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Abstract

Modern GPUs are immensely powerful, highly asynchronous computational accel-
erators usable for a wide range of applications. Unfortunately, operating systems
still treat GPUs like simple devices with predictable response times [28] and are
unable to enforce fair sharing of GPU computation time between multiple applica-
tions. Additionally, virtualization and cloud-computing became ubiquitous. Most
modern GPUs, however, are closed black-box devices, which makes them difficult
to virtualize. Previous work on both GPU scheduling and GPU virtualization exists,
but does not target the intersection of both topics: GPU scheduling in virtualized
environments.

In this thesis, we design, implement and evaluate two fundamentally different
approaches for virtualized GPU scheduling. Our primary approach employs a central
scheduler in the hypervisor in order to balance the GPU usage of applications over
multiple levels of virtualization. We supply the central scheduler with paravirtual
hints from the guest to allow the identification of guest tasks. By manipulating
the virtual machine’s memory mappings of GPU channels, our scheduler is able to
separately account and control the GPU usage of individual guest tasks.

Our second approach works fully decentralized and uses separate schedulers on
the host and in each virtual machine. Each nested scheduler enforces fair GPU time
sharing locally among child tasks.

Based on two existing systems for GPU scheduling and GPU virtualization, we
implement a full prototype of the paravirtual approach and a proof of concept of
the nested approach.

In the evaluation, we demonstrate our paravirtual prototype’s ability to enforce
fairness both between virtual machines and between tasks running inside virtual
machines at the same time. We measure an average scheduling overhead of only
2.17 %. Additionally, we demonstrate the feasibility of nested GPU scheduling with
our decentralized approach. Our proof of concept is able to account and schedule
GPU usage in the virtual machine without any help from the hypervisor.
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Deutsche Zusammenfassung

Moderne Grafikkarten sind enorm leistungsstarke, weitgehend asynchron arbei-
tende Rechenbeschleuniger, die für eine Vielzahl von Anwendungen eingesetzt
werden. Unglücklicherweise behandeln Betriebssysteme Grafikkarten immer noch
wie einfache Zusatzgeräte mit vorhersagbarem Laufzeitverhalten. Infolgedessen
sind selbst aktuelle Betriebssysteme nicht in der Lage, die zur Verfügung stehende
Rechenzeit auf der Grafikkarte gerecht zwischen allen Anwendungen zu verteilen.

Zudem ist Cloud-Computing mittlerweile allgegenwärtig. Unglücklicherweise ist
es sehr schwierig, Grafikkarten gut zu virtualisieren, weil es sich meist um geschlos-
sene Geräte handelt, deren genaue interne Arbeitsweise geheim ist. Zwar existieren
sowohl für das Problem der mangelnden Fairness, als auch das der Virtualisierung
von Grafikkarten jeweils vielversprechende Ansätze, allerdings beschäftigen sich
nur die wenigsten mit der Schnittmenge beider Themen, also Fairness in Cloud-
Umgebungen. Darüber hinaus sind uns gar keine Ansätze bekannt, die in der Lage
wären die Grafikkartennutzung nicht nur zwischen virtuellen Maschinen, sondern
gleichzeitig auch zwischen innerhalb dieser laufenden Anwendungen auszuglei-
chen.

Im Rahmen dieser Arbeit wurden zwei grundlegend unterschiedlich arbeitende
Systeme zum Scheduling von Grafikkarten in Cloud-Umgebungen entworfen. Im
ersten, zentral arbeitenden System läuft nur ein Scheduler im Hypervisor. Dieser
stellt Fairness in allen Virtualisationsschichten gleichzeitig her. Dazu wird der Sche-
duler mittels Paravirtualisierung mit Informationen über Gastprozesse in virtuellen
Maschinen versorgt. Diese Informationen erlauben es, Speichermappings der virtu-
ellen Maschine von Kontrollkanälen der Grafikkarte so zu manipulieren, dass die
Grafikkartennutzung jedes Gastprozesses einzeln überwacht und gesteuert werden
kann.

Der zweite Ansatz arbeitet mit mehreren verteilten Schedulern, von denen je
einer im Hypervisor und in jeder virtuellen Maschine läuft. Die Scheduler sind dabei
lediglich dafür zuständig, lokal Fairness zwischen Unterprozessen ihrer Maschine
herzustellen.

In der Implementierung wird auf Basis zweier existierender Systeme zur Vir-
tualisierung und zum Scheduling von Grafikkarten der zentral arbeitende Ansatz
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vollständig implementiert. Dieser ist in der Lage, eine gerechte Verteilung der Grafik-
karte gleichzeitig innerhalb des Hypervisors und innerhalb der virtuellen Maschinen
zu erreichen. Zudem wurde ein Prototyp des dezentralen Ansatzes implementiert.

In der Evaluierung werden die Fähigkeiten des zentralen Schedulers untersucht
und eine vom Scheduling verursachte Verlangsamung von lediglich 2.17 % gemes-
sen. Darüber hinaus demonstriert der dezentral arbeitende Prototyp, dass es auch
möglich ist, eine faire Verteilung der Grafikkarte rein mit Software zu erreichen,
die innerhalb der virtuellen Maschine läuft.
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1 Introduction

The computational power demands of today’s High Performance Computing (HPC)
applications are enormous. Such applications include scientific simulations [19],
weather forecasting [43], and calculations for quantum chemistry [49]. Tradition-
ally, increasing computational demands were answered by raising clock frequencies
and adding more general-purpose CPU cores. Since neither approach is viable any
longer [5, 12], computing clusters, cloud computing, and dedicated accelerators
became widely used.

Today, GPUs are the most popular accelerator for multiple reasons: First, modern
GPUs contain thousands [46] of processor cores optimized for parallel floating-point
calculations, resulting in a performance increase by multiple orders of magnitude,
compared to CPUs [25, 26]. Second, frameworks like NVIDIA’s CUDA allow flexible
programming of these high-performance devices. Third, compared to other accel-
erators, being a mass-produced consumer article makes GPUs comparatively cheap.

Running computing tasks on short-term rented, virtualized systems in the cloud
removes hardware cost, which allows for spontaneous allocation of large amount of
resources. The great performance gains possible with GPUs makes their addition to
existing cloud offerings desirable. Unfortunately, GPUs are difficult to virtualize [46],
partially because of their black-box nature: Most contemporary GPUs are closed
devices controlled by proprietary drivers, lacking open or standardized interfaces at
the hardware level [42]. Still, promising approaches on GPU virtualization exist [10,
15–17, 42, 46].

Like with any other shared resource, it is the operating system’s responsibility
to safely multiplex the GPU and provide fair access for all applications. While
GPUs evolved and now support concurrent access, operating systems are stuck in
the past and still handle GPUs like simple devices with predictable and bounded
runtimes [28]. The flexible programming models of modern GPUs, however, allow
for computations whose runtimes are neither predictable nor necessarily bounded.
Similar to the situation in virtualization, introducing proper, OS-controlled schedul-
ing is difficult because GPUs are complex devices and not much publicly available
documentation exists. Again, previous work overcame many of those obstacles and
provides valuable insights [4, 18, 25, 26, 41].
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1 Introduction

While most approaches deal with either virtualization or scheduling exclusively,
some [18, 26] target GPU scheduling between virtual machines. None of the
previous approaches, however, allow for GPU scheduling between applications
running inside virtual machines. Yet such scheduling is desperately required: Today,
running different GPU applications in parallel in a virtual machine often results in
one application getting the majority of GPU computation time.

Our work aims at achieving fair scheduling of GPU computation time, simultane-
ously both between and inside virtual machines. We use two existing systems for
GPU scheduling (NEON [28]) and GPU virtualization (LOGV [16]) as a basis. As an
intermediate step, we combine both systems to allow scheduling between entire
virtual machines. To also allow scheduling inside virtual machines, we consider
two fundamentally different possible approaches: First, a paravirtual approach,
which supplies the host scheduler with information about resource allocation by
guest tasks. Second, a nested approach in which each guest runs its own scheduler.

We discuss different design aspects of both approaches in detail and build a
full prototype of the paravirtual approach. In this approach, the guest system
sends paravirtual hints about its child tasks to the host, which allows for separate
accounting of their GPU usage. The main challenges in this approach include
changing NEON’s accounting to be based on individual GPU command submission
channels rather than host tasks and passing the required information from the guest
to the scheduler in the host. As a secondary goal, we also create a proof of concept
implementation of the nested approach.

We measure introduced overhead and scheduling effectiveness in a detailed
evaluation. Here, we show that our paravirtual approach is able to enforce fair
GPU time sharing both between and inside virtual machines with an average over-
head of 2.17 %. A brief evaluation of our nested scheduling implementation also
demonstrates this approach’s feasibility and recommends further research in this
direction.

The remainder of this work is structured as follows: Chapter 2 introduces relevant
background information and discusses previous approaches for both GPU virtualiza-
tion and GPU scheduling. Afterwards, we discuss fundamental design decisions and
explore important design aspects in Chapter 3. Specific implementation issues are
presented in Chapter 4, followed by a detailed evaluation of our implementations in
Chapter 5. We conclude the thesis in Chapter 6 and discuss possible future research.
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2 Background & RelatedWork

This chapter introduces important background information required for the remain-
der of this work and presents previous research. Section 2.1 introduces General-
purpose computation on graphics processing units (GPGPU). Important aspects of
modern GPU hardware are explained in Section 2.2. Afterwards, related work is
presented. Since most previous approaches deal with either GPU virtualization or
GPU scheduling exclusively, both topic are discussed individually. Section 2.3 intro-
duces common techniques for GPU virtualization and presents previous attempts.
Section 2.4 completes this chapter with a discussion about related work on GPU
scheduling.

2.1 GPU as general-purpose processor

Over the past decade, GPUs evolved from pure graphics accelerators to general
purpose computation devices used in many HPC applications. Initially, GPUs were
only designed for graphics output and their integrated circuits assembled a fixed
rendering pipeline [39], with each step designated to one fundamental rendering
task like vector transformations or rasterization. As GPUs became more capable,
programmable stages were added, which allowed simple programs (shaders) to be
executed directly on the GPU. Initially, different types of shaders existed for the
individual steps of the graphics pipeline. With the addition of more and more shader
instructions, running general-purpose algorithms on GPUs became feasible [39].

Contemporary GPUs no longer feature a fixed rendering pipeline or different
shader types. Instead, modern GPUs mainly consist of a large number (> 1000 [33])
of simple processor cores, grouped into streaming multiprocessors. Compared to
modern CPUs, these cores have limited functionality and are not fully independent:
In one streaming multiprocessor, all GPU cores must always execute the same
instruction, although with different parameters. While this SIMD-like [20] mode
of operation is not suited for all applications, their enormous level of parallelism
allows GPUs to increase performance by orders of magnitude compared to CPUs
for well-suited workloads [39]. Today, GPGPU is an integral part of many HPC
applications. In context of GPGPU, shaders are called kernels.
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2 Background & Related Work

2.1.1 CUDA & OpenCL

With GPUs becoming suitable to run arbitrary code for GPGPU applications, the need
for easy access to the GPUs vast computing power arose. This section introduces
the two most popular frameworks for GPGPU scenarios: NVIDIA’s CUDA and the
vendor-independent Open Computing Language (OpenCL).

The CUDA [37] framework includes two separate APIs to access the GPU [10],
the CUDA Driver API and the CUDA Runtime API. The CUDA Driver API implements
basic primitives to access the GPU that allow a high degree of direct control over
the device. To make porting existing applications easier, the Runtime API builds
on the Driver API, hides cumbersome details behind an abstraction, and offers C
for CUDA, a set of extensions to the C programming language that allow direct use
of C variables as GPU kernel parameters. CUDA is proprietary and only works on
NVIDIA GPUs.

OpenCL [45], by contrast, is an open, vendor-independent standard that not only
targets GPUs, but accelerators in general. While OpenCL today is supported by all
major GPU vendors, CUDA enjoys greater popularity, which can be attributed to the
fact that it was available years earlier. In general, however, performance differences
between well-tuned CUDA and OpenCL implementations on the same device are
negligible [13].

2.2 GPU hardware

Modern GPUs are complex, asynchronous, and highly parallel accelerators. They fea-
ture a large number of streaming multiprocessors, an advanced memory subsystem,
a multi-level cache infrastructure [32], and dedicated device memory. This memory
often has even lower response times and higher bandwidth than system RAM.

Contemporary GPUs can be used by multiple applications concurrently. In order
to allow such sharing safely, GPUs feature a Memory Management Unit (MMU) [16].
By creating separate virtual address spaces for each application, the device driver
restricts one application’s kernels to its own memory. To reduce data transfer
overheads, the GPU’s memory system allows mapping system RAM into device
memory, and vice-versa.

The internals of most contemporary GPUs are a carefully guarded secret [29]. Of-
ten, the vendors only provide proprietary drivers that cannot be altered. This black-
box nature of modern GPUs makes it difficult to use them in different ways than
those envisioned by the device manufacturers. Nevertheless, reverse-engineering
efforts [11] of multiple parties have led to significant discoveries, which allowed
the creation of open-source GPU drivers [31, 40].
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2.2 GPU hardware
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Figure 2.1: GPU command submission channel. The application writes commands
required for kernel execution into the Push Buffer (PB). Information
about the position and size of the entry in the PB are placed in the
Indirect Buffer (IB). The GPU’s channel control registers contain two
pointers: IB_PUT, which points to the position after the last submitted
kernel, and IB_GET, which points after the last computed kernel. PB,
IB, and the channel control registers are all memory-mapped into the
application’s address space.

2.2.1 Command submission channels

Traditionally, a driver in the kernel has exclusive control over an attached device.
While routing every device access through the kernel works well for slow I/O
devices, this approach is unsuited for devices with sub-microsecond command
latencies, like GPUs. Calling the device driver requires expensive context switches,
which adds too much overhead if performed for every GPU call.

Therefore, today’s GPUs offer command submission channels, which allow direct
device access by userland applications [25]. From the applications point of view,
a command submission channel consist of multiple memory-mapped areas. By
writing to these, the application can submit work to the GPU without any context
switches. Because every command submission channel belongs to one of the GPU’s
virtual address spaces [16], such direct access can be allowed without endangering
memory isolation. It is the responsibility of the kernel driver to correctly set up
channels and memory mappings.

