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ABSTRACT
Over the last few years, GPUs have become common in com-
puting. However, current GPUs are not designed for a shared
environment like a cloud, creating a number of challenges
whenever a GPU must be multiplexed between multiple users.
In particular, the round-robin scheduling used by today’s
GPUs does not distribute the available GPU computation
time fairly among applications. Most of the previous work
addressing this problem resorted to scheduling all GPU com-
putation in software, which induces high overhead. While
there is a GPU scheduler called NEON which reduces the
scheduling overhead compared to previous work, NEON’s
accounting mechanism frequently disables GPU access for
all but one application, resulting in considerable overhead if
that application does not saturate the GPU by itself.

In this paper, we present LoGA, a novel accounting mecha-
nism for GPU computation time. LoGA monitors the GPU’s
state to detect GPU-internal context switches, and infers the
amount of GPU computation time consumed by each process
from the time between these context switches. This method
allows LoGA to measure GPU computation time consumed
by applications while keeping all applications running con-
currently. As a result, LoGA achieves a lower accounting
overhead than previous work, especially for applications that
do not saturate the GPU by themselves. We have developed
a prototype which combines LoGA with the pre-existing
NEON scheduler. Experiments with that prototype have
shown that LoGA induces no accounting overhead while still
delivering accurate measurements of applications’ consumed
GPU computation time.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Multi-
processing/multiprogramming/multitasking, Scheduling
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1. INTRODUCTION
Over the last few years, GPUs have become increasingly

common in computing. Especially in the field of High Perfor-
mance Computing (HPC), GPUs deliver unparalleled levels
of performance for certain classes of applications. More re-
cently, the increasing demand for GPUs has prompted cloud
providers to integrate GPUs into their cloud offerings as well.
Integrating a GPU into the cloud is particularly interesting
for users which need only sporadic access to a GPU – and
are thus unlikely to saturate an entire GPU by themselves
– since consolidating multiple such users on a single GPU
allows the cloud provider to increase the GPU’s utilization
and thus offer GPU access at a lower price. However, today’s
GPUs are not designed for a shared environment like a cloud.
Consequently, a number of challenges arise whenever a GPU
must be multiplexed between multiple users.

Traditionally, GPUs were used exclusively by a single
application to display graphics on a screen. While GPUs
have evolved considerably over the years, current GPUs have
inherited the design principles of their ancestors. These
characteristics make these GPUs difficult to use in a shared
environment like a cloud platform. For example, current
GPUs schedule commands – such as kernel launches or DMA
transfer requests – from different applications in a round-
robin fashion, without preemption and irrespective of the
runtime of these commands. This simple scheduling causes
applications which submit longer commands to receive more
GPU computation time. Therefore, the operating system –
or the hypervisor in a virtualized environment – must take
additional measures to ensure fairness between applications.

Previous work has produced two models for establishing
fairness between multiple applications sharing a GPU: Host-
based software scheduling and disengaged scheduling. Most
previous projects [15, 7, 8, 5, 2, 17, 19, 20] utilize host-based
software scheduling: A scheduler in the host system selects
a single GPU command for execution, and waits for that
command to complete before selecting the next command.
While this approach can achieve fairness, host-based soft-
ware scheduling necessarily interferes with or completely
disables the GPU’s own, highly efficient dispatching and
context switching and thereby induces considerable runtime
overhead in applications. In contrast, NEON [11] was the
first project to employ disengaged scheduling. NEON grants
applications direct access to the GPU whenever possible
and only interferes with applications’ execution when actual
scheduling is necessary to ensure fairness. While this ap-
proach achieves a much lower overhead than previous designs,
NEON’s resource accounting mechanism frequently disables
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GPU access for all but one application to observe the appli-
cations’ behavior in isolation. If the applications do not fully
utilize the GPU by themselves, this approach to accounting
leads to poor utilization, which can manifest as an applica-
tion overhead of more than 20 % for some applications. Note
that we expect individual applications not saturating the
GPU to be the common case in cloud environments since
applications saturating the GPU by themselves are likely not
interested in sharing a GPU with other applications.

In this paper, we present LoGA, a novel accounting mech-
anism for GPUs which operates in the disengaged schedul-
ing model. LoGA replaces NEON’s accounting mechanism
while keeping NEON’s original scheduler. LoGA monitors
the GPU’s internal state to detect GPU-internal scheduling
events and infers each application’s GPU usage from these
events. This information can then be used, for example, for
billing or scheduling. In contrast to previous work, LoGA
measures the applications’ GPU usage while all applications
are running concurrently, resulting in a higher GPU uti-
lization and thus less overhead. Our experiments with a
prototype implementation show that LoGA causes no ac-
counting overhead. At the same time, LoGA achieves a level
of fairness comparable to that of NEON overall, and even
yields better fairness than NEON for some applications.

The rest of this paper is organized as follows: In Sec-
tion 2, we present background on GPU hardware and describe
NEON’s scheduling approach, which forms the primary use
case of our work. We give a detailed description of LoGA’s
design in Section 3. In Section 4, we describe our prototype
implementation, before presenting the results of our evalua-
tion of our prototype in Section 5. Finally, we discuss related
work in Section 6, before concluding the paper in Section 7.

2. BACKGROUND
Current GPUs typically function as asynchronous com-

putational accelerators. The CPU offloads work – such as
CUDA kernels or rendering operations – to the GPU and is
then free to perform other tasks while the GPU processes the
offloaded work asynchronously. Modern GPUs allow applica-
tions to submit work to the GPU without operating system
intervention by writing commands into memory-mapped com-
mand submission channels. We describe this process in more
detail in Section 2.1. The GPU then executes the submitted
commands and, if requested by the application, signals com-
pletion of each command to the submitting application. We
present details on GPU command execution in Section 2.2.

