
Memory Management for
Concurrent RDMA: A Design for a

Key-Value Store

Diplomarbeit
von

cand. inform. Benjamin Behringer
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa

Zweitgutachter: Prof. Dr. Wolfgang Karl

Betreuender Mitarbeiter: Dipl.-Inform. Marius Hillenbrand

Bearbeitungszeit: 4. Dezember 2013–3. Juni 2014

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Karlsruhe, den 3. Juni 2014

iv

Deutsche Zusammenfassung

Neuere Forschung nutzte die Vorteile von remote direct memory access (RD-
MA) um Leseoperationen auf key-value stores für leseintensive Betriebsbe-
lastungen zu beschleunigen. Jedoch zeigen reale Anwendungsszenarien,
dass key-value stores auch mit schreibintensiven Betriebsbelastungen kon-
frontiert sind. Wir präsentieren Falafel, ein Design für einen in-memory
key-value store, welcher gleichzeitiges lock-freies Lesen und Schreiben über
RDMA unterstützt. Wir beschreiben unsere Speicherverwaltung, welche
es Clients erlaubt gleichzeitig, ohne gegenseitige Beeinflussung, und ohne
zusätzliche Kommunikation mit dem Server oder anderen Clients, Lese-
und Schreiboperationen auf regions im Speicher des Servers über RDMA
durchzuführen. Wir verwenden einen serverseitigen generational semi-space
garbage collector um gelöschte Einträge aus dem Serverspeicher zu entfer-
nen. Wir präsentieren ein Hashtabellendesign basierend auf open addressing
mit linear probing, welches lock-freie gleichzeitige Operationen der Clients
über RDMA erlaubt, und unempfindlich gegenüber Client-Fehlern ist.
Wir implementieren einen Falafel-Prototyp welcher 5.2 Mops/s GET und
1.9 Mops/s SET auf 40 Gbit/s InfiniBand Netzwerkkarten erreicht. Clients
können GET-Operationen auf den Server mit einer Latenz von 4.5 µs, sowie
SET-Operationen mit einer Latenz von 6.8 µs ausführen.

v

vi DEUTSCHE ZUSAMMENFASSUNG

Abstract

Recent work leveraged the advantages of remote direct memory access
(RDMA) for read operations on key-value stores to improve the per-
formance for read-heavy workloads. However, real-world application
scenarios show that key-value stores also have to cope with write-heavy
workloads. We present Falafel, a design for an in-memory key-value store
that allows concurrent lock-free read and write operations by clients via
RDMA. We show our memory management scheme that allows clients to
concurrently read and write via RDMA without interference or communi-
cation with other clients or the server to regions in the server memory. We
use a server-side generational semi-space garbage collector to remove deleted
entries from the key-value store. We present a hash table design based on
open addressing with linear probing that allows lock-free concurrent client
operations via RDMA and is resilient to client failure. We implement a
prototype of Falafel which reaches 5.2 Mops/s GETs and 1.9 Mops/s SETs
on our 40 Gbit/s InfiniBand network cards. A client can perform GET
operations on the server that take as low as 4.5 µs and SET operations that
take as low as 6.8 µs.

vii

viii ABSTRACT

Contents

Deutsche Zusammenfassung v

Abstract vii

Contents 1

1 Introduction 3

2 Background 7
2.1 Key-Value Stores . 7
2.2 RDMA . 8
2.3 Memory Management . 9
2.4 Hash Tables . 11

3 Design 13
3.1 Application Scenario: In-Memory Key-Value Store 13
3.2 Design Overview . 14
3.3 Memory Management . 16
3.4 Hash Table Design . 17
3.5 Client Hash Table Operations 19

3.5.1 Find . 20
3.5.2 Set . 21
3.5.3 Get . 21
3.5.4 Delete . 22
3.5.5 Lock-Freedom and Concurrency 22

3.6 Server Hash Table Operations 24
3.6.1 Garbage Collection . 24
3.6.2 Hash Table Cleanup 25

1

2 CONTENTS

4 Implementation 27
4.1 InfiniBand Characteristics . 27
4.2 Limitations . 29

4.2.1 Hash Table Entry Field Size 30
4.2.2 Addressable Memory 30
4.2.3 Client Heartbeat . 31
4.2.4 Compare-And-Swap on the Server 31

4.3 Optimizations . 33
4.3.1 RDMA Pipelining . 33
4.3.2 CRC Hardware Instructions 33
4.3.3 Readahead . 33

4.4 Proposed Hardware Features 35

5 Evaluation 37
5.1 Experimental Setup . 37
5.2 InfiniBand Noise . 38
5.3 Lookup Cost . 40
5.4 Throughput . 43

5.4.1 Throughput Benchmark 44
5.4.2 Throughput for a Single Client 44
5.4.3 Throughput for Multiple Clients 45
5.4.4 Throughput and Hash Table Load 47

5.5 Latency . 50
5.5.1 Latency of Individual Operations 50
5.5.2 Latency of Concurrent Operations 54
5.5.3 Latency and Hash Table Load 56

6 Related Work 63
6.1 Key-Value Stores with Message-Based Networking 63
6.2 Key-Value Stores using RDMA 64

7 Conclusion and Future Work 67

Bibliography 69

Chapter 1

Introduction

In-memory key-value stores are an essential building block in today’s
distributed services infrastructure. Large companies use them as query
cache for databases or generic cache to enhance the performance of their
applications [10, 54].

Key-value stores such as memcached [21] and redis [62] use traditional
socket-based [38] networking that employs message passing to communicate
with clients. This widely used interface suffers from overhead through
message processing [22,39]. Metreveli et. al. show that message processing
can take up to 70 % of the overall CPU time for request processing by
the key-value store [49]. Already in 1994, Thekkath et. al. introduced an
alternative communication model, remote direct memory access (RDMA) [68].
RDMA allows a client to access data in the address space of the server
process directly, bypassing the operating system and omitting processing
through the server process. Thekkath et. al. and others show that the
RDMA communication model provides better performance on various
network architectures [8, 70]

With RDMA-capable networks becoming more widespread, recent
work focused on leveraging RDMA to speed up key-value store read
operations. These designs make it possible for a client to read key-value
pairs directly from the internal data structures in the address space of
the server process via RDMA. The server operating system as well as
the server process are not involved in the operation, therefore saving
processing overhead. Though, write operations to the key-value store
still use message-passing. RDMA-enabled key-value stores like Pilaf [53],
FaRM [19], and a modified memcached [66] show that using RDMA can
bring substantial performance benefits for read-heavy workloads.

3

4 CHAPTER 1. INTRODUCTION

However, key-value stores also have to cope with write-heavy work-
loads [3,7,54]. In this thesis we present Falafel, a design for an in-memory
key-value store that allows client read and write operations via RDMA.

We expect to gain the same benefits when using write operations on
the key-value store via RDMA as are possible for read operations via
RDMA: The client does no longer have to transfer the control flow to the
server during a request. It can perform all memory operations on its own.
Therefore, it is not limited by the time the server takes to process the
request and respond. This also means that the server is free from request
processing, lowering CPU utilization on the server. We also expect to lower
the memory copy overhead. A client can write data via RDMA directly
to the final position in the server address space, in contrast to message
passing, where the server moves the data from an intermediate buffer to
the final position.

We face several challenges on our way to a key-value store design that
allows concurrent RDMA read and write operations: We have to create
a memory management scheme that allows clients to concurrently read
and write data in the address space of the server process without inter-
ference. Conventional key-value stores use a central memory allocator in
the server process to manage the available memory. We have to distribute
the capabilities of this memory allocator among the clients. We have to
take into account that the latency of RDMA operations is higher than the
latency of CPU operations. We also have to design a hash table that allows
concurrent read and write access from the clients. In case of a failing client,
the hash table structure has to stay valid.

In this thesis we make the following contributions:

• We present Falafel, a design for a key-value store that allows client
read and write operations via RDMA.

• We design a memory management scheme that allows clients to
write to the server memory concurrently without interfering with
other clients.

• We present a hash table design that allows lock-free concurrent client
operations via RDMA.

• We implement a prototype of Falafel and evaluate it on an InfiniBand
cluster.

5

The rest of this thesis is structured as follows: In Chapter 2, we give
background information on key-value stores, RDMA, memory manage-
ment, and hash tables. In Chapter 3 we present our design for the key-
value store Falafel, and in Chapter 4 we discuss details of the implementa-
tion of the prototype of Falafel. We evaluate our prototype and present the
results in Chapter 5. In Chapter 6 we list related work and explain how
Falafel differs from those. We conclude in Chapter 7 and list directions of
future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we provide background information related to our design.
We introduce the concept of a key-value store and give usage examples
in Section 2.1. Then we provide background information about remote
direct memory access (RDMA) in Section 2.2, memory management in
Section 2.3, and hash tables in Section 2.4 with regard to their use in
key-value stores.

2.1 Key-Value Stores
A key-value store is a service that offers the functionality of a dictionary
over a network to multiple clients. The dictionary stores (key, value) pairs,
where each key may appear only once in the dictionary. The key-value
store interface offers three functions: SET, GET, and DELETE. SET takes a
key and a value as parameter and stores the (key, value) pair in the key-
value store’s dictionary. GET takes a key as parameter and searches the
key-value store for a (key, value) pair with a matching key. If GET finds
an appropriate key, it returns the corresponding value. Otherwise, it
returns an error. DELETE also takes a key as parameter and searches the
key-value store for a (key, value) pair with a matching key. If DELETE finds
an appropriate key, it deletes the corresponding (key, value) pair from the
dictionary. If it does not find a matching key, it returns an error.

