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Abstract

In order to speed up record and replay of full virtual machines systems like
SimuBoost employ hardware-assisted virtualization to limit the impact of the
recording process on the virtual system’s performance. Like all record and replay
systems this requires accurate logging of non-deterministic events that occur during
the recording and injection of these events during the replay. The deterministic
instructions between these events are being replayed directly.

However, current record and replay systems do not account for non-deterministic
events that can be introduced by the x86 memory management unit (MMU). The
unpredictable behavior of the translation lookaside buffer (TLB) and its potential
incoherency with the page tables in RAM can cause the MMU to either set accessed
and dirty bits in the page tables or skip this step depending on the TLB’s contents.
When the recorded system reads the state of these bits, the replay can diverge from
the recorded execution if the TLB’s contents or its behavior differ between the two,
which is almost unavoidable.

We propose a way to record the changes the MMU makes to the status bits in
the guest’s page tables and implement it as part of the SimuBoost system. We
achieve this by protecting the page tables in using the extended page table (EPT)
mechanism on modern Intel CPUs and emulating these instructions using the
emulation facilities for x86 code within the KVM Linux module. We implement
support for replaying these events in the QEMU fork QSIMU that SimuBoost
utilizes for heterogeneous replay.

Our results show that this approach can be a feasible solution. While we observe a
350% slowdown during recording for worst-case micro-benchmarks, the impact
on some real-world applications is only 50% and CPU intensive workloads as well
as the replay of any of the workload are not affected at all. This system is also able
to successfully replay workloads the existing system consistently failed to replay
before.
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Deutschsprachige
Zusammenfassung

Systeme zur Ausführungswiederholung (engl. record and replay) haben das Poten-
tial ein wichtiges Werkzeug zur Fehlersuche in komplexen Softwaresystemen zu
werden. Anstatt ein Programm mehrmals ausführen zu müssen um einen Fehler zu
reproduzieren und schrittweise ein Areal im Programmcode einzugrenzen das als
Fehlerursache vermutet wird reicht es, eine einzige Ausführung des Programms
aufzuzeichnen. Anschließend kann diese beliebig oft wiedergegeben und sogar
zurückgespult werden um so von den Symptomen des Fehlers zu dessen Ursache
zu finden.

Aufgrund der zunehmenden Verbreitung von virtuellen Maschinen in vielen An-
wendungsgebieten, allen voran im Serverbereich, wurden diverse Systeme vorge-
schlagen die dieses Prinzip der Ausführungswiederholung auf die Maschinenbe-
fehlsebene übertragen und somit das Aufzeichnen und Wiedergeben eines gesamten
virtualisierten Systems ermöglichen. Dies ist nicht nur ein hilfreich im Bereich
der Fehlersuche, sondern erlaubt auch die forensische Analyse von Schadsoftware
nachdem ein solcher Befall entdeckt wurde da das System zur Ausführungswie-
derholung nicht von der kompromittierten virtuellen Maschine beeinflusst werden
kann.

Um Systemressourcen zu schonen vermeiden Systeme zur Ausführungswiederho-
lung es nach der Ausführung jedes Befehls eine vollständige Kopie der virtuellen
Maschine zu erstellen. Stattdessen machen sie sich die Tatsache zu Nutze, dass die
Ergebnisse der meisten Maschinenbefehle in deterministischer Weise von ihren
Eingaben abhängen. Nur der initiale Zustand und solche Ereignisse die inhärent
nichtdeterministisch im Zeitpunkt ihres Eintretens oder ihrem Inhalt sind, wie z.B.
Unterbrechungen, müssen aufgezeichnet werden. Die restlichen Stadien des aufge-
zeichneten Systems zwischen diesen Ereignissen können jedoch wiederhergestellt
werden indem die deterministischen Befehle auf den vorliegenden Eingabedaten
berechnet werden.

Um die Leistungseinbußen durch die Ausführungsaufzeichnung der virtuellen
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Maschine in einem akzeptablen Rahmen zu halten verwenden Systeme wie Si-
muBoost [1] die Hardwareerweiterungen zur hardwareunterstützten Virtualisie-
rung die in die von den meisten aktuellen Systemen unterstützt werden und führt
einen Großteil der Befehle des aufzuzeichnenden Systems direkt auf dem Gast-
gebersystem aus. Dies führt jedoch zu einer neuen Klasse von Problemen. So
verwendet die x86 Architektur die von den meisten PCs und Servern verwendet
wird verwendet eine Speicherverwaltungseinheit welche die linearen Adressen,
die von Software verwendet und referenziert werden, in physische Speicherblöcke
im Direktzugriffsspeicher übersetzt. Während dieses Vorgangs aktualisiert die
Speicherverwaltungseinheit einige Statusinformationen zu der jeweiligen linearen
Adresse in den Seitentabellen, die sie für diese Übersetzung verwendet. Da dieser
Übersetzungsvorgang relativ zeitaufwändig ist werden diese Übersetzungen im
Übersetzungspuffer zwischengespeichert um Zugriffe auf den Direktzugriffsspei-
cher zu beschleunigen.

Allerdings ist das Verhalten dieses Übersetzungspuffers bewusst nicht spezifiziert
und die Dokumentation verweist explizit darauf, dass er seinen Inhalt jederzeit
unaufgefordert leeren kann. Dies hat zur Folge, dass die Übersetzung einer linearen
Adresse durch die Speicherverwaltungseinheit entweder die Statusinformationen
in den Seitentabellen aktualisiert oder nicht, abhängig davon ob die entsprechende
Übersetzung im Übersetzungspuffers zwischengespeichert ist. Wenn dieser Fall
während der Aufzeichnung einer virtuellen Maschine auftritt kann dies dazu führen,
dass der Ausführungspfad während der Ausführungswiedergabe von dem der
ursprünglich aufgezeichneten Ausführung divergiert, wenn das Gastbetriebssystem
den nichtdeterministischen Inhalt der Seitentabellen liest und abhängig davon
einen Ausführungspfad wählt. Dies führt dazu, dass die Ausführungswiederholung
letztendlich fehlschlägt, da die aufgezeichneten nichtdeterministischen Ereignisse
nicht mehr zum korrekten Zeitpunkt wiedergegeben werden können, da dieser
nur auf dem ursprünglichen Ausführungspfad definiert war, was zur Folge hat,
dass auch der deterministische Zustand zwischen diesen Ereignissen nicht korrekt
wiederhergestellt werden kann.

Das Ziel dieser Arbeit ist es ein System zu entwickeln, welches eine Ausführungs-
wiederholung inklusive des im vorherigen Absatz beschriebenen Nichtdeterminis-
mus erlaubt ohne vollständig auf die Leistungssteigerung durch die Verwendung
von hardwareunterstützter Virtualisierung während der Aufzeichnung verzichten
zu müssen und die Leistung dieses Systems sowohl während der Ausführungsauf-
zeichnung als auch der Ausführungswiederholung zu evaluieren.

Um dieses Ziel zu erreichen werden wir die Ausführungskomponente des Si-
muBoost Systems, die als Teil des KVM Moduls im Linux Betriebssystemkern
implementiert ist, erweitern um jegliche Änderung an den Seitentabellen des Gast-
systems innerhalb der virtuellen Maschine zu überwachen, gleichwohl ob diese
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durch das Gastbetriebssystem oder die Speicherverwaltungseinheit vorgenommen
werden. Wir erreichen dies indem wir die Hardwarevirtualisierungstechnologie der
geschachtelten Seitentabelle verwenden, die als EPT (engl. Extended Page Table)
in aktuellen Intel x86_64 Prozessoren implementiert ist, um die Speicherbereiche
die die Seitentabellen des Gastsystems enthalten als nur-lesbar markieren und jeder
Befehl, der auf diese Speicherbereiche schreibend zugreift mithilfe der Emulations-
software für x86 Befehle, die Teil des KVM Moduls ist, emulieren. Des Weiteren
modifizieren wir QSIMU, eine Abspaltung des QEMU Emulators die SimuBoost
zur Ausführung der Ausführungswiederholung verwendet, um diese zusätzlichen
Informationen die während der Ausführungsaufzeichnung gesammelt wurden zu
verwerten und die gleichen Änderungen an den Seitentabellen auch während der
Ausführungswiederholung vorzunehmen.

Unsere Resultate zeigen, dass dieser Ansatz eine vielversprechende Lösung des
beschriebenen Problems bietet. Die nötigen Modifikationen am bestehenden Pro-
grammcode waren von relativ geringem Umfang und unser modifiziertes System
ist in der Lage auch solche Ausführungen zu wiederholen für die dies zuvor
unmöglich war. Während wir keinen messbaren Einfluss auf die Laufzeit der Aus-
führungswiederholung feststellen konnten, variiert der Einfluss auf die Laufzeit
der Ausführungsaufzeichnung stark in Abhängigkeit von der Zusammensetzung
der Last der aufgezeichneten Ausführung. Berechnungsintensive Ausführungen
verlaufen mit der selben Geschwindigkeit wie bei einer Aufzeichnung ohne Un-
terstützung für nichtdeterministische Speicherverwaltungsereignisse. In einem
konstruierten Minimalbeispiel für einen schlechtestmöglichen Fall konnten wir
jedoch eine Verlangsamung um 350% feststellen. Für reale Anwendungsbeispiele
liegt der Leistungsabfall zwischen diesen Extremen, tendiert jedoch zum besseren
Ergebnis.
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Chapter 1

Introduction

Record and replay systems aim to provide an important tool in debugging by
allowing the user to record a single faulty execution of a program and subsequently
replaying this execution accurately without the replay being affected by any external
inputs. This causes any bug that is being tracked down to occur in exactly the
same way every time and greatly simplifies the debugging experience. It can even
allow the debugger to inspect an earlier state in the programs execution, working
backwards in time from the symptoms of a bug to its cause.

Due to the prevalence of virtual machine software in today’s computing environ-
ments, it has been proposed to apply the same principle of record and replay at
the machine instruction level, allowing the recording and subsequent replay of a
virtual machine. This can not only be useful for debugging but also as a tool in
intrusion detection because the software that records the virtual machine will be
unaffected if the virtual machine itself is compromised.

In order to avoid performing a full copy of the virtual machine after every instruc-
tion, record and replay systems exploit the fact that most machine instructions are
deterministic in nature. Only events that are non-deterministic such as interrupts
need to be recorded and the state of the recorded system between these events can
be recreated by simple executing the deterministic instructions.

To provide acceptable performance when recording a full virtual machine, record
and replay systems for virtual machines such as SimuBoost [1] make use of the
hardware-assisted virtualization capabilities of modern processors and execute a
majority of the recorded system’s instructions directly on the host hardware. While
this severely improves the performance of the recording, it also introduces new
problems. The x86 architecture that is used by most personal computers and servers
utilizes a memory management unit (MMU) to translate linear memory addresses
that are used by the software running on the system into physical locations in RAM.
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4 CHAPTER 1. INTRODUCTION

While doing this, it also updates some status information in the page tables that
define these translations. Because this operation is relatively slow, the translation
lookaside buffer (TLB) is used, which caches these translations to speed up RAM
accesses.

However, the operation and contents of the TLB are non-deterministic, which can
cause the status of the translations that the MMU manages to either get updated or
not, depending on the presence of the given translation in the TLB. If this happens
during a recording of a virtual machine, it can cause the corresponding replay to
diverge from the code path that the recording took when the operating system in the
virtual machine inspects this non-deterministic state in the page tables and chooses
different actions depending on their contents. This will then cause the replay to
fail when its state deviates from the recording and the following non-deterministic
events cannot be lined up correctly.

Our goal in this work is to develop a system that allows a replay of a virtual machine
that is faithful to the previously recorded execution, including the non-determinism
caused by MMU changes to page tables depending on the TLB’s state, while still
reaping the benefits of hardware assisted virtualization and evaluate the impact that
this has on the performance of the system during both recording and replay.