Current GPUs typically do not support preemption: Once
a command has been submitted, it must run to completion,
which greatly complicates scheduling. As a consequence,
NEON [11] employs disengaged scheduling, a variant of fair
queuing [14] which achieves a fair distribution of GPU com-
putation time on average without requiring support for pre-
emption. We describe NEON’s approach in Section 2.3.

2.1 Command Submission Interface
Applications typically use command submission channels

to submit work to current GPUs. These channels are ring
buffers in memory, which contain a queue of high-level com-
mands like kernel launches or DMA transfer requests. Com-
mand submission channels can be mapped directly into an
application’s address space, allowing the application to sub-
mit commands without involving the operating system. The
command submission process is depicted in Figure 1: The
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Figure 1: GPU command submission channel. The ring
buffer contains a queue of commands awaiting execution.
The get- and put-pointers – which reside in memory-mapped
device registers – point to the current head and tail of the
queue. ( c© 2013 IEEE. Reprinted, with permission, from [4].)
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Figure 2: Example of a GPU’s internal round-robin schedul-
ing. Process A submits longer-running commands than pro-
cess B and thus receives more computation time.

application writes commands into the ring buffer and ad-
vances the put-pointer, which resides in a memory-mapped
device register, to inform the GPU that a command has
been submitted. The GPU in turn fetches commands from
the ring buffer, advancing the get-pointer after fetching a
command. Current GPUs support a large number of such
command submission channels, allowing the driver to assign
a dedicated channel to each application.

2.2 GPU Command Execution
The actual command execution is carried out by several

hardware engines. The first of these engines is a dispatcher,
which fetches commands from the command submission chan-
nels, decodes these commands and directs them to the other
engines for execution. If no appropriate engine is available
for a command, the dispatcher delays fetching of further
commands until an engine is ready to accept the stalled
command. Most of the actual command execution is then
performed by two other engines: A compute engine executes
all actual computation – such as CUDA kernels or rendering
operations – as well as synchronous DMA operations, while
a DMA engine handles all asynchronous DMA operations.
There is also a number of other engines dealing with more
specialized operations such as video decoding; however, we
omit descriptions of these engines as they are not relevant in
the context of this paper.

The dispatcher performs the GPU’s internal command
scheduling and context switching by fetching commands
from all active channels in a round-robin fashion. Both
scheduling and context switching are implemented inside
the GPU and therefore cause virtually no runtime overhead.
However, since GPU commands are not preemptible, such
simple round-robin scheding inherently favors applications
submitting long-running commands. For example, consider



P
1

P
2

P
3

t
1

t
sys

t
thresh

t
2

t
3

Virtual 
time

Figure 3: Fair queuing applied to GPU kernel execution.
NEON maintains a virtual time for each application as well
as a system-wide virtual time tsys. Applications are allowed
to run while their virtual time is less than tthresh ahead of
tsys. In this example, t1 would be suspended, while t2 and
t3 would be allowed to run.

two applications submitting commands of different length to
a GPU as depicted in Figure 2. Since the GPU alternates
between commands from both applications irrespective of
each command’s runtime, application A receives a larger
amount of computation time than application B.

Once the dispatcher has fetched a command from a chan-
nel, that command must typically run to completion. Any
event preventing a command from executing to completion
constitutes a fatal error which typically causes the command
to fail altogether. While the latest generation of GPUs can
tolerate certain interruptions in kernel execution – such as
page faults – there is currently little information available
about the extent of these features or on how to exploit them
to improve GPU scheduling.

2.3 Disengaged Scheduling
One way of scheduling GPU command execution is to

employ a variant of fair queuing [14], which is depicted in
Figure 3. To implement fair queuing for GPUs, the sched-
uler maintains a counter of consumed GPU time for each
application (t1 to t3). Whenever an application executes a
command on the GPU, the scheduler adds the runtime of that
command to the counter of the corresponding application. In
addition, the scheduler maintains a global system time (tsys),
which is always equal to the timer value of the application
that has consumed the least amount of GPU time so far.
The scheduler then allows all applications direct access to
the GPU as long as their timer values are smaller than the
sum of tsys and a configurable value (tthresh). Conversely, the
scheduler suspends GPU access for all applications getting
too far ahead of tsys. While this scheme does not elimi-
nate unfairness, it effectively limits the amount of unfairness
permitted in the system.

A major obstacle in implementing fair queuing for GPUs
is the GPUs’ asynchronous nature: The scheduler must
detect the start and finish times of each command to accu-
rately measure the GPU computation time consumed by each
application, which is difficult since GPU commands start
and finish asynchronously. To detect command start times,
NEON traps each GPU command submission by mapping
the application’s command submission channels read-only,
prompting a page fault on each command submission. When

P
1

P
2

P
3

drain samplingfreerun freerun

Figure 4: GPU time accounting in NEON. At the end of the
freerun phase, NEON suspends all applications and waits for
their remaining commands to finish. Then, each application
runs alone for a short interval while the scheduler profiles
the application’s commands.

the application subsequently attempts to submit a command,
the page fault handler records the current time as the new
command’s start time and forwards the command to the
channel. To detect finish times, NEON programs the GPU
to issue an interrupt on each command completion, and
records the command’s finish time in the interrupt handler.
This method causes a high number of page faults and in-
terrupts, leading to a significant application overhead. In
addition, trapping command submissions using page faults
can lead to inaccurate accounting data since commands do
not necessarily begin executing immediately after submission.