In this work we focus on key-value stores that keep the dictionary in
random access memory (RAM). These key-value stores may have cache
semantics or store semantics.

Memcached [21] is a key-value store with cache semantics. When a client
issues a SET and there is no more storage space left in the key-value

7

8 CHAPTER 2. BACKGROUND

store, (key, value) pairs get evicted from the dictionary. To decide which
(key, value) pairs to evict, Memcached uses a least recently used (LRU)
strategy.

Redis [62] is a key-value store with store semantics. (key, value) pairs
never get deleted unless a client issues an explicit DELETE. When redis
runs out of storage space, subsequent SETs fail.

Companies such as Facebook use key-value stores extensively to im-
prove the performance of their software [54]. Atikoglu et. al. use real-
world data from Facebook’s memcached installations to perform a key-
value store workload analysis [7]. To be able to evaluate different storage
systems under the same workload, Cooper et. al. present a unified
benchmark suite called Yahoo! Cloud Serving Benchmark (YCSB) [17].

2.2 RDMA
In 1994, Thekkath et. al. present RDMA as a new communication
model [68]. They emphasize the separation of data transfer and control
transfer in RDMA. In traditional network communication client and server
use message passing to transfer data as well as control from one node to
another. Here, data transfer and control transfer are bound to each other.
When a server receives a message, he has to process it and send a reply.
The client transfers control and data to the server. In contrast, RDMA
allows one-sided operations from a client to a server that do not require
server-side processing. Here, only data is transferred from the memory of
the client process to the memory of the server process. The server process
as well as the server operating system are not involved in the operation
and free to perform other work.

The RDMA communication model by Thekkath et. al. features three
operations that one node can perform directly on the memory of another
node. With RDMA read and write, a node can read and write directly
from the memory of another node. In addition, the model provides an
atomic compare-and-swap (CAS) operation. The CAS operation takes a
pointer as argument to a memory location in the remote memory and
two values. It atomically compares the value at the pointer location with
the first given value and swaps the value at the pointer location with the
second given value, if the first given value and the value at the pointer
location match. Otherwise, it returns an error code and the new value at
the pointer location.

2.3. MEMORY MANAGEMENT 9

Thekkath et. al. demonstrate the performance benefits of RDMA com-
pared to traditional networking using an implementation of a distributed
file system. They also show that the use of RDMA on the client side can
reduce the server load. Balaji et. al. confirm the findings of Thekkath et. al.
regarding the benefits of RDMA in a set of different benchmarks [8]. They
also present evidence that the advantages of RDMA are independent from
the underlying network architecture by evaluating RDMA and traditional
networking on different underlying network architectures.

With network hardware that has RDMA capabilities, such as Infini-
Band [6], Quadrics [57], Myrinet [13], or software implementations that use
already available Ethernet hardware such as SoftiWARP [70], RDMA usage
has become more widespread.

Several projects leverage RDMA to build or improve network commu-
nication libraries. Liu et. al. use RDMA over InfiniBand to speed up the
Message Passing Interface (MPI) in their implementation MVAPICH [30, 47].
Other implementations of MPI, such as MPICH2 [46] or OpenMPI [65], also
use RDMA over InfiniBand. Inspired by the communication primitives
of the L4 microkernel [43], Kehne et. al. present libRIPC, a communication
library using RDMA [40]. Jose et. al. present the Unified Communication
Runtime (UCR) and use it to speed up memcached [37].

Apart from the use of UCR in memcached, other key-value stores use
RDMA to improve performance [19, 53, 66]. They allow clients to directly
read server data structures with RDMA. Though, write operations to the
dictionary are still done by the server.

The proposed key-value cache Nessie also allows client RDMA write
operations on the dictionary [67].

2.3 Memory Management
Key-value stores with traditional networking allocate memory for use in
the server process. They use explicit allocators such as the slab allocator
in memcached [14]. Explicit allocators keep track of free and occupied
memory chunks. A client requests and frees memory explicitly with a
call to the allocator. Wilson et. al. provide a survey on explicit memory
allocation [75].

In our work we use memory management with explicit regions for the
clients [25]. This kind of memory management has also been studied
under the names zones [60], groups [34] or arenas [28]. Here, clients allocate

10 CHAPTER 2. BACKGROUND

memory from a region consecutively and release the complete region and
all objects inside when the region is full.

Our server process employs a generational semi-space garbage collector.
This kind of allocator is a combination of a semi-space garbage collector
and generation scavenging. Clients allocate memory consecutively from a
smaller region called nursery. When the nursery is full, the clients retrieves
a new region and hands the old region to the garbage collector. The
garbage collector then collects all live data from the returned nursery and
copies it to a larger region called mature space. When the mature space is
full, the garbage collector collects all live data from it and copies the live
data to a similar sized second mature space.

Lieberman and Hewitt designed the first semi-space garbage collector [42].
Ungar introduced generation scavenging [72]. He designed it mainly to
reduce the pauses that the garbage collection imposes on the program
execution. Buytaert et. al. study the behavior of a generational semi-space
garbage collector and provide advice on when and how to collect [15].
Blackburn et. al. compare the performance of different garbage collection
techniques and their generational counterparts [12]. They find genera-
tional semi-space garbage collection to be among the most competitive
techniques.

There are other kinds of garbage collectors apart from the semi-space
garbage collector. Cohen provides a survey on garbage collection meth-
ods [16], which has been updated by Wilson et. al. several years later [74].

There are allocators specially designed to work in a multithreaded en-
vironment such as jemalloc in redis [20]. Other examples of multithreaded
allocators include Hoard [11] and Stream Ow [63]. Michael presents a
scalable lock-free dynamic memory allocator [52].

Memory management for lock-free data structures is difficult because
of the ABA problem that we describe in detail in Section 3.5.5 and the recla-
mation of deleted objects. The reclamation of deleted objects is difficult
because in lock-free systems a client does not always know which objects
are still in use. Michael gives an overview of the problem and identifies
the shortcomings with reclamation of memory of deleted nodes in dy-
namic lock-free objects. He presents a method for safe memory reclamation
(SMR) [50] that allows this reclamation. Herlihy et. al. use the same idea
as Michael for their lock-free memory management with additions such
as the immunity to the Repeat Offenders Problem [32].

2.4. HASH TABLES 11

2.4 Hash Tables
Hash tables are one possibility for implementing the dictionary of a key-
value store. A hash table is an array of buckets. A hash function applied to a
key delivers an index into the array, where values that correspond to the key
are stored. Their advantage over other data structures to implement the
dictionary of a key-value store, such as linked lists or trees, is their superior
time complexity for a key lookup of O(1). Knuth provides an introduction
and overview on hash tables [41].

Memcached uses a hash table with closed addressing and collision chains
as collision resolution [21]. Such a hash table is an array of list heads. To
find a key in the hash table, the server uses a hash function to determine
an index in the array and then searches the list beginning at the index
position. The hash function used in memcached is the third version of
Jenkins lookup [36]. Redis [62] also uses closed addressing with collision
chains but the MurmurHash2 [5] hash function.

RDMA offers only a limited set of operations, namely read, write and
compare-and-swap (CAS). As we want the clients to be able to concurrently
work on the key-value store internal data structures via RDMA, we have
to use a data structure that makes this possible. There are data structures
that one can use to build hash tables that employ only the kinds of
operations provided by RDMA. Valois presents a design for a linked list
using CAS [73]. Harris improves on the design of Valois with the first CAS-
based non-blocking linked-list set algorithm [29]. Michael also presents
a lock-free hash table design that outperforms the design of Harris’ [51].
Gao et. al. also use CAS to build a lock-free dynamic hash table with open
addressing [23].

With Read Copy Update (RCU), McKenney et. al. implement a mech-
anism in the Linux kernel that allows lock-free read-only access to data
structures that are modified concurrently [48]. Triplett et. al. use RCU
to build a scalable concurrent hash table using a programming scheme
called relativistic programming [69]. Apart from the specialized lock-free
mechanisms listed above, there are also a number of universal lock-free
methodologies [4, 9, 24, 31, 35, 64, 71]. Being universal, they suffer from
overhead and are generally slower than specialized algorithms.

CAS is prone to the ABA problem as first described in the IBM Sys-
tem/370 Extended Architecture Principles of Operation [1]. There are
techniques to avoid the ABA problem like tagging [26], hazard point-
ers [50], or the Pass the Buck algorithm [32]. Dechev et. al. present a

12 CHAPTER 2. BACKGROUND

summary of ABA prevention schemes [18]. To relax the constraints that
the size limited CAS imposes, Greenwald proposes a hardware double
word CAS (DCAS) [27], which is not available for InfiniBand.

Chapter 3

Design

In this chapter we describe our design for the in-memory key-value store
Falafel. We first explain why we choose an in-memory key-value store as
demonstrator for our design in Section 3.1. Second, we give an overview
of the design of Falafel in Section 3.2. We then describe the design of
the memory management in Section 3.3 and the design of the hash table
used in Falafel in Section 3.4. We explain the operations that the client
and server perform on the key-value store in the subsequent Sections 3.5
and 3.6.

