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Abstract

The usefulness of full system simulation is limited by its low execution speed.
SimuBoost is a technique seeking to remove this limitation by accelerating
full system simulation via parallelization. It builds on hardware-assisted vir-
tualization and frequently creates checkpoints of the virtual machine, which
serve as starting points for a distributed parallel simulation. SimuBoost needs
lightweight checkpointing. To achieve this, it uses incremental checkpointing,
which requires that the virtual machine monitor is informed of changes the
guest makes to memory. Traditionally, this dirty logging is implemented via
write protection; when active, a write access generates a page fault informing
the monitor.

This thesis explores whether SimuBoost’s incremental implementation
can be made more lightweight by Intel Page Modification Logging, a tech-
nology with the aim of reducing the cost of dirty logging.

v





Deutsche Zusammenfassung

Diese Arbeit untersucht, inwiefern Intel Page Modification Logging die Ge-
schwindigkeit des kontinuierlichen Erstellens von Abbildern einer virtuellen
Maschine steigern kann. Diese Betrachtung erfolgt mit Hinsicht auf Simu-
Boost, einem Verfahren, das dazu dient, die umfassende Simulation eines
Rechensystems zu beschleunigen. Solch eine Simulation ist ein mächtiges
Werkzeug, um das Verhalten eines Systems im Detail zu beobachten, hat
aber den Nachteil, dass die Ausführung stark verlangsamt wird. Diesen Nach-
teil beseitigt SimuBoost durch die Paralleliserung der Simulation. SimuBoost
benutzt dafür hardwarebeschleunigte Virtualisierung; Abbilder der virtuellen
Maschine, die in geringen Intervallen getätigt werden, dienen als Ausgangs-
punkte der parallelen Simulation. Um den Aufwand zum Erstellen eines Ab-
bilds gering zu halten und somit das Verhalten des zu analysierenden Systems
möglichst wenig zu verzerren, erstellt SimuBoost Abbilder inkrementell. Dies
setzt voraus, dass es über Änderungen, die das in der virtuellen Maschi-
ne laufende Programm am Speicher vornimmt, informiert wird. Eine solche
Überwachung des Speichers verlangsamt die Ausführung. Intel Page Modi-
fication Logging (PML) zielt darauf ab, sie zu beschleunigen. Diese Arbeit
reichert die existierende SimuBoost Implementierung um PML an und evalu-
iert, ob der Einfluss des Erstellens der Abbilder dadurch vermindert werden
kann. Dazu werden zwei mögliche Implementierungen mit einer Reihe von
Tests in ihren Eigenschaften und Verhalten verglichen. Die Evaluation ergibt,
dass eine Verbesserung durch PML nur für kleine Intervalle möglich ist, bei
100ms beträgt die Beschleunigung circa 9%, für eine Sekunde nur 0.5%.
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Chapter 1

Introduction

This thesis explores the viability of using Intel Page Modification Logging
to improve the performance of continuous virtual machine checkpointing. It
evaluates the chosen approach in the larger context of SimuBoost, a technique
for accelerating functional full system simulation.

Functional full system is a powerful tool to inspect the behavior of a
computing system. Its compelling capabilities, achieved by fine-grained em-
ulation, come at the cost of greatly reduced speed of execution, limiting its
usefulness.

SimuBoost is able to accelerate full system simulation by parallelization.
It builds on hardware-assisted virtualization and requires lightweight check-
pointing. In order to minimize the downtime and slowdown caused by check-
pointing, SimuBoost employs incremental copy-on-write checkpointing. In-
cremental checkpointing requires the virtual machine manager to be informed
of changes to the memory of the virtual machine. This dirty logging, however,
slows down execution. Intel introduced an extension — Page Modification
Logging (PML) — to its virtualization support in order to mitigate the slow-
down caused by dirty logging. This work incorporates PML as a dirty logging
mechanism into SimuBoost.

The evaluation compares the behavior of two possible implementations
based on a series of benchmarks. It finds that PML can decrease the overhead
for small intervals only. At 100ms it causes an acceleration by 9%, at 1s it is
0.5%. Additionally, this thesis contributes an analysis and model of the cost
of dirty logging.

The thesis is structured as follows: Chapter 2 provides background on
full system simulation, virtualization and SimuBoost. Chapter 3 analyzes
the impact of dirty logging and estimates the benefit of PML for checkpoint-
ing. Chapter 4 describes the design and implementation of the modifications
to SimuBoost. After evaluating the approach in Chapter 5, Chapter 6 sum-
marizes the results of this thesis and provides possible future work.
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Chapter 2

Background

The following chapter provides background on full system simulation and a
method, called SimuBoost, to accelerate it. Further, it explains hardware-
assisted virtualization and virtual machine checkpointing, which the Simu-
Boost concept is based on. Then, it describes QEMU and KVM, upon which
the current implementation of SimuBoost builds.

2.1 Full System Simulation
Full System Simulation (FSS) is a technology which is used to simulate a
whole computing system on a host computer. A FSS does not only simulate
the processor (CPU) but also devices and memory, such that it is possible
to run an existing complete software stack without having to modify it [15].
Some full system simulators are able to simulate a network of multiple com-
puters [22]. In this thesis, FSS is understood to work by using a form of
emulation, for example interpretation [22] or dynamic binary translation [9].

In general, simulations are based on models of systems so that an analysis
of the model’s behavior can be generalized to that of a real system [15]. The
models used in FSS to emulate the system offer different levels of abstraction.
Some work on a functional level and model the system at the instruction set
level. Cycle accurate simulators additionally model the timing behavior of a
CPU. Even more fine grained models function at a micro-architectural level.
Microarchitectural and cycle accurate simulations are slower than functional
ones, which limits the scope, that is the size of the system that can be simu-
lated with a realistic effort [15, 22, 33]. By virtue of being done in software,
simulation offers a number of benefits over running a workload directly on
hardware: the simulation can easily be parameterized and the simulated sys-
tem can be completely controlled and inspected [22]. FSS is therefore useful
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6 CHAPTER 2. BACKGROUND

in a number of academic and industrial cases [15, 22], including:

• Development of software prior to the release of hardware.

• Development of computer components and systems. FSS can be used
for easy prototyping.

• Development and research of operating systems (OS). For example,
the inspection capability of FSS can be used to trace memory accesses.
Miller et al. used FSS to study the properties of redundant memory
content to improve deduplication with memory scanners [23].

• Security research. Bochspwn [19] uses the open source x86 emula-
tor Bochs to analyze memory access patterns and thereby identify
exploitable race conditions in the Windows kernel. A similar study
revealed critical vulnerabilities in the Xen hypervisor [32].

A disadvantage of FSS, however, is that the emulation causes an increase in
the execution time of a workload; slowdowns by factors of 30-800 are com-
mon [28]. This slowdown limits the usefulness of FSS for analyzing properties
of long-running workloads, and it practically prohibits interactive communi-
cation with the nonsimulated environment, be it an user or remote host.