To overcome this problem, NEON [11], which first im-
plemented fair queuing for GPUs, does not employ precise
accounting, but instead approximates each application’s GPU
time consumption. As depicted in Figure 4, NEON alternates
between a sampling phase in which the scheduler measures
the applications’ GPU usage and computes scheduling deci-
sions, and a freerun phase in which all applications have direct
access to the GPU and no accounting or scheduling takes
place. During the sampling phase, the scheduler unmaps all
command submission channels from all applications, and al-
lows these channels to run empty (draining phase). Then, the
scheduler allows each application to execute commands on
the GPU for a configurable amount of time – typically a few
milliseconds – while all other applications remain suspended.
While each application is running, the scheduler traps all
command submissions and polls for command completions
at a default rate of 1 kHz to determine the runtime of each
command. At the end of each sampling phase, the scheduler
computes the average command runtime for each application,
and uses these runtimes to estimate each application’s GPU
time consumption during the previous freerun phase. This
estimate is then used to update each application’s counter
for the fair queuing algorithm. During the following freerun
phase, all applications not found to over-use the GPU have
direct access to their command submission channels, while
channels of over-using applications remain unmapped.

NEON’s estimation-based approach significantly reduces
scheduling overhead compared to previous work, while achiev-
ing good fairness for GPU applications. However, NEON still
suffers from an important drawback: NEON’s accounting
mechanism only executes one application at a time during
sampling phases. If that one application does not fully satu-
rate the GPU, this approach results in the GPU frequently
falling completely idle during the sampling phase, resulting in
considerable application overhead. Note that we expect a sin-
gle application not saturating the GPU to be a fairly common



scenario in a cloud environment, since applications which
can saturate a GPU by themselves are likely not interested
in sharing a GPU with other applications.

3. DESIGN
To minimize the accounting overhead, LoGA aims to keep

the GPU utilized at all times. To that end, we restrict
ourselves to passive monitoring of the GPU’s state as long
as actual scheduling is not strictly necessary.

In this section, we first present the goals of our design
in Section 3.1. Next, we give an overview of our design in
Section 3.2. Finally, we describe our accounting mechanism
and our scheduler in more detail in Section 3.3 and 3.4,
respectively.

3.1 Design Goals
While NEON does well at fairly scheduling GPU compu-

tation, NEON’s accounting mechanism can cause significant
application overhead by frequently disabling GPU access for
most running applications even if no scheduling is required.
Therefore, LoGA’s main objective is to reduce this account-
ing overhead without sacrificing scheduling quality. More
specifically, we formulate two main goals for LoGA:

Performance: Applications should not have to pay for
improved scheduling with reduced performance. As a conse-
quence, LoGA should keep applications running whenever
possible to maintain a high GPU utilization at all times.

Fairness: When using LoGA, the scheduler should achieve
at least the same level of fairness as when using NEON’s
original accounting mechanism.

3.2 Design Overview
LoGA measures the applications’ GPU time consumption

by monitoring status registers reflecting the internal state
of the GPU and deducing the amount of GPU computation
time consumed by each application from changes in that
state. When LoGA detects an application over-using the
GPU, the scheduler temporarily suspends GPU access for
that application to ensure that other applications receive a
fair amount of GPU time as well.

In contrast to NEON, LoGA disables an application’s GPU
access – and thus causes overhead – only after an application
has been found to over-use the GPU. All applications not
over-using the GPU keep running concurrently as shown
in Section 5.3, which keeps GPU utilization high. In addi-
tion, LoGA is able to accurately measure each application’s
GPU time consumption even while all applications are active
concurrently on the GPU. The scheduler can thus make
scheduling decisions as accurate as – and in some cases, even
more accurate than – NEON, as shown in Section 5.5.

LoGA’s architecture consists of two main components as
depicted in Figure 5: An accounting thread which monitors
each application’s resource usage, and a scheduler which
makes scheduling decisions based on the information collected
by the accounting thread. The accounting thread periodically
polls status registers of the GPU’s compute engine in order to
detect GPU-internal context switches, and sums up the time
between these context switches to compute the total amount
of GPU time consumed by each application. The scheduler
periodically requests each application’s consumed GPU time
from the accounting thread and uses this information as
input for the disengaged fair queuing algorithm introduced by
NEON. Whenever the scheduling algorithm decides that an
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Figure 5: Basic architecture of LoGA
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Figure 6: Computation time measurement using context
switches. The status registers are read at each of the dashed
vertical lines. Context switches are detected at t1 and t2,
and the runtime of A’s command is computed as t2 − t1.

application is over-using the GPU, the scheduler temporarily
suspends GPU access for that application.

3.3 Computation Time Accounting
To measure the amount of GPU time used by each ap-

plication without negatively affecting GPU utilization, the
accounting thread polls a GPU status register which identi-
fies the command submission channel the currently executing
command originated from. Whenever the content of that
register changes – which indicates a context switch – the ac-
counting thread records the time since the last context switch
as GPU computation time used by the application that ran
before the context switch. An example of our approach is
shown in Figure 6: The accounting thread detects a context
switch from B to A at time t1, followed by a context switch
from A to B at time t2. Consequently, the time between
the two context switches must have been consumed by A’s
command. Note that context switches are not visible to the
accounting thread until the next time the status register is
read. This delay has two implications: First, t1 and t2 may
be delayed from the actual context switches by the time it
takes to read a device register. In practice, however, these
delays do not cause significant inaccuracy in the measured
command runtimes since i) the delays are limited to at most
one iteration of the polling loop, which is about 1 µs on our



hardware, and ii) the delays appear at both the beginning
and end of each command and thus cancel out on average.
Second, LoGA may not detect commands with an execution
time shorter than one polling loop iteration. While this
situation does occur for some short setup commands, the
runtime of a GPU kernel is typically much longer than one
loop iteration. In practice, we therefore do not expect this
problem to cause significant inaccuracy.