3.1 Application Scenario: In-MemoryKey-Value
Store

To evaluate our approach for memory management for concurrent remote
direct memory access (RDMA), we need an application that will benefit from
the high speed and low latency of RDMA, yet requires concurrent access
to its memory by multiple clients. Ideally, the application has no overhead
to the data transfer and memory management mechanisms so we can
study these without interference.

We chose an in-memory key-value store as demonstrator application.
A key-value store stores (key, value) pairs in an associative array and
offers an interface to access the array. The value may be arbitrary data,
in contrast to some other forms of data storage like relational database
management systems (RDBMSs), which define the structure and type of
the data in a schema. The interface of a key-value store must provide
operations to SET, GET, and DELETE (key, value) pairs from the store. An

13

14 CHAPTER 3. DESIGN

in-memory key-value store stores the data only in RAM. Therefore, the
data will not persist when the server process ends.

An in-memory key-value store must feature three mechanisms to
provide the functionality as described above: data transfer between server
and client, memory management for the data on the server, and data
lookup between keys and values. Like key-value stores with similar
capabilities such as memcached [21] and redis [62], our key-value store shall
allow concurrent access to the data from multiple clients.

3.2 Design Overview
Falafel stores each (key, value) pair together in an own data structure
called container. Entries in a central hash table point to containers of valid
(key, value) pairs. Figure 3.1 illustrates the data layout.

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

Client Region A

Client Region B

n
n+1
n+2
n+3
n+4
n+5
n+6

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

Mature Space

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

Garbage Collection

Server Memory

RDMA

Client A

Client B

Hash Table

Figure 3.1: Design Overview: server memory with mature space, two
client regions and two clients. Client A is connected and may read from
the server memory and write to client region A via RDMA. Client B is
disconnected. The server garbage collects its client region B, moves the
data to the mature space, and updates the hash table entry n + 6. The
hash table entry n + 5 is already deleted and will not be preserved.

A client reads a (key, value) pair by inspecting the hash table whether
he can find a pointer to a container. He determines the hash table entry

3.2. DESIGN OVERVIEW 15

to inspect using the hash of the key he is looking for as an index. On
success, the client reads the container with the (key, value) pair. To write
a (key, value) pair to Falafel, a client first writes the container with key
and value to the server memory and then atomically sets a pointer to it
in the hash table. Again, the client determines the hash table entry to
write to using the hash of the key he writes as an index. A client can
delete a (key, value) pair by atomically setting a flag in the hash table entry
pointing to the container with the corresponding (key, value) pair. Other
clients will then consider the (key, value) pair as deleted.

In Falafel, the clients perform all operations to the data and hash table
using RDMA. The server memory with hash table and containers is RDMA
read and write accessible by the clients. Clients can read concurrently from
the hash table and the containers. As a consequence of limiting the client
interaction with the server to RDMA operations, a client has no knowledge
about the RDMA read and write operations of other clients. This does not
matter for read operations. Though, when multiple clients concurrently
write to the same location in the key-value store, data corruption may
occur.

To keep the data in the key-value store consistent, each client writes
containers with keys and values only to a memory region [25] that he
can write to exclusively. To make a container visible to other clients, a
client has to set a corresponding entry in the hash table. Therefore, clients
still compete for write access to the central hash table. To avoid memory
corruption, clients are only allowed to modify hash table entries with
atomic RDMA compare-and-swap (CAS) operations.

A client acquires a memory region from the server and returns it when
it is full or the client disconnects. When a client returns a memory region,
there may be still valid entries with pointers to containers in the hash table
so the server may not reuse it yet. Instead, the server process performs a
garbage collection on the returned region. The server garbage collector
searches the hash table for valid entries with pointers to containers in
the region that the client returned. When the garbage collector finds
such a hash table entry, he copies the corresponding container to a server
owned region and alters the hash table entry to point to the new location.
This type of garbage collector is called a generational semi-space garbage
collector [42, 72]. After the garbage collection the server can reuse the
returned region.

16 CHAPTER 3. DESIGN

3.3 Memory Management
When clients write to the same locations in the server address space via
RDMA, data corruption may occur. This is possible, as the server memory
with hash table and containers is accessible to the clients via RDMA
operations. In Falafel, it is the task of the memory management to prevent
the clients from writing to overlapping memory locations concurrently.

To achieve a regional separation of the client write operations, the
server provides every client with an own memory region. Clients request
a region by sending a message to the server. The server then allocates a
region of memory from the memory area that is accessible by the clients
via RDMA and replies to the client with a message that contains the
client region’s base address and size. Clients can then write freely and
exclusively to the acquired region. The server will give a region only to
one client at a time.

During a SET operation on the key-value store a client writes a container
with a (key, value) pair to its region. The client allocates memory from
its region consecutively without reusing memory once allocated. A client
cannot know wether a container in his region is still in use without
inspecting the hash table. Another client might insert a (key, value) pair
with the same key into the hash table, therefore overwriting the hash
table entry that points to original container. Instead, the server will
garbage collect the region when it is full. Gay and Aiken show that
memory management with regions is competitive to explicit allocation and
deallocation [25]. Memory management with regions has the additional
benefit that the client does not have to communicate with the server or
other clients to allocate a chunk of memory from its region. The client and
server exchange messages only for the region allocation and deallocation.
The region size can be varied through manual configuration, depending
on the workload of the key-value store. The larger the region size, the
fewer the number of region requests from the client and therefore the
overhead for allocation.

From the client’s perspective he releases all memory in a region when
returning it to the server. For the client this has the semantics of memory
management with regions. But there may still be valid entries in the hash
table that point to data in the returned region. To save this data one has to
garbage collect the returned region. The garbage collection has to inspect
all data written to the region and copy the live data to a persistent region.
The server performs the garbage collection, as he can access the memory

3.4. HASH TABLE DESIGN 17

locally and therefore faster than the client who has to do this via RDMA.
We describe the exact mechanism of garbage collection in Section 3.6.1.
The server copies the live data in the region to a server-owned region.
When this region is full, the server garbage collects it to a new empty
server-owned region called mature space. This scheme of garbage collection
is known as generational semi-space garbage collection [42, 72].

3.4 Hash Table Design
Two of the challenges in building a client-server application over RDMA
are the concurrent access through the clients and the high latency of RDMA
operations compared to local memory accesses. We address the problem
of concurrent access to containers through the memory management that
we describe in Section 3.3. But the clients still compete for write access
to the hash table entries. We therefore look for a mechanism to provide
safe concurrent access to the hash table with a minimal amount of RDMA
operations.

For an easier comparison, we first assume that there are no collisions
on hash table entries when accessing the hash table from a single client. In
this case, a GET operation takes at least two RDMA read operations: One
read to get the position of the value from the hash table, and another read
to get the value itself. A SET operation takes at least two RDMA write
operations: One operation to write the value to the server memory, and
another one to set the corresponding hash table entry. A DELETE operation
then needs at least one RDMA write to mark the hash table entry as
invalid.

When multiple clients access the hash table, they may attempt to write
to the same hash table entry when writing a value for the same key. This
means that the hash table must allow concurrent write access by multiple
clients. This requires some form of mutual exclusion during writes, or
clients may concurrently write to the same memory locations, causing
data corruption. One possibility to achieve mutual exclusion for writes
to the hash table is the usage of locks. Yet, locking and unlocking over
RDMA yields several disadvantages: It increases the amount of RDMA
operations needed for SET, GET, and DELETE operations and requires a
timeout mechanism in case a client does not release the lock. In addition
to the normal amount of RDMA operations per SET, GET, and DELETE, the
acquire and release operations for the lock itself take at least one round

18 CHAPTER 3. DESIGN

trip time each. They also can hardly be pipelined, as the client must know
the results of the operations and act accordingly. In our hypothetical case,
these operations alone increase the time needed for a set operation by at
least 100 %, as the two writes of the set operation may be pipelined. For a
delete operation, the lock and unlock operation increase the overall time
needed by 200 %. Additionally, locking requires the presence of a timeout
mechanism, as a client must be able to break the lock of another client that
did not release the lock due to, for instance, an unexpected disconnect.
This in turn requires timers that are synchronous over the network and
precise enough to measure single RDMA round trip times. As of our set
of available RDMA operations from Section 2.2, these are not available to
us.

Another possibility is to design the hash table to be lock-free. This
means that when multiple clients try to perform an operation on the
hash table, at least one of them is guaranteed to make progress in a finite
number of steps [31]. Using locks, this will not hold true when there is no
timeout mechanism and a client that holds a lock disconnects unexpectedly,
leaving the lock in an acquired state. We decided to design the hash table
with the use of atomic compare and swap (CAS) operations. Previous work
shows that this is feasible [23, 53, 58].