To achieve this goal, we extend the recording component of the SimuBoost system,
which is implemented within the Linux kernel’s KVM module to track any change
that either the guest operating system in the virtual machine or the MMU makes to
the page tables. We achieve this by using the extended page table (EPT) hardware-
assisted virtualization extension in recent Intel x86_64 CPUs to mark the memory
that contains the page tables as read-only and emulating any write to them using
the emulation facilities present within KVM. We then modify QSIMU, the fork
of the QEMU emulator that SimuBoost uses to perform the replay, to process this
additional information gathered during the recording and recreate the same changes
to the page tables during the replay.

Our work shows that this approach is a feasible way to record these events, with
only small additions to the existing recording code being needed. We confirm that it
allows the replay of workloads that would previously fail to replay correctly. While
there is no measurable impact on the performance of the replay, our implementation
causes varying amounts of slowdown to the execution during recording, with the
magnitude of the slowdown greatly depending on the characteristics of the recorded
workload. While computationally heavy workloads suffer no slowdown, the worst-
case that we evaluated slows down by over 350%, with real world applications
falling between these extremes.
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Outline

In Chapter 2 we introduce the concepts of paging and the operation of the x86
MMU and TLB and explain more details on the operation of virtual machines,
record and replay systems and various implementations of the latter. In Chapter
3 we analyze the origin and impact of the observed problem and the degree to
which existing record and replay solution acknowledge or solve it. In Chapter 4 we
present the design of our proposed solution and weigh it against alternatives that we
considered. After this, we elaborate on some of the details of our implementation
in Chapter 5 before evaluating its correctness and performance using multiple
benchmarks in Chapter 6. Last but not least we summarize our work, offer a
conclusion and suggest potential improvements for future work in Chapter 7.
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Chapter 2

Background

In this chapter we will introduce the concepts and mechanisms that build the
foundation on which our work builds and which are necessary to fully describe
the problem we intend to solve and our proposed solution. First we give a short
introduction to virtual memory and the Translation Lookaside Buffer. Next we
introduce virtual machines and describe the differences between emulation and
hardware-assisted virtualization. Lastly we describe how QEMU and KVM imple-
ment these concepts and how Record and Replay of virtual machines can be used
to facilitate debugging applications and operating systems.

2.1 Virtual Memory

In order to provide isolation between different processes running on the same
system and allow a single system to run more than one instance of a program,
modern processors implement what is called paged virtual memory.[2] In this
mode of operation the memory addresses that a program accesses are not treated
as literal locations in physical memory but are instead treated as so called linear
addresses. The MMU of the system translates these linear addresses into physical
addresses which describe a specific location in physical memory which is then
used by the given instruction. These translations — or mappings — of linear
to physical addresses are different for each running process and are configured
by the operating system’s kernel. This prevents malicious or malfunctioning
processes from accessing other processes’ memory because the kernel only adds
translations to physical memory locations that the process is allowed to access.
It also avoids conflicts between different instances of the same program because
while the addresses that are hard-coded in their binary are identical and thus

7
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both instances intend to use the same memory addresses. However, by using
paged virtual memory their mappings refer to different pages in RAM. The set of
mappings that define the linear addresses that a program is able to use and which
physical memory locations back these addresses is called the program’s address
space.

2.1.1 Page Tables

The translations from linear to physical addresses are described by a set of cas-
cading tables in memory. We will now briefly describe the process by which the
MMU uses these tables to translate linear to physical memory addresses on current
x86_64 systems. While these tables are organized in levels and the tables on each
level have a distinct name that can be seen in Figure 2.1 on page 9, we will refer
to all of them as page tables unless otherwise noted because they are structured
identically and the differences between them will not be of importance to our work.

The physical address of the first of these page tables is recorded in the processor’s
CR3 register at all times. The MMU loads this table from memory and selects one
of its entries using the first 9 bits of the linear address as the index. Each entry
contains the physical address of the next table in the page table hierarchy as well as
a set of status flags. The MMU then loads the next table from the physical memory
address given in this entry and uses the next 9 bits of the linear address to select
an entry in this table. On current x86_64 systems the translation of a single linear
address uses up to 4 page tables each of which contain 512 entries. The last PTE
contains the address to a physical memory location of a fixed size, called a page
frame, and the remaining bits of the linear address are used as an offset into this
page frame. The specifics of this process can vary depending on the configuration
of the processor — e.g. in 32bit mode there are only two or three levels of page
tables, they each contain 1024 32bit entries instead of 512 64bit entries and each
step uses 10 bits of the linear address to select a PTE — but the general principle
remains the same.

To allow the operating system to keep track of which regions of memory are in
active use by a process the MMU maintains a set of status flags in each of the
PTEs. Two of these flags will be of interest to our work, the accessed and dirty
bits. The accessed bit is set by the MMU whenever it uses the corresponding PTE
to translate a linear to a physical address but before it returns the resulting address.
The dirty bit only exists in the entries of last level page table and is set by the
MMU when the memory that the entry references is written to. Together these two
bits allow the operating system to make an informed decision on which contents
to evict from memory when the amount of available memory runs low. Data that
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Figure 2.1: Linear Address Translation with 4-Level Paging.[2, p. 124]: Every 9
bit interval of the linear address selects an page table entry in the current page table
and 40 bits of the 64 bit sized page table entry are used to locate the next level page
table until the final 4 KiB sized page frame is located.

has been read from persistent storage, e.g. a file, and whose PTE does not have
the dirty bit set can simply be dropped from memory. Only the information from
where the data can be restored when the process tries to access it again needs to be
recorded. On the other hand if the memory is dirty it has to be written to persistent
storage before being dropped from memory. In both cases the accessed bit helps
inform the decision which specific pages to evict from memory. (The operating
will usually decide to keep data that has been accessed before under the assumption
that it will be accessed again.)

Another status flag and arguably the most important one is the present bit which
signifies if the page table entry is considered valid. If this bit is cleared the
MMU will not use this entry to translate a linear address and will instead upon
encountering it raise an exception, the so called page fault. This allows the
operating system to overcommit memory by clearing the present bit when creating
a page table for an application. As long as no linear address that uses the page table
entry in questing is accessed the operating system does not need to allocate any
memory to hold its contents or even load data from a hard disk to fill this memory.
Only when the memory is first accessed will a page fault be raised, invoking the
operating system’s kernel which will either fill in the corresponding page table
entry, allocate a page frame for this linear address and set the present bit to 1 or
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terminate the application if it is not allowed to access memory at the given address.

When the operating system determines the currently running process has exhausted
the amount of time that it was allowed to run, it determines which process should
run instead. Once it has done this, it switches the active address space so that the
new process is able to access its memory at the linear addresses that it expects. This
is performed by simply writing the physical address of the top-level page table to
the CR3 register. This process is called a context switch. The same operation may
take place when a process uses a system call to interact with the operating system
kernel, except that the kernel’s address space is activated, though this depends on
the implementation of the kernel.

2.1.2 The Translation Lookaside Buffer

While paged virtual memory brings some important advantages as detailed above,
a naive implementation would also come with a significant performance penalty.
Accesses to memory are relatively slow compared to data that is already in a
processor cache or even a register, with a single access requiring up to two orders
of magnitude more time to complete[3] and for each access to memory, up to
four additional memory accesses to page table entries have to be performed when
paging is being used. This would be prohibitively expensive, especially because
every instruction in a running program is also referred to by and loaded from
a memory address. In order to avoid quintupling the time it takes to load each
instruction and putting more pressure on the CPU caches by having to cache each
individual page table entry, the Translation Lookaside Buffer (TLB) is used. The
TLB caches translations from linear addresses to physical addresses. After the
MMU has resolved a translation of a linear address, determined it to be a valid
translation and set the accessed and dirty bits in the corresponding page table
entries it creates a TLB entry for this linear address. The TLB entry contains the
physical address that the translation points to as well as some of the status flags
oft the page table entries that were used in the translation, indicating among other
thins if the the linear address is read-only or writable, as well es the dirty bit of the
last level page table entry.

At the time the TLB entry is created the linear address is implicitly readable
because TLB entries are only created for valid translations from linear to physical
addresses. Furthermore the state of the accessed bit is not cached explicitly by the
TLB because each page table entry used by the corresponding translation already
has its accessed bit set by the MMU at the time the TLB entry is created. While the
MMU creates TLB entries automatically it is up to the operating system to ensure
that they remain consistent with the contents of the page tables. For example when
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removing an entry from a page table or marking an entry read-only, the MMU must
be notified of this fact. If the operating system does not flush the relevant TLB
entries the MMU might use the cached translation from the TLB for a future access
to the linear address, potentially ignoring the changed permissions. Whether this
happens or the changed permissions from the page tables are used depends on the
size and exact behavior of the TLB which is generally implementation defined. [2]

2.2 Virtual Machines

Many computer system resources are underutilized because the applications that
run on them are either idle for longer periods of time or only run on demand.
However the isolation of different services on individual systems is often desired,
for example for security or compatibility reasons. In order to solve this conflict
virtual machines (VMs) [4] can used to allow these applications to run on the same
physical machine while maintaining the required isolation between them. This is
used extensively in cloud computing infrastructure to improve hardware utilization
while at the same time providing isolation between the individual machines that
might be rented out to different customers. A virtual machine allows an unmodified
operating system to run as an application on another operating system while
keeping it under the illusion that it is running on its own physical hardware. To do
this a hypervisor or virtual machine monitor (VMM) implements the interface (i.e.
I/O devices, memory, CPU,. . . ) that a physical machine provides to the operating
system while preventing individual virtual machines — also called guest systems
— from influencing each other or the host system. The hypervisor runs the guest
system as an unprivileged application and employs either emulation, hardware-
virtualization or a combination of both to handle the privileged operations that the
guest wants to perform. An example for such a privileged operation is setting and
modifying the active page table hierarchy as that allows controlling which parts of
memory the running application can access, as we explained earlier. We will now
give a brief explanation of both emulation and hardware-assisted virtualization and
their use cases.

2.2.1 Emulation

When the hypervisor emulates [4] the guest instructions it does not run them
directly on the hardware but instead performs different operations while providing
the same results to the guest as if its code had been run unmodified. There are
multiple reasons why a hypervisor has to emulate some or even all of the guests
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instructions. For example the guest might be compiled for a different instruction
set, making it impossible to run it directly on the existing hardware. Another reason
would be that the instruction can’t be executed by the guest if the hypervisor wants
to maintain the isolation between guests and host. For example in the Intel x86
instruction set some instructions will cause errors if they are not run in protection
ring 0 and some instructions will return different results depending on which ring
they are executed from. If the guest were to run one of these instructions and
receive an error it would behave differently compared to running on a physical
machine so the instruction has to be handled by the hypervisor. However the
hypervisor can’t run the guest’s code in ring 0 because that would give the guest
control over the physical system. Instead the hypervisor analyzes the guests code
and performs an analogous action that yields the intended result for the guest.

To return to our earlier example, we will explain what happens when the guest
wants to change the active page table hierarchy to allow a different application
inside the guest to run. This instruction can’t be executed as is because page tables
are accessed by physical addresses but the physical addresses that are visible to
the guest are part of the virtual machine that the hypervisor simulates so the MMU
would be unable to find the page tables. To conform with the guests expectations
the hypervisor has to inspect the page tables that the guest has constructed and map
the guest’s physical addresses referenced in the page tables to the actual physical
memory on the host that it uses to provide the guest’s memory. It then re-creates
these page tables using the correct physical addresses and finally informs the MMU
about these new page tables. This process is called shadow paging and the page
tables that are allocated by the hypervisor are referred to as shadow page tables.[4]
Additionally the hypervisor has to keep track of any additional changes the guest
makes to its page tables, mirroring them to the shadow page tables and replace any
instruction by the guest that queries the active page table hierarchy to ensure that
the guest only ever sees the page tables that it constructed itself. This ensures that
for the guest the resulting state of the system is indistinguishable from the state if
it’s original page tables were being used.