Polling the GPU’s status registers allows LoGA to account
GPU computation time without disturbing the GPU execu-
tion of any application: Reading a status register does not
cause any interruptions in GPU computation. However, high-
frequency polling inevitably causes high CPU overhead. In
order to reduce that overhead, the accounting thread does not
poll the GPU constantly, but in periodic intervals: A short
polling phase is followed by a longer phase without polling.
Since application behavior is not necessarily constant over
time, the accounting thread recomputes each application’s
consumed GPU time after each polling phase. However, this
periodic polling results in a trade-off between CPU overhead
and accounting accuracy: The longer the polling phase is
compared to the non-polling phase, the greater both accuracy
and CPU overhead become. However, it is important to note
that this trade-off depends only on the ratio – but not on the
absolute lengths – of the two intervals. Specifically, if both
intervals are scaled by the same amount, neither accuracy
nor CPU overhead will change significantly.

While the absolute interval lengths do not affect the trade-
off between accuracy and overhead, the polling phase must
be long enough to observe a large enough number of context
switches. With a fixed interval length, however, starting a
large number of applications leads to fewer context switches
per application during each interval. Consequently, our ac-
counting thread increases the length of both intervals linearly
with the number of GPU applications in the system. In ad-
dition, if a single command runs longer than the length of
the polling phase, LoGA observes no context switches at all
during that polling phase. In that case, LoGA accounts the
entire length of the polling phase as GPU time consumed by
the application running at the end of the polling phase.

An additional disadvantage of fixed interval lengths is that
the accounting thread might sample periodic application
behavior. To mitigate this issue, the accounting thread can
randomize the lengths of both intervals, while keeping the
average interval lengths equal to the current, fixed lengths.

3.4 Compute Kernel Scheduling
Our scheduler is based on the disengaged fair queuing

algorithm first introduced in NEON [11]. The scheduler
maintains a virtual time for each application that is using the
GPU. At the end of each polling phase, the scheduler queries
each application’s GPU time consumption and uses this value
to advance the application’s virtual time. To that end, our
scheduler performs two steps: First, it computes the total
amount of GPU time consumed by all applications (ttotal)
during the polling phase. Then, it advances each application’s
virtual time by the proportion of that application’s consumed
GPU time (tapp) during the polling phase to the GPU time
consumed by all applications combined (ttotal), scaled by the
sum of the lengths of both polling (tpoll) and non-polling
phase (tnon−poll):

∆vtapp =
tapp
ttotal

× (tpoll + tnon−poll)

For example, if an application has consumed half of the
total amount of GPU time, the scheduler advances that
application’s virtual time by half of the sum of the lengths
of the polling and the non-polling phase.

After updating all applications, the scheduler updates the
system time (tsys) to the smallest virtual time in the system.
Then, the scheduler compares each application’s virtual time
to tsys. If an application is found to be ahead of tsys by more
than (tpoll + tnon−poll), the scheduler suspends GPU access
for that application for the next non-polling phase.

To prevent applications from “saving up” GPU time, the
scheduler ignores applications that were not active in the
preceding polling phase when updating tsys. In addition,
if an idle application’s virtual time falls behind tsys, the
scheduler advances that application’s virtual time to tsys.

4. IMPLEMENTATION
To show the viability of our approach, we integrated a

prototype implementation of LoGA into the NEON kernel
module, which is placed between the application and Nvidia’s
proprietary GPU driver. The module intercepts calls from
the application to the GPU driver, tracks which command
submission channel belongs to which application, and for-
wards all calls to the GPU driver. The module’s operation
is thus completely transparent to the applications. Since
NEON comes with support for multiple, pluggable schedul-
ing policies, we implemented our prototype as an additional
policy, called the event policy.

Integrating LoGA into the NEON module allows us to
re-use NEON’s infrastructure without modification. Our
event policy is based on NEON’s original sampling policy,
but replaces the sampling policy’s accounting mechanism
with LoGA. Our implementation of disengaged fair queuing
re-uses most code from the sampling policy’s original imple-
mentation, with only small modifications to integrate the
algorithm with LoGA.

The rest of this section is organized as follows: In Sec-
tion 4.1, we present the implementation of our accounting
mechanism, before describing the implementation of our
scheduler in Section 4.2. Finally, we describe our mechanism
for suspending GPU applications in Section 4.3.

4.1 Computation Time Accounting
To account consumed GPU computation time, LoGA must

detect GPU-internal context switches with high accuracy. To
that end, LoGA launches a kernel thread for each GPU in
the system. During polling phases, this thread polls a GPU
status register indicating which command submission channel
is currently executing commands on the GPU. Any change
in that status register denotes a context switch, prompting
LoGA to account the time since the last context switch to
the last application to run. We found appropriate status
registers to be present in all recent Nvidia GPUs.

Current GPUs typically contain more than one status
register identifying the “current” command submission chan-
nel. Each of the GPU’s engines typically contains a status
register reflecting the current command submission channel
from that engine’s point of view. Since our main focus is on
GPU computation, LoGA uses the compute engine’s status
registers, which we found to correlate best with the kernel
runtimes seen by applications.

