency reduction takes place.
We suggest an improved hardware-software interface

which allows the operating system to make decisions based
on power consumption instead of instruction set usage.
This interface would provide power consumption exceptions
which are triggered when code requiring a specific operat-
ing frequency – e.g., a sufficiently dense sequence of 512-bit
FMA instructions – is executed. This exception has to be trig-
gered before the frequency is reduced, to allow the operating
system to intervene and migrate the thread to a different
core based on the frequency requirements. Similarly, the in-
terface should provide a notification mechanism when less
power-intensive code is executed. The mechanism should be
configurable by the operating system. For example, the CPU
could trigger an interrupt when only less power-intensive
code was executed for a software-specified duration. This
notification could replace the heuristics in Section 3.3 for

more accurate decisions about when to migrate threads to
cores with a higher frequency.

Number of AVX-512 cores: Our prototype in its current
form requires the number of AVX-512 cores to be set manu-
ally. Ideally, the ratio between the number of AVX-512 and
the number of non-AVX-512 cores matches the ratio between
the AVX-512 and non-AVX-512 parts of the workload. If the
number of AVX-512 cores is too low, some of the non-AVX-
512 cores might remain idle. If the number is too high, iso-
lation between AVX-512 and non-AVX-512 code is reduced
as non-AVX-512 code is often executed by (otherwise idle)
AVX-512 cores. In our experiments, we observed the former
for some of the PTS benchmarks, where idle cores caused
the system to increase its frequency above the all-core turbo
frequency. For following prototypes we will dynamically de-
termine the optimal number of AVX-512 cores by monitoring
the CPU load caused by AVX-512 threads on the AVX-512
cores.

NUMA support: We did not evaluate our prototype on a
NUMA system with multiple CPUs. While the underlying
MuQSS scheduler tries to minimize migration of threads
across NUMA domains, our prototype increases the overall
thread migration rate and will therefore likely suffer from
increased overhead on NUMA systems. We assume that on
NUMA systems each NUMA node has to have its own set of
AVX-512 cores and thread migration has to be restricted to
migration within the NUMA node to achieve sufficient per-
formance. Further research has to be conducted to measure
the resulting overhead and the effect of such restrictions.

6 RELATEDWORK
In this paper, we described a system which migrates threads
to different sets of cores based on their usage of AVX-512 in-
structions to restrict the frequency impact of the instructions
to a subset of the cores. In this section, we summarize the
existing work on AVX-512 frequency effects and summarize
the work on operating systems for asymmetric multiproces-
sors which builds the foundation for parts of our design. We
also describe other existing solutions for similar problems
and describe the differences.

6.1 Performance Impact of AVX-512
While the basic behavior when executing AVX-512 instruc-
tions is documented by Intel [5, p. 2-13], the documentation
lacks detail and often deviates from the actual behavior ob-
served during experiments on the hardware. Several reverse
engineering efforts have tried to fill the gaps. For example,
Schöne et al. [24] show that the delay when increasing the
frequency is lower than suggested by the documentation
and Travis Downs [11] provides a detailed analysis of the
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performance during frequency changes caused by AVX-512.
The latter experiments also show that the CPU increases
the voltage during the frequency transition when executing
AVX-512 instructions, which shows that short-term voltage
fluctuations caused by power-intensive AVX-512 instructions
might be more problematic than violation of thermal limits
caused by the increased power consumption.

For the first time, experiments at Cloudflare [15] showed
that the frequency impact of AVX-512 instructions poses a
problem for real-world workloads as AVX-512 was identified
as the reason for a 10% slowdown for certain OpenSSL con-
figurations. We use a single-process workload derived from
this experiment in our evaluation.

Aubrey Li [19] subsequently first documented the effects
on multi-process workloads and showed that an AVX-512-
enabled deep-learning workload can significantly slow down
the performance of a concurrently executing non-AVX-512
process. As a countermeasure, he proposed a variant of core
scheduling – i.e., restricting co-scheduling of different pro-
cesses on the same core in parallel [8] – to prevent threads us-
ing AVX-512 from being executed in parallel to non-AVX-512
threads.While we also modify the scheduler to reduce the im-
pact of frequency changes due to AVX-512, our approach has
a two main differences. First, core scheduling as suggested
by Aubrey Li depends on long-term categorization of pro-
cesses through analysis of their register set usage, whereas
the trap-and-migrate mechanism used by our design can
detect short-term AVX-512 usage and makes our approach
usable for single-program workloads such as the web server
scenario described above. Second, core scheduling prevents
harmful co-scheduling by potentially causing hyperthreads
to idle if no suitable thread is runnable. Idle hyperthreads,
however, ultimately waste CPU performance. Our approach
tries to separate AVX-512 and non-AVX-512 code whenever
possible, but allows co-scheduling when necessary to fully
utilize all available hyperthreads and to maximize overall
throughput.

6.2 OS Support for Asymmetric
Multiprocessors

One of the main techniques used by our approach is to trap
and migrate threads when executing AVX-512 instructions.
A very similar technique has been described by Li et al. [20]
who disable the floating-point unit (FPU) on some cores of a
multi-core system to simulate an asymmetric multiprocessor
where only some cores have support for floating-point oper-
ations. On this system, executing floating-point instructions
on a core with a disabled FPU causes the operating system
to migrate the thread to a suitable core. We employ a similar
technique to trigger exceptions when executing AVX-512
instructions, although we only disable parts of the register

set so that other SIMD instructions can still be executed. As
a heuristic to migrate threads back to a core without an FPU,
Li et al. suggest a fixed timeout. We, instead, use system calls
as a heuristic to detect execution phase changes.

6.3 Profiling-Based Approaches
Core specialization in its different forms is not the only con-
ceivablemethod to solve the problem of frequency reductions
caused by power-intensive instructions. Kumar et al. [16]
describe a profiling-based approach for the single-process
scenario where applications only use SIMD instructions in
select parts of the program. The approach tries to improve
the efficiency of power-gating by identifying the parts of the
programwhere short stretches of SIMD instructions cause lit-
tle overall performance improvement and uses the resulting
information to “devectorize” the code to allow power-gating
of the SIMD unit. Such an approach could be used to reduce
the frequency reduction caused by AVX-512. However, the
approach depends on a just-in-time compiler for devector-
ization. The approach described in this paper works within
the existing software ecosystem and requires little changes
to the operating system.
As an alternative, profiling information could be used to

steer the processor’s frequency selection policy to reduce
the impact on non-AVX-512 code. For example, if it is known
that the thread is not going to use AVX-512 instructions in
the near future, the frequency can be immediately increased,
thereby reducing the impact on the following non-AVX-512
code. Roy et al. [23] describe a technique which uses profil-
ing information to let the software manually control power
gating. Although changes would be required to the hard-
ware, simulations showed that a similar approach could be
employed to improve the efficiency of AVX-512 frequency
management [12].

7 CONCLUSION
Intel CPUs reduce their frequency when executing AVX2
and AVX-512 instructions to limit power consumption. The
frequency reduction, however, also affects other code when
that code is executed on sibling hyperthreads in parallel or
when the code directly follows the AVX2/AVX-512 code. We
demonstrate that core specialization can mitigate most of the
slowdown in both cases. We describe a core specialization
approach which limits execution of AVX-512 instructions
to a subset of the cores and makes the instructions raise
exceptions when executed on other cores to trigger the ap-
propriate thread migration. Our prototype is able to reduce
the slowdown caused by AVX-512 by 70% on average for a
range of benchmarks. While the design is therefore usable on
current CPUs, we describe hardware changes which could
improve its effectiveness.
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