2.2 SimuBoost
SimuBoost [28] is a concept to speed up functional FSS and therefore elim-
inate the limitations of traditional FSS. The reason for the slowness of tra-
ditional FSS is that the emulation of an operation is slow compared to its
native execution and that it operates on a state which is itself the result of
a slow emulation. SimuBoost must break this dependency chain in order to
be able to simulate the workload in parallel. SimuBoost accomplishes this by
using much faster hardware-assisted virtualization as a way to fast-forward
to a state:

The workload is run in a virtualized environment. In periodic intervals,
SimuBoost creates a checkpoint, that is it saves the current state of the
system (CPU, memory, disk, devices). These checkpoints are distributed
to simulation nodes that run a simulation of the respective interval, starting
with the checkpoint as initial state. Nondeterministically occurring events are
recorded and replayed during FSS. The parallel execution of the simulations
decreases the total simulation time. Rittinghaus et al. employ an analytical
model to predict a speedup by a factor of 84 for a one-hour workload under
realistic assumptions compared to traditional FSS [28].
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Figure 2.1: Acceleration of full system simulation via SimuBoost. The virtu-
alization node runs the workload and creates checkpoints. Simulation nodes
run simulations of intervals, with the respective checkpoint as starting state.

FSS is used to analyze workload behavior. For the analysis to be mean-
ingful, FSS must incur minimal distortion of workload behavior. Creating a
checkpoint requires stopping the VM for a downtime period. Some check-
pointing methods require additional work to be performed during the interval
between checkpoints, resulting in a slowdown of execution. The downtime
and slowdown impact the timing of nonsimulated events. If an asynchronous
I/O operation is started before a downtime and completed after, its length
appears shorter to the guest than it really was. Additionally, outside entities
can observe the guest’s downtime, which distorts the results. For example,
a remote host connected to the guest via TCP would observe an increase in
the round trip time, changing the characteristics of the connection. If down-
time and slowdown of execution are too high, they also limit interaction with
a human user. For SimuBoost to enable interactivity and accurate simula-
tion results, this means that the downtime during checkpointing and the
slowdown of execution must be minimal. To this end, SimuBoost currently
employs incremental [8] copy-on-write (COW) [10] checkpointing. The cur-
rent SimuBoost implementation is based on QEMU [6] using KVM [3] and
uses Simutrace [27] as a storage back end. The storage backend performs
deduplication of frames and disk sectors in order to lower the checkpoint
size [14].



8 CHAPTER 2. BACKGROUND

2.3 Virtualization
A virtual machine (VM) is an efficient, isolated duplicate of a real ma-
chine [26]. It is an environment for programs, provided by a virtual machine
monitor (VMM), which approximates the original machine [26], that is pro-
grams run in the VM behave functionally identical. They may only incur
a minor decrease in performance; Rittinghaus et al. observed a 14.3% in-
crease in the time it takes to complete a Linux kernel build [28]. This can be
achieved only if most of the program’s instructions execute directly on the
real processor without software intervention by the VMM [26]. Programs
running in a VM must therefore necessarily use the same instruction set and
are modeled on a functional level only.

The VMM is in complete control of system resources; programs running
in the VM can only access resources allocated to them and the VMM can
take back control over allocated resources [26].

For efficient virtualization to be possible, all sensitive instructions must be
privileged instructions. Sensitive means that if the instruction was executed
on the CPU, it could alter state outside the VM or its behavior would depend
on outside state. A privileged instruction traps in user mode but not in
system mode [26]. An example for a privileged x86 instruction is MOV when
writing to a control register [18, ch. 3]. An example for a sensitive one
is Pop Stack into Flags Register (POPF), which ignores overwrites of the
interrupt-enable flag if the real CPU is in user mode, regardless of the state
of the virtual CPU. Its behavior, therefore, depends on state outside the
VM. POPF is not privileged and thus poses a hindrance to virtualization.
Nonprivileged, sensitive instructions are called critical [29, p. 391]. There are
techniques to handle critical instructions, for example the VMM can scan the
instructions about to be executed for critical ones and patch them to trap or
jump back to the VMM. These techniques lead to increased code complexity
and reduced performance [29, p. 436].

If all sensitive instructions are privileged, efficient virtualization can be
implemented by trap-and-emulate. Here, nonprivileged instructions run on
the real CPU and privileged ones are emulated by the VMM [26,29].

Special considerations must be made regarding address translation. The
guest OS maintains page tables for translating guest virtual to guest physical
addresses. These page tables can not, however, be used by the hardware since
the guest physical address space is not the same as the host physical address
space. One way to solve this problem is using shadow page tables. The
guest is left to believe that the page tables it is maintaining are used by the
hardware. The hardware actually uses shadow page tables maintained by the
VMM. When the VMM detects that the guest updated a page table, that
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is the guest updated the translation of a guest virtual address gva to guest
physical address gpa, it will resolve gpa to the host physical address hpa and
update the shadow page table so gva is translated to hpa [20]. The VMM
must take care to set the correct access flags. If the guest OS sets pages
read only it expects writes to generate a page fault. The VMM must also
mark the corresponding page entry in the shadow page table read only, so it
can intercept and inject the page fault into the guest. As is to be expected,
shadow paging incurs a performance overhead.

2.3.1 Hardware-Assisted Virtualization

To improve its virtualizability, x86 vendors have introduced extensions to the
x86 instruction set.

Intel Virtual Machine Extensions (VMX) is Intel’s variant of such an
extension [18, ch. 23]. This thesis focuses on Intel — AMD’s extensions
work similarly [7, ch. 15]. VMX adds two modes of processor operation:
VMX root operation and VMX non-root operation. The VMM runs in root
operation, guest software runs in VMX non-root operation. When a sensitive
instruction is executed in non-root mode, a VM exit, that is a transition to
VMX root mode, occurs, informing the VMM of the exit reason, in order for
the VMM to be able to emulate the instruction.

Extended Page Tables (EPT) are part of VMX and provide hardware
support for translating guest virtual to guest physical to host physical ad-
dresses [18, ch. 28]. Without EPT, guest virtual addresses would have to
be translated to guest physical addresses in software. EPT can include sup-
port for accessed and dirty flags for pages. These sticky flags are set by
the processor when the respective event occurs. If software clears these bits,
it must flush affected TLB entries, else they may not be set on subsequent
accesses [18, 28.2.4].

Intel Page Modification Logging (PML) is an enhancement of EPT with
the goal of improving the performance of dirty logging, that is the tracking of
write accesses to guest physical pages. Without a feature like PML, a VMM
instead has to use write protection to be notified via page faults. Doing so
degrades performance.

When dirty flags for EPT and PML are enabled, write accesses to clean
pages are recorded to a 512 entry long page-modification log. If the log
is full, the CPU raises a page-modification log-full event as well as a VM
exit [18, 28.2.5]. As a result, there is no page fault and subsequent VM exit
for every page that is written to, but up to 512 writes to distinct pages can
be consolidated into one VM exit.
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2.4 Virtual Machine Checkpointing
To create a checkpoint of a virtual machine means to create a consistent
image of the full state of the VM [30]. The state of the VM constitutes the
state of the CPU, memory, and other devices such as disks, network adapters,
etc. VM checkpointing is a subset of VM migration, where the state of a VM
is transferred to another physical machine so execution can resume there.
VM migration is done to perform load-balancing and system maintenance,
as well as accomplish fault tolerance [11, 12]. If checkpointing is performed
periodically with high frequency (in the order of seconds or lower), it is called
continuous checkpointing.

SimuBoost [28] requires continuous checkpointing to achieve highly par-
allel FSS. Remus [12] and Kemari [31] use continuous checkpointing for fault
tolerance, they continuously replicate the state of a VM to another physical
machine to accomplish failover without disruption of service.

With memory sizes in the order of tens of gigabytes and disk sizes in
the order of hundreds to thousands of gigabytes, a checkpoint encompasses
a lot of data that has to be saved or transmitted [30]. Different techniques
exist to handle this amount of data while achieving high performance. These
techniques differ in their characteristics, notably they result in different down-
times and slowdowns of execution.