Because of the ABA problem that we describe in Section 3.5.5 we have
to design the hash table in a way that an entry can be updated by a single
CAS operation. We therefore employ a hash table with open addressing and
linear probing [41]. In this hash table design the hash table is an array of
entries. To insert a value, the client alters a hash table entry at a position
he determines using a hash value of the key he wants to insert as an index.
If the entry is already filled with the same key, the client overwrites the
entry. If the entry is filled with another key, which means there is a hash
collision, the client moves to the next array entry and tries to insert the key
there. This scheme of collision resolution is called linear probing. A client
retrieves a value by inspecting the hash table at the position the hash of
the requested key indicates as before. If the hash table entry is empty, the
client is done. If the hash table entry is filled, the client checks whether the
key of the entry matches the key he is looking for. If this is the case, the
client returns the corresponding value. If the keys do not match, the client
moves to the next hash table entry and looks for the key there, similar to
the collision resolution when setting a value.

To be able to change a hash table entry with a single CAS, we separate
the key from the hash table, that now contains a pointer to the container

3.5. CLIENT HASH TABLE OPERATIONS 19

KEY LEN VALUE LEN CRC

CRC

CRCKEY

VALUE

Pointer Tag L D

Hash Table Key-Value Data

Figure 3.2: A hash table entry with data pointer, tag and Lock/Delete flags
pointing to the container with key and value strings.

with the key and value, as the hash table entry would be too large other-
wise. Figure 3.2 illustrates a hash table entry as well as the key and value
data.

The container with key and value for a hash table entry consists of key,
value, header data and cyclic redundancy check (CRC) values. The header
contains the length of the key and value, so that a client knows how much
memory to read from the server. The CRC values that protect the header,
key and value are necessary because a client may read a memory chunk
that does no longer contain valid data. He can detect this error through
a CRC comparison and restart his operation. We describe the condition
under which the error can occur in Section 3.6.1. Mitchell et. al. also use
these self-verifying data structures in their key-value store Pilaf to prevent
data corruption. In addition to the pointer to the container, a hash table
entry contains a tag to prevent the ABA problem as well as a lock and
deleted bit. We describe the use of the tag to prevent the ABA problem
in Section 3.5.5. The server uses the lock bit during a garbage collection
that we explain in Section 3.6.2. Clients use the deleted bit to mark an
entry as invalid. We describe why the bit is necessary and how it is used
in Section 3.5.4.

3.5 Client Hash Table Operations
The clients may perform three different operations on the key-value store.
They can use a SET to store a key-value combination, a GET to read a value
for a given key, and a DELETE to remove a key-value combination. Each of
these operations uses a FIND to locate the hash table entry to perform the
operation to, as shown by Knuth [41]. We will describe this basic algorithm

20 CHAPTER 3. DESIGN

in Section 3.5.1, followed by the descriptions of SET in Section 3.5.2, GET in
Section 3.5.3, and finally DELETE in Section 3.5.4.

3.5.1 Find
FIND takes a key string as a parameter and locates a matching entry in
the hash table in the server memory. Once FIND locates such an entry
it returns its value and position in the hash table to the calling function.
The entry is either an occupied entry that points to a container with a
copy of the given key and the corresponding value, or an empty entry.
To locate the entry, FIND hashes the given key to an index of the hash
table. FIND then loads the hash table entry with that index. If the entry
contains a pointer to a container, it first loads the header of the container
and performs a comparison of the calculated CRC of the read data and
the read CRC value in the container header. If they do not match, FIND
restarts from the beginning. The CRC mismatch indicates that the data at
the position of the container has changed. Assuming that this is not the
result of a RAM error, the CRC mismatch means that the container that
FIND wanted to read has been overwritten. This implies that the region
which FIND assumes the container to be in has been garbage collected as
described in Section 3.6.1. The garbage collection might have altered the
hash table in a way that the hash table entry to the container with the
key that FIND is looking for is now located in another position in the hash
table. Therefore, FIND has to restart the search from the beginning. When
there is no CRC mismatch, FIND loads the key part and its CRC of the
container and checks the CRC that protects the key. If it does not match
the calculated CRC for the key, FIND restarts with the initially provided
values for the same reasons as above. Then FIND compares the key with
the given one. If the keys match, FIND is done. Otherwise the entry is
part of a collision chain. As collisions are resolved by linear probing, FIND
then increments the current index and examines the entry at this position.
This continues until FIND either locates an entry with a matching key or
an empty entry.

FIND treats hash table entries with the DELETE bit set like hash table
entries without DELETE bit set. In contrast, when FIND encounters a hash
table entry with the locked bit set, it restarts the search at the hash table
entry that the hashed key points to. This is because the hash table entries
with a locked bit set are subject to a cleanup by the server, and no client
may perform operations on it to avoid data corruption. We explain the

3.5. CLIENT HASH TABLE OPERATIONS 21

hash table cleanup in Section 3.6.2.

3.5.2 Set
The SET operation writes a (key, value) pair to the key-value store. It first
invokes FIND as described in Section 3.5.1, to find either a hash table entry
with a matching key or an empty entry. Regardless of the result, SET then
writes the container with key, value, header and CRC values via RDMA to
its memory region on the server. Afterwards, it tries to change the hash
table entry on the server at the position returned by FIND to point to the
location of the container with an RDMA CAS operation. SET increments
the tag of the new hash table entry compared to the current one to prevent
the ABA problem as described in Section 3.4. The deleted bit of the new
hash table entry is not set. If SET writes the new hash table entry to an
empty hash table position, it writes a key-value pair with a new key to the
key-value store.

If SET overwrites an occupied hash table entry whose deleted bit is not
set, SET overwrites another key-value pair with the same key. If SET over-
writes an occupied hash table entry whose deleted bit is set, it overwrites
a key-value pair with the same key that is already deleted. When the CAS
fails, another client or the server modified the hash table entry since FIND
has read it. In this case, SET starts again from the beginning, including the
FIND. It is not sufficient to just overwrite the now current hash table entry
as it might represent another key.

If a client disconnects during a SET, the hash table remains in a valid
state. If the client disconnects before he issues the CAS, he may have
written data to his region, but no other client will read it as there is no
hash table entry for it. If a client disconnects during the CAS, the CAS
either succeeds and the hash table entry points to the container that the
client has written before, or the CAS does not succeed and the hash table
entry remains untouched. In both cases the hash table is in a valid state.

3.5.3 Get
The GET operation retrieves the value for a given key from the key-value
store. First, GET invokes FIND. If the FIND operation for the given key
returns an empty hash table entry or an occupied hash table entry whose
deleted bit is set, GET is done and returns. Otherwise, GET loads the value
data and its CRC from the container in the server memory that the hash

22 CHAPTER 3. DESIGN

table entry returned by FIND points to. When the read CRC matches the
calculated CRC for the read value, GET returns the value string. If the CRC
values do not match, GET restarts for the same reasons as described in
Section 3.5.1.

3.5.4 Delete
The DELETE operation marks a hash table entry on the server as invalid if
the entry represents a (key, value) pair for a given key. To locate such an
entry if present, DELETE calls FIND. When find does not return an occupied
hash table entry or if it returns a hash table entry whose deleted bit is
already set, DELETE is done and returns. If FIND returns an occupied
entry whose deleted bit is not set, it tries to swap the hash table entry
on the server with a copy of the old one whose deleted bit is set via
an RDMA CAS. If the CAS fails, DELETE starts again including the find
operation for the same reason as the SET operation that we describe in
Section 3.5.2. DELETE cannot erase the hash table entry that it wants to
delete by, for instance, overwriting it with zeros. The entry may be part
of a collision chain for a different key. When DELETE sets it to zero, the
FIND algorithm as described in Section 3.5.1 will terminate upon this entry,
discarding all collision chain entries that may lie behind the zeroed entry.
This means that DELETE would delete more than the one desired entry
from the key-value store while leaving unused but live entries in the hash
table.

If a client disconnects during a DELETE, the hash table remains in a
valid state. If a client disconnects during the CAS, the CAS either succeeds
and the hash table entry is marked as deleted, or the CAS does not succeed
and the hash table entry remains untouched. In both cases the hash table
is in a valid state.

3.5.5 Lock-Freedom and Concurrency
The SET, GET, and DELETE operations are lock-free to each other. Lock-
freedom means that if multiple clients compete for a resource, one client
will always make progress in finite time [31]. Assuming that the underly-
ing RDMA operations will always finish in finite time, the only point in
the algorithms where the clients may fall into a loop is the CAS operation
at the end of SET and DELETE, where the clients compete for the values of
the hash table. GET does not have a CAS operation. For SET and DELETE

3.5. CLIENT HASH TABLE OPERATIONS 23

we can see that if a client repeats an operation because of a failed CAS,
another client or the server must have changed the underlying value in the
meantime. A changed hash table entry means another client or the server
has finished its CAS and therefore its operation. That one of the clients or
the server finished his operation satisfies the condition for lock-freedom
as described by Herlihy [31].

When using CAS, one has to deal with the ABA problem [1]. The ABA
problem can occur when multiple clients perform a CAS operation on the
same memory location. Consider client 1 reading the memory location as
value A, which he wants to use in a CAS. Then client 2 compare and swaps
the same location to B, and in another CAS back to value A. When client
1 now performs its CAS, it will succeed though the value has changed
twice in the meantime. In our scenario the hash table entries contain
pointers to containers with (key, value) pairs. When a client alters a hash
table entry that changed twice since the client read the entry, hey may
therefore operate on a hash table entry that points to a container in the
same memory location as the original container, but contains a different
key. This may happen because the region that holds the original container
could be garbage collected in the meantime, and another client could refill
the then empty region.