An issue during implementation was that the status regis-
ters only reflect the identity, but not the status of the current



channel. As a consequence, LoGA cannot determine whether
the current channel is busy or idle from the status regis-
ter alone. To detect idle channels, LoGA polls the current
channel’s entry in the GPU’s channels table – an in-memory,
GPU-managed data structure containing information about
all allocated channels – in addition to the status register.
The channels table contains a status bit for each channel,
which indicates whether this channel is currently active –
that is, whether this channel is either executing a command,
or contains commands awaiting execution. If no commands
are pending for the current channel seen by the compute
engine, LoGA considers the GPU to be idle and does not
account any computation time.

4.2 Compute Kernel Scheduling
Our scheduler runs in the context of NEON’s main thread.

This thread is periodically woken by a timer. In addition,
we wake the main thread whenever an application creates
or destroys a channel since these events may necessitate a
scheduling decision. On each wakeup event, the thread per-
forms two main tasks: i) coordinate the accounting threads,
and ii) compute scheduling decisions.

Each wakeup event induces a transition between the polling
and non-polling phases, which the main thread must commu-
nicate to the accounting threads. At the end of each polling
phase, the main thread signals the accounting threads to
finish polling, and then waits for all accounting threads to
acknowledge that signal to ensure that the accounting infor-
mation is up to date before computing a scheduling decision.
At the end of each non-polling phase, the main thread sig-
nals the accounting threads to resume polling, but does not
wait for that signal to be acknowledged. While omitting the
acknowledgment causes the length of the polling phase to
vary slightly, this variance is tolerable since LoGA uses the
actual length of the polling phase in all computations.

4.3 Suspending Applications
Our scheduler currently suspends GPU access for applica-

tions by unmapping all command submission channels from
the application’s address space. To unmap a channel, our
scheduler disables the valid bit of the channel’s page table
entry and flushes the corresponding TLB entries. If the ap-
plication attempts to access an unmapped channel, the page
fault handler blocks the accessing thread on a per-application
semaphore until the scheduler restores GPU access for the
application. To restore GPU access for the application, the
scheduler switches the valid bit in the appropriate page ta-
ble entry back on and unblocks all threads waiting on the
application’s semaphore.

Current GPUs cannot stop the execution of commands
after these commands have been submitted to a channel.
Therefore, our scheduler must allow any commands already
present in the channel to execute to completion after the
channel has been unmapped. However, any computation
time consumed by these commands will be accounted to the
application owning the channel, which potentially prolongs
the time the application remains suspended later on.

5. EVALUATION
To verify that LoGA reduces the overhead of GPU ac-

counting, we conducted experiments with our prototype im-
plementation. In this section, we present the results of these
experiments. First, we describe our experimental setup in

Section 5.1 and our application for generating defined GPU
loads in Section 5.2. In Section 5.3, we show that LoGA
reduces the overhead of GPU computation time accounting
compared to previous work. Next, we address the accounting
accuracy of LoGA: We show that our approach is able to
measure consumed GPU time with high accuracy in Sec-
tion 5.4, before showing that LoGA achieves an end-to-end
scheduling quality comparable to that of previous work in
Section 5.5. Finally, we address the CPU overhead caused
by LoGA’s accounting mechanism in Section 5.6.

5.1 Experimental Setup
In our experiments, we used an Nvidia GeForce GTX Titan

Black, which is based on the Kepler microarchitecture and
contains 2880 CUDA cores and 6 GiB of GDDR5 memory.
Besides the GPU, our test system contains two Xeon E5-
2620 CPUs for a total of 24 cores and 32 GB RAM. Our
test system runs Linux 3.4.7, version 331.62 of Nvidia’s
proprietary GPU driver and CUDA 6.0. For our experiments,
we used version 3.1 of the Rodinia benchmark suite [3].

Unfortunately, most of Rodinia’s applications execute only
one iteration of their main algorithm. However, since both
NEON and LoGA both aim to correct imbalance after an
application has been found to over-use the GPU, executing
only one iteration does not give the scheduler a chance to
correct any imbalance it may have detected during the first
iteration. Therefore, we modified those Rodinia applications
that do not execute multiple iterations to execute both their
GPU kernels and their I/O multiple times. While we did not
use one fixed iteration count for all applications, we generally
aimed for a total run time of a few seconds, which is sufficient
for the scheduler to correct any detected imbalance.

The numbers reported are the average of 10 executions,
with the error bars indicating the standard deviation. We
repeated each experiment with both our event policy and
NEON’s original sampling policy enabled, as well as the
application running directly on top of the GPU driver without
accounting or scheduling. We configured both schedulers to
use a polling phase of 1 ms and an non-poll phase of 5 ms
per allocated command submission channel. While a polling
phase of 1 ms may seem rather short, we found CUDA 6.0
to allocate 12 command submission channels per application,
even though only one is actually used. Since the length of
the polling phase increases with the number of channels, this
behavior results in the polling phase being long enough to
accurately measure the application’s behavior.

5.2 Throttle
For our experiments, we created a Throttle benchmark

similar to that used in the evaluation of NEON. Throttle
allows us to create different load patterns on the GPU and
study the effects these load patterns have on other applica-
tions. Throttle launches small CUDA kernels which execute
a tight loop for a configurable amount of time. While one
of Throttle’s kernels is executing, GPU execution is blocked
for other applications since GPU kernels are non-preemptive
and the GPU used in our experiments cannot execute kernels
from different applications concurrently. After running each
kernel, throttle can optionally sleep for a configurable amount
of time before submitting the next kernel. Sleeping between
kernel launches allows throttle to simulate applications which
do not saturate the GPU by themselves.
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(b) Each throttle instance launches kernels of 100 µs, followed by a sleeping period of 1000 µs.