There are multiple approaches to implementing an emulator for a given instruction
set. In any case the hypervisor has to parse the guest’s instructions and replace those
which can not be executed directly by (potentially multiple) native instructions that
can be executed directly. If the binary was compiled for a different instruction set
every instruction has to be replaced. This can either be done by an interpreter that
translates each instruction one by one as it is about to be executed or by translating
bigger blocks of the binary to native code at once which are then cached and
executed as needed. However both approaches come at a significant performance
cost due to the need to decode and translate each original instruction. In the
example above a single write to a register to activate a new set of page tables turned
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into the hypervisor reading all of the guests page tables from memory, transforming
their contents and writing new page tables before performing this single write to
a register. While some optimizations can be applied such as caching some of the
generated page tables this has to occur on each context switch in the guest system
resulting in a significant slowdown.

2.2.2 Hardware-Assisted Virtualization

In order to avoid this slowdown associated with emulation, many processors
and chipsets now implement hardware-assisted virtualization. Hardware-assisted
virtualization adds additional instructions to the processor’s instruction set that
allow the hypervisor to run a large portion of the guests code directly without
emulation. To do this the Intel VT-x hardware-assisted virtualization for example
adds two new modes to the processor, VMX root mode and VMX non-root mode.
The hypervisor runs in VMX root mode and can configure the behavior of the VMX
non-root mode which the processor enters before executing a virtual machine. In
VMX non-root mode the guest’s code can be executed directly and the guest is
able to use all protection rings 0 – 3. However, when the guest tries to execute
privileged instructions it will be suspended and the processor will exit into VMX
root operation and supply the hypervisor with information on which instruction
the guest tried to execute. The hypervisor is then able to emulate the instruction
and allow the guest to resume execution. This scheme of implementing virtual
machines is known as trap and emulate. Some privileged instructions can be
executed by the guest directly without intervention by the hypervisor. For example
the guest is allowed to enable and disable interrupts directly but this setting does
not affect the host or other virtual machines because it is stored in a structure
for the specific virtual machine when the processor exits non-root operation and
restored when entering the same virtual machine again. The hypervisor can also
configure which instructions cause the processor to suspend the guest which allows
the hypervisor a fine grained control over the guests state and can be used for
debugging purposes.

While hardware-assisted virtualization offers better performance than emulation it
also has some limitations. In general it is only possible to run guest systems that
are compiled for the instruction set that the CPU supports natively using hardware
virtualization.
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The Extended Page Table

While the implementation of hardware-assisted virtualization outlined above de-
scribes the initial support for this feature that was available on x86_64 CPUs,
different levels of hardware-assisted virtualization have since been added which
allow the guest to directly manage some resources that the hypervisor previously
needed to emulate, such as the managing of the guest’s page tables via shadow
page tables.

To obviate the need for shadow paging newer x86_64 processors by both Intel
and AMD implement Extended or Nested Page Tables, respectively. [5] Though
the technologies differ in details the basic concept is identical and we will now
describe the Extended Page Table (EPT) which we also used in our implementation.
The EPT is another set of page tables that is configured by the hypervisor. However
unlike the regular page tables it does not map from linear to physical addresses but
instead maps from what the guest considers its physical address space to the actual
hardware’s physical addresses.

When the guest wants to access a physical memory address the EPT is a walked by
the MMU exactly like the regular page tables but the indices in the individual tables
are derived from the guest physical address instead of the linear address. When
the EPT is enabled the guest is allowed to manage its own page tables without
intervention from the hypervisor because the CR3 register that stores the topmost
page table’s address is now part of the virtual machine’s state that is saved and
restored by the processor on transitions between VMX root and non-root mode
and cannot affect other guests or the host. In order to translate a memory access to
a linear address in VMX non-root mode the MMU will now first have to consult
the EPT to translate the guest physical address of the top-most page table that is
stored in the CR3 register to a real machine physical address and be able to load
the guest page table. Then it will find the address of the next level page table using
the normal process described in Section 2.1.1. However this page table is again
referenced by a guest physical address which has to be translated using the EPT.
This process is repeated up to 4 times after which the guest physical address of the
desired memory location has been determined and can be translated to a machine
physical address using the EPT. In order to avoid the overhead of loading up to
4 · 4 page tables/EPT tables from memory the TLB also caches translations from
(guest) linear addresses to machine physical addresses as well as translations from
guest physical to machine physical addresses when the EPT is enabled.

If they are invalid for the requested access a page fault is raised directly with
the guest otherwise the EPT is consulted. The entries of the EPT tables contain
permission bits much like the regular page table and if the requested access is
not allowed under the given permission (e.g. a write access where one of the
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corresponding tables does not have the writable bit set or a read access where the
present bit is not set) a VM exit occurs and an ETP violation which is the EPT
equivalent of a page fault is raised with the hypervisor. The hypervisor is then able
to modify the EPT to allow the access or emulate the instruction if it does not want
to allow the guest direct access to the memory address or if the address is part of
an memory-mapped I/O range of an emulated device.

This greatly improves performance because the hypervisor is not invoked for each
context switch in the guest and as long as the location of the guest’s memory
in the physical address space remains constant (i.e. it is not swapped to disk or
migrated to another physical machine) the EPT does not need to change. Later
revisions of the EPT also include support for accessed and dirty bits within the
EPT entries which allow the hypervisor to make better decisions on which parts
of guest memory to write to persistent storage and remove from the EPT under
memory pressure similar to how the accessed and dirty bits in the page tables are
used by the operating system kernel.

2.3 QEMU/KVM

In this section we will give a high level overview of how QEMU/KVM implement
the concepts described above to form a state of the art hypervisor under Linux. As
the name implies the hypervisor is really separated into two parts, the Kernel-based
Virtual Machine (KVM) which is part of the Linux kernel and QEMU which runs
in user space.

The KVM kernel module [6] allows the Linux kernel to act as a hypervisor using
hardware-assisted virtualization. It contains implementations for multiple architec-
tures while exposing a common interface to the user space application managing
the virtual machine. For example for the x86_64 architecture KVM is able to
utilize both the AMD SVM as well as the Intel VMX hardware extensions and
implements shadow paging as well as nested paging using EPT/NPT with either
being used depending on processor support and the configuration of KVM and the
virtual machine. It also supports emulation of the targeted instruction sets which
is used in cases where direct execution is not possible. However, KVM does not
implement any emulated devices. It is instead intended to be used by a user space
application that implements the rest of a virtual machine.

QEMU [7] on the other hand implements a hosted virtual machine monitor, i.e.
it runs as an application on top of a regular operating system while executing a
virtual machine. QEMU handles the emulation of devices and includes among
others support for storage, memory, input, graphics and network devices. These
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emulated devices each run in their own thread with another thread simulating the
CPU of the virtual machine. This thread runs the Tiny Code Generator (TCG) [8],
a binary translator that allows QEMU to execute both user space programs that
were compiled for a different architecture as if they were running natively as well
as — as described here — to run a full virtual machine for a guest system. In both
cases TCG translates contiguous blocks of emulated application’s instructions to
an intermediary language, which is then either translated to the host’s instruction
set and executed directly or — if no backend for the second translation step is
implemented — run by a generic interpreter for the intermediary language. If
the system supports hardware-assisted virtualization QEMU is also able to utilize
this support to improve the performance of the virtual machine, replacing the
use of the TCG. On Linux this support is provided by the aforementioned KVM
kernel module and execution of the CPU thread is implemented by calling into this
module. The CPU thread then blocks while the execution of the guest’s code is
handled by KVM until it is either interrupted because an interrupt from an emulated
device needs to be handled or until KVM returns control to QEMU, for example to
handle a memory-mapped I/O request for one of the emulated devices.

2.4 Record and Replay

Often computer programs exhibit bugs that are exceedingly hard to find and thus
fix because they happen non-deterministically. This can for example happen due
to race-conditions in multi-threaded programs. Depending on how rarely the
conditions that cause the bug to trigger appear it can take many invocations of the
program until one of them even exhibits the unwanted behavior. However, the most
commonly used scheme of debugging is cyclic debugging [9] whereby the program
is executed multiple times with each execution narrowing down the suspected area
in which the bug is located using breakpoints to inspect the state of the program at
certain points. Unfortunately the effectiveness of technique is greatly reduced when
the bug in question is triggered non-deterministically because it takes longer to find
an execution of the program in the invalid state and a single bug can manifest itself
in multiple ways at a later point in the execution making it hard to narrow down the
scope of the debugging process. Some bugs are even so called “heisenbugs” which
either disappear or alter their behavior when the program is being debugged. This
can for example be caused by the debugger altering the timing of some operations,
making threads of the same program run at a different speed relative to each other
which can change the probabilities for race-conditions to manifest themselves.

In order to solve this problem and make it easier or even possible to find this
class of bugs, Record and Replay [10] techniques can be used. Instead of only
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inspecting the state of the program at a given time and trying to deduce the cause
of any inconsistencies the complete execution of the program is recorded and thus
this exact execution can be replayed later in a deterministic way. This allows
inspecting the state of the program can be inspected at any point in time and even
work backwards across the timeline of the recording. By using Record and Replay
a given bug only needs to be reproduced once and can then be analyzed in depth
working backwards from the symptoms to the actual bug that caused them.

Because it would be prohibitively expensive to copy the entire step of the execution
for each point in time, requiring both immense amounts of memory and slowing
down the program enough to make it unusable, only non-deterministic events that
affect the execution are recorded. The execution can then be replayed by injecting
these events at the correct time and computing the deterministic operations in-
between these non-deterministic events normally. Examples of such events are the
time at which a network packet is received or the data that a read from a hard drive
returns. It is sufficient to record these non-deterministic events because the replay
can reconstruct the state of the program by combining them with the deterministic
instructions.

While the same concept of Record and Replay can be applied to whole virtual
machines to allow debugging of hard to reproduce bugs even withing the operating
system, performance has historically suffered due to the use of emulation until
the widespread implementation of hardware-virtualization. Because the virtual
machine exposes a different interface to the operating system a different set of
non-deterministic events needs to be recorded to ensure that the execution of the
whole system can be replayed deterministically. Examples of these events include
the timing of interrupts, the data returned from emulated devices (e.g. network
interfaces) or the count of the system timer.

Different implementations of Record and Replay for Virtual Machines have been
proposed, operating at different levels of abstraction. ReVirt [11] uses UMLinux1

[13] to run a modified Linux guest system as an unprivileged application on a
Linux host, replacing privileged hardware instructions with system calls into the
host kernel. This approach is however not very portable due to the requirement
to modify the guest kernel. ExecRecorder [14] on the other hand utilizes the
Bochs simulator that emulates a full x86 system at the hardware level, though at a
significant slowdown.

With the growing prevalence of hardware-assisted virtualization extensions in com-
mon x86 hardware there have been efforts to leverage these additional capabilities
to lower the performance impact of recording a virtual machine execution increase

1Not to be confused with the similarly named User Mode Linux[12]
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the compatibility with different guests. ReTrace [15] builds on the VMware Work-
station’s hypervisor and allows the replay to occur on a different machine from
the recording. This allows the recorded system to continue operating normally
without being affected by increased load from the replay. Building on top of this,
Aftersight [16] uses QEMU to replay the execution, greatly increasing the amount
of architectures the system can run on and allows the replay to run in parallel to
the recorded execution to allow analyzing the replay, e.g. for intrusions via buffer
overflows, while the system is running but without having to run these potentially
slow analyses on the production system itself. The approach taken Crosscut [17]
on the other hand allows transforming a VMware Workstation recording at ma-
chine instruction level into a replay at a different level of abstraction, for example
allowing the user to replay a single process that has been identified of being of
interest after the recording was created.