Figure 2.1 depicts the structure of a command submission channel. Every channel
consists of two memory areas, each mapped into system memory, and memory-
mapped control registers: The Push Buffer (PB), the Indirect Buffer (IB), and the
channel control registers. To submit a kernel, the application first places the GPU
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2 Background & Related Work

t1 t2 t1 t2 time

Figure 2.2: GPU internal round-robin scheduling. The GPU executes two kernels
from each task. Since the runtimes are different, t1 gets a significantly
larger share of computation time than t2, which is unfair.

commands required for kernel execution in the Push Buffer. Next, the application
creates a corresponding entry in the Indirect Buffer. This buffer is organized as a
ring: Entries have a fixed data layout and are addressed by their position in the
buffer. The purpose of an entry in the Indirect Buffer is to inform the GPU about the
position and size of the commands in the Push Buffer. Kernel execution is controlled
by two values in the channel’s control register, IB_PUT, and IB_GET. Both contain
index values that point to the Indirect Buffer. IB_PUT points to the index directly
after the most recently submitted kernel. After placing an entry in the Indirect
Buffer, the application updates this register to trigger computation. IB_GET holds
the index of the last computed kernel. The GPU updates this entry to inform the
application about completed computations.

2.2.2 Executionmodel & Concurrency

When multiple applications access the GPU concurrently, or one application uses
more than one channel, the GPU has to choose which kernel to execute next.
Today’s GPUs use a very simple policy for this decision: Round-robin [28]. The GPU
iterates over all channels that have uncomputed kernels available and executes
one kernel each. Unfortunately, as Figure 2.2 illustrates, this policy is inherently
unfair [18, 25, 41]. Applications with longer running kernels get a greater share
of GPU computation time. Besides being unfair, this policy is even easily abused:
It is beneficial for applications to merge multiple kernels together into one longer
running kernel to get more computation time. For malicious applications, it is
even possible to create arbitrarily long running kernels, resulting in a denial of
service [11].

In traditional CPU scheduling, this problem can be trivially solved by introducing
a scheduling policy based on preemption. Unfortunately, contemporary GPUs do
not support preemption of running kernels [28, 41]. Hence, once work on a kernel
has started, the computation cannot be interrupted and must run until completion.
Although the GPU driver is able to send a special signal to the GPU that causes an
execution abort, such an abort does not help with scheduling because execution
cannot resume afterwards.

6



2.3 GPU virtualization

To some degree, modern GPUs are also able to run multiple kernels concur-
rently [18]. However, this is quite limited: All kernels must belong to the same
address space [34]. Furthermore, because kernels from the same channel may
depend on the results from previous computations, GPUs will only execute kernels
from different channels in parallel [47]. The actual degree of concurrency also
depends on the resource utilization of the running kernels. Unfortunately, due to the
GPUs black-box nature, the exact mechanics of this mechanism are unknown [11].

The GPU does not generate an interrupt upon kernel completion. This is deliber-
ate, because applications often submit multiple kernels back-to-back and are not
interested in intermediate results. Not interrupting the CPU after every kernel min-
imizes overhead. For applications that require knowledge about kernel completion,
two possibilities exist: First, the application can poll the IB_GET register and wait
for the value to increase. This strategy works, but constant polling also creates CPU
overhead in the application. Second, the application can attach a special command
to a kernels entry in the Push Buffer, that generates an explicit interrupt [25].

2.3 GPU virtualization

This section presents prior work on GPU virtualization. Since many of the presented
approaches use similar strategies, we start with a general overview of GPU virtual-
ization techniques in Section 2.3.1. Afterwards, we briefly discuss the presented
approaches, beginning in Section 2.3.2.

2.3.1 Virtualization techniques

GPUs are used for general-purpose computing because of their vast computing
power for certain workloads [10, 16, 17, 25, 26, 41, 42]. Consequently, one
of the main objectives of GPU virtualization is to keep any introduced overhead
low, allowing virtualized guests to achieve near-native performance. At the same
time, virtualization systems should be able to multiplex the device, which requires
providing basic guarantees like isolation.

A trivial solution is pass-through, where one single guest gets full access to the
device. While this technique avoids almost all overhead, it also prohibits sharing,
since GPUs are not designed to be accessed by more than one host. If sharing
the GPU is important, one can use API remoting, a technique in which the device
driver in the guest is replaced by a stub library. This library simply forwards all
calls to a privileged, host-controlled domain that has exclusive access to the GPU.

7



2 Background & Related Work

Depending on the GPU, it may also be possible to use a form of paravirtualization.
In paravirtualization, the guest is aware of being virtualized and cooperates with
the host to make device access more efficient. If knowledge of being virtualized is
not desirable, full virtualization can be used. In a fully virtualized setting, guests
use normal GPU drivers and access the GPU as if it was directly attached to the
system. This requires complex device emulation in the VMM, which often introduces
unacceptable overheads.

Individual sections below explore the strengths and weaknesses of each approach
in detail.

2.3.1.1 Pass-through

In pass-through, the hypervisor grants complete control over the GPU to exactly
one VM. Most hypervisors support pass-through for arbitrary devices connected
to a well-known bus. This is often used for uncommon devices that are unknown
to the hypervisor and therefore cannot be multiplexed. GPUs are not uncommon,
but difficult to multiplex, so pass-through can be a viable option for GPUs as well.
In general, pass-through grants exclusive control, preventing any multiplexing by
the hypervisor. A passed-through device can be used by the guest like any device
directly connected to the system. Hypervisors often implement pass-through by
memory-mapping a particular device directly into the guest. With pass-through,
small or even non-existent overheads can be achieved [46].

2.3.1.2 API remoting

Unlike other virtualization techniques, API remoting does not grant the guest any
kind of access to the device itself. Instead, API remoting allows the guest to use
the device by calling functions of a specific API. These calls are forwarded to a
privileged domain for execution [46]. Due to its popularity in GPGPU, the CUDA
API is a common choice in API remoting.

The library offering the relevant API calls is replaced with a stub library. This
stub implements the exact same calls like the replaced API, and can therefore act
as a drop-in replacement and does not require any modifications to the applica-
tions. When called, the stub library gathers all required data, for example function
parameters, and sends them to a privileged domain. The privileged domain has
exclusive access to the GPU and executes the requested call on the VMs behalf. It
is the responsibility of the receiver of the call in the privileged domain to isolate
multiple clients from each other. The returned results are again gathered and sent

8



2.3 GPU virtualization

back to the calling guest, where the stub library unpacks the data and the called
API function returns.

One major challenge in implementing API remoting is the design of the com-
munication mechanism used to transfer data. The total delay introduced by data
transfers and remote function calls is the primary source of virtualization overhead
in API remoting [16]. Therefore, many of the presented approaches below focus
almost exclusively on the design of this mechanism.

Implementations of API remoting are often only moderately complex, but suffer
from two general drawbacks. First, the overhead introduced by the call forwarding
is usually non-negligible. Second, API remoting is limited to the implemented
API(s). Applications that use other libraries to access a device cannot be used [46].

2.3.1.3 Paravirtualization

In paravirtualization, guest and host cooperate on device virtualization. While this
implies the guest has knowledge about using a virtualized device, it usually does
not mean guest isolation is a voluntary process and a malicious guest can break
the isolation. Cooperation is only required for the guest to properly use the device,
while the isolation is still enforced by the host alone.

While it is sometimes also possible to fully emulate devices, such full emulation
approaches often suffer from low performance, because the devices and their
interfaces were not designed to be virtualized. As an example, a device interface
may require additional copying of data to be fully virtualized. In a paravirtualization
setting, the VMM can introduce another way of accessing the device that avoids
unnecessary copies. Since the introduction of new access methods changes the
device’s interface, the guest can no longer use normal device drivers. Instead,
one must use a modified driver, that includes some knowledge about the way
the device is exposed by the hypervisor. Such optimizations often allow device
virtualization with very low overhead and near-native performance [16, 46, 48].
However, paravirtualization cannot be used when guest drivers cannot be changed
or knowledge in the guest about the virtualization is not desirable.

2.3.1.4 Full virtualization

Guests can access a fully virtualized device as if it was directly attached to the
system [48]. Since the virtualized device behaves exactly like a real one, normal
device drivers can be used and the guest does not have to be aware of or support
virtualization. To achieve full virtualization, the hypervisor must precisely emulate
the complete device. This works best for simple devices with well known semantics,
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like ethernet cards. Due to their complexity and proprietary nature, GPUs are very
difficult to fully virtualize. While full virtualization systems for GPUs do exist, they
often suffer from slow performance due to the high complexity of the emulation
and the large number of calls handled by contemporary GPUs [46].

2.3.2 GViM

GVIM [17] is a Xen-based virtualization solution for GPUs. GVIM employs API
remoting, and is thus limited to CUDA applications. Special care was taken to
optimize the major source of overhead: Copying data from the guest to the privileged
domain, where all GPU kernels are executed. A direct mapping solution based on
XenStore [8] is used to eliminate most copying in the data path and reduce the
overhead to a reasonable amount. Still, GVIM must intercept every single CUDA
call, serialize it into a packet, and send it to the host for execution.

In contrast to most other approaches in GPU virtualization, GVIM actually does
deal with scheduling and fairness, although only briefly. A scheduler runs in the
privileged domain and decides individually which kernel to execute next. Two
policies have been implemented: Round-robin and a credit based system based on
Xens credit scheduler [38]. The credit based scheduler uses average GPU kernel
runtimes to define GPU ticks, which are then distributed to the VMs based on credits
from the Xen scheduler. Since fairness is not the core topic of GVIM, the evaluation
is rather short. It still shows the credit-based approach to perform better than
round-robin.

2.3.3 gVirtuS

GVIRTUS [15] aims to be a transparent, VMM independent framework for GPU
virtualization. GVIRTUS uses API remoting to forward CUDA calls to a privileged
domain for execution on the GPU. In GVIRTUS, the API remoting runs through an
abstraction layer that allows the implementation of different host-guest communica-
tion mechanisms, called communicators. By selecting an appropriate communicator,
GVIRTUS can be adapted to different scenarios and VMMs. The authors initially
implemented a TCP/IP based communicator mostly for verification purposes. Since
this communicator performed poorly and introduced much overhead, a second one
was implemented. This second communicator exposes Unix sockets and is backed
by a fast, hypervisor-specific mechanism for efficient host-guest communication.
According to the authors, this communicator performed much better and showed a
low overall overhead. Unfortunately, the paper does not explain in detail how this
communicator works. GVIRTUS also does not deal with fairness.
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2.3.4 vCUDA

VCUDA [42] is another virtualization solution for GPUs that also relies on API
remoting to execute GPGPU workloads in a privileged domain. One important
difference, compared to other solutions, is the choice of forwarding mechanism: The
authors decided against using a general-purpose host-guest data channel and chose
to use a more specialized RPC (remote procedure call) system instead. They argue
that such a system is more efficient, as it can exploit knowledge about semantics like
data representation for more aggressive optimizations. Initially, VCUDA used XML-
RPC [50] exclusively, a general-purpose RPC system that serializes function calls
to XML and forwards data via TCP/IP. Since XML-RPC introduced an unacceptable
overhead of 43 % to 1600 %, another RPC system was developed: VMRPC [7]
uses VMM-managed shared memory to eliminate copy operations, resulting in a
reduction of overhead to 1 % to 21 %.

Contrary to most other approaches, VCUDA also supports additional important
virtualization features, namely guest suspend, resume, and migration. VCUDA
suffers from the same drawbacks as most other approaches: Fairness is never
mentioned and VCUDA is limited to applications using the CUDA Runtime API.

2.3.5 rCUDA

RCUDA [10] focusses on remote execution of GPGPU workloads. The authors argue
that power can be saved by only adding GPUs to a subset of nodes in a cluster
instead of equipping each node with a GPU. To allow all machines to execute kernels,
RCUDA implements a stub library, which forwards kernel calls over the network to
machines equipped with GPUs. Although based on the CUDA runtime API, RCUDA
does not allow usage of the CUDA C extensions, thus requiring application changes
for many workloads. As an example, these extensions allow programmers to directly
use C variables in CUDA code. Without them, all parameters must be manually
transferred to the GPU. The exclusion of the CUDA C extensions is deliberate: Their
usage requires the compiler to insert additional calls to undocumented CUDA library
functions, which the authors argue cannot be trusted in a distributed environment,
because such functions might touch data that must not be shared with other ma-
chines (e.g. kernel data). Furthermore, it is argued that lazy call forwarding, which
is used by VCUDA, is dangerous, because it may delay error reporting, resulting in
altered application behavior.

RCUDA does not deal with scheduling, instead the authors rely on the host GPU
driver, which, as explained previously, is problematic.
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2.3.6 GPUvm

GPUVM [46] is a virtualization system for NVIDIA GPUs based on Xen. The authors
implemented both a paravirtual and a full virtualized version of GPUVM, which
allows to compare the two approaches. In full virtualization mode, a complete GPU
is emulated for each client. This allows guests to use an unmodified GPU driver.
Guest accesses to the GPU are intercepted and emulated in the hypervisor. The usage
of shadow channels allows each guest to use the full set of the GPU’s channels for
itself. Similar to many other approaches, the paravirtualization approach translates
GPU accesses to hypercalls. To reduce the overhead introduced by hypercalls, the
guest is allowed to batch multiple GPU accesses into a single hypercall.

The evaluation reveals unacceptable overheads in full virtualization mode, with
multiple benchmarks showing a 80-fold increased runtime compared to native exe-
cution. In paravirtual mode, GPUVM performs better, with a maximum application
slowdown by a factor of three.

2.3.7 gVirt / Intel GVT-g

GVIRT [48] is a virtualization solution developed by Intel. While primarily targeting
Intel GPUs, the authors claim their approach can also be used to virtualize GPUs by
other vendors. GVIRT employs mediated pass-through, a technique that does not
require interception of every GPU access. Instead, GVIRT handles only a subset of
important calls. Once a context is established, GVIRT grants the guest partially unre-
stricted access to achieve near-native performance. Like GPUVM, GVIRT implements
full virtualization, allowing unmodified GPU drivers to run in guests. GVIRT also
deals with GPU scheduling: VMs get full access for the duration of coarse-grained
time slices (16 ms). Since kernel runtimes cannot be predicted and kernel execution
is non-preemptive, GVIRT needs to wait for all kernels to complete before switching
GPU access to another guest. To prevent guests from exploiting this to overuse their
time slices, GVIRT tracks kernel submissions and places a limit on the number of
kernels a guest is allowed to queue. Unfortunately, the authors do not explain how
this tracking is realized and if costly command interception is required for it.