Figure 7: Turnaround times of a single instance of various OpenCL applications running concurrently with ten instances of
throttle for both LoGA’s event policy and NEON’s sampling policy, normalized against the turnaround time without any
accounting. Scheduling is disabled in all cases. The rightmost bars show the geometric mean of all applications.

5.3 Accounting Overhead
In our first experiment, we show that LoGA’s accounting

mechanism induces no measurable overhead. To that end,
we started a single instance of each of our benchmark ap-
plications concurrently with ten instances of throttle, and
recorded the turnaround time per iteration. Since NEON’s
accounting mechanism is especially problematic for appli-
cations that do not saturate the GPU by themselves, we
configured each throttle instance to launch kernels of 10 µs,
followed by a sleeping period of 1000 µs. Mathematically, the
throttle instances thus create a GPU load of 9.9 %. Since we
found scheduling decisions to mask the accounting overhead,
we disabled all scheduling in this experiment, leaving only
the accounting mechanism of each policy active.

Figure 7a shows each application’s turnaround time under
both LoGA’s event policy and NEON’s sampling policy, nor-
malized against the turnaround time without any accounting.
The results indicate that the event policy indeed achieves
a higher GPU utilization – and thus causes less accounting
overhead – than the sampling policy. In fact, the turnaround
time increases by 11.4 % on average for the sampling policy,
with the worst case (nn) being as high as 23.4 %. In contrast,
the average turnaround time mathematically decreased under
LoGA, although not by a statistically significant amount.
These results are consistent with our expectations: Since the
throttle instances do not saturate the GPU by themselves,
disabling all but one application during sampling phases
forces the GPU to idle most of the time, resulting in a high
overhead for the sampling policy. In contrast, the event
policy does not suspend GPU access for applications during

sampling phases and thus achieves a higher GPU utilization
– and therefore induces less overhead – during these phases.

We repeated the previous experiment with an increased
throttle kernel length of 100 µs, again followed by a 1000 µs
sleeping period. Throttle thus caused a total GPU load of
90.9 % in this experiment. The results, which are shown
in Figure 7b, show that our event policy still causes less
overhead than the sampling policy: The average increase in
turnaround time caused by the sampling policy was 7.6 %,
while the event policy showed an average increase of only
0.7 %. Finally, we also measured the overhead for applica-
tions saturating the GPU, but found no significant difference
between NEON and LoGA in this case. We therefore omit
these results for brevity.

In our next experiment, we show that LoGA’s overhead – or
lack thereof – is independent of the number of concurrent ap-
plications. To that end, we launched each of our benchmark
applications concurrently with a varying number of throttle
instances. We configured each throttle instance to launch
kernels of 10 µs, followed by a 1000 µs sleeping period. As in
the previous experiment, we disabled all scheduling to avoid
masking the accounting overhead. To make the accounting
overhead visible, we normalized the benchmark turnaround
times under NEON and LoGA against the turnaround time
without any accounting or scheduling.

Figure 8 shows the normalized turnaround times for four
of our benchmark applications running concurrently with one
to 20 instances of throttle. We found most of our benchmark
applications to behave like heartwall, which is shown in Fig-
ure 8a. For these applications, the turnaround time under
NEON increases with the number of concurrent throttle pro-



 0.95

 1

 1.05

 1.1

 2  4  6  8  10  12  14  16  18  20

N
o
rm

a
li

z
e
d

tu
rn

a
ro

u
n
d
 t

im
e

# throttle instances

NEON

LoGA

(a) heartwall

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 2  4  6  8  10  12  14  16  18  20

N
o
rm

a
li

z
e
d

tu
rn

a
ro

u
n

d
 t

im
e

# throttle instances

NEON

LoGA

(b) lavaMD

 0.9

 1

 1.1

 1.2

 1.3

 2  4  6  8  10  12  14  16  18  20

N
o
rm

a
li

z
e
d

tu
rn

a
ro

u
n

d
 t

im
e

# throttle instances

NEON

LoGA

(c) dwt2d

 0.96

 0.98

 1

 1.02

 1.04

 2  4  6  8  10  12  14  16  18  20

N
o
rm

a
li

z
e
d

tu
rn

a
ro

u
n
d
 t

im
e

# throttle instances

NEON

LoGA

(d) mummergpu

Figure 8: Overhead of NEON and LoGA for four applications running concurrently with various numbers of throttle instances
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Figure 9: Intended vs. measured kernel length of throttle.
Note that throttle waits for each kernel to complete before
submitting the next one, which slightly increases the kernel
length.

cesses, indicating an increase in NEON’s accounting overhead
for larger numbers of concurrent applications. The reason for
this result is that the length of the sampling phases increases
with the number of concurrent applications. Since NEON
disables all but one application during sampling phases, the
GPU is forced to idle most of the time during sampling
phases. Therefore, increasing the length of NEON’s sam-
pling phase directly translates to more overhead. In contrast,
LoGA keeps all applications running concurrently during
sampling phases and therefore shows no significant overhead,
irrespective of the number of concurrent applications. An
interesting variant of NEON’s behavior is shown in Figure 8b:
For lavaMD, the turnaround time under NEON is initially
even lower than without any accounting mechanism enabled,
indicating that letting lavaMD run alone from time to time
is advantageous for this application. However, as the number
of throttle processes increases, the resulting increase in idle
time during sampling phases results in the turnaround time
under NEON becoming larger than that under LoGA.