Other applications for record and replay have been proposed as well, with V2E
leveraging heterogeneous record and replay like Aftersight though in this case the
recording is implemented with hardware-assisted virtualization in KVM while the
replay is performed in TEMU, a tool for dynamic binary analysis built on top of
QEMU [18], to analyze malware without the malware being able to detect and
evade this analysis and SMP-ReVirt [19] building on the Xen hypervisor to enable
record and replay of multiprocessor virtual machines by guaranteeing the ordering
of accesses to shared memory to stay consistent during replay.
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Analysis

It can be difficult to debug and fix hard to reproduce bugs using only cyclic
debugging because the cause of the bug is generally not known and in some
cases it is even difficult to impossible to reproduce the problem with a debugger
attached to the program in question. So called Heisenbugs seem to actively avoid
inspection because their occurrence are influenced by subtle differences in timing.
Employing record and replay allows analyzing a single execution in depth without
changing the timing of external events or needing to reproduce the bug in question
in each debugging cycle. It has been proposed [11] to apply the same principle to
whole virtual machines to allow easier debugging of such bugs in the operating
system kernel or even monitor production systems, which often run in virtual
machines today, via recording. This would allow debugging bugs without having
to reproduce them even once and has also been suggested as an improvement to
intrusion detection [11] because an attacker might be able to alter log files and
other traces of his presence on the attacked system but would be unable to hide his
presence in the recording of the virtual machine that exists on the host.

Despite these advantages the application of record and replay techniques to virtual
machines has not been widely deployed yet and the solution that was commercially
available as part of the VMware Workstation hypervisor [15] has even been re-
moved in a later version[20]. It is clear that in order for record and replay of virtual
machines to be useful in practice one of the most important concerns if not the
most important concern is the accuracy of the replay. In order to keep the amount
of data that needs to be recorded as low as possible, all current implementations of
record and replay only log non-deterministic events that could otherwise not be
reproduced only from the current state of the system at the time of replay. There is
however a class of non-deterministic events that can be caused by incoherencies
between the TLB of x86 CPUs and the state of page tables in memory that none of
the implementations we mentioned in Section 2.4 cover.

19
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In this chapter we will explain the cause of these events as well as their impact
on record and replay solutions. In the rest of our work we will describe our
implementation to enable recording these events for single-processor hardware-
assisted virtual machines as a part of Simuboost [1].

3.1 TLB Induced Non-Determinism in Recording

As mentioned in Section 2.1.1 the MMU does not ensure consistency between the
page tables in RAM and the TLB entries that it creates to decrease the overhead
caused by virtual memory. When the MMU translates a linear address to a physical
address and TLB entry exists for this linear address, the page tables in RAM are not
consulted even if their permission bits or the physical address that they reference
have been changed. Instead the TLB entry is used directly to resolve the physical
address and assert if the current process is allowed to read, write or execute the
referenced memory. The same principle applies to the accessed and dirty bits of
the page tables. The MMU only sets these bits in the relevant page table entries
that were used to translate the current linear address when they are not already
set in the structure that it used to perform the translation. If the instruction that
caused the translation writes to the linear address and the dirty bit needs to be set
it is already set in the relevant TLB entry, it will not be set in the last page table
entry. The accessed bit never gets set when a TLB entry is used for the translation
because every TLB entry is implicitly considered accessed because the MMU only
creates entries in the TLB when translating an access to the given linear address at
which point it set the accessed bit in the page table entries.

This implies that if the guest operating system fails to invalidate the TLB when
clearing either the dirty or accessed bit in one of its page table entries, the state of
these bits after a future access to the linear address depends on implementation
defined behavior of the TLB. While this behavior can still be deterministic for
a system running on bare hardware, it is certainly non-deterministic when the
TLB is being shared between the host system and potentially multiple guests in
virtual machines. At any point the guest’s execution can be preempted, for example
because its scheduled time slice elapsed or because it tried to execute a privileged
instruction that trapped into the hypervisor. At this point any amount of host
code can run or the host can schedule another virtual machine to run on the same
CPU. All of these actions utilize virtual memory and will create new entries in the
TLB for any translations that are not already present, possibly evicting the TLB
entries that were created from translations in the recorded VM. The host might
even sometimes explicitly flush the TLB depending on what operations it performs
at this time. Also, according to Intel’s documentation [2, p. 1215] on the behavior
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of the TLB in their processors, “[a] logical processor may invalidate any cached
mappings at any time”.

Operating systems generally flush the relevant TLB entries when clearing the dirty
bit from page tables because they need to accurately track which pages have been
written to. This is needed to avoid data loss from erroneously discarding these
memory contents when the system runs out of RAM because they are considered
clean, i.e. saved to persistent storage. Some operating systems, such as for example
Linux since version 3.16 and up to the present day, do not apply the same rigor
to keeping the state of the accessed bits consistent with the TLB. [21] When the
Linux kernel clears the accessed bit in a page table entry, it does not flush the
corresponding TLB entry to avoid the performance hit that would result from the
TLB miss if the address is accessed again and the MMU has to read the relevant
page tables from memory. The inconsistency between the TLB and page tables
is being tolerated in this case because the state of the accessed bits is only used
as a heuristic to predict which pages will likely be accessed again in the future
and should be kept in memory and the chance of a misprediction due to this
inconsistency is considered “relatively low” by the authors of the change due to
the TLB being flushed regularly due to e.g. context switches between applications.

The result of this non-determinism is that if the TLB contains an entry for a
particular linear address during the recording of the virtual machine but does not
contain such an entry during the replay, an additional accessed or dirty bit will be
set in at least one page table entry in memory during replay. If the conditions are
reversed, a bit will be set during the recording but not the replay. It should also be
noted that even if the TLB’s behavior was deterministic and an entirely separate
TLB could be instantiated for a given virtual machine, the TLB that is used during
replay can still differ from the one that was used during recording, such as in a
heterogeneous record and replay solution in which e.g. the recording is performed
using hardware virtualization and the replay using emulation.

3.2 Impact of Non-Deterministic TLB Behavior on
Replay

Some evaluation metrics for implementations of record and replay have been
outlined in [22], which include:

• probe effect, which measures how much the original execution is slowed
down due to the recording compared to a normal execution that is not being
recorded
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• log size, the amount of data per instruction that is generated by the recording
and needs to be stored in the replay log

• replay slowdown, the difference in run-time between the recorded execution
and the replay

• replay accuracy, which describes how accurately the replay matches the
recorded execution at the chosen level of precision

A record and replay system will generally have to make trade-offs between these
variables. For example implementations that record at machine instruction level
such as ReTrace[15] or SimuBoost[1] use periodic checkpoints at which the state
of the virtual machine is recorded while the states between these checkpoints
are computed during the replay. If checkpoints are created more often during
recording, both the probe effect and log size increase. On the other hand the
replay can proceed faster if it can be parallelized such as in SimuBoost where each
checkpoint interval is can be emulated on its own machine, drastically lowering
the replay slowdown. A higher number of checkpoints also allows the user of
the replay to “seek” closer to the part of the execution that they are interested in
without waiting for the intermediate state to be replayed.

As mentioned before, only non-deterministic events need to be logged during the
recording. These events can be further separated into two categories according to
[19]:

• Synchronous Events These events always appear at the same point in the
instruction stream but their output is non-deterministic and needs to be
recorded. Examples include the x86 RDTSC instruction which returns the
number of processor cycles since the system was started or the data that
devices returned for I/O instructions.

• Asynchronous Events These events occur at a non-deterministic point in
time but their content can be deterministic. An example for this are interrupts,
which cause a deterministic change, e.g. changing certain registers but occur
at non-deterministic time.

When using hardware-assisted virtualization to run the guest during the recording,
most synchronous and asynchronous events can easily be tracked by configuring
the hardware to cause traps into the hypervisor when they occur, which will then
log them. Synchronous events can simply be recorded and when replayed in order
when the corresponding instruction that caused them is encountered (e.g. when
using hardware virtualization the hypervisor would configure the hardware to trap
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on these instructions). Asynchronous events on the other hand have to be handled
differently. For these events a unique identifier that specifies the exact point in the
execution at which they occurred needs to be recorded. Because the instruction
pointer is not enough to identify a specific point in the execution (consider the
existence of loops for example), this so called landmark has e.g. been described
in [23] to also include the state of registers and flags, the branch counter or as in
SimuBoost the retired instruction performance counter. Only when this landmark
is hit — i.e. the current state of the machine during replay matches the landmark
— will the asynchronous event be injected into the replay. Implementing a record
and replay system that is able to correctly replay any given guest is extremely
challenging and it is impossible to ever test every single combination of host,
hardware and guest. Because of this it can be helpful to include additional state
in the landmark that can be used to verify that the replay did not diverge from the
recording.

While the accuracy of the replay is immensely important to the usefulness of a
record and replay system, some (theoretical) inaccuracies might be tolerated to
improve the other areas of concern. If the difference in accessed bits would not
affect the replay accuracy it could be tolerated if the impact on the probe effect
of accurately tracking these events was to high. For example writes to the guest’s
memory could in theory be discarded if it was known ahead of time that the guest
will never read this memory location. It has however been observed in [24] that
even “single bit in the state of the replayed system can potentially alter its execution
path”. This problem is further exacerbated by the fact that the divergence between
recorded execution path and replay usually does not happen directly but is only
later influenced by such a small change.

These differences between recording and replay can not only change the layout of
virtual memory because a different page will be evicted or swapped to persistent
storage depending on the state of the accessed bits (e.g. Linux uses a complicated
algorithm [25] that among other factors takes into account how often a file has
been accessed), but also alter the flow of execution. If a process accesses memory
that was swapped out in the replay but not the recording, it will trigger a page fault,
causing additional code to run to re-load the affected data. This can then lead to
landmarks being missed if the counters that are being used no longer match the
recorded value, causing the replay to abort because asynchronous events can no
longer be injected correctly. The same result can even be expected just because the
kernel read a different value from the page table entry at the time a landmark was
supposed occur, causing the register contents to differ from the landmark.

Accurately tracking the changes to accessed as well as dirty bits is also important to
enable the use of record and replay to debug the guest operating systems memory
management code. While we mentioned earlier that the specific behavior of not
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flushing the TLB when clearing accessed bits is an optimization and the flush is
normally performed after clearing a dirty bit, this of course only applies to guests
that behave correctly. To be useful as a debugging tool however, a record and
replay implementation must also be able to precisely replay a system that does not
behave correctly.

3.3 Preliminary Measurements and Related Work

Our tests with a virtual machine running Ubuntu 16.04.1/Linux 4.8.10 show that
depending on the amount of RAM that is allocated to the virtual machine, in-
consistencies in the state of the accessed bits happen with different probabilities.
They can be observed regularly even just during the boot process of the guest that
is being recorded using the current SimuBoost system if the virtual machine is
given 256 MiB of RAM. This subsequently leads to landmark misses during replay,
while the same does only occur extremely rarely at 4 GiB of RAM. We believe this
happens because the Linux kernel’s page aging algorithm that clears the accessed
bits and later checks which have been set again by the MMU to determine which
pages are actively being used is invoked more frequently when the system only has
a low amount of free RAM available.