While the VM is running, its state changes constantly and the state of
some devices, for example that of the CPU, changes with very high frequency.
For this reason, the VM must be stopped once per checkpoint so a consistent
snapshot of the VM can be taken. The time that the VM is suspended
is called downtime [11]. For a user to perceive the response of an action
like a key press to be instantaneous, the delay must be no longer than 100-
200ms [24], which means the downtime must be less than this to preserve
interactivity.

The slowdown of execution is the negative effect a checkpointing method
may have on performance outside of the downtime period. Some checkpoint-
ing techniques involve keeping track of memory the VM has written to. One
way to perform this dirty logging is to write protect all pages and mark them
dirty when a page fault occurs. This leads to additional VM exits and work
done by the VMM causing a slowdown of execution depending on how much
the workload writes to memory.

Stop-and-copy checkpointing is the simplest checkpointing method. The
VM is stopped and the VMM saves all state during the downtime. As a re-
sult, stop-and-copy causes a long downtime, it is proportional to the amount
of data that needs to be saved [11]. Stop-and-copy does not result in a slow-
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down of execution, because no additional work is done in the interval between
downtimes.

Pre-copy checkpointing moves the majority of saving/transmitting be-
fore the downtime period, thereby achieving much better downtimes com-
pared to stop-and-copy [11,12]. Pre-copy is a method commonly used in live
migration.

Pre-copy saves the memory of the VM iteratively in rounds while the VM
is still running. In each round, the VMM concurrently saves those pages that
were dirtied in the previous round. All pages are saved in the first round. If
the VM dirties less pages during a round than those that have to be saved in
this round, the next round will be shorter, giving the workload less time to
dirty pages. The process is continued until it converges or a fixed number of
iterations is reached. The VMM saves the pages written to in the last round,
as well as the state of the CPU and devices, using stop-and-copy [11,12,30].

Pre-copy achieves substantially shorter downtimes proportional to the
write intensity of the workload, typically they are under 100ms [11, 12]. If
saving is done in a separate thread which does not compete with those of the
VM, the slowdown of execution is that caused by dirty logging.

Incremental checkpointing is a possibility of avoiding work which is
applicable when doing continuous checkpointing. Since checkpoints are cre-
ated often and with little time in between, the memory and disk content of
consecutive checkpoints will largely be the same. Incremental checkpoint-
ing saves only those pages that did change and is equivalent to performing
just the last step of pre-copy for every checkpoint, that is an incremental
stop-and-copy [12].

Baudis [8] estimates that incremental checkpointing reduces the amount
of data to be saved to 5-10%; Böhr [10] measured a downtime of 84ms for in-
cremental stop-and-copy during a Linux kernel build 1. As with pre-copy, the
dirty logging required for incremental checkpointing introduces a slowdown
of execution.

Copy-on-write (COW) checkpointing shifts the majority of checkpoint
creation to after the downtime period.

Initially, the VMM suspends the VM and saves the state of the CPU, as
well as that of devices. Then, it write protects all pages and resumes the
execution of the VM. While the VM continues to run, the VM’s memory
is saved concurrently. If the VM tries to write to a page that has not yet

11GiB RAM, 2s checkpointing interval
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been saved, the write protection will cause a page fault handing control back
to the VMM, which saves the respective page and resumes execution of the
VM. The checkpoint is complete when all pages have been saved either by
concurrent copy (CC) or COW [12,30].

COW checkpointing attains small downtimes [12]. The downtime is still
proportional to the amount of memory, because the VMM must write protect
all pages, but by a much smaller factor. The slowdown of execution depends
on the rate of COW cases.

COW checkpointing can be combined with incremental checkpointing, so
only dirty pages are saved. The current SimuBoost version implements this
combined approach, for which Böhr [10] gives a downtime of 26ms during a
Linux kernel build 2.

2.5 QEMU & KVM
QEMU [6] is a free software full system simulator. QEMU supports simu-
lation of multiple instructions sets 3. It uses dynamic binary translation to
achieve high performance and is easily portable [9]. QEMU supports vir-
tualization via Kernel-based Virtual Machine (KVM) [3], a virtual machine
monitor driver in the Linux kernel that exposes hardware-assisted virtual-
ization to QEMU in userspace. QEMU interfaces with KVM to create, run
and manage VMs [20]. To do so, QEMU opens the /dev/kvm device node
and interacts with it via the ioctl() syscall. KVM provides a number of
ioctls, including ones that perform the following functions [20]:

• Creation of a new VM

• Creation of a virtual CPU for the VM

• Assigning physical memory to the VM

• Running a virtual CPU

21GiB RAM, 2s checkpointing interval
3including x86, PowerPC, ARM and Sparc [9]



2.5. QEMU & KVM 13

Host Physical
Address Space

Host Physical
Address Space

Host Virtual
Address Space

Page
Table

Guest Physical
Address Space

Extended
Page
Table

Process A Process B

Virtual Machine

Guest Virtual
Address Space

Page
Table

QEMU

Figure 2.2: The KVM memory setup [20]. Guest virtual addresses are trans-
lated to host physical addresses. These translations are managed by KVM
using two-dimensional paging if available (as shown), shadow page tables
otherwise. QEMU can control the memory of the virtual machine by di-
recting KVM to map the physical memory backing some region of QEMU’s
virtual address space into the physical address space of the guest ( ).

The guest’s memory is separate, but accessible from that of the process
which created it [16,20]. The translation from guest physical to host physical
addresses is managed by KVM, using two-dimensional paging like EPT if
available and shadow page tables otherwise [20, 21]. QEMU’s independent
translations are maintained by the OS. KVM does not manage guest I/O,
but leaves this part to a userspace VMM like QEMU. A typical structure for
such a VMM, then, is to setup the VM and, in a loop:

• have KVM run the virtual CPU

• upon return of the run ioctl inspect the exit reason and handle it





Chapter 3

Analysis

SimuBoost relies on virtual machine (VM) checkpointing in order to acceler-
ate functional full system simulation (FSS). The following chapter analyzes
how dirty logging changes the behavior of the VM, as well as how the per-
formance of checkpointing might be improved by Intel Page Modification
Logging (PML).

When creating a checkpoint, all information necessary to restore the state
of the VM must be saved. The simplest checkpointing technique, stop-and-
copy, stops the VM and saves all state in the resulting period of downtime.
Due to its long downtime of up to multiple seconds, stop-and-copy is un-
suitable for SimuBoost. Short downtimes can be achieved by shifting work
outside the downtime period, thereby performing it concurrently to VM ex-
ecution. Examples for such techniques are pre-copy and incrementel copy-
on-write checkpointing, which require keeping track of dirty pages, that is
they need to know which pages the VM has modified during a certain inter-
val. Traditionally, this is done by write protecting all pages. When the VM
tries to write to a page, a page fault occurs and the virtual machine monitor
(VMM) marks the page dirty before allowing the write. This additional VM
exit, processing and VM entry causes a slowdown of execution of the VM.
To alleviate this overhead, Intel introduced the PML extension to its virtual-
ization support. When PML is enabled, the hardware logs write accesses to
a region in memory. Instead of exiting the VM for every write access, PML
does so only when the log is full, therefore incurring less overhead.