While most applications showed results consistent with our
expectations, some applications exhibited different behavior.
For dwt2d, which is shown in Figure 8c, the turnaround time
initially decreases for small numbers of throttle instances,
and rises again for larger numbers of throttle instances. Bfs,
gaussian and huffman exhibited similar behavior. However,
NEON’s turnaround times for all of these applications were
consistently higher than LoGA’s. Finally, mummergpu’s
turnaround times, shown in Figure 8d, decreased with the
number of concurrent throttle instances when running under
NEON, even becoming smaller than those under LoGA for
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Figure 10: Intended vs. measured GPU load. The numbers
indicate the fraction of time that the GPU is busy.

more than 16 instances of throttle. Myocyte and nn showed
a similar decrease in turnaround time under NEON, though
for both of these applications, NEON’s turnaround times
were consistently higher than LoGA’s.

5.4 Accounting Quality
Our next experiments address the quality of the GPU

usage data collected by LoGA. To determine if our method
of polling status registers is capable of measuring consumed
GPU computation time with high accuracy, we used LoGA
to measure the kernel runtimes of our throttle application.
Using throttle, we can exactly control the length of the
submitted kernels, which allows us to easily verify whether
the results obtained by LoGA are correct. Since our initial
experiments are only concerned with the general feasibility
of our method, we configured LoGA to poll 100 % of the time
to eliminate any estimation inaccuracy.

In our first experiment, we show that LoGA can measure
an application’s kernel length with sufficient accuracy. To
that end, we executed a single throttle instance generating a
GPU load of 100 % without any other applications accessing
the GPU, while increasing throttle’s kernel length from 100
to 1000 µs in 100 µs increments. We ran each kernel length
ten times, sampling for 10 seconds in each run. The results,
shown in Figure 9, indicate that LoGA underestimates throt-
tle’s kernel length by up to 6 %. This error is caused by the
fact that LoGA must read GPU state from both the GPU’s
dispatcher and the compute engine. However, these two
engines sometimes reflect context switches at different times,
which causes some inaccuracy. The relative error appears to
be independent of the kernel length and thus should affect
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all applications equally. We therefore do not expect this type
of error to have a significant impact on scheduling quality.

In a second experiment, we show that LoGA is able to
measure the average load of the GPU. To that end, we
inserted idle time between kernel launches to create a defined
load on the GPU. Specifically, we configured throttle to
run in cycles of 1000 µs, with each cycle containing exactly
one GPU kernel. We then increased the length of that
kernel from 100 to 1000 µs in 100 µs increments, while
keeping the GPU idle during the rest of the cycle. As in
the previous experiment, we executed each step 10 times,
each time sampling for 10 seconds. The results, shown in
Figure 10, show that the GPU load measured by LoGA is
within 2.5 % of the intended load in all cases. We therefore
conclude that our basic approach to measuring GPU time is
feasible.

5.5 Scheduling Quality
In our final experiment, we show that a LoGA-based sched-

uler can achieve the same level of fairness as a NEON-based
one. To that end, we ran four instances of throttle, each
configured to execute kernels of 200 µs followed by 800 µs
of idle time, concurrently with each of our benchmark ap-
plications. With this setup, all applications combined come
close to fully utilizing the GPU, while each throttle instance
by itself generates only moderate load. We then measured
the turnaround time for each application, and normalized
that turnaround time against the turnaround time of the
same application running alone on the GPU under the same
accounting mechanism to factor out the accounting overhead.
As in the previous experiments, the numbers reported are
the average of 10 runs. The results of this experiment are
shown in Figure 11.

As a first step in this experiment, we quantified what
the turnaround time of each application should be if GPU
time was fairly distributed. To that end, we used LoGA –
polling 100 % of the time as in Section 5.4 – to measure the
total amount of GPU time received by the application itself
and each throttle instance over the entire runtime of the
application when no scheduling is taking place. From these

GPU times, we calculated how much the scheduler should
slow down either the application or throttle to make throttle
receive the same amount of GPU computation time as the
application over the course of the application’s runtime. For
simplicity, our calculation assumes that each application by
itself saturates the GPU 100 % of the time. As a result,
our calculation tends to overestimate the change needed for
a fair distribution of GPU computation time since those
parts of the application that do not run GPU computation
– such as I/O or CPU computation – are not slowed down
if the application’s GPU access is suspended. Finally, we
multiplied the calculated slowdown with the application’s
measured turnaround time without scheduling to obtain an
“optimal” turnaround time for each application. We show
the optimal turnaround time as “Optimal” in Figure 11.

Finally, we ran each application under both LoGA and
NEON, as well as without scheduling. We enabled estimation-
based accounting, with a poll phase of 1 ms and a non-poll
phase of 5 ms per allocated command submission channel, for
both accounting mechanisms. The results – labeled “LoGA”,
“NEON” and “No scheduling”, respectively – show that our
LoGA-based scheduler brings the turnaround time of all
applications closer to the calculated optimum, but in most
cases keeps the application’s runtime below the calculated
value. This behavior is expected since our calculated op-
timum likely overestimates the change necessary for a fair
distribution of GPU computation time. NEON’s results are
similar to LoGA’s in most cases; however, there are many
cases where NEON either did not detect as much imbalance
as LoGA (bfs, cfd, hotpot, hotspot3D, hybridsort, particle-
filter) or even slowed down the wrong application (dwt2d,
gaussian, lavaMD, lud, srad v1). Overall, we conclude that
the accounting data produced by LoGA is at least as good as
– and likely better than – that produced by NEON’s original
accounting mechanism.