Despite the fact that this issue seems comparatively easy to observe in practice,
we are not aware of any performant record and replay solution that aims to track
and replay these events accurately. Of the implementations that we mentioned in
Section 2.4, only ExecRecorder is able to do so completely, by virtue of using the
Bochs simulator that implements the TLB in software and is thus not influenced by
any state outside the guest, can behave deterministically for each execution and
uses the same TLB implementation for both recording and replay. Implementations
like ReVirt that run entirely as a user mode application while re-using the host’s
resources are unable to track these events because they operate only on virtual
memory. The paper that describes SMP-ReVirt is the only work we could find that
mentions the problem. It uses shadow paging and avoids any non-determinism by
flushing the TLB after performing any changes to the shadow page tables that the
MMU uses and being able to mirror the state of the accessed bits deterministically
to the guest’s page tables. This does cause a recorded execution to behave dif-
ferently from a normal virtual machine that would nowadays run using hardware
virtualization and thus changes the behavior of the guest. For example it would
be impossible to debug a problem in the guest’s memory management code that is
being caused by missing TLB flushes on real hardware because the recorder adds
those flushes behind the guest’s back.

It is possible that the implementations of record and replay that we examined
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simply did not notice this problem because they used a different portion of the
guest’s state to define their landmarks. However this does not negate the problem’s
existence but could hide it or make its it less likely to cause a landmark miss during
the replay.

3.4 Conclusion

In this chapter we have identified how optimizations of TLB flushes can in some
instances introduce non-determinism into the state accessed and dirty bits inside
the page tables in RAM. We also discussed how this can affect record and replay
systems that aim to accurately replay an entire virtual machine by causing the
memory contents of recording and replay to diverge and how even these minuscule
changes can introduce larger derivations in the replay or cause it to fail completely
by changing the course of the execution of the replay, leading to landmarks being
missed.

While this effect can be observed even when recording simple executions such as
the boot process of a Linux distribution, we were unable to find any record and
replay system that aims to eliminate it by accurately logging and replaying these
events. While some systems are unaffected by this problem, either because they
operate at a higher level in virtual memory or because they operate at a lower level
and emulate their own implementation of a TLB, to our knowledge none of the
implementations that replay at machine instruction level and use hardware-assisted
virtualization to limit the probe effect are able to handle these events correctly.

Investigating a way to log these TLB induced non-deterministic events using
hardware virtualization and evaluating the impact this has on the evaluation metrics
for record and replay systems outlined in Section 3.2 will be the goal of this work.
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Chapter 4

Design

This chapter concerns itself with the design of our proposed solution to log all
writes of dirty and accessed bits by the x86 MMU due to the non-determinism
inherent in the specification of the TLB using hardware-assisted virtualization.
Our design will not not only be influenced by the problem itself but also by the
choice to find and evaluate a solution using the hardware-assisted virtualization
capabilities in modern Intel x86_64 CPUs and implement this solution as part of
SimuBoost.

Our primary goal is to enable tracking the setting of accessed and dirty bits with
very high accuracy for any unmodified guest, even if the guest does not issue TLB
flushes on some of the changes it makes to its page tables, with a secondary goal
of keeping the overhead of our implementation over the existing record and replay
capabilities that SimuBoost provides to an acceptable level.

We will now discuss both the recording and replay of MMU events in detail,
explaining our proposed design while contrasting it with other possible solutions
that we discarded.

4.1 Recording

The problem of recording non-deterministic events can be generalized as follows:
The guest that is being recorded must not be allowed to be aware of any event that
the hypervisor is unaware of. In many cases this can be achieved by configuring
hardware-assisted virtualization to trap into the hypervisor when these events
occur. However even with the virtualization extensions that are available in current
x86_64 CPUs it is not possible to configure the virtual machine in a way that causes
only the setting of accessed and dirty bits to trap into the hypervisor but not other
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accesses to the guest’s page tables. This leaves two possible options to achieve the
goal stated above:

Either

1. The guest system must be prevented from reading from its own page tables
by any means as long as their state is not synchronized with the TLB. This
restriction applies both to the currently active page tables as well as any other
memory that has been used as a page table and not has been reused in for
another purpose before the attempted read. At the same time the MMU can
be allowed to freely access the currently active page tables and write the
accessed and dirty bits to them.

or

2. The MMU must be prevented from writing to the guest’s page tables without
the hypervisor being informed. The guest on the other hand can be allowed
to freely read the state of the accessed and dirty bits because it is never able
to be influenced by an event that the hypervisor has not logged yet.

The first option would allow an optimal solution (in the amount of events that need
to be logged) to the problem of non-determinism induced by the accessed and dirty
bits to be implemented by to detecting when the page tables are being read by the
guest and at this specific point log their state to the replay log, allowing them to
be replayed exactly. While this might introduce small differences in the memory
contents of recording and replay because the changes to the guest’s page tables
that are never read do not get logged, we would still prefer it because we believe
it offers the best performance overall in all 4 metrics outlined in Section 3.2. As
mentioned there, such small differences between the state of recording and replay
at a specific point could be tolerated in some cases to improve performance, if it
can be proven that they will not cause any changes further down the line. In any
case where these bits might either be set or cleared, but are never read by the guest
and thus can never influence its state and the execution, they would not necessarily
need to be logged, just like the contents of any memory that is only written and
never read could be discarded from the replay log.

However, the only way of guaranteeing these conditions on current x86_64 hard-
ware while preserving the isolation of virtual machine and host system that we are
aware of is the use shadow page tables. When shadow paging is being used the
hypervisor already has to make sure that any changes the guest makes to its page
tables are reflected in the shadow page tables and thus needs to protect the guest’s
page tables. Additionally, it could also protect the guest’s page tables from reads
and log the setting of accessed and dirty bits when it mirrors them to the guest’s
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Figure 4.1: Overview of the point at which each of the proposed methods intercept
the and log the accessed and dirty bits being set.

page table on demand as described above. Sadly, the use of shadow paging would
also come at a significant performance cost. (The use of the EPT mechanism for
nested paging has been credited with a performance improvement over shadow
paging of up to 48% for MMU intensive workloads [5])

When the EPT is in use, the MMU uses the guest’s page tables directly and the
access permissions that are set in the EPT apply to both regular guest accesses and
MMU accesses. For the first option described above this would imply disallowing
all read access to the guest’s page tables, which would cause any address translation
by the MMU to trap into the hypervisor, resulting in a significant performance
loss. This caused us to focus our efforts on the second option, developing a more
brute-force system that intends to log every single accessed and dirty bit being set.
Some of the steps that are required to successfully log MMU writes of these status
bits to the page tables are however similar to those that are needed to implement
shadow paging, though less work needs to be done by the hypervisor. We will now
give an overview of the individual steps of our design for the recording phase.

4.1.1 Tracking Guest Page Tables

The first necessary task to needs to be completed to accurately record changes to
the guest page tables is locating them in the guest’s memory and keeping track of
any changes that the guest makes to them while it is running.

Context Switches

This requires trapping into the hypervisor when the guest sets the CR3 register
to a new top-level page table and recursively iterating through all the entries that
are marked as present in the table it points to, recording the location of each
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encountered guest page table.1 How often this needs to be repeated depends on the
current configuration of the virtual machine’s CPU, which influences how many
layers of page tables are used to translate linear addresses, from 2 layers in 32bit
operation to up to 5 layers in upcoming CPUs, support for which is already present
in the Linux kernel.

Changes to Active Page Tables

The hypervisor also needs to ensure that any subsequent changes that the guest
makes to the currently active page tables also cause a trap, allowing the hypervisor
to adjust its list of guest page tables. The reasons for this are twofold.

1. It might have to track additional page table that the guest added at lower
levels of the hierarchy by either replacing a present entry or adding a new
entry.

2. It is also important to notice when a page of memory is no longer used as
a page table. This is most easily implemented at this time because the first
point already requires changes to the guest’s page tables to trap into the
hypervisor.

Making sure that the dropping of page tables by the guest is tracked is important
because otherwise unrelated memory will be assumed to contain guest page tables
and writes to this memory would cause the hypervisor to assume that the guest
changed a page table, interpreting this memory as page table entries leading to
unpredictable results. It is important that changes to page tables are handled
efficiently as this is a very frequent operation in many operating systems. When
a program forks off a child process, their page tables are set up to share all data
currently available to the parent process read-only and any writes they perform to
their memory will lead to a page fault in the guest to duplicate the affected data
and adjust the page tables to allow the write.

Old Page Tables

Consideration also needs to be given to the page tables of the previously active
page table hierarchy. It could be advantageous to remember a number of previously

1Care needs to be taken not to run into an endless loop because of a common implementation
trick in operating system kernels called recursive page tables, in which the last entry of the top-level
page table points to itself greatly simplifying the implementation of accessing the page tables (which
are normally only referenced using physical addresses) from the kernel using linear addresses.
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active page table hierarchies and keep them protected, if the guest is likely activate
them again in the future. In which case it would be possible to skip walking the
entire hierarchy on that context switch. On the other hand, if the guest process
they belonged to has been terminated and the guest recycles their memory for
other purposes the additional exits into the hypervisor because the memory is still
protected would incur additional overhead. Because there is no obviously correct
heuristic to decide in which cases this is advantageous and to reduce the complexity
of our implementation, we have decided to instead to only track the currently active
page table hierarchy.

4.1.2 Logging MMU Updates to Guest Page Tables

When the physical addresses that contain the guest’s page tables are marked as
write-protected in the EPT, which, as discussed above, is already necessary to
detect any changes to them, the MMU will also not be allowed to change any of
the status bits in the page table entries. This causes a trap into the hypervisor on
any memory access by the guest that is not cached in the TLB and would have to
set an accessed or dirty bit in any of the page table entries.

At this point, the access first needs to be distinguished from other accesses by the
guest. Thankfully, the EPT violation that causes the exit into the hypervisor when
one of the permission bits in the EPT does not match the guest’s intent contains
both the guest linear and guest physical address that caused it as well as an exit
qualification describing the type of the access and EPT permissions of the physical
address. These allow the hypervisor to identify if

• the access was a write by guest code, a write by the MMU or another access

• the guest physical memory address contains a currently active page table

After the access has been classified as a write to a page table entry by the MMU,
multiple options exist for how to allow the guest’s execution to continue while
logging the relevant changes to the status bits:

Setting Status Bits Manually

The first possibility is to translate the linear address from the EPT violation in
software, using using the information from the exit qualification to determine which
bits to set in the guest’s page tables. Afterwards, the guest is resumed, hopefully
continuing it’s execution unobstructed. The MMU will then not attempt to write to
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the page table entries as the bits it needs to set are already set. In the best case, this
is expected to have a low overhead and will add the translation to the TLB, but in
some cases the guest will immediately exit again. This can happen for example
if both the fetching of the current instruction from memory as well as an access
to memory by the instruction cause the MMU to update page table entries. In the
case of the REP prefix to string instructions, a single instruction can read and write
an almost arbitrary amount of memory potentially causing the setting of accessed
or dirty bits for each page.2

Single-Stepping

A second option is to create copies the guest page tables for the given linear address,
remove the write protection in the EPT from the physical addresses containing
these page tables. Then the guest is single-stepped for one instruction, after which
the state of the page tables is compared and relevant changes added to the replay
log so that they are replayed before this instruction. This has the advantage that
the instruction is directly executed by the guest and the guest linear address is
translated by the hardware MMU, preventing any subtle behavioral changes that
might be introduced by performing the translation in software. The translation is
also added to the TLB, improving performance on future accesses and ensuring
that the behavior is identical with a non-recorded execution. However, this solution
likely has a significant performance impact (e.g. [23] showed a 3000× slowdown
due to single stepping and this adds additional work due to copying the guest’s page
tables) and can run into the same problems as the first mechanism if a single access
causes multiple EPT violations. Though this could be worked around by copying
the complete page table hierarchy, this would further increase the performance hit.

Emulating the Access

The solution that we decided to pursue is to emulate the instruction that resulted in
the MMU causing an EPT violation in the hypervisor, setting any accessed or dirty
bits as needed during the emulation. While emulation generally also comes with
a performance impact, this avoids multiple traps into the hypervisor to execute a
single guest instruction. The downside is that the guest addresses that are accessed
during the emulation do not get added to TLB, potentially slowing down the guest
in the future and causing differences in the non-deterministic behavior of the TLB
between a native and recorded execution.