3.1 Impact of Dirty Logging
Estimating the benefit of using PML for incremental checkpointing requires
an understanding of how dirty logging impacts the performance of a workload

15



16 CHAPTER 3. ANALYSIS

and how PML compares against write protection. In order to quantify the
impact of dirty logging, we added a command to QEMU that periodically
queries the dirty bitmap. This is done in a separate thread and with a
configurable interval between queries. The following benchmark was run
with a four core Intel i5-6500 as host CPU. Figure 3.1 shows the impact of
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Figure 3.1: Comparison of performance between no dirty logging and
dirty logging with PML or write protection. The benchmark measured is
SPECjbb2005 run on one core. The horizontal axis denotes interval length
between polling the dirty bitmap in milliseconds. The vertical axis denotes
score in SPECjbb2005, compared to native, higher is better. All shown val-
ues are the average of three runs. PML leads to an increase in performance
compared to write protection for short intervals. For intervals > 1s, the
benefit is neglectable.

dirty logging on the score of SPECjbb2005, run with one virtual CPU. For an
interval of 20ms, the score with PML is 89.3% of that of native execution in
the VM, where native refers to running in the VM without performing dirty
logging or checkpointing. The score with write protection is 67.2%, thus
PML can increase the score by around 22% compared to write protection.
As the interval size increases, the benefit of using PML diminishes. At 1s
intervals PML’s score is as high as native’s and write protection’s is 97% —
a difference of 3%. The reason that small intervals benefit more form PML
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Figure 3.2: Comparison of performance in SPECjbb2005 running with four
cores between no dirty logging and dirty logging with PML or write protec-
tion. The horizontal axis denotes interval length between polling the dirty
bitmap in milliseconds. The vertical axis denotes score in SPECjbb2005,
compared to native, higher is better. The results are very similar regardless
of the number of CPUs.

is that they, in total, cause more dirty pages. Longer intervals clear the
dirty bits more rarely and through this, increase the probability that writes
access pages that are already dirty. For these pages, no additional work is
performed, which is why the effect of PML is stronger for small intervals.

Figure 3.2 shows the results of running SPECjbb2005 with four cores.
Multiple cores increase the intensity of SPECjbb2005. Using four cores, the
gain of PML ranges from 22.1% at 20ms to 7% at 1s. In a similar setup, Kai
Huang [17] achieved a speedup of 5% for four cores and 1s. The version of
SPECjbb he used, however, is unknown; SPECjbb2005 had been outdated
by at least two years at that time. His tests ran on a 16 core CPU, ours on
a 4 core CPU. Using four cores instead of one increases the absolute score,
but hardly the relative increase caused by PML.

We additionally analyze the impact of dirty logging with another bench-
mark, the Linux kernel build of Phoronix Test Suit [1]. Figure 3.3 shows the
results for one CPU. The results are similar to those of SPECjbb2005, the
benefit of using PML diminishes with increasing interval length and there is
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Figure 3.3: Comparison of time to completion of a Linux kernel build be-
tween PML and write protection. The horizontal axis denotes interval length
between polling the dirty bitmap in milliseconds. The vertical axis denotes
time to complete the benchmark, measured on the host, lower is better. The
results show a similar progression to that of SPECjbb2005.

little difference in the performance gain across CPUs (see Figure 3.4). For
one CPU and 1s interval length it amounts to 3%. Starting with an inter-
val length of 0.5s, the time to build the kernel with PML is close to native
(within 1%). For write protection, it is the case for an interval length of 5s.

To gain a better understanding of why PML and write protection cause
overhead, we measure the number of VM exits, page faults and PML full
events.To perform dirty logging, write protection generates additional page
faults, PML introduces PML full events. Both cause a VM exit that has to
be processed by the VMM. Note that the VMM used — KVM — also flushes
the PML buffer on VM exits not caused by the buffer being full.

Table 3.1 gives the number of events counted during a kernel build. The
table shows that the number of VM exits when performing dirty logging via
write protection is much higher than without dirty logging. As the interval
length increases, the number of dirtied pages decreases along with the number
of VM exits. The same pattern holds for the number of page faults. When
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Interval
Length (ms)

20
50

100
200
500

1,000
2,000
5,000

VM Exits Page
Faults

8.8 · 107 8.3 · 107

6.3 · 107 5.8 · 107

4.9 · 107 4.4 · 107

3.8 · 107 3.4 · 107

2.5 · 107 2 · 107

1.7 · 107 1.2 · 107

1.2 · 107 7.3 · 106

8 · 106 3.7 · 106

Write Protection

VM Exits Page
Faults

PML Full
Events

5 · 106 4 · 105 42,594
4.8 · 106 4 · 105 28,994
4.8 · 106 4 · 105 19,902
4.7 · 106 4 · 105 12,787
4.7 · 106 4 · 105 6,573
4.7 · 106 4 · 105 3,677
4.7 · 106 4 · 105 2,088
4.7 · 106 4 · 105 959

PML

VM Exits Page
Faults

4.6 · 106 2.8 · 105

Native

Table 3.1: Results of tracing events for kernel build, run with one CPU.
Numbers are averages of three runs. The number of VM exits shows the
same tendency as the performance in the benchmark. PML is able to reduce
the number of page faults and therefore VM exits.

performing dirty logging via PML, a different behavior can be observed. The
number of VM exits and page faults is static across the interval length. Both
the number of VM exits and the number of page faults are within an order
of magnitude of those measured for native execution. As the number of
page faults decreases with increasing interval lengths in the case of write
protection so does the number PML full events in the case of PML. PML is
able to reduce the number of page faults by up to a factor of approximately
200 at 20ms interval length; at 1s the factor is about 40. The factors for VM
exits are smaller at about 17 at 20ms and 4 at 1s.

PML reduces the number of page faults but introduces PML full events.
The ratio R(l) between additional page faults and PML full events (Figure
3.5) is not constant, but increases with the interval length.

The fact that R(l) ranges from 2000 to 4000, when the PML buffer can
hold 512 entries at most, is counterintuative at first. There is, however, no
contradiction, because the number of entries flushed by KVM on unrelated
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Figure 3.5: The ratio R(l) of additional page faults when performing dirty
logging via write protection per introduced PML full event when using PML.
The horizontal axis denotes interval length. Values given are for one CPU.
The ratio increases with the interval length and can exceed the PML buffer
size.

VM exits is also accounted for by R(l). In consequence, R(l) can and does
exceed the size of the PML buffer. With growing interval length, the prob-
ability rises that the PML buffer is flushed before it reaches its capacity,
leading to the observed increase in R(l). The results for multiple CPUs are
similar.