There are techniques to avoid the ABA problem like tagging [26],
hazard pointers [50] or the Pass the Buck algorithm [32]. For our design
we choose the tagging technique to avoid the ABA problem because in
contrast to hazard pointers or the Pass the Buck algorithm, it requires no
additional RDMA operations to guard a hash table entry.

When a client reads container data from the server memory, the con-
tainer data may be corrupted. This may happen when a client reads
a pointer to a container from the hash table and then pauses. In the
meantime, the region that holds the container gets garbage collected and
another client reuses it afterwards. The other client fills it with containers.
If the original client then reads from the region, he may read a different
container or nonsense data as the pointer he read may not point to the
header of a container.

To prevent a client from using corrupted data, the container that holds
key and value is self-verifying, and therefore protected by three CRC values.
Figure 3.2 shows the data structure. The first CRC value guards the header
data which consists of key and value length. The second CRC value guards
the key, and the third CRC value guards key and value.

As described in Section 3.5.1 and Section 3.5.3, a CRC mismatch in

24 CHAPTER 3. DESIGN

data read from the server memory results in a restart of the operation
that encounters the CRC mismatch. This may lead to a client constantly
restarting operations because other clients or the server change the data
the client wants to read before he can finish the read. This behavior is
similar to SET where clients compete for the hash table entries with CAS
operations as it also implies that other clients finished their operations in
the meantime.

3.6 Server Hash Table Operations
While the clients perform the SET, GET, and DELETE operations without
invoking the server process, there are two tasks the server has to carry
out. He has to reply to region allocation and deallocation requests as
described in Section 3.3 and he has to perform the garbage collection of
released regions. The garbage collection comprises the actual garbage
collection that we describe in Section 3.6.1 and the hash table cleanup that
we describe in Section 3.6.2.

3.6.1 Garbage Collection

When a client releases a region and returns the ownership back to the
server, the server garbage collects all live data from the region. The data
in the region may consist of live data or garbage – containers that are no
longer referenced through the hash table. Each live container has a hash
table entry pointing to it, which is not marked as deleted. When there is
no hash table entry with a pointer to a certain container, this container is
considered garbage. To collect the live data the server walks the hash table
and inspects the pointers in the hash table entries. If the hash table entry
points to the region on which the server performs a garbage collection,
the server copies the referenced container to the server region. The server
has to collect all referenced containers, even when the hash table entry
that points to a container carries the deleted flag. If he does not collect
such a container, a client that walks a collision chain containing the entry
will read an invalid pointer. As the clients that walk a collision chain only
inspect the keys in containers, the server only copies the header and key
portion of a container if the corresponding hash table entry carries the
deleted flag.

3.6. SERVER HASH TABLE OPERATIONS 25

In contrast to the clients, the server can employ normal memory opera-
tions, whereas the clients would have to use an RDMA operation. After
the server finished copying the container he performs a CAS on the hash
table entry that pointed to the original container, updates its pointer and
increments its tag. When the CAS fails, another client has already altered
the hash table entry which means it now points to a container in another
region. The container in the region that the server garbage collects has not
to be collected any more because it is outdated. The server then continues
to walk the hash table until he has inspected all entries.

The garbage collection runs in parallel to answering requests for al-
location and deallocation of regions. It does not block the flow of client
operations.

The type of garbage collector we employ is called a generational semi-
space garbage collector [42, 72]. The work the garbage collector has to do
on a garbage collection is proportional to the amount of live data in the
region to collect, as the garbage collector will only copy the live data of
a region to another region. The garbage collector does not check data
that is not referenced by the hash table. The garbage collector does not
have to operate on once collected data unless the region in which the data
lies is full and has to be garbage collected. As Buytaert et. al. argue, to
reduce the work that a garbage collector has to do, one can increase the
size of the regions and mature space [15]. Larger regions mean that the
time between two garbage collection grows, while the amount of live data
the garbage collector has to collect stays the same. Though, increasing
region or mature space size means that the number of available regions
and therefore the number of possible clients shrinks. Therefore, the size of
regions and mature space has to be adjusted to the number of clients, the
size of available memory, and the particular workload.

3.6.2 Hash Table Cleanup
When a client deletes a key he cannot just empty the corresponding
hash table entry as the entry may be part of a collision chain and clients
would not be able to find keys behind the deleted key in the collision
chain afterwards. Hash table entries to deleted and not subsequently
overwritten keys may therefore over time pollute the hash table with
unusable entries [41]. To clean the hash table from deleted entries our
server performs a periodic cleanup. The cleanup starts when the number
of deleted entries in the hash table reaches a certain threshold. The server

26 CHAPTER 3. DESIGN

walks the hash table and looks for deleted entries. When he finds a deleted
entry he starts to set the lock bit of the deleted entry and all subsequent
entries of the collision chain including the first free one after the collision
chain with a CAS. The clients will not alter the hash table entries with the
lock bit set, so the server can operate on them exclusively. The server then
clears the locked part of the hash table and rehashes all live entries inside
and inserts them again into the locked part of the hash table. When the
clears the hash table, he increments the tags of all locked hash table entries
to avoid the ABA problem. When the server finishes the rehashing, there
are no deleted entries left in the locked part of the hash table. Then, the
server unlocks the locked hash table entries in reverse order of locking.

Chapter 4

Implementation

In this chapter we discuss parts of the implementation of the Falafel design.
We implemented Falafel for the InfiniBand network. We first provide a
performance evaluation of our InfiniBand hardware in Section 4.1. Then,
we list the limitations that InfiniBand introduces and how we worked
around them in Section 4.2. In Section 4.3, we describe the optimizations
that we added to the Falafel prototype that are specific to our implementa-
tion and hardware. We also present a list of features that we’d like to see
implemented in hardware in Section 4.4.

4.1 InfiniBand Characteristics
To set a context for implementation of the Falafel prototype, we run a
series of benchmarks on our InfiniBand setup. We explain our hardware
in detail in Section 5.1.

We first test the achievable RDMA latency of our setup. Then we
measure the achievable throughput and bandwidth and show how the two
are related.

We test the latency of RDMA read and write operations from 4 B to
1024 KiB. We run a server process on one node, and a client process on a
different node. The client process performs consecutive RDMA operations
on the same position in the address space of the server process. The
client waits for every operation to finish before issuing the next one. For
every kind of operation and size we perform 1 Mops (1 000 000 operations)
and take the median of the measured values. Figure 4.1 shows the test
results. An RDMA read operation of 4 B takes 2.8 µs and an RDMA write
operation of the same size takes 1.8 µs. When we increase the amount

27

28 CHAPTER 4. IMPLEMENTATION

of transferred data on both operations, the latency increases linearly for
both operations up to 6.3 µs for an RDMA read of 4 KiB and 5 µs for an
RDMA write of the same size. The gradient of the latency increase for
larger transfer sizes lowers for both operation types at 4 KiB transfer size.
We believe that this change in gradient is the result of the maximum transfer
unit (MTU) that is set to 4 KiB. In InfiniBand, the MTU is the maximum
payload size a single packet can contain. The gradient for both operation
types then stays constant up to the end of our measurement range of
1024 KiB. The measured latency increases faster for RDMA reads than for
RDMA writes. At 1024 KiB an RDMA read is 13 µs slower than an RDMA
write. The difference at 4 KiB is 1.3 µs. The size RDMA CAS operations is
fixed to 4 B. The latency for such an operation is 3 µs.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

t
i
m
e

i
n

µ
s

value size in KiB

Latency of RDMA read and write operations

read
write

Figure 4.1: RDMA read and write latency between two nodes for 4 B to
16 KiB.

To test the bandwidth and throughput of one node in our InfiniBand
setup, we run four server processes on one host node and connect to them
with four client processes from one other client node each. We measure
the achieved bandwidth and throughput for each client node and coalesce
them to the total value. Figure 4.2 shows the results of our benchmark.

For a 4 B value size the InfiniBand NIC on the host can sustain 29 Mops/s
on RDMA writes. The bandwidth in this case is 111 MiB/s. For RDMA
reads the NIC on the host reaches 15.9 Mops/s for a 4 B value size at a

4.2. LIMITATIONS 29

 0

 5

 10

 15

 20

 25

 30

 35

 0 512 1024 1536 2048
 0

 1

 2

 3

m
i
l
l
i
o
n

o
p
e
r
a
t
i
o
n
s

p
e
r

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

i
n

G
i
B
/
s

value size in B

RDMA operation Count and Throughput by Value Size

RDMA write operations
RDMA write throughput
RDMA read operations
RDMA read throughput

Figure 4.2: RDMA read and write throughput and bandwidth for 4 B to
2 KiB.

bandwidth of 60.6 MiB/s. When the value size increases the operations
throughput decreases while at the same time the bandwidth increases.
Throughput and bandwidth show properties of logistic growth: Their gra-
dient is large close to zero while showing asymptotic behavior for large
value sizes. The maximum achieved bandwidth is 3.1 GiB for RDMA reads
as well as RDMA writes.

On our InfiniBand NIC, we achieve a maximum of 2.5 Mops/s of
compare and swap (CAS) operations.