Intel’s GVT-G is the “production-ready”, still open-source [22, 23] version of GVIRT

offered for Intel GPUs.

2.3.8 NVIDIA GRID & AMDMultiuser GPU

NVIDIA GRID [36] & AMD Multiuser GPU [2] are virtualization solutions offered
by the hardware vendors. Unfortunately, not many details are known, other than
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the information offered in primary sources on the web. Both solutions are closed-
source and only work with “professional” server-grade GPUs and certified hardware
platforms. NVIDIA claims to allow VMs to access the GPU unobstructed by the
hypervisor [35], which hints at some form of mediated pass-through, like it was
implemented in GVIRT. Similar claims are made by AMD [3]. Furthermore, primary
sources for both solutions hint at some kind of fairness mechanism, but it is not
explained if this relates to GPU memory or computation time and whether the
shares must be statically assigned beforehand.

2.3.9 LoGV

LOGV [16] uses the MMU of modern GPUs to implement a paravirtual virtualization
approach. The MMU was originally introduced to allow concurrent GPU access by
multiple applications. All memory accesses on the GPU run through the MMU, which
confines applications to their respective address spaces. Instead of isolating normal
applications, LOGV exploits this mechanism to isolate VMs. Since the isolation is
enforced by GPU hardware, LOGV can grant VMs unrestricted access to command
submission channels, eliminating most overhead of other virtualization solutions
that use API remoting.

The basic architecture of LOGV is as follows: The host uses the pscnv (PathScale)
driver [40], an open-source driver for NVIDIA GPUs. In the guest, LOGV runs a
stub driver that implements the same interface as the host driver. This driver only
intercepts and forwards a small subset of calls to the hypervisor, namely those
which deal with resource allocation. The hypervisor checks incoming requests to
guarantee isolation, and forwards complying request to the host driver for the
actual allocation. The hypervisor then maps any returned resources, like channels
or GPU memory, into the guest VMs address space and notifies the guest driver. As
a result, requesting applications within VMs get direct mappings to GPU resources.
These mappings allow guests direct GPU access without any interference by LOGV.
Furthermore, since the virtualization happens at the level of command submission
channels, LOGV is API-agnostic, because all APIs must use channels at some point.
This allows LOGV to run arbitrary, unmodified applications.

The mentioned checks performed by the hypervisor on memory-mapping requests
are crucial for correct client isolation. Contemporary GPUs support three kinds
of memory accesses between GPU and system memory. In each case, LOGV must
only allow mappings that do not violate VM memory isolation. The first kind of
memory accesses are mappings of GPU memory into CPU address spaces. These
allow the CPU to access GPU memory like any other system RAM. In this case, LOGV
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Figure 2.3: Shadow channels: A shadow channel is a transparent modification to an
application’s channel mapping. Instead of pointing to GPU memory, the
shadowed channel points to a kernel buffer in system RAM. When the
application submits kernels into a shadowed channel, they do not reach
the GPU. Here, channel1 is active with a regular mapping, channel2 is
shadowed.

must verify that all of the affected GPU memory originally was allocated by the
same VM that is now requesting a mapping. The second kind of memory access
is the counterpart to the first one: It allows the GPU to access system memory by
mapping it into GPU address spaces. Again, LOGV must verify that all requested
system memory belongs to the same VM that created the target GPU address space.
Finally, applications can use DMA to transfer data between system and GPU memory.
Fortunately, no further verification is required by LOGV in this case, since GPUs
implement data transfers as copy operations on memory mappings, which were
already verified during their creation.

LOGV supports migration of running virtual machines. Since the GPU operates
independent and asynchronous of the CPU, it must be suspended temporarily
to allow state migration. To suspend an application’s hardware access to the
GPU, LOGV temporarily replaces mappings of command submission channels with
mappings to shadow channels.
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Figure 2.3 illustrates the principle of a shadow channel. In this scenario, channel1
resides in GPU memory and is mapped into the application’s address space. When
the application submits a kernel by writing to the virtual memory address of
channel1, the kernel data is written to GPU memory and kernel computation starts.
Channel2, however, is currently shadowed: Instead of the GPU channel, an arbitrary
kernel buffer is mapped into the application’s address space. When the applica-
tion submits kernels into this channel, they are buffered in system RAM. Shadow
channels are fully transparent, the application retains the illusion of direct GPU
access, but submitted kernels never reach the GPU. This mechanism allows LOGV
to halt the GPU and copy its memory contents to the migration target. As soon as
the normal system migration is done, LOGV also copies submitted kernels from the
shadow channels to the target, and restores channel access on the target machine.

LOGV was selected as a basis for this work because of its advanced and low-
overhead virtualization technique, free availability of source-code and ability to
work with NVIDIA GPUs. As detailed in the implementation chapter, this work is
based on a rewrite of LOGV, called BLOGV, that uses the proprietary blob NVIDIA
driver instead of the PathScale driver for compatibility with more modern GPUs.

2.4 GPU scheduling

This section presents prior approaches for GPU scheduling. The approaches differ
greatly in their goals and employed techniques, making it difficult to group similar
approaches by categorizing their methods, as it was done in the previous section on
GPU virtualization. Most of the presented approaches, however, share one common
drawback: The requirement to intercept every GPU access in the scheduler. While
this interception can be done in different ways, it will always introduce additional
overhead.

2.4.1 GERM

GERM [4] (Graphics Engine Resource Management) is one of the the earliest
approaches to GPU scheduling and mainly targets scheduling of graphics workloads.
The GERM scheduler resides in a modified GPU driver and has complete control
over what is submitted to the GPU. Each process accessing the GPU submits its work
to a kernel queue, from which the scheduler chooses the next workload to execute.
To track workload runtimes, GERM inserts additional kernels between each two
client tasks. The inserted kernels simply increment a host-readable device register,
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which indicates completion of the previous task. Based on these measurements, a
per-process average workload execution time is calculated and maintained. The
runtimes of future workloads are then predicted based on the average execution
time and the workloads size in bytes and number of vertices. This information is
used to run a weighted round-robin scheduling policy.

The evaluation shows that GERM is able to enforce fairness with many graphics-
related applications. As soon as GPGPU workloads are added, however, the workload
runtime prediction reaches its limits and GERM is no longer able to enforce equal
shares of GPU computation time. The main reasons for this are asynchronous data
transfers of GPGPU workloads, which GERM does not account for, and that the
size of workloads in bytes does not correlate well with execution time for GPGPU
applications.

The additional overhead introduced by GERM’s scheduler depends on the number
of GPU calls an application sends. For GPGPU workloads, the authors measured 1 %
to 9 % overhead. For complex graphics applications, which issue a higher number
of GPU calls, the overhead was 4 % to 57 %.

2.4.2 PTask

PTASK [41] is a set of abstractions that aim at improving the management of GPUs in
operating systems. PTASK does not target scheduling exclusively. Instead, it is a “big
picture” approach to treat GPUs more similar to CPUs in general, also fixing a number
of other problems, like GPU availability for OS tasks and OS-based optimization of
dataflow. The authors propose a graph, in which nodes represent compute tasks
(CPU and GPU) and edges denote memory copy operations. As an example, the
operating system can use this graph to automatically eliminate unnecessary copy
operations, if two consecutive computation steps both are performed on the GPU.

In PTASK, GPU scheduling is ideally no longer controlled by black-box GPU drivers.
Instead, the operating system has full control over kernels submitted to the GPU,
which allows the OS to enforce fairness and scheduling priorities. In reality, however,
the actual kernel submission to the GPU is still controlled by closed-source drivers,
so the presented Linux prototype of PTASK requires application cooperation in
form of explicit additional syscalls before kernel submission. This is an obvious
drawback of the presented prototype: GPU scheduling relies on cooperation and is
not enforceable by the OS. The authors point out that this is only a limitation of
their prototype, based on the way the proprietary drivers work and not a general
problem with their approach. However, the paper does not explain how a better
implementation enforces fairness without introducing overhead by intercepting
GPU accesses in the operating system.
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The prototype implements a non-work-conserving bucket-based scheduling al-
gorithm with support for process priorities. A short evaluation shows PTASK to be
able to enforce scheduling priorities and fairness. Unfortunately, no measurement
of introduced overhead was conducted.

2.4.3 Pegasus

PEGASUS aims at coordinated scheduling for both CPUs and accelerators like GPUs
in heterogeneous systems. PEGASUS is one of the rare approaches that deal with
both scheduling and virtualization. The virtualization mechanism is not new, it was
previously published by the same authors under the name of GVIM [17], which was
discussed above in Section 2.3.2. Since the basic virtualization technique was not
changed from GVIM, this section focusses on scheduling. In PEGASUS, accelerators
like GPUs are first-class schedulable entities, which allows for coordinated schedul-
ing of CPU and GPU computations. The authors argue that such coordination is
required to achieve low-latency response times in applications that use both CPU
and GPU extensively for their computation. Incoming workloads are queued by an
accelerator-specific scheduler that runs in a privileged domain and has complete
control over what is submitted to the accelerator. This scheduler also has access to
the hypervisors CPU scheduling data, allowing policies to coordinate GPU and CPU
processing. As an example, one policy tries to always schedule CPU and accelerators
together, thus eliminating queue delays.

To achieve full control over what is submitted to the GPU, the scheduler intercepts
every CUDA call. Such interceptions usually result in expensive context-switches or
VM exits, introducing overhead. The same holds for API remoting, the employed
virtualization technique.

The evaluation hints at a substantial overhead introduced for every CUDA call,
with the resulting overhead primarily depending on the number of CUDA calls
made.

2.4.4 TimeGraph

TIMEGRAPH [25] attempts to schedule graphics workloads in real-time environments.
The authors argue that applications like video players must be prioritized over
background work in order to guarantee smooth playback. Like GERM, TIMEGRAPH

places the scheduler in a modified GPU driver that controls kernel submissions
to the GPU. The scheduler attempts to predict execution times of incoming work
in order to improve scheduling. Contrary to the technique used in GERM, this
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prediction is not only based on one running average kernel execution time per
application. Instead, TIMEGRAPH tries to improve the prediction by maintaining
averages for multiple sets of GPU command workload sizes independently.

Real-time constraints can be enforced to variable degrees by choosing between
two scheduling policies and two reservation policies, which differ in strictness of
scheduling priority enforcement, number of produced GPU context switches and
prediction usage.

The evaluation compares the different policies and shows that TIMEGRAPH can be
used to effectively enforce priorities for GPU-accessing tasks. Enabling scheduling
for all applications, however, introduces an overhead of 17 % to 28 %, because
every command submission must be intercepted.

2.4.5 Gdev

GDEV [26] aims at improving GPU resource management in the operating system.
Like PTASK, multiple aspects of resource management are discussed, including mem-
ory swapping, shared memory, allowing the OS to use the GPU, and scheduling. The
main author previously worked on TIMEGRAPH, which is why the basic scheduling
mechanism is similar. However, while TIMEGRAPH intercepts GPU calls at the com-
mand level, GDEV works on the API level, intercepting calls to the kernel-based GDEV

API. This new API allows usage of new functionality like shared memory on the
GPU. To avoid breaking existing applications, a wrapper library was implemented
that translates CUDA (Driver API) calls to GDEV API calls. The authors argue this
approach is superior to intercepting calls at the command level, because it reduces
the number of required interceptions, thus limiting the introduced overhead. How-
ever, this approach is no longer API agnostic. Only applications that use the GDEV

API, or an API for which a wrapper exists, such as CUDA Driver API, are able to
work with GDEV.

Virtualization is mentioned briefly, but is limited to splitting the GPU into multiple
logical GPUs. While this provides GPU multiplexing and performance isolation, it is
not a full virtualization solution and cannot grant GPU access to virtual machines.

2.4.6 NEON

NEON [28] is a recent approach to GPU scheduling that places a stronger focus on the
capabilities of modern GPUs than previous approaches. The authors acknowledge
that modern GPUs feature a highly efficient internal task switching, which allows
the GPU to be used by multiple processes in parallel. Unfortunately, most previous
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Figure 2.4: NEON’s phases. NEON periodically switches between freerun and sam-
pling. Because sampling requires an empty GPU to profile each task, a
draining phase is inserted beforehand

scheduling approaches grant exclusive access to single tasks, preventing concurrency
and therefore artificially limiting the potential of modern GPUs.

Furthermore, the GPU delivers microsecond-level request latencies [28], which
requires direct device access for user tasks to avoid costly crossings of the user-kernel
boundary. This direct access is a common problem for scheduling systems, which
need to somehow measure the GPU usage of each application to make informed
scheduling decisions. Most previous approaches measure GPU usage by intercepting
GPU calls in the operating system. While this allows fine-grained accounting, every
interception requires a context switch, which re-introduces substantial overhead.

To limit overhead, NEON employs a trade-off, called disengaged scheduling. In
disengaged scheduling, the scheduler periodically intercepts calls to track GPU
usage, but also features a freerun phase, where applications have unobstructed
access to the GPU, which allows the GPU’s internal context switching to work.

Figure 2.4 illustrates how GPU time accounting works in NEON. After each freerun
phase, NEON empties the kernel submission queues by intercepting and blocking all
new kernel submissions. NEON then waits until the GPU finishes computation of all
previously submitted kernels. This draining is necessary because NEON requires the
GPU to be empty for profiling and kernel execution cannot be preempted. After work
on all kernels has completed, the sampling phase begins. Here, NEON unblocks the
channels of one single application, effectively granting exclusive GPU access. NEON
tracks kernel submissions and runtimes only during this sampling phase. After a con-
figurable time slice, NEON revokes GPU access again and profiles the next task. This
process is repeated until profiling of all tasks is done. Before switching to freerun,
NEON makes a scheduling decision for each task: Tasks that were found to overuse
their fair share of GPU time remain blocked, others regain free access to the GPU.
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Figure 2.5: Disengaged fair queuing: NEON manages individual GPU time counters
for each task and predicts the counter values at the end of an beginning
freerun phase by interpolating the GPU utilization measured during
sampling. If this prediction exceeds a threshold, the application is not
allowed to use the GPU in the upcoming freerun phase.