When performing dirty logging via write protection, we expect the in-
crease in time to complete the workload to be a function of the number of
page faults. Figure 3.6 shows the number of additional page faults caused
by dirty logging via write protection and the increase in time to comple-
tion. The progression of the number of page faults matches the progression
of the time overhead well. Therefore, we estimate the time to completion
with write protection TW P (l) as TW P (l) = αW P (PW P − Pnative) + Tnative,
where PW P is the number of page faults using write protection, Pnative is the
number of page faults without dirty logging and Tnative the time to comple-
tion without dirty logging. αW P represents the cost of one page fault, we
set αW P = 1.25 · 10−6s. Figure 3.7 shows a similar consideration for dirty
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logging using PML. Instead of additional page faults, we examine the rela-
tionship with PML full events. Compared to write protection, the curves
are not as similar, especially for longer intervals. Similar to write protection,
we estimate TP ML(l) = αP MLPP ML + Tnative, deriving αP ML = 2.4 · 10−3s.
αP ML is bigger than αW P by a factor of approximately 1900, showing that
PML flushes are more costly to process than page faults. This is because
a page fault is caused by a write access to a read only page and the VMM
must only perform work for this single page. In the case of a PML flush, the
VMM has to process every address in the buffer. However, since there are
a lot less PML flushes than page faults, PML yields a net benefit. Figure
3.8 shows the relative errors of TW P and TP ML calculated with the given αs
compared to the measured values. For both write protection and PML, the
error is within 1%.
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3.1.1 Conclusion
We were able to replicate a performance increase by using PML for dirty
logging. The gain is small but measurable, at 1s interval length, it is a
small one digit percentage. Smaller interval lengths benefit more from PML,
hitting two digit percentages. We have confirmed that PML can reduce the
number of page faults by multiple orders of magnitude, thereby also reducing
the number of VM exits. The overhead of dirty logging can be predicted by
the number of additional VM exits. The number of virtual CPUs had little
influence on the benefit of PML. This is because, even though the absolute
number of dirty pages increases with more CPUs, the number of dirty pages
per CPU does not. Since each CPU can handle page faults and dirty logging
via PML independently, no additional overhead is introduced.
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Figure 3.9: Overview of incremental COW checkpointing using write pro-
tection for dirty tracking. Write protection is enabled whenever a page is
clear.

3.2 Incremental COW Checkpointing Using
PML

After having established that PML causes a performance benefit for pure
dirty logging, we estimate the potential for using PML as a dirty logging
mechanism for incremental COW checkpointing. The following section ini-
tially explains incremental COW checkpointing on a conceptional level, em-
phasizing the different states memory pages can be in. Then it describes
the changes necessary to enable PML and presents a model to estimate the
expected performance gain.

3.2.1 Incremental COW Checkpointing using Write Pro-
tection

The current SimuBoost implementation employs incremental COW check-
pointing and uses write protection for dirty logging. Figure 3.9 gives an out-
line, showing which states memory pages can be in over time.

The horizontal axis denotes time. The vertical bars represent two adjacent
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checkpointing downtime periods during which VM execution is suspended.
Outside of these periods, the VM executes normally. The rows represent
memory pages, they are marked to show which state they are in at every
moment in time.

For clean pages ( ) dirty logging must be active. When a write access ( )
to a clean page takes place, the dirty logging mechanism marks it dirty ( ).
Subsequent write accesses to dirty pages do not need to be logged. Since
write protection is used for dirty logging, all clean pages are write protected
( ). When a write access to a clean page occurs, the page fault handler
marks it dirty and disables write protection for it.

During the downtime, the VMM removes the dirty status from dirty
pages. For copy-on-write to work, these formerly dirty pages must be write
protected ( ) until they have been copied, either via concurrent copy ( ) or
via COW ( ). If a COW case occurs, the VMM marks the page dirty. Pages
clean before the downtime remain write protected for dirty logging.

3.2.2 Conceptional Changes for Checkpointing Using
PML

When using PML instead of write protection for dirty logging, the VMM
removes the dirty status from dirty pages during the downtime and write
protects them for COW, as before. These pages do not need to be dirty
logged until they have been copied. If a write to them takes place before
they have been saved, the COW case occurs, the page is marked dirty and
no further dirty logging is required until the next checkpointing downtime. In
order to use PML for dirty logging, only pages that were saved via concurrent
copy need to be considered. For them, write protection must be disabled and
PML enabled. Nothing needs to be done for pages that were clean and for
which PML is already active.

Multiple designs are possible which differ in the timing of when they
disable write protection and enable PML. One possibility is early PML ac-
tivation. Early activation enables PML immediately after a page has been
saved via concurrent copy, and disables write protection. Another possibil-
ity is late PML activation. Late activation does not switch PML and write
protection immediately but defers it to some point later in time, the next
checkpointing downtime seems an obvious choice.
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Figure 3.10: Overview of early and late PML activation. When using early
activation, write protection is only enabled ( ) when it is necessary for COW
( ), whereas it is enabled until the next checkpoint or next write access when
using late PML activation.

3.2.3 Estimated Performance Gain of PML

In order to estimate the performance gain of late PML activation, we traced a
kernel build while performing continuous checkpointing with write protection
(Figure 3.11). The time to build the kernel shows the same development as
the results of dirty logging. At 20ms, the workload takes approximately 720s
to complete; the increase to an interval of 50ms causes a drop to about about
600s and as the interval length increases further, the run time decreases ever
more slowly. We measured the time in and outside the virtual machine. The
time measured outside includes the downtimes as well as some setup work
performed by the benchmark. When taking one checkpoint, we found that
the clock inside the VM did not observe the downtime, we therefore interpret
the increase in run time measured inside as that caused by the slowdown of
execution (due to page faults). When performing incremental copy-on-write
checkpointing, one part of the slowdown will be due to dirty logging and one
due to COW. COW cases occur regardless of whether PML or write protec-
tion is used for dirty logging. Thus, we expect the slowdown caused by COW
to be comparable when using either method. For pages copied via COW, no
explicit dirty logging is performed. Therefore, the number of concurrently
copied (CC) pages is the same as the number of pages which were explicitly
dirty logged in the previous checkpointing interval — the pages that would
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Figure 3.11: Time to complete a kernel build while performing checkpoint-
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hardware, accurate measurements for an interval length of 20ms could not
be obtained, as a result the value has been omitted
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Interval
Length (ms) B(l)

50 6.7 · 10−6

100 6.7 · 10−6

200 8 · 10−6

500 7.5 · 10−6

1,000 8.4 · 10−6

2,000 7.2 · 10−6

5,000 7.4 · 10−6

Table 3.2: B(l) calculated for the given interval lengths. All values are within
an order of magnitude of one another. The value for 20ms has been omitted,
because accurate measurements were not possible.

benefit from a faster dirty logging method. For write protection, the number
of CC cases corresponds to the number of additional page faults. For PML,
the number of page full events can be estimated as the number of CC cases
over R(l), the ratio of page faults per PML full event. Since we know the
cost of dirty logging, we can derive the cost of COW. We assume that for
the checkpointing run time inside the VM T ′W P (l) holds:

T ′W P (l) = αW PCC + βCOW + Tnative (3.1)

⇐⇒ T ′W P (l)− Tnative − αW PCC

COW︸ ︷︷ ︸
=:B(l)

= β (3.2)

In order to determine β, we trace the number of CC and COW cases. We
calculate B(l) for all interval lengths; the results are shown in Table 3.2. The
values of B range from 6.7·10−6 to 8.4·10−6, with an average of β := 7.4·10−6.
Having derived α and β, we can estimate the time to complete a kernel build
measured inside the VM when using PML as dirty logging mechanism as:

T ′P ML(l) = αP ML
1

R(l)CC + βCOW + Tnative

Table 3.3 shows the predicted run time for checkpointing with PML, figure
3.12 visualizes the results. The model predicts the benefit of PML to be
highest for small intervals, 11% at 50ms. As the interval length increases,
the predicted gain decreases to 0.9% at 5s. We conclude that PML is not just
a means to improve the performance of dirty logging, but is also applicable
to copy-on-write checkpointing, where a mixture of page faults and PML full
events occur.
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Interval
Length (ms)

Time to
Completion (s)

50 510
100 491.5
200 479.1
500 469.8

1,000 464.8
2,000 461.9
5,000 459.8

Performance
Gain (%)

10.9
8.7
7.4
4.5

3
1.7

8.5 · 10−1

Table 3.3: The predicted time to complete a kernel build when checkpointing
using PML as a dirty logging mechanism, as well as the expected gain. The
predicted values show the same progression as those measured for PML:
Small intervals show a benefit, for large ones it is neglectable. The value for
20ms has been omitted, because accurate measurements were not possible.
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Figure 3.12: The time to complete a kernel build, while checkpointing, mea-
sured inside the VM, compared to the predicted time for PML. Values are
in percent of native, lower is better. The value for 20ms has been omitted,
because accurate measurements were not possible.