2The addition of the ERMSB feature flag that indicates increased performance of these instruc-
tions on recent Intel CPUs [26] could indicate that their usage will even increase if compilers decide
to regularly take advantage of this
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4.2 Replay

After the events that we are interested in have been recorded, it is also important
to consider if any additional changes to the replay implementation will need to be
considered. We will also discuss the format in which the events that are gathered
during the recording are logged in this section because we consider this choice to
be more influential during the replay.

4.2.1 Replay of Asynchronous Events

As discussed before in Section 3.2, replaying asynchronous events necessitates
some sort of marker that identifies a unique point and time in the execution, a so
called landmark. This landmark contains some of the virtual machine’s state that
both identifies such a point uniquely and is fast to compute during replay because
it needs to frequently be compared to the state of the replay to ensure that the event
can be inserted at the correct point.

Because it is challenging to construct a system that is able to replay every execution
perfectly, the landmark should include more information than is necessary to
identify the point at which the asynchronous event is injected into the replay. The
additional information can then be compared to the state of the replay at the point
that matches the landmark to verify that the replay is accurate to the recording.

Because we implemented to logging and replay of accessed and dirty bit events on
top of the existing SimuBoost record and replay system, we were able to re-use
the existing infrastructure for replaying asynchronous events. SimuBoost uses
the INSTRUCTIONS_RETIRED hardware performance counter that counts the
number of fully executed instructions3 as a landmark and saves the CPU’s general
purpose, pointer and flags registers to check the consistency of the replay once the
landmark is hit.

4.2.2 Replay of MMU Updates to Guest Page Tables

Compared to the recording of MMU events, replaying them is surprisingly simple.
Once the landmark for an MMU event is reached, the replayer only has to set the
corresponding bit at a fixed offset in the page table entry. How this is achieved
depends on the format of the log entries that is chosen for these events. It would be
possible to log the linear address whose access caused the event to be generated,

3i.e. only instructions whose results have been fully committed and not rolled back due to a
speculative execution misprediction



34 CHAPTER 4. DESIGN

along with the type of access. However, this would imply that to replay the
event the guest’s page tables have to be walked again to determine the page table
entries that have to be modified. Instead we chose to simply log one event for
each modified page table entry, containing its physical address and the type of
bit that was modified. While this structure can generate up to 5× more events,
if all accessed bits and the dirty bit have to be set for an access, we believe the
reduced complexity during replay outweighs the increased size of the replay log
and replaying of additional events.



Chapter 5

Implementation

In this chapter, we will describe some of the details of our implementation. As we
were able to implement the support for logging non-deterministic MMU events on
top of the existing SimuBoost record and replay system, we were able to re-use a
lot of its infrastructure and components, only adding the necessary code to log and
replay these events. Because of we are building on an existing, working record and
replay system, one of the primary goals for our implementation was robustness
against both implementation bugs in one of its other components and unexpected
guest behavior. This is intended to allow execution to continue both in the recording
and replay phase and avoid regressions on the status-quo because as discussed in
Section 3.3 depending on the guest configuration the logging of accessed and dirty
bits can in practice be optional.

We will now first give a brief overview of SimuBoost’s implementation before we
explain our changes to implement recording and replay of MMU events.

5.1 SimuBoost

As mentioned before, SimuBoost uses the KVM Linux kernel module and QSIMU,
a modified fork of the QEMU emulator, to create a recording of a virtual machine
using hardware-assisted virtualization in KVM and emulation in QSIMU in tandem.
During replay only QSIMU is used and its Tiny Code Generator (TCG) executes
the guest’s instructions. A third, custom component called simustore handles the
storage of the checkpoint data and replay log. Simustore also allows distributing
the checkpoints’ contents to a cluster of machines and replaying the execution in
parallel using a separate QSIMU instance on each machine to replay a specific
checkpoint interval, greatly decreasing the replay slowdown.
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However, our implementation was able to ignore simustore completely because
the existing mechanisms provide a sufficient abstraction and most of our efforts
were focused on implementing the recording as part of KVM and only very small
changes were needed facilitate the replaying of MMU events in QSIMU.

5.2 Recording MMU Events in KVM

While the two tasks we described in Sections 4.1.1 and 4.1.2 — tracking the
location of the guest’s currently active page tables and logging the setting of
accessed and dirty bits within these by the MMU — are are conceptually separate,
they have become somewhat intertwined in our implementation due to our use of
emulation for both areas. We will now go over the individual changes that were
needed to KVM to support both.

5.2.1 Data Storage

First however, we will describe the central data structure that we use to store both
the location of the guest’s active page tables and their level in the active page table
hierarchy, as well as their status in our implementation.

For each page table that is reachable via the active hierarchy, we store both its
guest physical address and its level in the hierarchy inside a radix tree, a highly
optimized key-value storage structure that is part of the Linux kernel and is used e.g.
to track linear to physical mappings for each process in the system. This provides
key advantages for implementing the requirements detailed in Section 4.1.1 over
some alternative implementations such as marking the guest’s page tables by using
some of the reserved bits in the EPT entries that map them to machine physical
addresses. For example, our system does not need to be aware of the kernel’s
memory management system swapping out the guest’s memory and deleting the
EPT mapping. While it is certainly likely that there are other data structures that
would deliver even better performance for this specific use case, implementing
them to the same level of reliability would not have been feasible as part of this
work. We store the instance of a radix tree that we allocate for this purpose within
the kvm_vcpu struct that holds the state of the guest’s virtual CPU because the
active address space is also part of the CPU state.

An additional feature of the radix tree structure that we make heavy use of are tags.
For each radix tree, up to three tags can be defined. These tags can be applied to
the entries and functions are provided that allow efficiently checking if a given tag
is applied to any entry in the tree by only inspecting the root as well as iterating
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over only the entries that are marked with a given tag. We define the following tags
that we make use of to enable important performance optimizations:

• GPT_MAYBE_DROPPED: This tag signifies that (one of) parent page table(s)
of the the page table that is referenced by the entry has been modified by the
guest, but it has not yet been discovered if this memory address still contains
an active page table.

• GPT_MODIFIED: This tag simply signifies that the referenced page table
has been modified by the guest but these modifications have not yet been
synced to the radix tree.

We will explain the specific cases in which these tags are used in the next sections,
which each outline the major events that our implementation has to react to.

5.2.2 Context Switches

The first modification to existing behavior that we had to introduce is to uncondition-
ally reconfigure the Intel VMX hardware virtualization to trap into the hypervisor
when the guest activates a new page table hierarchy by setting the CR3 register.
While this is normally avoided when the EPT is in use, it is inherently necessary to
achieve our goal.

When this happens, we first discard our knowledge of the old page table hierarchy.
This is done by simply deleting the previous contents of the radix tree. Then we
walk the entire new page table hierarchy and mark each table as read-only in the
EPT, starting with the top-most table referenced by the new contents of the CR3
register and recursively descending into all it’s children that are marked as present.
A performance optimization that we apply here is that before we recurse into the
next child page table referenced by one of the current’s entries, we check that it
has not already been traversed. This saves some function calls during this frequent
operation because we observed a Linux guest for example re-using the same page
table addresses often, presumably for copy-on-write purposes.

5.2.3 Changes to Page Tables

Because the guest’s page tables are protected from writes by the EPT after the last
step, an EPT violation now occurs whenever they are written to while the guest
is running. While the function that handles this exception normally just invokes
a page-fault handler to determine if the guest is allowed to access the physical
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address that caused it and potentially create a mapping in the EPT for it before
resuming the guest, our implementation adds several additional cases:

• If the EPT violation was caused by the MMU attempting to set an accessed
or dirty bit, the access is emulated (more on this below). This can be inferred
just from the exit qualification describing the offending guest access.

• If the access is a write access, we check if its target guest linear address
points to a guest page table by translating it to a guest physical address using
the guest page table and looking that up in the radix tree. If this is the case,
the access also is emulated.
However, before the second check is performed, we check if any of its entries
in the radix tree are marked with the GPT_MAYBE_DROPPED tag. If this is
the case, we first walk the entire guest page table hierarchy, protecting each
page table and clearing any tags on the corresponding entries in the tree and
then remove any remaining entries that are marked with this tag from the tree.
It is not sufficient to traverse the page tables marked as GPT_MODIFIED
and their children and consider any potentially dropped page tables that are
not encountered actually dropped, because they can still be referenced from
other page tables.

In both of the cases above, the EPT violation handler returns after the emulation.
Either the guest’s execution is resumed if the emulation was successful or control
is returned to the user space QSIMU process, e.g. to emulate a device if access to a
memory-mapped I/O region was attempted.

In any other case, the page-fault handler is invoked as normal to supply the re-
quested guest physical address with a memory mapping in the EPT. Afterwards,
only a small fix-up is added performed. The address that was just paged in can still
contain a guest page table if the access did not attempt to write to it. To ensure that
the resulting mapping is read-only to the guest, we protect the physical address in
this case. This is done after the mapping was created to avoid any error-prone to
the complex page-fault logic.

5.2.4 Emulation in KVM

in Section 4.1.2 we explained our reasoning for using emulation to log TLB induced
non-deterministic events as they occur. To implement this, we were able to re-
use KVM’s existing support for emulating x86_64 instructions that is used for
instructions that the guest isn’t allowed to execute directly. As described above, we
also chose to track any changes to guest page tables in the emulation code. Both of
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these features are implemented in the guest page table walker that emulates how
the hardware MMU translates the guest’s linear addresses to its physical addresses.
Because this is such a central code path that is used for any access to a guest linear
address and not just limited to the emulation code, it allows us to perform both
MMU and guest changes to page tables within a single translation if both need
to occur. It also single-handedly ensures that any code path that accesses guest
memory other than the ones we explicitly define in the EPT violation handler
causes the necessary events to be logged.

Logging Accessed and Dirty Bits

Because the emulation code needs to use the guest’s page tables to access any
of the its memory and the guest must not be allowed to notice any divergence
between a natively executed and emulated instruction, the emulation code already
supports setting the accessed and dirty bits in these page table entries as needed.
At the point at which the bits are being set, we simply call a function provided by
simuboost, kvm_vcpu_rr_add_event, to add an event with the newly defined
type MMU_ACCESSED or MMU_DIRTY containing the guest physical address of
the page table entry to the replay log as needed. Because we ensure that all of the
guest’s active page tables are known to the hypervisor and that the guest can not
write to them directly this is the only place in which accessed or dirty bits can be
set. This allows us to log literally all instances in which these bits are being set.

Tracking Modifications to Guest Page Table Entries

Any time the emulated page table walker is invoked and has successfully translated
the guest linear to a guest physical address and the access to this address is a write
operation, we check if the physical address is present in the radix tree i.e. if it is
a guest page table. If this is the case we mark the entry in the radix tree with the
GPT_MODIFIED tag and recursively mark the entries for all of the page table’s
child tables with the GPT_MAYBE_DROPPED tag. Because the level of the page
table is stored in the radix tree, we are able to start walking the guest’s page tables
from the modified table, making this is a fast operation for the common case where
a lower level page table is changed during a copy-on-write operation in the guest.
If the page table being changed is on the lowest level, only a single tag needs to be
set.
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5.2.5 Resuming Guest Execution

A downside of this approach to handle the guest’s writes to its page tables in the
emulation’s page table walk is that at this point we are unable to determine what
exactly the write will change. It is possible that the guest simply clears an accessed
bit or changes the read-only status of the page table entry, which does not change
the set of active page tables that we need to track. On the other hand we consider
this approach preferable and less error prone to attempting to modify every path in
the emulation. It does however imply that we need to actually examine the guest
address that was modified and potentially update the radix tree with any changes to
the page tables.