4.2 Limitations
During the implementation of our design we faced two limitations re-
garding the atomic operations provided by InfiniBand that are induced
by the hardware: The size of an atomic CAS is limited to 64 bit, and the
InfiniBand CAS instruction is not atomic to the CPU CAS instruction. In
this section we discuss how we worked around these limitations and how
they influence different parts of the Falafel prototype. We first discuss
the effects for the hash table entry in Section 4.2.1 and the way we address
memory in Section 4.2.2. Then we explain why a client has to send a
periodic heartbeat signal to the server in Section 4.2.3. Finally, we describe

30 CHAPTER 4. IMPLEMENTATION

Memory Offset Tag

32 bit 30 bit

L/D

Figure 4.3: A 64-bit hash table entry. The first 32 bits contain the address
to the key-value data structure. The following 30 bits contain a tag, the
remaining 2 bits form the lock and the deleted bit.

how the server process uses CAS in Section 4.2.4.

4.2.1 Hash Table Entry Field Size
InfiniBand supports 64-bit CAS operations. Following our design Sec-
tion 3.4 we have to fit a memory pointer, a tag, a lock flag and a deleted
flag into the 64 bits so that the client can alter a hash table entry with a
single CAS. The size of a pointer on x86_64 architecture is already 64 bit.
We therefore have to compromise on the size of the fields to fit them all
into the available 64 bit. Therefore, we limit the size of the memory pointer
to 32 bit and the size of the tag to 30 bit. The lock flag and the deleted flag
take one bit each. Figure 4.3 shows the resulting layout of a hash table
entry.

4.2.2 Addressable Memory
The 32 bit pointer in the hash table entry cannot address an arbitrary
memory location in the 64 bit-wide server address space because the
pointer size is too small. To be able to address the container data in the
server address space, we treat the former memory pointer as a memory
offset to a memory chunk in the server address space in which all container
data and the hash table are located. To make this work, the server allocates
a contiguous chunk of memory and keeps all data structures that the
clients need to access in this chunk.

All InfiniBand RDMA operations require the absolute addresses of the
containers in the server address space. The client therefore calculates the
absolute addresses of the containers in the server address space using the
memory offset in the hash table entry and a base pointer that points to the
beginning of the memory chunk in the server address space. The server

4.2. LIMITATIONS 31

sends a pointer to the beginning of this memory chunk to the client when
the client establishes a connection to the server.

Limiting the size of the pointer offset also limits the amount of ad-
dressable memory. With a 32 bit offset size we can byte-address 4 GiB of
memory. To overcome this limitation, we choose to address larger chunks
of bytes with the memory offset instead of single bytes. For chunks of 8 B,
the memory offset in our Falafel prototype can address 32 GiB of memory.
For chunks of 64 B which is the space overhead of a key-value container
the memory offset can address 256 GiB.

4.2.3 Client Heartbeat
We need the 30-bit tag in the hash table entry to avoid the ABA problem
as we describe in Section 3.5.5. The 30-bit tag can hold 230 different values.
As we see in Section 5.4 the maximum throughput for SET operations
is 1.93 Mops/s. Assuming all clients write the same key, the tag would
overflow after 536.8 s, opening the possibility for a client to experience the
ABA problem. We explain the ABA problem in Section 3.5.5.

To avoid the ABA problem we require every client to send a heartbeat
message to the server every 500 s that assures that the client is not per-
forming an operation at the moment. As a client always loads the hash
table entry he will operate on at the beginning of an operation, he may
only operate on a hash table entry that is under 500 s old. Therefore he
will not experience a tag overflow to the same value that he read at the
beginning of his operation when other clients change the hash table entry
in the meantime. So, the ABA problem cannot occur.

The server has a timeout value for each client that resets on every
received heartbeat. If a client does not send the heartbeat message in the
500 s window and the timeout on the server fires, the server closes the
connection to the client. This ends all open operations on the client, also
preventing the ABA problem. The 500 s window fits our hardware. On
different platforms with different throughput one must adjust the time
window.

4.2.4 Compare-And-Swap on the Server
When the server process performs a garbage collection he has to alter the
pointers in hash table entries of live data to point to the new locations
of the containers that the server copied to the mature space before. The

32 CHAPTER 4. IMPLEMENTATION

update of a hash table entry has to be atomic to the clients accessing the
hash table over InfiniBand. Otherwise, a client may read partially written
data from the hash table. Our server CPUs feature a cmpxchg instruction
which makes it possible to perform CAS operations that are atomic on the
x86_64 server CPU.

On our combination of InfiniBand NIC, CPU and Mainboard, the
InfiniBand CAS instruction is not atomic to the CPU CAS instruction.
Therefore the server process has to use the InfiniBand CAS operation to
alter hash table entries. The latency of an InfiniBand CAS operation is
higher than that for a CPU CAS instruction. To hide the higher latency
of the InfiniBand CAS, instead of waiting for the result of every CAS
operation, server process issues multiple InfiniBand CAS instructions
after another before checking on the result of the first operation. As a
downside, the pipelining of CAS operations may lead to more garbage in
the mature space. A failed CAS during the garbage collection indicates
that a client altered a hash table entry during the garbage collection of this
hash table entry and the garbage collector does no longer have to collect
the container for this hash table entry. The garbage collector therefore
might reuse the space of the container that he needlessly copied to the
mature space before he issued the CAS, but that only works when the
garbage collector waits for the result of every CAS operation. If we start
the collection of another entry and the CAS of this subsequent garbage
collection succeeds, the space after the needlessly copied container is
occupied. Therefore the garbage collector could only reuse the space
of the needlessly copied container instead of an arbitrarily sized space
beginning at the start address of the needlessly copied container. The
garbage collector would also have to remember the position and length
of the containers for which he does not know the result of the CAS yet.
We choose the benefit of the pipelined CAS instructions over the ability to
easily reuse the space of needlessly copied containers and omit the reuse
of the space of needlessly copied containers.

The InfiniBand standard optionally allows for InfiniBand CAS opera-
tions that are atomic to CPU CAS operations [6]. Hardware other than
ours may support this feature so the garbage collector could use the CPU
CAS instruction which is faster than the InfiniBand CAS instruction.

4.3. OPTIMIZATIONS 33

4.3 Optimizations
We optimize our implementation of Falafel in several ways which we
discuss in this section: We describe the use of pipelining for RDMA
operations to hide the RDMA latency in Section 4.3.1, the use of special
CPU cyclic redundancy check (CRC) instructions in Section 4.3.2 and
several kinds of readahead to improve performance in Section 4.3.3. These
optimizations are specific to our hardware and may not be beneficial or
possible on other hardware.

4.3.1 RDMA Pipelining
When RDMA operations do not depend on the results of the previous
RDMA operations, we issue all of these RDMA operations in a batch.
Thereby we can partially hide the latency of the RDMA operations follow-
ing the first one. This pipelining approach is limited by the need to collect
the results of the RDMA operations in the same order as they were issued,
as the InfiniBand specification dictates.

We also eagerly renew client memory regions. A client requests a new
region from the server when the filling level of the client region reaches
a certain threshold. This way the client does not have to wait for this
operation to finish when his current region is full.

4.3.2 CRC Hardware Instructions
Each time a client writes or loads a container or part of a container to or
from the key-value store he has to calculate the CRC values of header,
key and value. During our tests we found that the calculation of the CRC
value in software made up a significant share of the client processing time,
limiting the client’s throughput. We therefore use the CRC32 hardware
instruction of our Intel CPU for this calculation, which eliminates the
throughput limitation because of the CRC calculation.

4.3.3 Readahead
To retrieve the key or value to a hash table entry a client reads the corre-
sponding container that the hash table entry points to. At this stage, the
client does not know about the length of key or value, and therefore about
the length of the container. Without readahead, the client then first loads

34 CHAPTER 4. IMPLEMENTATION

the fixed size header which contains the length of key and value, and then
the rest of the container. With readahead, the client reads more than the
length of the container speculating that this readahead will be sufficient to
load the container, or just the key at the beginning of the container, which
is sufficient for some operations like DELETE.

When the readahead is sufficient, the client can omit the second RDMA
read operation to load the remaining container data from the server
memory. Our analysis of RDMA latency and bandwidth in Section 4.1
shows that the additional transfer time for a small increase in transfer size
is shorter than the time an additional RDMA operation takes.

When the client looks for a key in the hash table, he first loads a chunk
of the hash table from the server memory starting at the position that the
hash of the key indicates. Instead of a single hash table entry, the client
loads a chunk of entries, which saves subsequent load operations on the
following hash table entries if the client encounters a collision chain. If
there is a full hash table entry at the hash table index that the hash of
the key provides, the client inspects the subsequent hash table entries
before loading the first container. If the hash table entries form a collision
chain, the client not only issues an RDMA load for the container that
corresponds to the first hash table entry, but for containers that correspond
to subsequent hash table entries, too. This way the client does not have to
wait a full RDMA load round trip time until he can inspect a subsequent
key.