Chapter 4

Design & Implementation

The following chapter describes the design and implementation of an incre-
mental copy-on-write (COW) checkpointing mechanism for virtual machines
(VM) that uses Intel Page Modification Logging (PML) for dirty page logging
instead of write protection.

In order for PML to log write accesses to a page, its dirty flag in the
EPT paging structure must be 0 [18]. Clearing this dirty bit requires the
entry to be flushed from the translation lookaside buffer (TLB), else the
hardware may not notice the change and not log accesses. Full TLB flushes
introduce additional overhead because subsequent page translations do not
find a cached entries and must perform a page walk.

There are multiple possible designs for replacing write protection with
PML as dirty logging mechanism. Early activation exchanges write protec-
tion for PML as soon as possible, whereas late activation defers doing so to
the next checkpointing downtime. These approaches have different costs and
advantages. Switching early from write protection to PML raises the proba-
bility that write accesses are logged with PML and, therefore, should reduce
the rate of page faults compared to late activation, which gives the workload
a bigger window during which a write causes a page fault. Late activation
does not cause additional TLB flushes, since during the downtime period the
TLB must be flushed anyway in order to establish write protection. Early
activation, however, results in more TLB flushes and thus has a source of
cost not present in late activation.

To compare the performance of the two approaches, we have implemented
them both. Additionally, we added a number of trace events to the kernel in
order to inspect the behavior of checkpointing.

31
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4.1 Goals
A checkpointing implementation must be correct. That is the state of the
virtual machine after loading a checkpoint must exactly match the state at
the moment in time the checkpoint was taken. For our implementation to
achieve this, we must incorporate PML in such a way that it logs all write
accesses previously logged by write protection, without affecting the write
protection necessary for COW.

Our implementations shall improve performance under as many circum-
stances as possible, that is it shall measureably reduce the slowdown of ex-
ecution; if this is not possible, it shall do so at least for small intevals. Our
implementation may not have a significant negative impact, regardless of
interval size and workload.

4.2 SimuBoost Implementation
The SimuBoost implementation consists of an userspace part, a modified
QEMU, and a kernel part, a modification of Linux Kernel-based Virtual
Machine (KVM). Figure 4.1 provides an overview of its incremental [8] copy-
on-write [10] checkpointing implementation. Our implementation modifies it
in order to incorporate PML as a dirty logging mechanism.

KVM separates the guest’s physical memory into slots, represented by the
kvm_memory_slot structure. This structure contains the dirty bitmap, where
the nth bit of the bitmap specifies whether the nth page in the slot is dirty.
QEMU maintains a separate dirty bitmap, because it can modify the guests
memory without involving the kernel (e.g., during I/O operations with virtual
devices). When SimuBoost performs an incremental copy-on-write check-
point, QEMU calls into KVM via the KVM_COW_SYNC_AND_PROTECT ioctl
while the VM is suspended. This ioctl identifies which pages have been
modified and write protects them. KVM_COW_SYNC_AND_PROTECT synchro-
nizes those two bitmaps and re-enables dirty logging for dirty pages, so future
accesses to those are logged. Böhr statically disabled PML [10]. Therefore,
pages are write protected, which is necessary for COW and serves as a dirty
logging mechanism. The write protection is removed when a page is dirt-
ied, which is why the ioctl has to re-enable it. On the first checkpoint, all
pages are marked dirty, because there is no previous checkpoint to create
an incremental checkpoint against. Per VM instance, SimuBoost maintains
the state of guest pages (i.e., clean, dirty, currently being copied) in the
copy map. After the ioctl has finished, QEMU resumes the VM and calls
the KVM_COW_CHECKPOINT ioclt. This ioctl saves the dirty pages until the
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Figure 4.1: Overview of SimuBoosts checkpointing implementation. Ele-
ments on the left execute in user space, elements on the right in kernel space.
1 constitutes the work performed during the downtime. 2 is the majority
of work, performed asynchronously to workload execution.
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64MiB buffer provided by QEMU is full. QEMU calls it in a loop and pro-
vides it with a new buffer to fill until all pages have been saved. This is done
in a separate thread, simultaneously to VM execution.

4.3 Functionality Common to Early and Late
Activation

Both early and late activation need to enable PML and disable write pro-
tection. KVM has support for dirty logging via PML [17]. This includes
functions to enable PML for a virtual CPU, as well as (re)activating PML
for specified frames by resetting the dirty bit in the Extended Page Table
(EPT) [18] 2.3.1. Functionality to selectively disable write protection for
some frames does not exist in KVM, requiring us to implement it.

KVM uses the same function to set write protections when using a shadow
MMU as when using two dimensional paging such as Intel EPT. With EPT,
write protecting a guest frame is straight forward: one clears the writable
bit of the page table entry in the second table (i.e, EPT) that translates
guest physical to host physical frames 4.2. If two guest virtual pages map
to the same guest frame, neither would be writable, because of the second
translation. When using shadow paging, there do not exist two levels of
paging, both are collapsed into the shadow page table. If multiple guest
virtual pages map to the same guest frame, the shadow page table will have
multiple translations from guest virtual pages to host frames. Protecting a
guest frame requires all these translations to be write protected. KVM does
so by finding all page table entries responsible for these translations via a
reverse map. The same mechanism works for EPT, because the reverse map
points to the EPT page entry.

Late and early PML activation require the write protection to be removed
and, therefore, these changes to be reverted. Some guest frames always need
to be write protected, for example KVM write protects those guest frames on
which guest page translation tables reside, in order to be informed of changes
to them [20].

Although these frames are only protected when emulating the MMU via
shadowing and not when using EPT, we decided to exercise caution and not
remove write protection unconditionally. We studied the behavior of the
page fault handler in order to discover under which circumstances it removes
write protection. Our function to remove write protection1 performs the same
checks as the page fault handler and closely mirrors the existing function for

1kvm_mmu_clear_write_protect_pt_masked
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Figure 4.2: Comparison between two level paging (EPT) and shadow paging,
when changing write protection. In the case of EPT, the page entry in the
guest physical → host physical table must be modified. In the case of shadow
paging, all entries in guest virtual → host physical tables must be modified.
Going backward via the reverse map automatically performs the right action.

setting write protection2: For a given guest frame, it obtains the reverse map,
which points to all the page table entries that translate to the frame, and
sets their writable flag.

When testing our function, it appeared not to work. No reverse mappings
were found and no writable bits were set. This turned out to be the case for
two reasons:

1. When dirty logging is activated, before the first checkpoint, a function
is called for readonly slots. This function3 flushes translations that
point to frames in the given slot. On x86, the implementation of this
function ignores the slot parameter and flushes all translations. For
this reason, there were no page translations which our function could
set writable while we were inspecting its functionality.