NEON employs Disengaged Fair Queuing, a variant of Fair Queuing [9] as schedul-
ing algorithm. Figure 2.5 illustrates how NEON arrives at the scheduling decision.
For each task, NEON maintains a counter of GPU time consumed during sampling
(t1, t2, t3). Additionally, NEON keeps a global virtual time counter tsys for the whole
system. At the beginning of the freerun phase, this system time is set to the mini-
mum GPU time of all active tasks. NEON now increments the individual counter of
each task to predict the state at the end of the upcoming freerun phase (t ′1, t ′2, t ′3).
In order to do this, NEON assumes that each task continues to utilize the GPU like
it did during sampling. If a task’s new counter value is larger than the system time
plus a programmable offset tthresh, the task is considered to overuse its fair time
share and will remain blocked for the next freerun phase. In this example, task 2
overused its computation time and remains blocked.

Besides Disengaged Fair Queuing, NEON also implements two other scheduling
policies: Engaged Timeslice, and Disengaged Timeslice. Both policies use time
slices, during which they grant exclusive GPU access to single applications. Engaged
Timeslice performs poorly because it intercepts every GPU call. This policy is mostly
intended as a baseline for the comparison in the evaluation. Disengaged Timeslice
allows unmonitored access for a single application during its time slice. This solves
the problem of constant command interception, but is not work-conserving: If the
application does not fully utilize the GPU, computation time is wasted.
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The evaluation shows that NEON is able to enforce fairness for GPGPU workloads
with acceptable overhead. However, the fairness drops significantly when graphics
workloads are added. The authors attribute this problem on their lack of knowledge
about the behavior of the GPU’s internal scheduler when both GPGPU and graphics
workloads execute concurrently. They claim that a production-quality version of
NEON, written with access to vendor-supplied information about GPU internals,
would not have these issues.

NEON does not deal with virtualization. Since QEMU VMs are normal userspace
tasks, NEON treats the entire VM like a single application. To achieve scheduling in
virtualized environments, we combine the scheduling capabilities of NEON with
the virtualization system LOGV.

21





3 Design

This chapter covers the design process of our work. Section 3.1 starts with a
discussion of primary design goals and our definition of fairness for virtualized
environments. Afterwards, in Section 3.2, we explore different possible strategies
on how to create fairness and select the paravirtual approach for our primary
implementation. Section 3.3 discusses all design aspects of this approach in detail.
This chapter concludes with a brief discussion of the optional nested approach in
Section 3.4.

3.1 Design goals

We choose the following goals for our scheduling system: First, the system must
enforce fairness among the children of each scheduling entity, beginning in the
hypervisor. Second, entities must not be involved in their own scheduling. Third,
the system should introduce as little additional overhead as possible. The remainder
of this section discusses explains the reasoning behind these goals.

The overall goal of this work is to provide fair sharing of GPU computation time
in virtualized environments. “Fair sharing” in general means that the available
computation time is evenly distributed among all applications competing for the
GPU. When taking virtualization into account, however, this definition of fairness is
no longer appropriate. As an example, a cloud provider who runs multiple virtual
machines controlled by clients wants to enforce fair GPU sharing between entire
virtual machines first, and within the VMs second. Otherwise, if applications across
all virtual machines are treated the same, it is beneficial for clients to run more
applications to grab larger shares of GPU time. For this reason, the primary goal of
our work is to enforce fair sharing on each virtualization level, beginning in the
host.

Figure 3.1 shows how GPU time is distributed with multiple levels of virtualization.
In this scenario, the hypervisor runs three tasks, two of which are virtual machines.
t3 hosts another virtual machine. The result is a tree structure. Each internal node’s
time share is distributed evenly among its children. The numbers below each leaf
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Figure 3.1: Fairness with nested virtualization: Each internal node evenly dis-
tributes its available GPU time to its children. Numbers below leafs
denote the resulting global GPU time share.

show this leaf’s global share of GPU time. This share only depends on the number
of children of all ancestors, but not on the number of tasks in other branches.

Enforcing fairness must not depend on cooperation of the virtual machine whose
GPU usage is limited. This requirement is a direct result of the cloud scenario.
Otherwise, a malicious guest could exploit the cooperation mechanism to obtain
larger shares of GPU time. As a general rule, a node must strictly enforce fair time
sharing among its children without cooperating with them. In order to achieve such
fair sharing, however, the node is allowed to cooperate with its own parent. We
can safely allow such cooperation because it is not exploitable for malicious nodes:
Since the total GPU usage of a node is always enforced out of the node’s reach in
its parent, a failure to cooperate only hurts the internal fairness of the node. In the
example scenario in Figure 3.1, this means that machine t3 can cooperate with the
hypervisor to balance GPU usage between the children t6 and t7. The hypervisor,
however, must ensure that virtual machine t3 as a whole does not overuse its share
of GPU time, for which the hypervisor is not allowed to rely on cooperation.

3.2 Design rationale

To the best of our knowledge, scheduling GPU computation time both between and
inside virtual machines at the same time has not been attempted before. Previous
attempts at GPU scheduling either do not discuss virtual machines, or focus on
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scheduling between virtual machines only. Due to the lack of experience from
prior approaches we considered two fundamentally different designs: Systems
with a centralized scheduler running in a privileged domain, and decentralized
systems with multiple schedulers. In centralized systems, a single scheduler is
responsible for enforcing fairness in all nested virtual machines at the same time.
In decentralized systems, on the other hand, each virtual machine features its own
scheduler that enforces fairness locally among the virtual machine’s children. While
it might also be possible to achieve fair scheduling with a solution in which each
guest is responsible for its own GPU usage, we did not consider such an approach
because of the requirement to always enforce fairness without child cooperation.

Due to the limited time available for this work, we decided to focus first and
foremost on the centralized approach and design and implement a fully functional
prototype with a centralized scheduler that uses paravirtual hints from the guest
in order to enforce fairness within the guest. Our preference for the centralized
approach is strongly related to the selection of NEON [28] and LOGV [16] as a basis
for our work. We chose these two systems because of their advanced design that
works without constant command interception, promising evaluation results, and
free availability. With NEON, we already have a central scheduler in the hypervisor
that is known to work, so we decided to keep the working basis and augment it
to also support scheduling inside virtual machines. Since we were also interested
in the decentralized design, we build a limited proof of concept prototype of the
decentralized approach as well.

We discuss the design of the centralized approach in detail below beginning in
Section 3.3. Afterwards, Section 3.4 introduces the nested approach briefly.

3.3 Paravirtual GPU scheduling

The core observation that leads to the paravirtual approach is the fact that the
privileged domain must enforce inter-VM fairness in any case. Since NEON already
runs in the hypervisor and enforces inter-VM fairness, it is a natural choice to keep
the working system and improve and augment it to satisfy the new requirements.

Figure 3.2 gives an overview of our paravirtual scheduling design. The guest
device driver (nvidia_virt) forwards GPU calls that deal with channel creation and
memory allocation to the VMM. We augment the call that allocates a new command
submission channel to include an identifier that allows NEON to distinguish between
guest applications. NEON uses this information to build its nested accounting data
structures. These data structures are used by NEON’s scheduler, which controls
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Figure 3.2: Structure of the paravirtual approach: The virtual GPU driver
(nvidia_virt) sends hints during channel creation, that allow the
VMM to create separate scheduling data structures (sched_task) for
each task in the virtual machine. The scheduler switches each guest
task’s channel mapping with a mapping to a shadow channel to control
GPU access

GPU access of guest applications by switching their channel mappings between real
GPU channels and shadow channels that only buffer submitted commands. The
following sections describe each component in detail.

3.3.1 Guest driver

In order to enforce fairness among processes running in a virtual machine, NEON
must first learn about their existence. It is the responsibility of the VM’s virtual GPU
driver to provide the necessary information. LOGV’s virtual GPU driver forwards all
calls that are required for channel allocation and memory management to the hy-
pervisor, and memory-maps the returned resources into the requesting application’s
address space.

LOGV’s virtual machines are based on QEMU, which makes them normal processes
alongside all other host processes. Consequently, NEON sees the entire virtual
machine as one single task that uses multiple channels. In order to allow for more
fine-granular scheduling of tasks running inside the guest, NEON needs to know
which channel belongs to which guest application. Figure 3.3 illustrates why NEON
cannot easily deduce this information purely from what the hypervisor observes. In
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Figure 3.3: Two possible solutions for the observation: “One VM, two channels”.
There are either two guest tasks, using one channel each, or just one,
which uses both channels. Without additional information, NEON
cannot distinguish the two.

the depicted scenario, NEON sees one virtual machine that uses two GPU channels.
This observation, however, allows two different conclusions: In one case, only a
single task runs inside the virtual machine and uses both channels. In the other
case, there really are two tasks running in the VM. For correct scheduling, NEON
must be able to distinguish these two cases.

Unfortunately, it is difficult for the hypervisor to obtain the information required
to identify guest tasks. Since the guest operating system may implement tasks in
a number of different ways, the hypervisor has no easy way of identifying guest
processes. We therefore decided to rely on cooperation in form of paravirtual hints.
More precisely, the guest’s virtual GPU driver supplies an identifier, such as a process
id, when allocating a channel. This allows NEON to distinguish guest tasks.

Solving the problem of guest task identification with paravirtual hints has a
number of advantages over other techniques based on VM introspection [30]: First,
attaching a guest task identifier is easy to implement for both the guest GPU driver
and the hypervisor. Second, this strategy is independent from the way the guest
operating system implements tasks. Last, the guest driver can even choose to group
GPU channels by something else than guest tasks. The hypervisor will create one
scheduling entity for each unique identifier sent by the guest, so this interface
allows the guest to arbitrarily group channels to scheduling entities.
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Relying on cooperation for guest task identification is safe, because this mecha-
nism cannot be exploited by malicious guests in order to increase their share of GPU
time. The fairness between the virtual machine and its siblings is always enforced
by the hypervisor without their cooperation. If a VM decides to cease cooperation,
only the fairness between its own child tasks will suffer, the rest of the system
remains unaffected.

3.3.2 Channel-based GPU access control

In order to provide fairness, our system must be able to prevent applications from
submitting work to the GPU. If we detect an application that is overusing its fair
share of GPU time, we block that application’s access to the GPU temporarily.

One technique that prevents applications from accessing the GPU is to completely
stop their execution. The original version of NEON catches channel accesses and
blocks the accessing thread. Unfortunately, we cannot use such a simple technique,
because our system must be able to target applications that run inside a virtual
machine. Since LOGV’s virtual machines are based on QEMU, which is a full system
simulator, channel accesses come from host processes that are entire vCPUs. Blocking
the execution of such processes thus does not target a single guest application, but
stops a large part of the virtual machine, which is not the desired effect. Instead,
we require a mechanism that allows GPU access control on a per-channel basis.

Since influencing the execution of guest tasks from the hypervisor is very diffi-
cult, we decide to use LOGV’s shadow channels [16] to solve this problem. With
shadow channels, we no longer stop the execution of an application completely to
prevent GPU access. Instead, we modify the application’s mapping of its command
submission channel to point to a buffer in system RAM instead of the actual channel
provided by the GPU driver. As a result, the application unknowingly writes to the
buffer when submitting new work. From the GPU’s point of view, the application
is idle and no new work arrives. In order to unblock the application, we reset the
mapping to point to the real GPU channel again and copy remaining work from the
shadow channel to the GPU for immediate computation.

3.3.3 Grouping data structures

NEON’s internal data structures were designed with the assumption that all channels
used by one application belong to the same scheduling entity. With virtualization,
this assumption is no longer valid. A QEMU virtual machine may contain any number
of guest processes, and guests may even create their own VMs with additional tasks.
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Figure 3.4: Representation of nested virtualization. On each level, the scheduler
must divide the available GPU computation time fairly

To properly represent the potentially complex, nested VM structure, we require a
tree. Figure 3.4 shows an example: The root node represents the hypervisor. Tasks
running directly in the hypervisor domain are children of this root node. When a
child task of a virtual machine allocates a channel for the first time, we create a
new scheduling entity as a child of the virtual machine’s node. On each level, the
scheduler must balance the available GPU time between all direct child nodes.

3.3.4 Group-aware scheduling

In order to provide fairness for multiple levels of virtualized systems, we need to
adapt NEON’s scheduling policy. We run NEON with the Disengaged Fair Queue-
ing (DFQ) policy. Like all policies implemented in NEON, DFQ aims at creating
fairness among all competing applications. With virtualization, however, it is no
longer sufficient to treat all scheduling entities the same. Figure 3.5 shows an
example: In this scenario, one application runs inside its own VM, and two applica-
tions run inside another virtual machine. NEON’s unmodified scheduling algorithm
grants one third of the available GPU time to each application. While this parti-
tioning fairly distributes GPU time within vm2, it violates the hypervisors fairness
requirements, because vm1 gets less computation time than vm2.

In order to support grouping, we assign weights to each scheduling entity. The
weight of a scheduling entity is the inverse of the share of GPU computation time
the entity receives, compared to a task running directly on the host. As an example,
a scheduling entity with weight w will receive 1/w of the GPU time of a non-
virtualized task. With nested virtualization, the weight of a scheduling entity can
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Figure 3.5: Two levels of scheduling with Disengaged Fair Queueing. To achieve
fairness both between and and inside VMs, tasks are assigned with
weights that equal the size of their scheduling group.

be calculated as follows: Given a scheduling entity n, its parent entity pn, and the
number of children of an entity e as c(e), the weight is recursively defined as:

w(n) =

¨

w(pn) · c(pn) , if pn exists

1 , otherwise
(3.1)

In other words, all scheduling entities running directly on the host are assigned
weight 1. The weight of a scheduling entity not running on the host is the product
of the number of children of each of its ancestors. Assigning weights to scheduling
entities as defined in Formula 3.1 therefore effectively linearizes the tree structure
of scheduling domains, which allows the DFQ scheduler to satisfy all scheduling
constraints.

In the situation depicted in Figure 3.5, we assign weight 1 to t1, and weight 2 to
both t2 and t3. The scheduler then only allows t2 and t3 to run half as long as t1,
which results in the desired split depicted at the bottom of Figure 3.5.

3.4 Nested GPU scheduling

The main argument for the nested approach is that fairness inside virtual machines
is not strictly required from the hypervisor’s point of view, and therefore should not
be its responsibility. In this approach, every virtual machine runs its own scheduler,
which only provides fairness locally among child tasks of the virtual machine.