We base this pre-loading of containers on the average number of probes
required until the client finds a matching key as described by Knuth [41].
He predicts the average number of probes to find a matching key as:

Cn ≈
1
2

(
1 +

1
1− α

)
Here, α is the load factor, a value ranging from 0 to 1 indicating how

much of the available hash table entries are full. This prediction assumes
that the key can be found in the hash table. We optimistically assume that
this is the case for every key the client is looking for. As the client can only
load integral numbers of keys, we round up Cn to:

Nn =

⌈
1
2

(
1 +

1
1− α

)⌉

4.4. PROPOSED HARDWARE FEATURES 35

4.4 Proposed Hardware Features
In this section we list the features that would either improve the imple-
mentation of Falafel or enable us to choose a better approach.

The compromises we have to make to fit the hash table entry fields into
the 64-bits CAS size of InfiniBand could be resolved with a double-word
128 bit CAS (DCAS). This would make room for a complete pointer rather
than just an offset. We would also be able to fit in a tag large enough
so that we could omit the heartbeat mechanism. If the two words of the
DCAS could be addressed separately, it would be easily possible to use
other hash table designs like closed addressing with collision chains that
has better performance characteristics on higher load factors. Greenwald
presents a linked list algorithm depending on DCAS [27].

Atomic InfiniBand instructions that are also atomic to the CPU and
other InfiniBand NICs in one server would allow to incorporate the host
CPU more into the data processing by using the CAS instruction of the host
CPU and increase the bandwith and throughput to other nodes by adding
more InfiniBand NICs. An InfiniBand NIC that is capable to saturate the
network for small packet sizes would also increase the throughput, as
small packet sizes are common for our usage scenario.

36 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

To explore the performance characteristics of our design, we evaluate the
Falafel prototype on an InfiniBand cluster. We specify our experimental setup
in Section 5.1. We present evidence for variations in the InfiniBand RDMA
operation latencies in Section 5.2 and show that they are important for our
evaluation context. In Section 5.3, we examine whether Falafel conforms to
the theoretical costs per operation for our hash table design. We perform
a set of microbenchmarks on the Falafel prototype. In Section 5.4, we
present our findings regarding the achievable throughput of the Falafel
prototype. The benchmarks in Section 5.5 are focused on latency.

5.1 Experimental Setup
We run our tests on an InfiniBand cluster with up to 6 nodes. Five of
the nodes are equipped with an Intel Xeon E3−1230 CPU, one with
a Intel Xeon E3−1220CPU. All of them have access to 16 GiB of RAM
and a Mellanox ConnectX-3 InfiniBand network interface card (NIC)
(MCX353A−QCBT Rev. A2 with firmware 2.10.2280). The InfiniBand
NICs are connected through a single Mellanox 8-port InfiniBand switch
(MIS5022Q−1BFR Rev. A5). The maximum transfer unit (MTU) of the
InfiniBand NICs is set to 4096 B. The NICs are connected via PCIe 2 to a Su-
permicro X9SCM−F motherboard. The nodes run 64-bit CentOS 6.5 with
Linux kernel 2.6.32−431.5.1.el6 .x86_64 [2]. On each node, we deactivated
the dynamic in-kernel CPU frequency scaling so that the nodes with Intel
Xeon E3−1230 CPUs constantly run at a CPU frequency of 3.2 GHz and
the node with Intel Xeon E3−1220 CPUs at a CPU frequency of 3.1 GHz,
respectively. We also deactivated Intel Turbo Boost on all nodes, which

37

38 CHAPTER 5. EVALUATION

would allow the CPUs to run above their specified maximum frequency
depending on power, current and temperature limits. Hyperthreading,
which provides two hardware threads per physical core is enabled on all
nodes with an Intel Xeon E3−1230 CPU, while the Intel Xeon E3−1220
CPU is not capable of Hyperthreading.

On each test run we use one of the nodes to run the Falafel server
process and the remaining nodes to run the required number of client
processes. We start at most one process per hardware thread. During
our tests, we allow no other processes to run on the nodes apart from
the Falafel processes and the system processes. In all tests we configure
the Falafel server to have access to a memory chunk of 2 GiB and set the
hash table size to 220 entries. The initial mature space size is 256 MiB. All
clients run with adaptive pre-lookup that we explain in Section 4.3.3.

Throughout the tests we focus on SET and GET operations. DELETE
operations are the same as SET operations without the RDMA write for
the new container. We will see in Section 5.5 that we can approximate a
DELETE operation with a SET operation with a very small key and value,
because we can hide the latency of this RDMA write through pipelining.

5.2 InfiniBand Noise
During our tests we experienced several different latency variations in
the InfiniBand RDMA operations. In this section we want to give two
examples of the latency variations that we observed and show how to
provoke them with a series of RDMA, host, and messaging operations. We
can not explain the source of these latency variations yet. We assume that
the variations are the result of NIC-internal caching and communication
overhead between NIC and CPU. We consider explaining the source of the
observed latency variations as out of scope for this thesis. These results are
relevant to our evaluation as combinations of RDMA, messaging, and host
operations are common during the Falafel operations. We use the RDMA
read operations as an example, as the majority of the RDMA operations in
the Falafel operations are RDMA reads.

We use the same benchmark as in Section 4.1: A client performs 10 000
consecutive 64 B RDMA read operations on the same memory location
in the address space of a server process on a different node. Figure 5.1a
shows the raw results of the test run.

We see that the latency for a 64 B RDMA read is around 2.9 µs. Also,

5.2. INFINIBAND NOISE 39

 0

 1

 2

 3

 4

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

t
i
m
e

i
n

µ
s

number of operation

Duration of 64B RDMA read operations
with 0B flush

(a) Consecutive RDMA read opera-
tions.

 0

 1

 2

 3

 4

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

t
i
m
e

i
n

µ
s

number of operation

Duration of 64B RDMA read operations
with 64B flush

(b) With 64 B memset between two
RDMA read operations.

Figure 5.1: Raw latency results of 64 B RDMA read benchmark. The
benchmark comprises 10 000 RDMA reads to the same memory location.

the variance between the measure points is low with only a few outliers.
This is the result that we expect after our measurements in Section 4.1.

Now we modify the benchmark, so that the client performs a message
exchange with the server between two RDMA operations. Before the
server sends a reply to the client, he performs a 64 B memset to a memory
location that the client does not read from and is not in the same memory
page as the location the client reads from. Figure 5.1b shows the raw
results for the test run of the modified benchmark.

We see that due to the additional InfiniBand and host operations the
latency of the RDMA read operations decreased to around 2.3 µs. Again,
the measurements are very uniform but more operations deviate from the
median than in the unmodified test run.

We extend the benchmark again, so that the client now performs an
RDMA read and an RDMA write operation in addition to the message
exchange with the server and the memset on the server side between two
RDMA read operations. We call the combined operation of RDMA read,
write and message exchange with memset on the server a flush. The client
performs the RDMA read and write operations of the flush on a different
location in the server virtual address space than the RDMA read operation
which latency we measure. The RDMA read and write, as well as the
memset of the flush are of the same size. The RDMA read of which we
measure the latency is of the same size as before, 64 B. Figure 5.2 shows
the raw results for two different sizes of intermediate operations.

For a flush size of 3 MiB we observe two bands of latencies in the plot

40 CHAPTER 5. EVALUATION

 0

 1

 2

 3

 4

 5

 6

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

t
i
m
e

i
n

µ
s

number of operation

Duration of 64B RDMA read operations
with 3072KiB flush

(a) With 3 MiB flush between two
RDMA read operations.

 0

 1

 2

 3

 4

 5

 6

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

t
i
m
e

i
n

µ
s

number of operation

Duration of 64B RDMA read operations
with 7168KiB flush

(b) With 7 MiB flush between two
RDMA read operations.

Figure 5.2: Raw latency results of 64 B RDMA read benchmark. The
benchmark comprises 10 000 RDMA reads to the same memory location,
with a flush comprising an RDMA read, an RDMA write and a memset
with variable size between the 64 B RDMA read operations.

of the raw results. We show this in Figure 5.2a. The latency of the RDMA
read operation alternates in intervals of around 500 consecutive operations
between 2 µs and 3 µs. The latencies in the lower band are lower than our
results from the previous test with a 64 B memset and the consecutive
RDMA reads without intermediate operations. The latencies in the upper
band are higher than the latencies in our test with consecutive RDMA
reads.

When we increase the flush size to 7 MiB, we see a shift in the latencies.
The majority of measured latencies lies in two continuous bands at around
3.5 µs and 4 µs. There are two additional, less pronounced bands at 3 µs
and 5.1 µs. The measured latencies in the two major bands are higher than
the measured latencies in the previous tests.

We conclude that there are variations in the latencies of RDMA opera-
tions and that they appear under circumstances that are similar to a run
of the Falafel prototype. We expect them to influence the results of our
evaluation benchmarks.

5.3 Lookup Cost
Knuth shows that a hash table with open addressing and linear probing as
used in Falafel has distinct performance characteristics [41]. In this section
we compare the performance of the Falafel prototype to the characteristics

5.3. LOOKUP COST 41

given by Knuth.
The number of lookup operations for a search in the hash table de-

termines how long a SET, GET or DELETE will take, not including the time
it takes to transfer the value for SET or GET. Knuth predicts the average
number of required lookups in the hash table in case of a successful search
as:

Cn ≈
1
2

(
1 +

1
1− α

)
Here, α is the load factor, a value ranging from 0 to 1 indicating how

much of the available hash table entries are full. The number of required
lookups in the hash table in case of an unsuccessful search is given as:

C′n ≈
1
2

(
1 +

(
1

1− α

)2
)

We experimentally confirm that our client is in line with the number of
lookups per operation as predicted above, depending on the load factor
of the hash table. We fill the key-value store with a set of key-value
pairs until the hash table reaches a certain load factor and then perform
GET operations on the hash table, recording the number of lookups that
each GET operation takes. To measure the number of lookups in case of a
successful search, we perform the GET operations on the same set of keys
that we filled the hash table with. To measure the number of lookups
in case of an unsuccessful search, we perform the GET operations on a
different set of keys than the one we filled the hash table with. For this
test, we deactivate the adaptive pre-lookup on the client.