2. Linux tries to keep data in memory close to the CPU using it (NUMA
balancing), which similarly flushes translations.

When we disabled NUMA balancing and inspected our implementation at
a point in time where the translations flushed by case 1 were reestablished,

2kvm_mmu_write_protect_pt_masked
3kvm_arch_flush_shadow_memslot
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we observed write protection being removed as intended. Pages which are
non present, for example after they have been flushed by 1 or 2, inevitably
generate a page fault when they are accessed. Our function doing nothing for
non present pages is the correct behavior as the page fault cannot be avoided
by PML.

4.4 Late Activation
With late activation, the VMM, during a checkpointing downtime, activates
PML for those pages that are clean now, but were dirty at the last checkpoint.
Figure 4.3 gives an overview of the implementation.

We do not need to activate PML for pages it is already active for,
and avoid the cost of doing so. In order to know which pages to acti-
vate PML for, we add a second dirty bitmap old_dirty_bitmap field to
the kvm_memory_slot structure. This bitmap holds a copy of the original
bitmap’s state at the previous checkpoint. Doing so results in one bit per
4KiB additional memory (in total +3 ∗ 10−5% of VM memory), which we
deem neglectable.

Our modified KVM_COW_SYNC_AND_PROTECT implementation4 iterates over
all guest frames and calculates which pages to enable PML for. These pages
are those for which the corresponding bit in old_dirty_bitmap is one and
zero in dirty_bitmap. Pages with a set bit in dirty_bitmap require write
protection for COW and PML is not activated for them. The ioctl calls a
function that executes the respective operations, then copies dirty_bitmap
to old_dirty_bitmap and resets dirty_bitmap to all zeros.

Late activation is compiled-in conditionally and can be enabled via the
KVM_SB_COW_LATE_NATIVE_DIRTY_LOG kernel config.

4.5 Early Activation
Early PML activation enables PML for a page immediatelly after it has been
copied. Figure 4.3 gives an overview of the implementation, which consists
of modifications to KVM_COW_CHECKPOINT 5.

In KVM, it is custom for operations that operate on many guest frames
to be implemented by a function which takes a guest frame number gfn and
a bitmap. This function executes the operation for all frames for which the
respective bit is set in the map, starting with frame number gfn.

4kvm_vm_ioctl_cow_sync_and_protect
5kvm_cow_copy_increment
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Late Activation

Early Activation

COW_SYNC_AND_PROTECT

Yes
COW_CHECKPOINT

QEMU Kernel

Create Checkpoint

Stop VM

synchronize bitmaps,
for pages that became clean:
enable PML/disable write protection

for dirty pages: enable write protection

1

Start VM

Pages left
to copy?

copy some pages
for copied pages:
enable PML/disable write protection

2

No

Figure 4.3: Overview of our modifications for PML activation. Late activa-
tions only requires changes to 1 ; early activation changes to 2 .
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For example, the function for enabling dirty logging is set up in this way
and we implemented our function for removing write protection in the same
style.

Although it is not necessary from a design point of view, we add a
field clear_buffer to kvm_memory_slot. When COW_CHECKPOINT has con-
currently copied a frame, we mark the respective bit in clear_buffer.
COW_CHECKPOINT does not save individual frames, but multiple consecu-
tive ones. Before COW_CHECKPOINT completes, we take the content of
clear_buffer as bitmap to our function, one long at a time. Doing so
allows us to remove write protection for BITS_PER_LONG frames with
one call to our function, while keeping the code simple.

Early activation is compiled-in conditionally and can be enabled via the
KVM_SB_COW_EARLY_NATIVE_DIRTY_LOG kernel config.

4.6 Tracing
In order to facilitate an evaluation of our implementation, we augmented
the kernel with a number of trace events, which can be enabled via the
KVM_SB_TRACING kernel config. The following events were added:

• kvm_pml_flush traces the number of entries flushed from the PML log.

• kvm_sb_inc_diff traces the number of frames that lost/gained their
dirty status compared to the last checkpoint.

• kvm_sb_cow traces the number of COW cases that occurred in the
kernel for every checkpoint.

• kvm_sb_cc traces the number of CC cases for every call to COW_CHECKPOINT
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Evaluation

This chapter evaluates whether PML can improve the performance of copy-
on-write checkpointing, and examines how the implemented variants behave.
Additionally, it assesses the model proposed in Chapter 3.

5.1 Testing Framework
Evaluating our implementation requires experimental data created by exe-
cuting test cases. Multiple different tests are run with various parameters
and repeated to reduce variance. For this reason, experiments can run for
days and create many results. Because manually executing every test would
be cumbersome, we created a set of scripts to run tests with as little user
input as possible and to easily manage the results. Additionally, using scripts
makes test runs more deterministic, improving comparability. Tests gener-
ally will start QEMU, boot an operating system (OS) and then run some
command in the virtual machine (VM), while performing measurements and
logging information of interest. Our scripts for running tests are mainly
written in Python [5]. We created classes abstracting common functionality:

• OS management: Classes for OS management provide the boot medium
and provide methods for booting the OS, logging in and setting up the
network and starting ssh so test results can be extracted.

• QEMU: The QEMU class is responsible for starting and stopping the
QEMU VM. It loads an OS configuration and sets up two properties
serial and monitor. These properties allow interaction with the VM’s
serial port and QEMU’s monitor command interface. Interaction takes
place via the pexpect [4] library; it is done by sending text and waiting
for a certain response.
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• Measurement and Logging: Measurement and logging are provided by
one class. The fundamental concept of this class is the nesting of tests.
Users of the class can begin a test case and run sub-tests as children of
the outer test case. The class automatically replicates this tree of tests
in the file system, creating a unique logging directory for every test.
Users of the class can easily start and stop measuring the duration
of a task. Test results are saved in JSON [2], facilitating easy post
processing.

• Tests: The test class provides methods for actions commonly performed
during testing, including up-/downloading files to/from the VM, start-
ing and stopping dirty logging and checkpointing, as well as other com-
mon tasks such as setting up simustore and the tool used to account
Linux kernel events, perf [25].

Our testing framework logs all relevant information, including the version of
the KVM module and its configuration, the source code of scripts, the output
of scripts, the interaction with the OS running in the VM, the interaction with
the QEMU monitor, the standard output and error of the QEMU process,
kernel messages, trace events, and result files created by benchmarks inside
the VM.

In addition to scripts for running tests, we created a tool to manage the
resulting data. When starting a test, the user gives a comment describing
it. Our tool lets the user list all run tests, printing their comments. The
user can select a test run and conveniently access its files via a symlink in
the current directory, or delete it. Another set of scripts helps with post
processing the measured data.

5.2 Evaluation Environment

All benchmarks where run on a machine with the following specifications:

CPU Intel Core i5-6500 @ 3.2Ghz (4 cores)
Memory 15GiB
Disk 223GiB SSD (OCZ ARC 100)
Mainboard ASUSTeK Z170-A

The software used and their versions are:
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Operating System Ubuntu 16.04 LTS
Linux Kernel 4.3.0
KVM 4.3.0 1

QEMU 2.6.50 1

Simutrace 3.3.0 1

SPECjbb 2005
Phoronix Test Suite
Linux kernel build

1.6.0

During testing, the following settings were in effect:

• All virtual CPUs pinned to a physical CPU

• Transparent huge pages disabled

• Numa balancing disabled

• C states disabled

5.3 Correctness
We find our implementation correct, if the state restored by loading a check-
point is bitwise identical to the state of the VM at the beginning of the
checkpointing downtime. The modified QEMU used in SimuBoost has sup-
port for dumping the state of the VM at the beginning of the downtime and
after loading a checkpoint. This is compiled-in conditionally. Since we did
not touch the implementation of device checkpointing, we omit verifying it
and only validate that the physical memory of the VM before a checkpoint is
identical to that after restoration. We implemented a test case for verifying
the correctness of our implementation. With dumping enabled, this test case
creates checkpoints while running a memory intensive benchmark inside the
VM. Because dumping the state of the VM is slow, the interval length is
set to one minute. Then it loads each created checkpoint, causing the state
after loading to be dumped. After both before the checkpoint and that after
restoration have been dumped, it compares the files for differences. We find
that the files are identical when using incremental COW checkpointing with
our modifications for PML enabled.