Since the primary focus of our work lies on the paravirtual approach, we only
created a nested proof of concept implementation, that does not feature a full
design. In the remainder of this section, we briefly introduce how our prototype

30



3.4 Nested GPU scheduling

VM hpid 1

App
gpid 4

App
gpid 5

vPCI BAR

VMM/NEON
schedulersched_task hpid 1

sched_task gpid 5

sched_task gpid 4

NEON nested

track, block
GPU access

GPU
chan

compute
kernels

RAMshadow
chan

toggle
mapping

Figure 3.6: Structure of the nested approach: Thy hypervisor accounts and controls
the virtual machine as a whole by using shadow channels, similar to the
paravirtual approach. Fairness inside the virtual machine is enforced by
the nested scheduler, which tracks and controls applications based on
their mapping of the virtual PCI BAR device.

works. Afterwards, Section 3.4.1 discusses one of the most important differences
between centralized and decentralized approaches: How to organize sampling.

Figure 3.6 shows how our proof of concept works. One scheduler runs in the
hypervisor and distributes the GPU time equally between all tasks and virtual
machines that run directly in the hypervisor. This scheduler treats virtual machines
like normal processes and measures their GPU usage as a whole, without considering
internal tasks. Inside each virtual machine runs a modified version of NEON, which
is responsible for enforcing fairness for the children of its virtual machine.

LOGV’s virtual GPU driver maps command submission channels from the virtual
PCI BAR device into application memory. There is no difference between such
a mapping created by LOGV and a real mapping created by the NVIDIA driver.
Therefore, NEON can manipulate this mapping in the same way as it does in
the host to track kernel submissions. Consequently, no modifications to NEON’s
accounting mechanism are required.

In order to keep the effort manageable, we share as much code as possible with
the paravirtual approach. Therefore, the hypervisor also uses shadow channels
to temporarily prevent virtual machines from submitting work to the GPU. While
this works well, it is not strictly required from a technical point of view. Using a
technique that fully blocks the execution of the virtual machine, similar to what the
original version of NEON does, is also a possibility.
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3.4.1 Nested sampling

Proper scheduling requires precise measurements of resource usage. NEON is based
on the assumption that an application’s usage of the GPU does not vary greatly
during short time intervals. This assumption allows NEON to measure GPU usage
only during a short interval in the sampling phase, interpolate the measurements,
and then decide to block or unblock an application for the freerun phase.

We identified two different possibilities on how to organize sampling in the
nested approach: First, nested schedulers run their own sampling. Second, the
hypervisor samples all tasks and provides the results to the guests. For the sake of
simplicity, our prototype uses the first, truly decentralized option. However, leaving
the sampling to clients also introduces complex scheduling interactions, that need
to be addressed.

The core problem with nested sampling is the base assumption of NEON that it is
the only scheduler and has complete control over the GPU. When NEON runs in a
virtual machine, this is no longer true. During the sampling phase, NEON assumes
only the sampled task can access the GPU and all observed utilization is created by
one single application. In a nested environment, however, the hypervisor might be
in the freerun phase at the same time. In this case, work submitted by applications
from other virtual machines also reaches the GPU and disturbs the measurement
of the nested scheduler. A similar situation can arise when the nested scheduler
tries to sample a task, while the hypervisor blocks GPU access for the whole virtual
machine. This situation also results in wrong measurements, because the internal
scheduler assumes the kernels of the sampled application run for a very long time,
when in reality they just never reach the GPU because the hypervisor redirects them
to a shadow channel.

Finding a good strategy to avoid such problems in nested sampling is difficult.
We briefly considered some kind of coordination that synchronizes the phases of the
schedulers and avoids many problematic interactions. Another core problem with
nested sampling, however, cannot be solved by coordination: Sampling GPU usage
in each virtual machine separately scales badly. Without exclusive GPU access,
NEON’s sampling cannot produce reliable results. Consequently, each scheduler
needs exclusive GPU time in order to conduct precise measurements. As the number
of schedulers grows in more complex scenarios with multiple layers of virtualization,
we allocate an increasingly larger share of the total available GPU time for exclusive
sampling phases. Such extensive phases of exclusive access, however, are a major
source of overhead, which we sought to avoid in the first place.
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The second option on how to organize sampling with nested virtualization is to
keep all sampling in the hypervisor and export the results to the schedulers running
in the virtual machines. We suspect the overhead of this approach to be much lower
than for nested sampling, because every task is only sampled once by the hypervisor.
Furthermore, no complex interactions can arise when all sampling is performed in
one place. Central sampling, however, again requires knowledge of child tasks in
the hypervisor, which leads back to a more centralized design like the paravirtual
approach.

For our proof of concept implementation, we use uncoordinated nested sampling
and manually configure the duration of the sampling phase in the nested scheduler
to a fraction of the duration in the hypervisor’s scheduler. This strategy is acceptable
for our prototype, because we do not need to support larger virtualization scenarios.
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This chapter covers the implementation part of our work. Our primary goal is the
creation of a complete prototype of the paravirtual approach that fulfills all design
targets discussed in Chapter 3. Furthermore, we aim to demonstrate the feasibility
of the nested scheduling approach by creating a proof of concept implementation.

In general, virtualization may be nested. In order to support the cloud scenario,
however, building a prototype that enforces fairness with only one layer of vir-
tualization is sufficient. For simplicity, we therefore decide upfront to limit our
implementations to one level of virtualization.

The remainder of this chapter is structured as follows: Section 4.1 discusses
the selection of the target platform. We describe the implementation of the basic
virtualization support for NEON in Section 4.2. The core implementation effort is
described in Section 4.3, where we discuss the implementation of the paravirtual
approach. Finally, Section 4.4 gives a brief overview over the implementation of
the proof of concept for the nested approach.

4.1 Target platform

We use NEON [28] and LOGV [16] as a basis for our implementation. NEON hooks
into the NVIDIA GPU driver and parses driver-internal data structures. The original
authors of NEON built the necessary parsing logic largely based on information
obtained by reverse engineering [11, 29]. Since driver-internal data structures
are subject to change without notice, NEON’s parsing logic is delicate and breaks
easily when other driver versions are used. Consequently, we try to keep our target
platform as closely as possible to the one used in the original NEON paper.

Because NEON is tied to the proprietary NVIDIA driver, but LOGV requires the
open-source pscnv [40] driver, we cannot use LOGV directly. Instead, we use BLOGV,
a rewrite of LOGV that works with the NVIDIA BLOB driver.

The original version of NEON does not feature full support for Symmetric Multi-
processing (SMP) [27]. In order to properly run multiple virtual machines, however,
we absolutely require SMP. We therefore introduce SMP support in NEON and add
the necessary locking.
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4.2 Virtualization support

The original version of NEON manipulates page tables and uses the processor’s
single-stepping debug feature in order to track kernel submissions during the
sampling phase. Since our virtual machines use Second Level Address Transla-
tion (SLAT) [1], NEON’s normal page table manipulations do not affect applications
running in virtual machines. Similarly, single stepping a particular application in
the virtual machine from the hypervisor is more complex.

We discuss our modifications to NEON’s page table manipulation mechanism
in Section 4.2.1. Afterwards, we describe our technique for single-stepping in
Section 4.2.2.

4.2.1 Second Level Address Translation

NEON manipulates page table entries of command submission channels in order
to account and control GPU access of applications. By clearing the present bit of
a channel’s page table entry, NEON forces a page fault on the next access by the
application, which allows NEON to precisely count channel accesses. On modern
platforms, however, manipulating the normal page table is not sufficient to control
the GPU usage of virtual machines, because such platforms feature hardware
assisted virtualization in form of Second Level Address Translation (SLAT). The first
implementation step is therefore to add SLAT support to NEON. This is required
for both the paravirtual and nested approaches. Intel’s implementation of SLAT is
called Extended Page Tables (EPT).

Figure 4.1 shows the different mappings that play a role in the address resolution
of a command submission channel that is in use by an application in a virtual
machine. In total, three mappings exist: First, the traditional mapping into QEMU’s
address space. This mapping is stored in the host operating system. Second, a
mapping of the channel into the physical address space of the virtual machine. This
mapping is controlled by the hypervisor. Last, a mapping from the guest physical
address space into the address space of the guest application. This mapping is
controlled by the guest operating system.

In order to resolve a guest-virtual address, the MMU first uses the guest application
page table to retrieve a guest-physical address. Afterwards, the MMU consults the
EPT to translate the guest-physical to a host-physical address. The original version
of NEON, however, only manipulates the normal page table entry on the host,
which is not involved in this address resolution. As a result, changes by the original
version of NEON do not affect GPU accesses by the virtual machine.
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Figure 4.1: Channel mapping with Second Level Address Translation: The channel
mapping of normal host processes and QEMU resides in the host page
table. KVM copies this entry once into the EPT, which creates a mapping
into the guest physical address space. The virtual GPU driver then maps
the channel into the guest application’s address space. This mapping
resides in the guest page tables. The original version of NEON works
with the host page table, our new version uses the EPT for VM tasks. A
nested scheduler uses the entry in the guest page table.

We port NEON’s existing page table manipulation mechanism to work with EPT
tables. We add a hook in the Linux kernel in order to detect when KVM creates an
EPT entry for a known command submission channel. Since a channel is never used
by both host and guest applications at the same time, we only need to manipulate
either the host page table or the EPT for NEON’s tracking. Therefore, we add a flag
to NEON’s channel control data structure that indicates if a channel is currently
mapped in an EPT entry.

4.2.2 Single stepping

NEON also requires single-stepping in order to track channel usage. After a modified
page table entry triggered a page fault, NEON resets the present bit in order to
allow the application to continue. At some later point in time, however, NEON
needs to clear the present bit again to catch the next channel access. NEON uses
the processor’s Trap Flag (TF) control bit in order to avoid leaving the channel
accessible for too long, which can result in missed channel accesses. This flag is
originally intended for single-step debugging and causes a context switch back to
the operating system after each single application instruction. NEON exploits this
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functionality by enabling the processor’s trap flag along with a channel’s present bit.
As a result, the application executes exactly one instruction, which is the repetition
of the previously failed channel access. Directly afterwards, the trap flag leads to a
kernel trap, during which NEON disables the flag and clears the present bit again.
This strategy prevents missing any channel accesses.

In the virtualized scenario, however, using the trap flag is non-trivial for two
reasons: First, we need to take care to actually single-step the target application
that runs inside the virtual machine, and not only execute a single instruction of
QEMU or the guest operating system. Second, manipulating the trap flag from the
hypervisor can lead to complex interactions when the guest operating system is
using this flag at the same time. As an example, this is the case if another GPU
scheduler runs inside the virtual machine, as we plan to do in the nested scheduling
approach.

Fortunately, Intel’s hardware virtualization extensions feature a viable alternative
to the trap flag, called the Monitor Trap Flag (MTF). This flag allows single-stepping
of the virtual machine without any interactions with the VM’s trap flag. We therefore
added functions to KVM that allow NEON to set the MTF flag at will, and use these
functions in order to track accesses to EPT-based channels.

4.3 Implementing paravirtual scheduling

This section covers the implementation of the paravirtual approach. We discuss
the main design topics from Section 3.3 in the same order, and explain how we
implement each aspect in our prototype. Our implementation of the paravirtual
approach is feature-complete and runs stable.

4.3.1 Guest driver

We require paravirtual hints from the guest GPU driver in order to correctly assign
allocated channels to guest tasks. Since our prototype only supports one level of
virtualization, one single identifier is sufficient to distinguish guest tasks.

A suitable identifier has the following properties: First, the identifier must be
unique within its virtual machine. With duplicates, we cannot distinguish tasks.
Second, the identifier must not change during the lifetime of the VM. Supporting non-
constant identifiers adds unnecessary complexity. One readily available identifier
that fulfills both requirements is the guest operating system’s process id.
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In order to allocate a channel, the CUDA runtime requests multiple memory
mappings by sending HOST_MAP commands via the ioctl [44] channel to the GPU
driver. In the virtualized scenario, the virtual GPU driver forwards these calls to the
hypervisor. Careful analysis of the parameters of the HOST_MAP command shows
that one of the parameters is always zero. Furthermore, changing this parameter to
an arbitrary value does not create any measurable effect. Consequently, we decide
to use this presumably unused parameter to piggyback our task identifier. We
modify BLOGV to insert the guest task id here, before sending off the ioctl as usual.
Since NEON already intercepts ioctl calls to track memory mappings, extracting the
guest task id from the call is just a simple modification.

4.3.2 Shadow channels

We use shadow channels to prevent tasks inside the virtual machine from sending
more work to the GPU. A shadow channel is essentially a kernel memory buffer
that is mapped into the application and replaces the mapping of the real command
submission channel. When the application writes to the channel, it unknowingly
writes to the kernel buffer and the commands never reach the GPU. A command
submission channel consists of three major memory areas: The Push Buffer, the
Indirect Buffer, and the channel control registers. The control registers contain
IB_PUT, an index value that points to the newest entry in the Indirect Buffer. By
incrementing IB_PUT, the application notifies the GPU about new entries in the
other buffers. See Section 2.2.1 for details.

For NEON’s use case, it is sufficient to shadow the channel control register
mapping, since the GPU does not perform any computation before the application
increments IB_PUT. The application retains its mappings of the Push Buffer and the
Indirect Buffer. This is unproblematic, because the GPU ignores any data written
there until IB_PUT changes.

Shadow channels should be transparent for the application. In order to maintain
this transparency, we need to guarantee a consistent view on the command submis-
sion channel, even while enabling or disabling the shadow channel. Maintaining
a consistent view requires copying data from the GPU channel into the shadow
channel’s kernel buffer, so the application reads the same data before and after the
switch. The same is true when switching back to the GPU channel later on.

Copying data and modifying the channel mapping are two separate operations,
which cannot be performed together atomically. This leads to a race condition: If
we change the mapping before copying the data, the application may see outdated
values still present at the new mapping target. On the other hand, if we copy
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the data first and modify the mapping afterwards, the application may update the
values within the old mapping again after the copy operation, but before the new
mapping is in effect. This data race is present during both switches to and from the
shadow channel. However, enabling the shadow channel is trivial, because NEON
decides to switch while the application waits in the page fault handler. Hence, the
application is already stopped, so the race is unproblematic.