One major difference between NEON and LoGA is that
both use different metrics to estimate the applications’ GPU
time consumption: NEON uses the application’s average
command length, while LoGA uses the application’s total
amount of consumed GPU time per poll phase. To investigate



whether the choice of metric is in fact the cause of NEON’s
bad results, we created a version of LoGA that uses the
average time between context switches as an approximation
of the average command length. The results for this version
of NEON – labeled “LoGA-CL” in Figure 11 – show that
using the average time between context switches indeed yields
results similar to those of NEON in many – albeit not all –
cases. However, even using the average time between context
switches, LoGA is less prone to slowing down the wrong
application than NEON. In addition, there are applications
where the results for LoGA-CL are almost identical to those of
LoGA. Overall, the total amount of consumed GPU time per
poll phase appears to be a better metric for the application’s
GPU usage than the average command length, although
the choice of metric does not explain all the differences
between NEON and LoGA. Another difference between
NEON and LoGA is that NEON only observes applications
running in isolation, while LoGA observes all applications
running concurrently. For CPUs, it has been shown that
applications can exhibit dramatic changes in behavior when
running concurrently with other applications [13]. While the
same likely happens on the GPU, the resulting changes in
kernel runtime are invisible to NEON since NEON only sees
the applications running alone.

While LoGA improves the accuracy of GPU computation
time measurements, it is important to remember that even
if the accounting data is perfect, a scheduler may still make
wrong decisions based on that data. In our current imple-
mentation, the scheduling algorithm is essentially the same
as in NEON. Since our focus is on accounting rather than
scheduling, we see the scheduling algorithm as outside the
scope of this paper. However, we plan to further address the
GPU scheduling problem in the future.

5.6 CPU Overhead
While polling delivers accurate measurements of GPU time

consumption, it also causes non-trivial CPU overhead. With
the non-poll phase being five times as long as the polling
phase, LoGA should keep a single core busy 1/6 – or 16.7 %
– of the time. In practice, we measured an overhead of 17 %;
we attribute the remaining 0.3 % to computing of scheduling
decisions. In contrast, NEON uses low-frequency polling,
which is implemented using high-resolution timers rather
than spinning. As a result, NEON’s CPU load is virtually
non-existent – in fact, we were unable to separate it from
the regular background noise of the operating system.

Since LoGA’s CPU overhead was higher than that of
NEON, we expect that it will be necessary to set aside
a dedicated core for LoGA. However, doing so becomes
increasingly feasible as we move into the manycore era. In
addition, we expect one such dedicated core to be sufficient
since a single CPU core can handle multiple GPUs by visiting
these GPUs in a round-robin fashion, with exactly one GPU
being inside the poll phase at any given time. Using the
default parameters – i.e., with the non-poll phase being five
times as long as the poll phase – this scheme allows one core
to handle six GPUs without any loss in accounting quality.

6. RELATED WORK
Several research projects have addressed the problem of

fairly sharing GPU computation time. PTASK [15], GERM [2],
TimeGraph [7], Gdev [8], and Pegasus [5] schedule GPU com-
mands in the kernel, but define new APIs that the application

must support. VGRIS [20] instead intercepts user commands
in a modified OpenGL library, thus requiring no modifica-
tions to the application. GPUvm [17] and gVirt [19] enable
full virtualization of GPUs while maintaining fairness and
are thus completely transparent to applications. However,
all of these projects implement GPU scheduling and con-
text switching in software, causing frequent interruption in
GPU program execution and thus inducing high application
overhead.

NEON [11] comes closest to our own philosophy and forms
the basis of our work. While previous work scheduled work
on the GPU much like on another kind of CPU, NEON
treats GPUs as the independent accelerators they are. Con-
sequently, NEON’s disengaged fair queuing strategy allows
the GPU a high degree of independence, which is consistent
with our own assumption that interference with the inner
workings of the GPU should be avoided to minimize appli-
cation overhead. However, NEON’s accounting mechanism
still interrupts GPU applications frequently, inducing consid-
erable runtime overhead in applications. Our work instead
integrates NEON’s disengaged fair queuing algorithm with
an interruption-free accounting mechanism which causes no
application overhead unless actual scheduling is required.

The idea of indirectly monitoring events and inferring ac-
counting information from these events is not a new one.
In the past, the same principle has been applied to various
problem areas, such as performance profiling [1], energy ac-
counting [12] or scheduling [18]. To our knowledge, however,
we are the first to apply this principle to computation time
accounting for GPUs. Likewise, the concept of extrapolating
total resource usage from samples has been used, for example,
to measure the resource consumption of virtual machines [6].

There have also been several research projects which ad-
dress GPU applications sharing resources other than compu-
tation time, such as networking [10], GPU memory [9] and
secondary storage [16]. These projects are orthogonal to our
work and can easily co-exist with LoGA.

7. CONCLUSION
In this paper, we have presented LoGA, a novel accounting

mechanism for GPUs. LoGA monitors the GPU’s state to
detect GPU-internal context switches, and infers the amount
of GPU computation time consumed by each process from
the time between these context switches. This approach
allows LoGA to account GPU computation time without
interrupting GPU access for the applications, resulting in
a higher GPU utilization if individual applications do not
saturate the GPU by themselves. In addition, LoGA is able
to observe the interactions between concurrent applications,
leading to more accurate measurements of resource consump-
tion for some applications. Experiments with our prototype
implementation have shown that LoGA induces less runtime
overhead and at the same time allows the scheduler to achieve
a degree of fairness comparable to that of previous work.

In the future, we plan to improve LoGA’s support for
virtualization. Currently, LoGA cannot distinguish between
virtual machines and regular applications.

Our prototype implementation of LoGA is open source and
can be downloaded from https://github.com/jkehne/loga.

https://github.com/jkehne/loga
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