We do this as part of KVM’s main loop, which is entered when the user space
process (QSIMU in this case) passes execution of the guest to KVM and then
continues running until the guest traps back into KVM. The loop then tries to handle
any exceptions that KVM can resolve itself, such as page faults/EPT violations
and passes control back to QSIMU if a device needs to be emulated. Afterwards
the guest is allowed to continue executing. At this point, before the guest is
entered again, we check if any radix tree entries are tagged GPT_MODIFIED. If
this is the case, we walk the guest page tables recursively starting at those and
clear any tags that are encountered. This ensures that Any modifications that
were performed are reflected back in the radix tree and the guest’s page tables are
protected appropriately.

5.3 Replaying MMU Events in QSIMU

Because we are able to build on the already existing support for replaying various
asynchronous non-deterministic events that was implemented in QSIMU as part of
SimuBoost, replaying the events caused by accessed and dirty bits was extremely
simple. The asynchronous events are handled in the order in which they occurred
and the time in the replay at which they are inserted is determined by the landmark
that is generated during the recording. For each event, its type defines what data it
contains and how it has to be replayed.

When an event of type MMU_ACCESSED or MMU_DIRTY is encountered, we
simply remove it from the queue, extract the physical address that it contains and
use the wrappers that QEMU provides to access the guest’s memory to read the
page table entry from the specified address, set the bit that needs to be set and write
it back. Then execution continues as normal.
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5.4 Conclusion

In this chapter we have explained our implementation of the design that we pre-
sented in Chapter Section 4. The existing abstractions in SimuBoost allowed us to
focus entirely on the subject of recording and replaying MMU events.

The bulk of our implementation is part of the KVM kernel module where we
implemented the recording of these events. By hooking into some of the most
central code paths that deal with reading and writing the guest’s memory, both
from the guest itself and the host system, we believe to have created a very
comprehensive system that should be able to record any changes that occur to the
guest’s page tables.

We were able to re-use one of the most tested and optimized data-structures that
is used as a central part of every Linux system in existence, which fit very well
with out intended implementation and allowed us to easily handle the numerous
edge-cases that we encountered.

On the other hand, the implementation of the replay system for MMU events within
QSIMU was extremely simple as it only needs to distinguish between one event
for dirty and one for accessed bits and set the corresponding bit in the page table
entry that is referenced in the event struct.
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Chapter 6

Evaluation

So far we have introduced the problem of divergence between the recording and
replay of virtual machines caused by the non-deterministic nature of the TLB in
x86 CPUs and explained the design of our solution to this problem by logging all
accessed and dirty bits as they are set in by the MMU in the guest’s page tables.
We have also given some details of our implementation and motivated them. In this
penultimate chapter we will present the results of the tests and benchmarks that we
have performed to evaluate our implementation in its accuracy and performance.

We will first describe our test setup, then explain what steps we have taken to ensure
our implementation solves the stated problem correctly by accurately tracking all
MMU events. After this we will present a set of benchmarks that we have chosen
to evaluate our implementation in the other metrics that we presented in Section
3.2 — probe effect, log size and replay slowdown — and explore the results of
these benchmarks.

6.1 Test Setup

The specifications of the system that we used to perform the following benchmarks
and evaluate the correctness of our implementation can be seen in Table 6.1. While
our implementation only aims to log accessed and dirty bits for a single-core VM,
the additional performance offered by this machine both by the additional CPUs
as well as the fast SSD was useful to ensure that the the creation and storage of
checkpoints was not a bottleneck during the benchmark.

The guest system that we have chosen for this evaluation is Ubuntu 16.04.1
(x86_64), with version 4.8.10 of the Linux kernel. This main reason this spe-
cific operating system was used is that it has previously been used to evaluate
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Component Model

CPU 2 × Intel Xeon E5-2630 v3 “Haswell” (8 cores/16 threads each)

RAM 64 GiB DDR4-2133MHz

Storage Samsung SSD 850 EVO 1TB

Host Kernel Linux v4.3.0 + SimuBoost

Table 6.1: Test Setup

other work based on SimuBoost, which may aid when comparing our results to the
results from those works. The guest VM was configured with the default “qemu64”
virtual CPU and 4 GiB of RAM.

6.2 Qualitative Evaluation

While we are confident that our implementation is able to intercept and log all
changes to the guest’s page tables due to the fact that it is able to hook into the two
central code paths in the KVM module that control access to the guest’s memory
from either the guest itself or the host — the EPT violation handler and emulated
page table walker, respectively — we also needed to test that it works in practice.

While it is next to impossible to prove that the implementation works for all
possible guests, we devised two tests to at least show that it solves the problem
that are encountered in practice: Non-deterministic TLB behavior causes different
contents in the guest’s page tables during replay, which then causes the replay’s
execution to diverge from the recording when the guest makes decisions based
on the contents of its page tables which ultimately leads to missed landmarks and
breaks the replay completely because asynchronous events can’t be replayed.

A key problem when evaluating our implementation is that we cannot take a replay
log that exhibits this problem and replay it using our implementation to show
that it fixes the problem. This is impossible because the log does not contain
the asynchronous events that would be needed to replay the MMU’s behavior.
On the other hand, any recording necessarily affects the recorded guest and a
recording performed by our implementation will be different from one performed
by upstream SimuBoost even if the guest is given the same inputs, if only due to
the performance impact that the additional logging has on the guest. This might
mask lingering problems instead of outright fixing them as it appears.

However, as we explained in Section 3.3, this problem is easily reproducible by
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only allocating 256 MiB of RAM to the guest. This will cause missed landmarks
almost immediately regardless of which program is run in the guest and sometimes
even during the boot process. When our implementation is used for recording and
replay, we could not observe this on either the benchmark system described above
or our development system, which uses a CPU from a different micro-architecture
generation and is likely to have different TLB behavior.

We were also able to take a recording generated by our implementation that
could be replayed without any issues and modify QSIMU in such a way that
the MMU_ACCESSED and MMU_DIRTY events are simply ignored during replay,
essentially negating our improvements. When replayed in this manner, the same
recording exhibited landmark misses that seem to be caused by differing page table
entries.

While the caveats mentioned above still apply, these tests give us confidence that
our design is sensible and our implementation performs correctly.

Another important factor that we have not mentioned yet is that the our implemen-
tation should not introduce any new bugs or cause the guest to behave abnormally
during recording or replay. While we did not see encounter any evidence of this
being the case. An automated system that for a given workload compares the results
of an unrecorded guest, a recorded guest and the replay would be immensely useful
in debugging record and replay systems and strengthening this anecdotal evidence
of correct behavior, but is outside the scope of this work.

6.3 Quantitative Evaluation

Now that we assured ourself that our implementation behaves correctly we will
proceed to evaluate its performance in the quantitative metrics, probe effect, log
size and replay slowdown. Before presenting our results, we will go over our
methodology in gathering the data and the chosen benchmarks.

6.3.1 Methodology

We made use of QEMU’s snapshot feature that allows executing a guest from a
disk image while writing any changes that the guest makes to the emulated disk
that is backed by the image to temporary files, preserving the original state of the
disk image. This allows running each benchmark from the same original state.

For each run of each individual benchmark, we booted the virtual machine and
waited 10 seconds after the boot process was completed to ensure that any services
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that are inevitably running in the guest have completed their startup and settled
down. Then we started the recording and after the initial checkpoint was created
started the benchmark within the guest. We chose this process to ensure that only
the benchmark’s run-time and only the data that the recording produces while the
benchmark is running is measured.

We collect the following measurements for each run:

• run-time of the benchmark: It is measured as wall clock time from inside
the virtual machine and roughly equals the time that was recorded, minus
a small delay between the start and end of recording and benchmark. The
length of the benchmarks was chosen to make this difference negligible.

• log size of the recording: The amount of data that was generated by the
recording.

• MMU event count: How many of the MMU_ACCESSED and MMU_DIRTY
events were logged during the benchmark.

• replay time: The wall clock time that the recording of the benchmark took
to replay.

Afterwards, we repeated the same steps with the unmodified SimuBoost code,
collecting the same measurements. (except for the MMU event count of course)

By comparing the metrics gathered from our implementation to this baseline we
intend to evaluate how big the impact is that the recording of all accessed and dirty
bits has on our record and replay metrics.

6.3.2 Benchmarks

The macro-benchmarks that we have chosen are implemented as part of the
Phoronix Test Suite[27], an open source benchmarking framework that automated
testing of standardized benchmarks across different platforms.

Linux Kernel Build

This benchmark compiles the Linux kernel in a make defconfig default con-
figuration, with one parallel make process for each CPU core (1 in our case). It was
chosen because we believe it represents a good mixed load. It runs many individual
make and gcc processes, but also produces some CPU load and performs I/O to
read source files and write the resulting objects.
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Apache Benchmark

We chose this benchmark to represent some of the scenarios that might be expe-
rienced on a web server. It uses the apache benchmarking tool ab to perform
1,000,000 requests to an apache web server that is started on the local machine
using 100 concurrent connections. It then reports the time it took to service all
requests and the how many requests the system was able to service per second.
Because apache uses multiple processes to respond to these concurrent requests,
this benchmark allows us to evaluate the overhead our implementation incurs on
workloads with frequent context switches.

SQLite

The SQLite benchmark in the PTS simply creates a fresh SQLite database and
performs a fixed set of operations on it, reporting the time it took to complete
these operations. It was chosen because it completes a lot faster than the other two
macro-benchmarks and SQLite is a commonly used in many contexts, especially
in desktop and mobile devices. (e.g. the Firefox browser uses it heavily, storing
both the history of visited sites and site data such as cookies in SQLite databases)

In addition to these macro-benchmarks that test the performance of real-world
applications and libraries, we also decided to include two micro-benchmarks:
“mmap” and “stress-ng” to test the worst-case and best-case performance behavior
of our implementation, respectively

Micro-Benchmark: mmap

This is a very simple C program (under 50 lines, including white space, formatting
and comments) that uses the mmap system call to allocate a 256 MiB area of zero
filled memory that is not backed by file on the filesystem (i.e. the mapping is
created using the MAP_ANONYMOUS flag). It also passes the MAP_SHARED and
MAP_POPULATE flags to the kernel to ensure that the memory is already allocated
and no page faults will be raised when the memory is written. The program then
proceeds to change a single byte in every 4 KiB block of this memory area, which
causes the accessed and dirty bits for this 4 KiB page to be set. After this the
mapping is deleted using the munmap system call. The whole process is repeated
1000 times. This benchmark consists almost entirely of the creation and dropping
of page table (entries) by the guest and modification of accessed/dirty bits by the
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MMU, making it a worst-case for our implementation that has to emulate all these
processes

Micro-Benchmark: stress-ng

The second micro-benchmark we are using is based on the stress-ng tool [28] that
provides various stress tests for both hardware and operating system interfaces. We
chose this tool to simulate a best-case scenario for our implementation by using its
cpu stress test that runs a wide variety of integer and floating point computations
on random data, some of which mirror real-world usage and some of which are
entirely artificial. We invoked this tool with these parameters:

./stress-ng --class cpu -c 1 --cpu-ops 100000

This runs a single instance of the stress test and performs 100,000 iterations, each
of which exercise all available computations. This should result in very little
overhead from our implementation because there are no almost memory allocations
or accesses (causing page table changes) other than the startup of the program and
very few context switches because only a single instance is running and the guest
is not performing any other actions.

6.3.3 Results

We will now present the results of our benchmarks by focusing on each of our
metrics in turn and evaluating how our implementation impacts them compared to
the existing SimuBoost code for each of the benchmarks that we performed. We
will do this by plotting the fraction of the data gathered with our implementation
and data from the run using upstream SimuBoost, representing the increase in probe
effect, log size and replay slowdown. We have also included the raw benchmark
data that we collected in the Appendix.