Unshadowing, however, is more complex because it happens asynchronously to
application execution, so the application may be actively using the channel during
unshadow. To solve this problem, we first set the access permissions of the shadow
channel’s page to read-only. Subsequent write accesses now result in a page fault,
which we catch in the page fault handler. After setting the page read-only, the
application can no longer change any data. Thus, we are free to copy IB_PUT back
to the GPU. Afterwards, we restore the original channel mapping and allow the
application to proceed through the page fault handler.

The switch back to the real GPU channel can take place for two different reasons:
First, all applications that did not exceed their fair share of GPU time during
sampling regain access when the freerun phase begins. Second, NEON unblocks
applications separately in the sampling phase in order to measure their GPU usage.
When switching to freerun, unblocking works as described: We switch back the
mapping to the GPU channel and copy IB_PUT to the card. Switching to sampling,
however, is more complicated, because of the the changed semantics of a shadowed
channel compared to blocking an application in the page fault handler. While both
techniques prevent further kernels from reaching the GPU, shadow channels still
allow the application to submit work. When NEON disables the shadow channel
and copies IB_PUT to the GPU, the card immediately starts computing any work that
was submitted while the channel was shadowed. This poses a problem for NEON’s
accounting, which needs to precisely count the number of computed kernels during
sampling. The shadow channel, however, contains an unknown number of kernels
that will now contribute to the measured runtime, without being accounted for.
Figure 4.2 depicts such a situation. Here, the application submitted two kernels to
the shadowed channel during the draining phase. When NEON switches to sampling
and begins counting kernel submissions, only the next two kernels are registered.
The GPU, however, computes all four kernels. As a result, NEON’s measurement of
GPU utilization is wrong, which can lead to unfairness. To overcome this problem,
we do not only copy IB_PUT to the GPU during unshadow, but also fake resubmission
for each kernel in the shadow channel by calling NEON’s tracking callbacks manually.

The original version of NEON is able to enforce a limit to the number of kernels
computed during the sampling phase. As an example, a scheduling policy may
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Figure 4.2: Wrong accounting after unshadow: NEON expects channels to be empty
before sampling starts. With shadow channels, this is no longer true,
because applications can submit kernels while being blocked. The GPU
computes four kernels in total: Two, that were submitted into the
shadow channel during the draining phase, and two submitted during
sampling. This invalidates NEON’s accounting, which only sees the later
two kernels.

consider a particular number of registered kernels to be enough to infer the appli-
cation’s GPU occupation. When this number is reached, the sampling phase for the
active application immediately ends and NEON blocks all further kernel submis-
sions by the application. This mechanism is important to limit the duration of the
sampling phase of each application. With shadow channels, however, applications
may submit any number of kernels before sampling begins. Blindly copying IB_PUT
to the GPU during unshadow allows all previously submitted kernels to run, which
can easily exceed the designated duration of the sampling phase. To prevent such a
situation, the policy can issue a special signal during kernel resubmission, which
stops the unshadowing process, only increases IB_PUT on the GPU by the number
of kernels permitted to execute by the respective scheduling policy and keeps the
channel shadowed.

4.3.3 Grouping data structures

This section discusses our changes to NEON’s internal data structures. These changes
are required in order to allow separate accounting of tasks running inside virtual
machines.
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Figure 4.3: NEON’s internal data structures. Straight lines denote direct references
(pointers), dotted lines denote indirect references via ids. We add
the guest process id to neon_task_t in order to support grouping.
task_struct is a Linux kernel data structure. The colored groups are
explained in Section 4.3.3.
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Figure 4.3 depicts the core data structures of NEON and their relationships. The
illustration is intended to be viewed similar to a UML class diagram [14]. Since
NEON is written in C, which is not an object-oriented language and does not sup-
port the concept of classes, the illustration only loosely follows UML practices.
The data structures can be divided into three groups: First, neon_task_t and
neon_ctx_t abstract Linux kernel tasks and CUDA contexts, respectively. Struc-
tures in the second group represent different views on system hardware: The full
system with multiple cards (neon_global_t), one GPU with multiple channels
(neon_dev_t), and one channel (neon_chan_t). The third group contains all
accounting-related data structures: sched_dev_t holds accounting data relevant
for one GPU, sched_task_t accounts GPU usage of one task and sched_work_t

abstracts channels from an accounting perspective. Finally, the central structure
neon_work_t connects most data structures and represents an allocated channel
that is in use.

Our prototype only supports one level of virtualization. This simplification
allows us to keep most of NEON’s internal data structures intact and introduce the
required new functionality with little change: The most important data structure for
accounting is sched_task_t, which represents a scheduling entity and holds values
like the number of kernels submitted during sampling. Consequently, to handle
more different scheduling entities, we create one sched_task_t per VM internal
task. To keep scheduling entities distinguishable even if they share the same host
task id, we add the guest process id, as depicted in Figure 4.3. Furthermore, we
modify all instances where NEON accesses scheduling entities based on their host
process id to also consider the guest process id.

4.3.4 Two level scheduling

In order to properly schedule tasks running inside potentially nested virtual ma-
chines, we assign a weight to each scheduling entity. An entity’s weight represents
the inverse of its target share of GPU time, compared to a task that runs in the
hypervisor. In general, this weight depends on the number of children of each of
the entity’s ancestors. See Section 3.3.4 for details.

Since we only support one level of virtualization in our prototype, the weight
calculation becomes easier: The weight of an entity equals the number of children
its parent has. In other words, each entity’s weight equals the number of its siblings,
including itself. We update this number when a new task accesses the GPU for the
first time and when a tasks exits.
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NEON’s DFQ scheduler attempts to balance GPU usage by measuring the average
kernel runtime and the number of computed kernels of each application during
the sampling phase. When an application overuses its fair share of GPU time, the
scheduler blocks the application temporarily in order to allow other applications
to run. See Section 2.4.6 for details. We modify NEON’s scheduler to multiply the
measured average kernel runtime of each application with its weight. As a result,
NEON’s scheduler considers applications with higher weights to overuse the GPU
more often, which results in more frequent blocking of applications with higher
weights.

4.4 Implementing nested scheduling

Our nested scheduling approach uses two different versions of NEON: One, that
runs in the hypervisor and schedules between VMs, and one that runs and schedules
inside the virtual machines. The hypervisor version is almost identical to the
version from the paravirtual approach. Consequently, there is no implementation
required besides adding compile-time flags to disable all paravirtual features except
shadow channels. The version of NEON that runs inside the virtual machine,
however, requires implementation work, because the virtual machine is a different
environment than the host. More precisely, we perform the following modifications
in order to run NEON inside a VM: First, we port NEON to compile against the
newer Linux kernel that runs inside the virtual machine. Second, we add hooks to
BLOGV’s virtual GPU driver to extract the data which the original version of NEON
reads from the NVIDIA driver. Last, we add support for BLOGV’s virtual GPU.

The core of NEON consists of a loadable kernel module for the Linux kernel.
The original version of NEON runs on Linux 3.4. BLOGV, however, uses the newer
kernel version 3.14.29 for its virtual machines. We therefore port NEON’s kernel
module to compile against the newer kernel. This task is straight forward and only
requires simple changes to the code that creates NEON’s kernel thread.

NEON requires knowledge about channel creation requests by applications. Ap-
plications send ioctls to the GPU driver in order to issue such requests. The NVIDIA
proprietary GPU driver contains a small open-source kernel module in order to
comply with kernel license requirements. This module mostly forwards ioctls to the
proprietary BLOB driver. NEON modifies this module and adds hooks in order to
notice when a channel is allocated. In order to support virtual machines, we port
these hooks to BLOGV’s virtual GPU driver. Like NVIDIA’s kernel module, which
forwards ioctls to the proprietary driver, BLOGV’s virtual GPU driver forwards calls
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to the hypervisor. Since the NVIDIA kernel module and BLOGV’s driver work in a
similar manner, adding NEON’s hooks to BLOGV is straight forward.

NEON contains a list of reverse-engineered, hardcoded memory addresses for
each supported device. These addresses point to memory regions in the device’s
PCI BAR, such as the the channel control register array. In order to support BLOGV’s
virtual PCI BAR device, we hardcode its memory addresses in NEON.

Since we want to share as much code as possible between the nested and the
paravirtual approach, we also want to use shadow channels in order to prevent
applications from accessing the GPU. However, when our implementation switches
back from a shadow channel to the GPU channel, there is a small probability of
triggering a severe Machine Check Exception (MCE) in the hypervisor. This exception
causes the host to reboot immediately. The error description claims this MCE is
caused by a hardware error. Because faulty software running in the virtual machine
must not, under any circumstance, be able to stop the hypervisor, we believe this
exception is not caused by our code. After investigating, we now believe this
problem to be a known CPU errata, which Intel lists as HSD95. According to Intel’s
specification update document [21], this errata is triggered due to “certain internal
conditions while running core and memory intensive operations”. Since we cannot
workaround this issue with such a vague description, we disable shadow channels
for the nested scheduler and fall back to NEON’s original blocking strategy, which
holds applications in the page fault handler during kernel submission.

These modifications complete our proof of concept implementation. We use the
following evaluation to demonstrate the basic feasibility of VM-internal accounting
and scheduling. For a complete implementation, however, more work is required.
This is especially true for NEON itself, which does not fully support SMP [27].
Adding more functionality and enabling SMP surfaces concurrency problems, some
of which cannot be solved trivially by adding locks. Our primary approach contains
workarounds for NEON’s concurrency issues. Since the nested approach runs NEON
multiple times, the chance of triggering such problems is much higher, which is why
we recommend a partial rewrite of NEON for a full implementation. Furthermore, a
complete solution must deal with the sampling interactions discussed in the design
phase. For our prototype, we set the duration of both the internal sampling and
freerun phases to 1 ms each, while keeping the duration of the hypervisors sampling
phase at 5 ms, and freerun at 25 ms. These settings allow the internal scheduler
to fit many complete cycles inside the hypervisors freerun phase, which reduces
interaction effects to a minimum. This solution, however, is only possible for our
simple prototype that does not need to support a larger number of tasks or nested
virtualization.
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This chapter covers the evaluation part of our work. The purpose of this evaluation
is to verify we have reached our design goals defined in Section 3.1. In order to
analyze the implementation of our paravirtual approach, we measure introduced
overhead and verify that our system is able to enforce fairness in the host and in
virtual machines. Furthermore, we demonstrate the feasibility of accounting and
scheduling tasks inside virtual machines with our nested approach.

The remainder of this chapter starts with a description of our experimental setup
in Section 5.1. Afterwards, we discuss how we generate predictable GPU load for
the fairness tests in Section 5.2. We measure introduced overhead in Section 5.3,
followed by an investigation on scheduling in Section 5.4.

5.1 Experimental setup

Our test system partially resembles the system used in the original NEON paper [28],
because NEON depends on particular GPU driver versions and GPU models. We run
all benchmarks and measurements on a system with an Intel Core i7-4770 processor,
a NVIDIA GTX 480 GPU, and 16 GB of RAM. The host runs NEON’s modified Linux
kernel version 3.4.7 with KVM and QEMU 2.2.0 for the virtual machines. Our host
system uses the NVIDIA proprietary GPU driver, version 331.62 with CUDA 6.0.
The guests run Linux with kernel version 3.14.29 with BLOGV’s virtual GPU driver
and CUDA 6.0.

Since BLOGV currently does not support the CUDA Runtime API, we conduct
our benchmarks with a CUDA Driver API based version [24] of the rodinia GPGPU
benchmark suite [6]. Because NEON measures the runtime of multiple kernels
before the first scheduling decision, we add a loop to the benchmarks that increases
each benchmark’s runtime into the range of full seconds. This loop repeats all
data transfers and GPU computations. As a result, each benchmark issues a larger
number of kernels, which allows scheduling by NEON. Furthermore, we modify
the time measurement code in order to record kernel runtimes and duration of I/O
operations separately.
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For all our fairness measurements, we configure NEON to sample each application
for 10 ms and set the duration of the freerun phase to 50 ms. We double the
durations from the original NEON paper in order to account for the fact that kernels
issued by some of our benchmarks have an average runtime of up to 4171µs, much
more than the longest average kernel runtime of 637µs observed by the original
authors of NEON [28]. Their sampling duration of 5 ms is too short to allow precise
sampling of our longer running kernels, leading to suboptimal scheduling decisions.

5.2 Load generation

Similar to the evaluation in the original NEON paper, we use a throttle application
for load generation in our fairness benchmarks. Throttle is a simple application
that does nothing beside issuing kernels in an endless loop. These kernels occupy
the GPU by busy waiting for a configurable amount of time. We repeat each of our
fairness benchmarks multiple times with increasing configuration parameters in
order to simulate applications with a range of different kernel runtimes.

We run our own version of throttle that uses the CUDA Driver API. Throttle
also requires knowledge of the GPU’s clock rate in order to properly wait for the
configured amount of time. Since BLOGV currently does not support reading this
value dynamically at runtime, we hardcode our GPU’s clock rate.

5.3 Overhead

Adding new functionality to existing systems is rarely possible with zero addi-
tional overhead. Good modifications, however, keep new overhead to a minimum.
Consequently, we decided that low overhead is a core goal of our implementation.

We only measure overhead introduced by our primary, paravirtual approach.
The implementation of our nested approach only serves as a proof of concept for
decentralized scheduling and does not feature a full design with a focus on low
overhead.

In this evaluation, we conduct four major overhead measurements: We start with
two measurements on overhead introduced by our GPU scheduling in Section 5.3.1.
Afterwards, we investigate BLOGV’s GPU virtualization as an additional source
of overhead in Section 5.3.2. Finally, we measure the combined overhead in
Section 5.3.3.

We perform overhead measurements as follows: All eight rodinia benchmarks run
twice in different environments. As an example, the experiment on virtualization
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overhead runs all benchmarks once on the host, and once in the virtual machine.
We record the results and compute the overhead as the slowdown from the first to
the second run, expressed as a percentage.

A common problem when investigating overhead of scheduling systems is the
interpretation of the results. It is often difficult to distinguish between slowdowns
caused by actual overhead and slowdowns which are a result of scheduling itself:
If a scheduling system grants less computation time to a benchmark, one might
wrongly attribute the slowdown to increased overhead. In order to avoid such
problems, we disable scheduling for the following overhead measurements. More
precisely, we modify NEON to run as usual, but ignore the scheduling decision
and always allow all applications to access the GPU in the freerun phase. This
modification allows us to measure any overhead introduced by NEON’s accounting
mechanism without including scheduling effects.

