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Analyzing program and system behavior has become a chal-
lenging task with the advent of increasingly complex and
parallel software. At the same time, hybrid main memory
architectures are emerging that require an even better under-
standing of low-level data structure use and memory access
patterns. Functional full system simulation (FFSS), that is
simulation at the instruction level, provides a powerful foun-
dation to study the runtime behavior and interaction of com-
puter architecture, operating system, and applications [1, 6,
12, 13]. Since the entire execution environment in a func-
tional simulation is virtual, every operation1 carried out can
be easily inspected.

However, a well-known limitation with full system simula-
tion is the immense slowdown. Depending on the required
level of detail and the degree of instrumentation, running a
workload with FFSS is up to multiple orders of magnitude
slower compared to native execution. We have measured
a slowdown between 30x and 200x with QEMU [2] and up
to 1000x with the more accurate Simics [9] simulator. Simi-
lar numbers have also been reported by other researchers [7,
10]. That makes FFSS unpractical for long-running work-
loads. Along with the high slowdown comes a loss of in-
teractivity. The slowdown results in high response times,
which makes actively using a simulated system cumbersome
and prevents successful communication of the simulated ma-
chine with non-simulated remote hosts.

SimuBoost [11] strives to close the performance gap between
hardware-assisted virtualization (HAV) and FFSS to clear
the way for functional simulation of interactive, network-
centric, and long-running workloads. The core idea is to
run the workload in a virtual machine (VM) managed by a
hypervisor such as KVM [8]. At regular intervals the hyper-
visor takes a snapshot of the VM state (i.e., memory content,
device states, etc.). The checkpoints then serve as starting
points for simulations, enabling to simulate and analyze each
interval simultaneously in one job per interval. By transfer-
ring jobs to multiple hosts, a parallelized and distributed sim-
ulation of the target workload can be achieved (Figure 1). Al-
though simulations can only be started when the VM crosses
an interval boundary, we could already show in a prototyp-
ical setup that the difference in execution speed between
HAV and FFSS can effectively drive parallelization [5].

1Detailed processor- and device state models are not subject to
FFSS, but they may be fed with data from functional simulation
(e.g., memory trace as input for cache simulator).
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Figure 1: The workload is executed with virtualiza-
tion. Checkpoints at the interval boundaries serve
as starting points for parallel simulations.

Functional full system simulation can be build to always
emit identical runs. Hardware-assisted virtualization, how-
ever, is subject to non-deterministic input such as erratic
I/O completion timing. SimuBoost records this non-determi-
nism and uses deterministic replay [3, 4, 14] to faithfully re-
produce the execution from the HAV phase in the simulation
stage. Both, checkpointing and recording non-determinism
in the HAV phase, need to be geared towards low runtime
overhead to (1) retain the execution speed difference, which
is required for parallelization, (2) keep perturbations on the
examined workload as small as possible, and (3) preserve
seamless interactivity.

While we are still working on deterministic replay, our pro-
totype already implements efficient periodic virtual machine
checkpointing. Simple stop-and-copy checkpointing suspends
the VM to gather a consistent snapshot of a virtual machine.
This can take up to multiple seconds2, which contradicts
the requirement of low runtime overhead. In contrast, Simu-
Boost creates a VM checkpoint in less than 5 ms due to
extensive use of asynchronous processing.

Talk. After a short introduction to the concept behind Simu-
Boost, the proposed talk will focus on mechanisms for light-
weight periodic virtual machine checkpointing. The topics
covered will include techniques such as incremental snap-
shots, copy-on-write (CoW), and data deduplication as well
as recent hardware extensions in Intel CPUs to accelerate
dirty memory page tracking. The talk will present results
from our SimuBoost prototype and give an outlook on future
research directions.
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