Probe Effect

The first metric that we are investigating is the impact that the logging of MMU
events has on the probe effect. That is: How much does it slow down the recording
compared to the existing logging? As can be seen in Figure 6.1, the workload
that is running inside the virtual machine greatly influences the impact that can be
expected. Just like we suspected, the mmap test case turned out to be a worst-case
in this regard, yielding a slowdown of over 400%. While we did not measure if
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Figure 6.1: Slowdown on the benchmarks’ run-time incurred by our implemen-
tation, represented by the fraction of each benchmark’s run-time while recording
with MMU event logging and its run-time while recording without MMU event
logging. A value of 1 represents no slowdown compared the existing recording
facilities.

this is mainly caused by the page table modifications incurred by the mmap system
call or the emulation of each write to the allocated memory area, we suspect the
latter to be the culprit because none of the other benchmarks showed this extreme
behavior. This does however imply that this worst-case behavior is unavoidable
when using an emulation based approach like the one we have chosen.

On the other hand, some workloads’ performance seems completely unaffected by
our changes. Not only our best-case micro-benchmark stress-ng yielded the same
run-time, SQLite did as well (we assume that the slight performance improvement
that can be seen in the graph is merely an artifact of our testing setup). While the
SQLite benchmark is mostly focused on the performance of the system’s persistent
storage, this confirms that the additional code we had to introduce to check for
changed guest page tables before resuming the guest after an exit to user space
does not impact performance, at least in this case.
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The other two benchmarks, kernel build and apache exhibit a slowdown between
those two extremes. The higher impact on the apache benchmark leads us to
believe that this slowdown is to a large degree caused by the need to walk all
of the guest’s page tables on a context switch. The kernel build, which contains
higher proportions of CPU intensive computation and disk I/O performs better at
only a 50% slowdown. This leads us to believe that a heuristic that would allow
skipping this page table walk in some cases as discussed in Section 4.1.1 could be
advantageous.

Log Size

As can be seen in Figure 6.2, the size of the replay log was much less affected
by the addition of logging support for MMU events and the effects that can be
observed are more consistent and less extreme than the impact on the run-time of
the benchmarks. In fact, we believe that this effect can largely be attributed to the
increased run-time of the benchmarks when MMU events are being recorded, which
also leads to an increase in other events that need to be logged and an increased
number of checkpoints, which are created at regular time intervals. Figure 6.3,
which shows the change in the amount of log data that is generated per second of
recording, supports this as well. Even for the mmap benchmark, which generated
65,536,025MMU_DIRTY events1 the log size/second decreased due to the much
larger impact on recording time. We believe this to be another good indicator of
the performance of our implementation and a good guide of where future efforts
to improve it should focus to reap the most rewards. It also shows that for some
use cases, the increased absolute log size can be disregarded. If the focus is not on
recording a specific amount of work but on recording the last N hours of execution
and the impact on the workload’s performance can be tolerated, only the amount
of data generated in a specific time frame is relevant.

Replay Slowdown

Because the performance of the replay is an important metric for any record and
replay system to be useful we are glad that our implementation of replaying MMU
events does not adversely impact the run-time of the replay, as can be seen in Figure
6.4. In fact, this could also be presented as a great decrease in replay slowdown,
though that would be immensely misleading because it is only caused by the

1Curiously it generated only 1087MMU_ACCESSED events. We assume that for the particular
invocation of the mmap system call that the benchmark performs, the kernel already sets the
accessed bit when creating the page table entries, because the MAP_POPULATE flag implies that
the process will use the memory right away
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Figure 6.2: Changes to the amount of data generated by the recording, as a fraction
of the combined size of the replay log and checkpoints from a recording with MMU
event support and those sizes from a recording of the same benchmark without
MMU event support. A value of 1 indicates no change in the consumed space.
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Figure 6.3: Changes to the amount of data generated by the recording per second,
due to the addition of logging for MMU events. A value of 1 indicates that the
same amount of bytes/s was produced both with and without logging MMU events.
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Figure 6.4: Change in the wall clock run-time of the replay of each of the bench-
marks, expressed via a fraction of the replay time a recording with logging MMU
events enabled and the replay time of a recording without logging of MMU events,
for each benchmark.

in some cases greatly increased slowdown during recording. Again, the SQLite
benchmark seems to actually perform better but we assume this is caused by a slight
inaccuracy in manually starting and stopping the recording. These results also
validate our decision to choose the simplest possible implementation for replaying
MMU events and foregoing any batching of these events during recording as even
the staggering number of events generated by the mmap benchmark only has a
minuscule effect on the run-time of the replay.

The stress-ng benchmark failed to replay due to landmark misses both with and
without logging of MMU events, which leads us to believe that this is a bug
unrelated to our changes to SimuBoost. We were however unable to track down its
cause due to time constraints. It should also be noted, that the measurements for
the mmap and and kernel benchmarks had to be slightly extrapolated during replay
of the recordings without MMU events as they failed to replay completely due to
landmark misses. Thankfully, the amount of time that each checkpointing interval
required during replay for these benchmarks was extremely consistent and for the
kernel benchmark, only the replay time of 5 out of 406 checkpoints (or 10 seconds
out of 13.5 minutes of time during the recording) had to be extrapolated. While the
number of checkpoints that needed to be extrapolated for the mmap benchmark
was higher at 55 out of 102, its nature as a micro-benchmark that runs the same
operation millions of times in a loop made the measurements even more consistent.
The fact that we were unable to observe these failures in any of the benchmark
runs we recorded with our MMU event logging further increases our confidence in
its correctness.
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6.4 Conclusion

In this chapter we evaluated the the correctness and performance of our imple-
mentation using multiple benchmarks and determined with a reasonable level of
certainty that it is able to record and replay any virtual machine that could be
recorded and replayed with the existing SimuBoost code. By correctly recording
the non-deterministic behavior of the x86 MMU our implementation is also able to
replay recordings that were previously failing due to landmark misses.

Overall, we are satisfied with the evaluation results of our initial implementation
in both correctness and performance. We consider the slowdown we were able to
measure to be acceptable for an initial prototype using this design. For a mixed
workload that does not exhibit certain worst-case behaviors, it could already be
used unmodified. Our findings in this chapter also confirmed our suspicions of the
remaining bottlenecks that are slowing down the recording compared to SimuBoost.
Performance improvements to our implementation are certainly possible and might
allow running it on almost all workloads that current record and replay systems can
record, with the additional benefit of allowing the replay to succeed in more cases.

Because we re-use the emulation code inside the KVM module, we were apprehen-
sive if our testing would encounter any instructions that are not yet implemented in
this emulator. As the x86_64 instruction set contains a huge number of instructions
(the manual that documents them spans 2214 pages [29]), they are added to the
upstream KVM emulation code only when it is found that they are needed to run a
real-world application [30]. Nevertheless we have found it to be sufficient for both
a Linux guest and the benchmarks that we used to test our implementation and did
not encounter any unimplemented instructions in our testing.
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Chapter 7

Conclusion

Existing record and replay systems for virtual machines on x86 CPUs are already
able to accurately replay many workloads and only have minimal impact on
performance during recording if hardware-assisted virtualization is used. However,
some workloads can consistently exhibit problems because the changes that the
x86 MMU makes to the accessed and dirty bits in the active page tables can be
non-deterministic. Because this behavior is not captured by existing solutions, it
can cause the code paths that are taken during replay to diverge from the behavior
of the machine during the original recording. In effect, this leads to a complete
breakdown of the replay which relies on landmarks — snapshots of the guest’s
register state — to identify specific points during the replay at which events from
the recording have to be injected.

The goal of our work was to implement a system that captures this non-deterministic
behavior during recording as part of the SimuBoost record and replay framework
and evaluate the feasibility of our approach, both in terms of correctness and
performance, using a variety of metrics.

To this end, we modified the KVM hypervisor within the Linux kernel that Simu-
Boost utilizes during the recording phase to track the location of the guest system’s
page tables in memory using the EPT hardware virtualization of physical mem-
ory. This ensures that no changes to the guest’s page tables can be made without
the involvement of the hypervisor. We were then able to re-purpose the existing
emulation support for x86 instructions in KVM to emulate any instruction that
would cause changes to the accessed or dirty bits in the guest’s page tables and at
the same time transmit these changes to the SimuBoost framework for use during
replay. Additionally, we modified QSIMU, the fork of the QEMU emulator used
by SimuBoost to perform the replay, to use this additional information during the
replay process to perform the exact same changes to the emulated machine’s page

55
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tables that occurred during the recording.

When we evaluated this solution we found that it achieved the desired result and
was able to replay recordings that would fail to be replayed correctly without our
changes, while exhibiting no regressions that we could observe. As expected,
depending on the workload that is being recorded, the increased precision of the
recording causes a performance hit during the recording. In the benchmarks that
we used to evaluate our implementation, this ranged from a 350% increase for a
worst-case micro-benchmark to no measurable difference in performance in the
best case. Benchmarks of real-world applications yielded results between those
values, such as a 50% increase in run-time for a build of the Linux kernel from
source. While the amount of data created by the recording increased with our
changes, we believe this to mainly be a result of the increased run-time and not the
additional logging of MMU events. On the replay side, we were able to show that
the addition of support for these MMU events during the replay in QSIMU did not
impact the replay’s performance in any way, even for the worst-case benchmark
that generated just shy of 75000 of these events per second of recording.

7.1 Future Work

While our implementation focuses on supporting the logging of MMU events for
uniprocessor guests and evaluating the impact of this change, we believe it could
in principle also be adapted to multiprocessor systems with a feasible amount of
work. We would however expect a higher performance impact from such a system
due to the required synchronization to ensure accurate tracking of the guest’s page
tables if one CPU is able to modify the page tables that are active on another CPU
and due to the increased overhead that the TLB flushes which are necessary when
modifying the EPT incur on multiprocessor systems.

Another worthwhile improvement would be evaluating heuristics that would im-
prove the performance of the recording by skipping page table walks and keeping
the page tables protected on some context switches, as we briefly mentioned in
Section 4.1.1. Our implementation does not yet take advantage of huge pages,
which allow a page table walk to terminate at a higher level page table entry,
mapping a larger contiguous area of memory and reducing both the depth of the
page table hierarchy and the total amount of page tables that are used. While the
use of huge pages in the guest would be very advantageous by reducing the amount
of work on tracking the guest’s page tables and logging MMU events, we had to
disable their use in the host because the guest page tables that we write-protect in
the EPT are always 4 KiB in size.
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Future hardware improvements could also allow decreasing the performance impact
that we experienced. For example [31] describes a mechanism that a TLB can
implement to indicate its state of synchronization with the guest page tables by
adding an additional bit to the EPT entries. As this is currently a very niche
application, we do however not expect this to be implemented in hardware any
time soon.
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Appendix: Raw Benchmark Data

Benchmark Results With MMU Event Logging

benchmark recording time (s) log size (bytes) replay time (s)

kernel 1176.15 13297774 19994.07

apache 1056.52 2375644 3986

SQLite 110.22 894478 306.14

mmap 875.87 630433 2871.78

stress-ng 499.96 395245 N/A

benchmark #dirty events #accessed events

kernel 2590 503669

apache 14 1836

SQLite 0 3187

mmap 65536025 1087

stress-ng 1 104
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64 APPENDIX: RAW BENCHMARK DATA

Benchmark Results Without MMU Event Logging

benchmark recording time (s) log size (bytes) replay time (s)

kernel 780.93 10219360 19838.55

apache 458.95 1548252 3860

SQLite 116.72 917537 325.26

mmap 196.595 319060 2789.0475

stress-ng 498.964 357162 N/A
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