5.3.1 Scheduling overhead

Our first measurement targets scheduling overhead. For this measurement, we
perform both benchmarks runs in a virtual machine, one time without scheduling
and one time with our paravirtual version of NEON. We therefore measure the effect
of adding our scheduler to an existing setup of virtual machines. NEON performs
all sampling normally, but never blocks applications during the sampling phase. We
expect to measure a slowdown with enabled scheduling because of NEON’s kernel
submission interceptions during the sampling phase.

Kernel

Benchmark Overhead

BACKPROP 2.01 %
BFS 4.06 %
HEARTWALL 18.97 %
HOTSPOT -0.04 %
LUD -0.03 %
NN 3.26 %
SRAD_V1 4.00 %
SRAD_V2 2.47 %

Arithmetic mean 4.34 %
Standard deviation 6.12 %

Kernel + I/O

Benchmark Overhead

BACKPROP 2.71 %
BFS 1.27 %
HEARTWALL 2.17 %
HOTSPOT 0.89 %
LUD 0.91 %
NN 1.13 %
SRAD_V1 6.17 %
SRAD_V2 2.08 %

Arithmetic mean 2.17 %
Standard deviation 1.75 %

Table 5.1: Overhead of paravirtual scheduling: Runtime increases of rodinia bench-
marks after enabling paravirtual GPU scheduling in the virtual machine.
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Table 5.1 presents the results. With arithmetic means of 4.34 % and 2.17 % for
kernel and kernel+ I/O runtimes, the general overhead is low and matches our
expectations. The only notable exception is the measured overhead of 18.97 % in
the kernel runtime of HEARTWALL. Note that this peak is only visible in the kernel
runtime, but not in the measurement which includes I/O. This observation suggests
overhead that only affects the submission or execution of the kernels, but not data
transfers between system RAM and GPU memory.

We suspect NEON’s kernel interceptions during the sampling phase to be a major
source of all measured scheduling overhead. In order to account for guest tasks
running in virtual machines, we modified NEON’s interception code and introduced
support for manipulating the EPT. We believe tracking applications by manipulating
EPT entries to be more expensive than host page table manipulations, because EPT
violations lead to a VM exit, which is more expensive than an OS entry on a page
fault.

In our second measurement, we compare benchmark runtimes between the host
and the virtual machine. In both cases, the paravirtual version of NEON runs in
the hypervisor. Since the scheduler now samples the benchmarks in both runs, the
major difference in scheduling is the employed tracking technique: NEON tracks
host tasks by manipulating the normal page table, but uses EPT manipulations for
tasks in the virtual machine.

Kernel

Benchmark Overhead

BACKPROP 1.70 %
BFS 2.28 %
HEARTWALL 28.30 %
HOTSPOT -0.05 %
LUD -0.04 %
NN 1.24 %
SRAD_V1 2.17 %
SRAD_V2 0.63 %

Arithmetic mean 4.53 %
Standard deviation 9.65 %

Kernel + I/O

Benchmark Overhead

BACKPROP 1.64 %
BFS 8.84 %
HEARTWALL -0.99 %
HOTSPOT 1.06 %
LUD 1.10 %
NN -35.77 %
SRAD_V1 4.11 %
SRAD_V2 1.94 %

Arithmetic mean -2.26 %
Standard deviation 13.85 %

Table 5.2: Cost of virtualized tracking: Runtime increases of rodinia benchmarks
when comparing execution on the host with execution on the guest.
NEON samples, but does not schedule in both cases.
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Table 5.2 presents the results. Again, the overhead in general is low, with an
average slowdown for kernel runtimes of 4.53 %. The slowdown in the kernel
runtime of the HEARTWALL benchmark grows to 28.30 % in this setup. Additionally,
the total runtime of the NN benchmark decreases by 35.77 %, which is unexpected.

These results cannot be explained with increased costs from virtualized tracking
alone. The main problem are the outliers HEARTWALL and NN. Overhead from
increased tracking should affect all applications. It certainly cannot be the cause
for NN’s even faster runtime in the virtual machine compared to the host.

We therefore suspect an additional source of overhead to influence this measure-
ment: Overhead from BLOGV’s GPU virtualization. In order to separate the two,
we first conduct a microbenchmark on the increased costs of kernel submissions,
and measure pure virtualization overhead afterwards.

5.3.1.1 Interception of kernel submissions

Our paravirtual version of NEON is able to account the GPU usage of single ap-
plications in virtual machines. The employed channel access tracking technique
resembles the one used in the original version of NEON, but uses VM exits, which
are presumable more expensive than normal OS entries. We measure the cost of
both tracking techniques with a microbenchmark in order to quantify the difference.

For this measurement, we use a simple CUDA application that only submits empty
kernels in an endless loop, and measure how long the API call cuLaunchKernel
takes. In order to submit the kernel to the GPU, the CUDA API increments a pointer
in a channel control register. With both tracking techniques, this causes exactly
two traps: In the non-virtualized case a page fault, followed by a kernel entry
triggered by the trap flag. In the virtualized case an EPT violation, followed by a
hypervisor entry caused by the monitor trap flag. We expect VMM entries to be
more expensive than OS entries, resulting in longer durations of kernel submissions
during sampling in the virtual machine. During freerun, however, we expect the
durations to be similar.

Figure 5.1 shows an excerpt of the results. The total measurement runs for 6 s,
shown are the last 200 ms of the recording to allow for cache warmup. For this
benchmark, we use a longer sampling phase of 20 ms and only 60 ms of freerun.
The phases are clearly visible in both graphs: Kernel submissions take longer during
sampling in both cases. Note that the graphs come from independent measurements,
the phases are therefore not synchronized.

The increased duration of kernel submissions in the virtual machine matches our
expectations, even though the difference is much larger than we expected. A kernel
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Figure 5.1: Microbenchmark: Durations of kernel submissions on the host and in
virtual machines. The plot shows the duration of kernel submissions in
an endless loop with a CUDA sync after each iteration. NEON is set to
20 ms sampling and 60 ms freerun. No actual scheduling takes place.
A kernel submission during sampling takes approximately 4400µs on
the host and 34000µs to 190 000µs in the virtual machine with the
paravirtual approach.

submission during sampling takes about 4400µs on the host and approximately
34000µs to 190000µs in the virtual machine. Even in the best case, virtualized
tracking is therefore almost one order of magnitude slower than native tracking.

The durations of kernel submissions during freerun, however, are surprising. A
kernel submission during freerun takes about 1700µs on the host and about 3000µs
in the virtual machine. We expected the difference to be smaller. Our investigation
shows that the CUDA library performs more actions on cuLaunchKernel than
expected. As an example, an additional ioctl is issued for each kernel submission.
Note that this additional ioctl is not the source of the increased duration in the
virtual machine, since BLOGV contains an optimization and ignores it. Ultimately,
we were unable to find the cause for the longer kernel submission duration during
freerun in the virtual machine. We suspect the CUDA library to perform some
additional task, which behaves differently in the virtual machine.
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Note that, even though the overhead measured in this microbenchmark is higher
than expected, the overall impact is limited, since NEON only tracks kernel submis-
sions during the sampling phase and the submission itself is only a small part of
the total benchmark runtime. The results in the previous measurement in Table 5.2
confirm that the slower sampling only leads to a very limited application overhead
in most benchmarks.

In any case, this measurements proves that virtualized tracking is more expensive
than native tracking on the host. While this does explain the slight runtime increases
observed in most benchmarks, virtualized tracking is likely neither the cause for the
slowdown observed in the HEARTWALL benchmark, nor the cause for the speedup
in the NN benchmark.

5.3.2 Virtualization overhead

This measurement targets overhead introduced by BLOGV’s GPU virtualization.
Many GPU calls take longer in the virtual machine, because BLOGV’s virtual GPU
driver forwards them to the hypervisor. Overhead from BLOGV’s GPU call forwarding
is not caused by our scheduling approach, but influences all measurements that use
virtual machines. We therefore conduct a measurement that compares benchmark
runtimes with and without virtualization in order to isolate this effect.

Kernel

Benchmark Overhead

BACKPROP 0.81 %
BFS 0.10 %
HEARTWALL 12.68 %
HOTSPOT 0.14 %
LUD -0.03 %
NN 0.03 %
SRAD_V1 0.09 %
SRAD_V2 0.04 %

Arithmetic mean 1.73 %
Standard deviation 4.43 %

Kernel + I/O

Benchmark Overhead

BACKPROP 2.82 %
BFS 4.76 %
HEARTWALL -0.78 %
HOTSPOT -0.96 %
LUD 0.61 %
NN -32.68 %
SRAD_V1 0.39 %
SRAD_V2 1.45 %

Arithmetic mean -2.81 %
Standard deviation 12.19 %

Table 5.3: BLOGV’s virtualization overhead: Runtime increases of rodinia bench-
marks when comparing execution on the host with execution on the
guest. No accounting or scheduling is involved.
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Table 5.3 presents the results. For this benchmark, we compare the runtimes
of all eight rodinia benchmarks on the host with the runtimes in BLOGV’s virtual
machine. No scheduling or accounting is involved in any case. While the results
show that BLOGV only introduces negligible overhead in most benchmarks, the
results again include the same anomalies in the HEARTWALL and NN runtimes we
already observed in previous measurements.

We therefore conclude these overheads are caused by BLOGV’s GPU virtualization.
One possible explanation for the increased runtime of HEARTWALL is the fact that
HEARTWALL is heavily I/O bound and has very small actual kernel runtimes. We
measure a kernel execution duration to total benchmark runtime ratio of approx-
imately 1:100. The HEARTWALL kernels only run for a accumulated duration of
approximately 25 ms. The kernels of all other benchmarks, by contrast, have an
accumulated kernel runtime of at least one second each. We therefore suspect initial
costs, for example from cold caches, to be the source of the measured overhead.
With such a short runtime, a large share of the measured absolute kernel runtime
consists of the initial costs.

The other outlier is the kernel+ I/O runtime of the NN benchmark. The runtime
of NN shrank by over 35 % as a result of running NN in the virtual machine. We
ultimately decided against investigating this further, since it is evidently caused by
BLOGV and not by our scheduler.

5.3.3 Combined overhead

The final overhead measurement includes all possible sources of overhead in order
to verify our paravirtual approach is practical. For this benchmark, we run rodinia
one time on the host without any scheduling, and one time in the guest with our
paravirtual version of NEON. We expect this setup to show the highest levels of
overhead, because it includes all costs from virtualization and scheduling.

Table 5.4 presents the results. Again, HEARTWALL and NN differ from the rest of
the results. We expected this behavior, since it already occurred in the previous
measurements. Note that our measurements show that both outliers primarily
originate from BLOGV and are not introduced by our scheduler.

Except for HEARTWALL and NN, the combined overhead is still reasonably low.
The negative outlier from the NN benchmark causes the average overhead of the
total benchmark runtimes to be negative, which limits the meaningfulness of the
average for the other benchmarks. We therefore compute the arithmetic mean
again without the negative outlier from NN and arrive at a total average overhead
for both GPU scheduling and GPU virtualization of 3.94 %. With this result, we
think it is safe to say that we have reached our goal of minimizing overhead.
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Kernel

Benchmark Overhead

BACKPROP 0.66 %
BFS 4.02 %
HEARTWALL 28.81 %
HOTSPOT -0.05 %
LUD -0.03 %
NN 2.82 %
SRAD_V1 4.28 %
SRAD_V2 2.56 %

Arithmetic mean 5.38 %
Standard deviation 9.62 %

Kernel + I/O

Benchmark Overhead

BACKPROP 1.87 %
BFS 11.56 %
HEARTWALL 0.14 %
HOTSPOT 1.62 %
LUD 1.59 %
NN -35.98 %
SRAD_V1 6.94 %
SRAD_V2 3.83 %

Arithmetic mean -1.05 %
Standard deviation 14.59 %

Table 5.4: Total cost of GPU virtualization and GPU scheduling: Runtime increases
of rodinia benchmarks when comparing execution on the host without
scheduling to execution on the guest with our paravirtual version of
NEON.

5.4 Scheduling

Our design goal is to create fairness among applications competing for the GPU
in each layer of virtualization. Since our prototype is limited to the host plus one
layer of virtualization, we can easily verify both in separate experiments.

We first test the original version of NEON without virtualization to establish a
baseline in Section 5.4.1. Afterwards, we evaluate our paravirtual approach in
Section 5.4.2, followed by a brief evaluation of our nested proof of concept in
Section 5.4.3.

5.4.1 Baseline

Our implementations use NEON as a basis. In order to understand later bench-
mark results, we first establish a baseline of NEON’s scheduling behavior without
virtualization.

For the following tests, we run each of the rodinia benchmarks together with
the throttle application. We run each benchmark ten times with increasing throttle
kernel runtimes. Without any scheduling, this setup causes the GPU’s internal
round-robin scheduler to grant increasingly larger shares of GPU time to throttle,
which results in longer benchmark runtimes. With a perfect scheduler, however,
the benchmark runtime stays constant, independent of the runtime of the throttle
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kernels, because both the benchmark and throttle each get exactly 50 % of the
available GPU computation time.

Figures 5.2 to 5.4 present the results. Without external scheduling, the effects
of the GPU’s internal round-robin scheduler are clearly visible: The benchmark
runtime increases linearly with the throttle kernel runtime. After we enable NEON,
this effect is mostly gone and the runtime only slightly increases with larger throttle
kernels for most benchmarks. Still, this is a limitation of NEON, a perfect scheduler
keeps the runtime constant without any increase. Since our approach does not alter
the core operation principle of NEON, we take note of this behavior and expect our
approaches to behave similar in their evaluation.

Note that in all these experiments, the quality of the achieved fairness depends on
the response of the benchmark runtimes to the increasing throttle kernel runtimes,
and not on their initial absolute values. As an example, comparing HOTSPOT and
NN may lead to the assumption that NEON’s scheduling works well for HOTSPOT

and creates large amounts of overhead for NN. This conclusion, however, is wrong.
The much longer runtime of NN with NEON is in fact the desired behavior of any
fairness-enforcing GPU scheduler: NEON measures an average kernel runtime of
4171µs for NN’s kernels. The throttle kernels, however, only run for 100µs in the
first measurement. Since GPU computation time shares linearly depend on kernel
runtimes in the absence of scheduling, NN grabs about 97,6 % of the available GPU
time. NEON correctly identifies this problem and enforces a fair 50 % share, which
roughly doubles the runtime of NN.