1SimuBoost’s modifications and our changes
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CPUs
1
2
3
4

Downtime (ms)
2.8
4.5
6.1
8.5

Write Protection

Downtime (ms)
2.3
3.6
4.2
–

PML Late

Downtime (ms)
1.9
3.1
3.3
3.4

PML Early

Table 5.1: The downtime averaged over all intervals. Our modifications did
not raise the downtime.

5.4 Downtime
We set our implementation the goal to not deteriorate performance. Thus,
our implementation may not substantially increase the length of downtimes.
To evaluate our success in this regard, we measured the downtimes while
running the Linux kernel build of Phoronix Test Suite. The results in Table
5.1 show that our implementation did not raise the downtime. To the con-
trary, the downtimes for PML are smaller. We cannot offer an explanation
for this other than a difference in the test setup. Early PML executes the
same code as write protection and late PML performs additional work to
activating PML for some pages.

5.5 Slowdown of Execution
In order to examine the impact of PML on checkpointing and to find out
whether PML can reduce the slowdown of execution, we ran the kernel build
benchmark of Phoronix Test Suite. Figure 5.1 shows the time to complete the
benchmark, measured outside the VM. All checkpointing implementations,
regardless of the dirty logging method, show the same progression as the
pure dirty logging performed in Chapter 3: small intervals cause the biggest
performance penalty and as the interval length increases, the overhead of
checkpointing lessens ever more slowly. Figure 5.2 shows that the gain of
PML is similar regardless of whether one considers the time measured inside
or outside the VM. Late PML achieves hardly any benefit compared to write
protection; the gain is between -0.1% and 1.4%, tending to zero as the intevals
increase in length. Early PML, however, does achieve a noticeable benefit.
It is approximately 11% for the shortest interval lengths, but decreases very
quickly and starting at an interval length of 0.5s tends slowly to zero.
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Interval
Length (ms)

50
100
200
500

1,000
2,000
5,000

TLB Flushes
12,701
5,682
2,732
1,041

507
249
98

Write Protection

TLB Flushes
12,693
5,686
2,721
1,040

506
248
98

Late PML

TLB Flushes
22,242
10,527
5,531
2,924
1,528

813
370

Early PML

Figure 5.3: The number of TLB flushes observed during a kernel build. Early
PML activation creates approximately twice as many as late activation.

Our model does not predict such a steep decline and overestimates the
benefit of PML for intervals greater than 200ms. The curves differ the most
in the area where the number of PML full events diverge from the additional
run time in Figure 3.7, which causes the effective cost of a PML full event
αP ML to be underestimated. As with dirty logging, we assess the number of
VM exits, page faults, and PML full events as shown in Table 5.2. All three
checkpointing methods show the same pattern of the VM exits declining with
rising interval lengths. For write protection, most VM exits are due to page
faults. Late PML activation reduces the number of page faults and therefore
VM exits. At 50ms it decreases the number of VM exits by 47%, however,
the reduction shrinks to only 6% at 5s. Early activation is able to reduce
the number of VM exits significantly more, from 80% at 50ms to 11% at 5s.
This difference can be explained by the discrepancy in PML full events. The
number of PML full events in the case of late PML is surprisingly small, in the
order of hundreds, whereas early PML reaches values of up to 25000 for 50ms.
Early PML leaves a smaller window during which a write access creates a
page fault. The fact that early PML logs far more pages via PML than late
PML, indicates that pages dirtied in the interval preceding a checkpoint are
likely to be written to before the next checkpoint, which is consistent with
the principle of locality commonly attributed to computer programs [13].

We expected early PML activation to generate more TLB flushes, which
might have negated the advantage of having PML enabled for a higher pro-
portion of time. We measured the number of TLB flushes 5.3, and confirm
that early PML increases it. The number of TLB flushes in the case of late
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VM Exits Page
Faults

4.6 · 106 2.8 · 105

Native

Interval
Length (ms) VM Exits Page

Faults
50 6.5 · 107 6 · 107

100 5 · 107 4.6 · 107

200 3.8 · 107 3.4 · 107

500 2.5 · 107 2.1 · 107

1,000 1.7 · 107 1.3 · 107

2,000 1.2 · 107 7.5 · 106

5,000 8.2 · 106 3.8 · 106

Write Protection

Interval
Length (ms)

50
100
200
500

1,000
2,000
5,000

VM Exits Page
Faults

PML Full
Events

3.4 · 107 2.8 · 107 472
2.8 · 107 2.2 · 107 547
2.4 · 107 2 · 107 575

2 · 107 1.6 · 107 357
1.5 · 107 1.1 · 107 249
1.1 · 107 6.4 · 106 205
7.7 · 106 3.3 · 106 115

Late PML

VM Exits Page
Faults

PML Full
Events

1.3 · 107 8.6 · 106 25,312
1 · 107 5.6 · 106 17,993

1.1 · 107 6.8 · 106 8,799
1.9 · 107 1.5 · 107 722
1.3 · 107 9.1 · 106 210
9.8 · 106 5.4 · 106 107
7.2 · 106 2.9 · 106 37

Early PML

Table 5.2: The number of VM exits, page faults and PML full events for all
implementations. The values decrease for bigger intervals. PML can reduce
the number of page faults, early activation more so than late activation.
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PML activation very closely resembles those of write protection. For all, the
number of PML flushes caused by early PML is roughly double that of late
PML/write protection. Since early PML achieves a measurable benefit de-
spite more TLB flushes and outperforms late PML, we conclude that TLB
flushes are not prohibitively expensive.
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Conclusion

Wemodified SimuBoost’s checkpointing implementation to use PML for dirty
logging. Two variations were added, one that activates PML as early as
possible and one that does so during the next downtime. The early variant
achieves a measurable performance benefit for small intervals only; at 100ms
interval length, the gain is approximately 9%. The performance gain of
the late variant is neglectable. Smaller intervals benefit more, but cause a
greater absolute slowdown, making them impractical. Longer intervals see
hardly any benefit, for 1s it is about 0.5%.

In our analysis of the impact of dirty logging, we created a model to pre-
dict the benefit of PML for checkpointing. This model captures progression
of the measured time to complete a kernel build, but underestimates it for
intervals larger than 100ms. The improvement of this model is left as future
work.

We attribute the advantage of early activation to the tendency of a pro-
gram to reference pages accessed shortly before. A better understanding of
the access pattern the workload exhibits might aid in creating a superior
model. Our analysis only used accumulated values; an observation of the
development throughout the benchmark could provide further insights. Ad-
ditionally, the results should be reaffirmed by employing other benchmarks,
such as SPECjbb, which has a higher intensity, and more powerful hardware,
so very small intervals can be considered.

While we found that the additional TLB flushes caused by early activation
did not disallow a benefit, its exact effect is yet to be determined.
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