In general, the results show that NEON achieves fairness in all benchmarks. In
some benchmarks, however, the runtimes with NEON vary more than in others.
One example is SRAD_V2, which shows non-linear variations in the benchmark
runtimes. Again, a look at the average kernel runtimes helps with understanding
this phenomenon. NEON measures an average kernel runtime of 2699µs for the
SRAD_V2 benchmark. Since NEON’s sampling phase is 10 ms long, only a very small
number of kernel runs contribute to NEON’s measurements. As a result, the average
is less precise. Since NEON’s scheduling decisions depend on this average, slightly
off measurements result in mild unfairness, as observed in the benchmark.

5.4.2 Paravirtual approach

After establishing a baseline for NEON’s scheduling capabilities, we continue with
our paravirtual approach. Here, we perform two different experiments: First, we
repeat the previous benchmark in the virtual machine in Section 5.4.2.1. Second,
we test a new scenario for fairness in the host in Section 5.4.2.2.
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Figure 5.2: Baseline of NEON’s scheduling capabilities. Shown are the runtimes
of the rodinia benchmarks LUD, BACKPROP, and BFS. Each benchmark
runs ten times alongside the throttle application. We configure throttle
to create increasing amounts of load. Without any scheduling, throttle
occupies increasingly larger shares of GPU time, resulting in longer
benchmark runtimes. A perfect scheduler keeps the benchmark runtimes
constant, independent of throttle’s kernel runtime.
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Figure 5.3: Baseline of NEON’s scheduling capabilities. Shown are the runtimes of
the rodinia benchmarks HOTSPOT, NN, and HEARTWALL. Each benchmark
runs ten times alongside the throttle application. We configure throttle
to create increasing amounts of load. Without any scheduling, throttle
occupies increasingly larger shares of GPU time, resulting in longer
benchmark runtimes. A perfect scheduler keeps the benchmark runtimes
constant, independent of throttle’s kernel runtime.
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Figure 5.4: Baseline of NEON’s scheduling capabilities. Shown are the runtimes of
the rodinia benchmarks SRAD_V1 and SRAD_V2. Each benchmark runs
ten times alongside the throttle application. We configure throttle to
create increasing amounts of load. Without any scheduling, throttle
occupies increasingly larger shares of GPU time, resulting in longer
benchmark runtimes. A perfect scheduler keeps the benchmark runtimes
constant, independent of throttle’s kernel runtime.
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5.4.2.1 Fairness inside virtual machines

With this experiment, we demonstrate our schedulers ability to schedule tasks inside
the virtual machine from the hypervisor. Except for the execution in the virtual
machine, the setup is the same as in the baseline experiment in Section 5.4.1. We
run each rodinia benchmark together with throttle in the same VM, and repeat each
measurement with increasing throttle kernel runtimes.

Figures 5.5 to 5.7 present the results, which look almost exactly like the results
of the baseline experiment. Again, the runtimes increase linearly in the absence of
scheduling. Our paravirtual version of NEON correctly identifies the situation and
enforces fairness. Like in the baseline measurement, the runtime of some bench-
marks still increases slightly with larger throttle kernel runtimes. Our scheduler
therefore achieves very good, but not perfect scheduling results. This behavior
matches the results of the baseline experiment which does not use virtualization.
We therefore conclude that our paravirtual version of NEON successfully applies
NEON’s scheduling capabilities to tasks running inside virtual machines.

5.4.2.2 Fairness between virtual machines

In the previous section, we demonstrated our scheduler’s ability to enforce fairness
among competing tasks inside a virtual machine. The purpose of the experiment in
this section is to demonstrate our scheduler’s ability to enforce fairness between
entire virtual machines in the host.

For this test, we run the rodinia benchmarks on the host. Additionally, we run
an increasing number of throttle applications inside one virtual machine. We run
up to eight throttle instances, since this is the maximum number of applications
currently supported by BLOGV. Together with the benchmark, the GPU therefore
sees up to nine different applications. A scheduler that allocates the same share of
GPU time to each application violates the host’s fairness requirements, since the
virtual machine as a whole and the benchmark get different shares of GPU time.
We expect our version of NEON to detect this situation, treat all throttle instances
in the virtual machine as one and grant the benchmark the same runtime as the
throttles combined. In other words, increasing the number of throttle instances
must not impact the benchmark runtime. For this experiment, we configure QEMU
to emulate eight virtual CPUs for the virtual machine, in order to guarantee parallel
execution of all eight throttle instances.

Figures 5.8 to 5.10 present the results. Again, the runtimes without scheduling
grow linear, which confirms our expectations and demonstrates the inherent unfair-
ness without external scheduling. In most benchmarks, however, the linear growth
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Figure 5.5: Fairness enforcement inside a virtual machine with our paravirtual
approach. Shown are the runtimes of the rodinia benchmarks LUD,
BACKPROP, and BFS. Each benchmark runs ten times alongside the
throttle application. We configure throttle to create increasing amounts
of load. Without any scheduling, throttle occupies increasingly larger
shares of GPU time, resulting in longer benchmark runtimes. A perfect
scheduler keeps the benchmark runtimes constant, independent of
throttle’s kernel runtime.
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Figure 5.6: Fairness enforcement inside a virtual machine with our paravirtual
approach. Shown are the runtimes of the rodinia benchmarks HOTSPOT,
NN, and HEARTWALL. Each benchmark runs ten times alongside the
throttle application. We configure throttle to create increasing amounts
of load. Without any scheduling, throttle occupies increasingly larger
shares of GPU time, resulting in longer benchmark runtimes. A perfect
scheduler keeps the benchmark runtimes constant, independent of
throttle’s kernel runtime.
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Figure 5.7: Fairness enforcement inside a virtual machine with our paravirtual
approach. Shown are the runtimes of the rodinia benchmarks SRAD_V1

and SRAD_V2. Each benchmark runs ten times alongside the throttle
application. We configure throttle to create increasing amounts of load.
Without any scheduling, throttle occupies increasingly larger shares of
GPU time, resulting in longer benchmark runtimes. A perfect scheduler
keeps the benchmark runtimes constant, independent of throttle’s kernel
runtime.
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Figure 5.8: Fairness enforcement between a virtual machine and a host task with
our paravirtual approach. Shown are the runtimes of the rodinia bench-
marks LUD, BACKPROP, and BFS. Each benchmark runs eight times on
the host, with increasing numbers of throttle instances in the guest,
resulting in longer benchmark runtimes. A perfect scheduler keeps the
benchmark runtimes constant, independent of the number of throttle
instances in the virtual machine.
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Figure 5.9: Fairness enforcement between a virtual machine and a host task with
our paravirtual approach. Shown are the runtimes of the rodinia bench-
marks HOTSPOT, NN, and HEARTWALL. Each benchmark runs eight times
on the host, with increasing numbers of throttle instances in the guest,
resulting in longer benchmark runtimes. A perfect scheduler keeps the
benchmark runtimes constant, independent of the number of throttle
instances in the virtual machine.
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Figure 5.10: Fairness enforcement between a virtual machine and a host task with
our paravirtual approach. Shown are the runtimes of the rodinia
benchmarks SRAD_V1 and SRAD_V2. Each benchmark runs eight times
on the host, with increasing numbers of throttle instances in the guest,
resulting in longer benchmark runtimes. A perfect scheduler keeps the
benchmark runtimes constant, independent of the number of throttle
instances in the virtual machine.
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does not extend to the last measurement with eight throttle instances. The reason
for this are hardware limitations of our test machine, which features a CPU with a
total of eight hardware threads. In the last measurement, however, we run eight
throttle instances plus the benchmark, which exceeds the hardware capabilities,
limits concurrency, and therefore reduces the slowdown effect of adding more
throttle instances.

In general, our paravirtual version of NEON is able to limit the cumulative GPU
usage of the throttle instances and thus enforces fair GPU sharing in the host.
Even though the values vary more than in the previous experiment on VM internal
fairness, and our scheduler shows a slight tendency to overcompensate with the
maximum number of throttles, we think it is again fair to say we also have reached
our goal of enforcing fairness between competing applications in all virtualization
layers.

5.4.3 Nested approach

In our final experiment, we demonstrate the basic feasibility of nested scheduling,
which performs both sampling and scheduling inside the virtual machine. The
evaluation setup is the same as in the experiment for VM-internal fairness in the
paravirtual approach: The rodinia benchmarks run inside the virtual machine
together with the throttle application, which we configure to send increasingly long
running kernels. The only difference is the scheduler: In this experiment, the host
scheduler stays disabled, and our nested version of NEON runs inside the virtual
machine.

A feature complete version of the nested approach would still execute a scheduler
in the host in order to enforce fairness between the virtual machines and host tasks.
Since our prototype only serves as a proof of concept, however, this scenario is
currently unsupported. Still, we configure the nested scheduler to use very short
sampling and freerun phases of 1 ms each. As discussed in section 3.4.1, this reduces
sampling interactions which affect the measurement results in a negative way. Even
though we do not run an external scheduler and no such effects can appear in this
experiment, we still configure short phases in order to demonstrate that NEON
works with these settings.

Figure 5.11 shows the results of three selected benchmarks. We omitted the
other benchmark results due to unresolved concurrency issues in NEON, which we
discussed in Section 4.4.

Again, the benchmark runtime increases linearly without scheduling, indicating
unfairness. Our nested scheduling prototype detects this unfairness and corrects it
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Figure 5.11: Fairness enforcement inside a virtual machine with our nested ap-
proach. Shown are the runtimes of the rodinia benchmarks BACKPROP,
HEARTWALL, and SRAD_V1. Each benchmark runs ten times alongside
the throttle application. We configure throttle to create increasing
amounts of load. Without any scheduling, throttle occupies increas-
ingly larger shares of GPU time, resulting in longer benchmark run-
times. A perfect scheduler keeps the benchmark runtimes constant,
independent of throttle’s kernel runtime.
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by halting the throttle instances temporarily in order to grant the benchmark more
computation time. The results clearly show that our prototype works and therefore
demonstrate that nested scheduling is a promising concept for GPU scheduling in
nested environments. We discuss possible future improvements in the next chapter.
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6 Conclusion

In this thesis, we presented two approaches on GPU scheduling in virtualized
environments. Our primary approach supplies a central GPU scheduler in the
hypervisor with paravirtual hints about guest tasks in the virtual machines. The
scheduler uses these hints to manipulate the virtual machine’s memory mappings
of GPU channels belonging to individual guest tasks. This technique allows for
independent accounting and scheduling of VM guest tasks. To the best of our
knowledge, this is the first approach that is able to simultaneously schedule GPU
usage in multiple levels of virtualization.

Our second approach is fully decentralized and employs multiple schedulers:
One in the host and one in each virtual machine. It is each scheduler’s responsibility
to enforce fairness locally between child tasks of their machine.

We used two existing approaches for GPU virtualization and GPU scheduling as
a basis in order to implement a full prototype of our paravirtual approach, which
is able to enforce fair GPU sharing both between and inside virtual machines at
the same time. We also implemented a proof of concept of our nested scheduling
approach.

In the evaluation, we measured an average scheduling overhead of only 2.17 %
with our paravirtual approach. Afterwards, we tested fairness in two different
scenarios. The first scenario runs benchmarks together with an increasingly greedy
throttle application. Here, our scheduler is able to enforce fair GPU sharing with
all benchmarks, which demonstrates the ability to schedule between guest tasks
running inside virtual machines. In the second scenario, we ran the benchmarks on
the host and an increasing number of throttle instances in one virtual machine. This
scenario demonstrates the ability to treat entire virtual machines as one scheduling
entity and enforce fairness between host tasks. Additionally, we demonstrated the
basic feasibility of decentralized GPU scheduling with our nested prototype. We
showed that it is possible to account and schedule the GPU usage of applications
purely from within a virtual machine without any help from the hypervisor.
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6.1 Future Work

One natural next step is a full design and implementation of our nested approach.
The most important design aspect of such a decentralized scheduling system is the
organization of sampling. We gave a brief introduction into this complex topic in
Section 3.4.1, but more work is required in order to solve this problem properly.

Another direct followup is the extension of our prototype to support multiple
layers of virtualization, that is, virtual machines inside of virtual machines. For the
sake of simplicity, we limited ourselves to one layer in the implementation. In the
design chapter, however, we already covered many aspects of nested virtualization.
Consequently, we see this primarily as an implementation effort.

We also see potential for a hybrid approach, which combines ideas from our
paravirtual and nested approaches. A clever combination of both approaches
largely avoids sampling interactions, the core difficulty of the nested approach, but
retains its flexibility of allowing children to run their own scheduling. One possible
idea is to keep the paravirtual components and do all accounting in the hypervisor,
but only enforce inter-VM fairness there. Then pass the accounting results to the
virtual machines, where a nested scheduler uses the information to enforce local
fairness according to each VM’s individual policy.

Another important design aspect is the handling of malicious applications, that
not only overuse their fair share, but try to reach denial-of-service by sending
kernels with unlimited runtime. Since running kernels cannot be preempted, GPU
schedulers in general have difficulties dealing with such clients. The original version
of NEON allows to configure a maximum kernel runtime, after which the issuing
application is killed. This works, because the GPU driver is able to abort kernel
executions on task exits. In an virtualized environment, however, the situation
is more complex, since there is no easy way for the hypervisor to kill malicious
guest tasks. As a last resort, the hypervisor can kill the whole virtual machine that
contains the malicious task, but this would be a rather excessive response. A less
severe solution is to design a mechanism which allows the hypervisor to inform the
virtual machine about the malicious guest application, in order to give the VM a
chance to deal with the problem itself. However, if the virtual machine does not
cooperate in removing the malicious application, the hypervisor still needs to stop
the entire VM.

As a final idea, one could investigate how to include support for scheduling
priorities. As the number of applications increases, fine-grained scheduling control
via priorities becomes more and more interesting. As an example, a background
application that uses the GPU and runs on the host of a larger virtualization hierarchy
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receives the same amount of GPU computation time as a full virtual machine.
Scheduling priorities allow a more fine-grained configuration of the target share
of such processes. With the scheduling weights used in our paravirtual approach,
we already have a promising mechanism that can probably be extended for full
support of scheduling priorities.
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