Following Knuth, we count load operations on keys as lookup. Therefore,
load operations on (key, value) containers count as lookup, not the initial
load of a hash table chunk. As a client can determine whether a hash table
entry is empty by testing if the pointer in the entry points to a container
or not, a client does not have to perform a load on a container in this case.
The operations that Knuth describes do not make this distinction, so we
have to modify Knuth’s C′n by an offset of one:

C′′n ≈
1
2

(
1 +

(
1

1− α

)2
)
− 1

For successful lookups we run the test for load factors from 0.01 to 0.91
in 0.01 increments. For unsuccessful lookups we run tests with load factor

42 CHAPTER 5. EVALUATION

from 0.01 to 0.73 in 0.01 increments. In both cases, the maximum load
factor equals a predicted average lookup count of 6, which we choose as
upper limit to keep the test duration manageable. Figure 5.3 shows the
average number of lookups in comparison to the ideal values as given by
Knuth. The data points are average values over 10 different key sets.

For both successful and unsuccessful lookups, we calculate the coeffi-
cient of determination [44]. The coefficient of determination indicates how
much of the observed data is explained by the given equations Cn and
C′′n . The measured data fits well to the predicted values. The coefficient
of determination is 0.9999 for the successful lookups which means that
we can explain 99.99 % of the measured data through the prediction. For
unsuccessful lookups the coefficient of determination is 0.9999

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
u
m
b
e
r

o
f

l
o
o
k
u
p
s

load factor

Average Number of Lookups for Find

unsuccessful search
successful search

observed lookups for successful search
observed lookups for unsuccessful search

Figure 5.3: Average number of observed lookups for a successful and
unsuccessful find in comparison to the ideal values as predicted by Knuth.

As stated above, Figure 5.3 shows the results for the average number
of lookups depending on the hash table utilization. Though, lookups
may consist of several RDMA operations. Figure 5.4 shows the average
number of RDMA operations from the same test as above depending on
the hash table utilization. Due to the initial load of a hash table chunk, we
assume that the average number of RDMA operations will increase by one
compared to the average number of lookups. The equation for successful
lookups is then:

5.4. THROUGHPUT 43

C′′′n ≈
1
2

(
1 +

1
1− α

)
+ 1

While the number of required RDMA operations for an unsuccessful
search should be described by C′n.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
u
m
b
e
r

o
f

r
d
m
a

o
p
e
r
a
t
i
o
n
s

load factor

Number of required RDMA operations for find

unsuccessful search
successful search

observed RDMA operations for successful search
observed RDMA operations for unsuccessful search

Figure 5.4: Average number of observed RDMA operations for a successful
and unsuccessful find in comparison to the ideal values as predicted by
Knuth.

Again we calculated the coefficient of determination to see how well
the measured data fits the predicted values. For successful lookups the
coefficient of determination is 0.9996 and for unsuccessful lookups it is
0.9998 , which means the equations C′n and C′′′n describe the behavior of
the Falafel prototype very well.

We see that our Falafel prototype matches the theoretical performance
characteristics as given by Knuth for a key-value store with a hash table
that uses open addressing and linear probing.

5.4 Throughput
We evaluate the achievable number of operations, the throughput of our
Falafel prototype. We describe the benchmark that we use in Section 5.4.1.
In Section 5.4.2 we present our findings for the throughput of a single

44 CHAPTER 5. EVALUATION

client, and for multiple clients in Section 5.4.3. In Section 5.4.4 we discuss
the influence of the hash table load on throughput.

5.4.1 Throughput Benchmark
In our benchmark, one or more clients perform SET and GET operations on
the server. All clients decide randomly which operation to choose but use
the same percentage of SET and GET operations. Each client operates on
its own working set of keys. The clients load the keys before the test run.
Each key is 14 B in size, each value is 24 B in size. The resulting container
is 80 B in size. We choose this small key-value size because the workload
analysis of Atikoglu et. al. indicates that small keys and values make
up a significant share of the workload of key-value stores [7]. We set the
readahead to 100 B, sufficient to load a complete container. The clients
loop over the keys of their respective working set to decide which key they
will perform a SET or GET on next. The total amount of keys is 10 % of
the available hash table entries, keeping the load factor at 0.1. With more
clients, the working set of each client gets smaller. Clients perform the
SET and GET operations sequentially. Each client loops over the keys in his
working set, approximating a linear distribution of keys.

5.4.2 Throughput for a Single Client
We measure the achievable throughput for one client with our Falafel
prototype. We expect to get two reference points, one for only SETs, and
one for only GETs. As the client performs all operations consecutively, the
remaining measure points that mix SETs and GETs should represent the
weighted average between these two reference points. Figure 5.5 shows the
measurements. For each percentage of SET operations, the client performs
1 000 000 million operations (1 Mops).

For a workload with only SET operations, the client reaches 98 kops/s.
The throughput reaches 147 kops/s for a workload with only GET opera-
tions. This is the result of the shorter GET operations in comparison to SET
operations as we show in Section 5.5.

We test whether the remaining values form the weighted average.
Through the number of achieved operations, we can calculate that a single
SET took 10.2 µs, while a single GET took 6.8 µs. For a factor g that gives
the fraction of GET operations, the weighted average AS would be:

5.4. THROUGHPUT 45

 0

 50

 100

 150

 200

 0 20 40 60 80 100

K
o
p
s
/
s

get percentage

Falafel Throughput

1 client

Figure 5.5: Throughput for a single client operating on its working set.
The workload consists of reads and writes, with the read percentage on
the x-axis. The hash table load is 10 %, the readahead is set to 100 B. All
containers are less than 100 B in size.

AS =
1 000 000 µs

g ∗ 6.8 µs + (1− g) ∗ 10.2 µs

Again we calculate the coefficient of determination, to see how much
of the measured data we can explain with AS. The coefficient of determi-
nation in this case is 0.9999 which means we can explain 99.99 % of the
measured data with AS.

We see, that the throughput for a single client is well predictable with
a weighed average. It depends solely on the latencies of SET and GET.

5.4.3 Throughput for Multiple Clients
We run our benchmark of Section 5.4.1 for up to 40 clients. Considering
our results for a single client in Section 5.4.2, we expect the throughput
to increase linearly, adding the number of operations per second of the
single client test for every new client until we reach a bottleneck. For a
pure SET workload and our hash table load factor of 0.1, we expect a SET
to comprise an average of 2.06 RDMA operations per lookup, an RDMA
write to write the new container and an RDMA CAS operation to change

46 CHAPTER 5. EVALUATION

the hash table entry. The highest RDMA CAS throughput for one server
node is 2.5 Mops/s as we show in Section 4.1. The limit for other RDMA
operations is higher but a client has to perform a RDMA CAS at the end
of every SET. We therefore expect that the maximum number of achievable
SETs is below 2.5 Mops/s.

For a pure GET workload and the same hash table load factor, we expect
GET to comprise an average of 2.06 RDMA operations per lookup. This is
also the final number of RDMA operations per GET, as the readahead is
sufficient to load a complete container. The highest RDMA read through-
put for one server node in our tests of Section 4.1 is 15.6 Mops/s for a
comparable data size. We therefore expect that the maximum number of
achievable GETs is below 7.26 Mops/s.

Figure 5.6 shows our measurements. We show the operation count per
second of 5 workloads in relation to the number of clients.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

M
o
p
s
/
s

number of clients

Falafel Throughput by Client Count

0% get
25% get
50% get
75% get
100% get

Figure 5.6: Throughput for different workloads by client count, measured
over 1 Mops. For every workload and client count the hash table load
factor is fixed at 0.1. We use five client nodes and distribute the client
processes equally among them. We use a uniform key distribution for SET
and GET.

As expected, the throughput of all workloads increases linearly up
to a certain point when we increase the number of clients. Beyond that
point there is only a slight variation in throughput with additional clients.

5.4. THROUGHPUT 47

The lower the maximum throughput, the less clients we need to reach
it. For a workload with only SET operations the throughput reaches the
plateau of about 1.9 Mops/s with 20 clients. We see that the throughput
for the composed SET operation is 25 % lower than the maximum CAS
throughput.

For a workload with 25 % GET operations we need 25 clients to reach the
plateau of about 2.4 Mops/s. For 50 % GET operations we need 28 clients
for 3 Mops/s and for 75 % GET operations we need 30 clients to reach the
plateau at around 4 Mops/s. When the operation count for a workload
reaches its plateau through the increase of the client count and we add
additional clients, the per-client-throughput decreases.

When we run a workload of only GET operations the throughput con-
tinuously increases until it reaches its peak at 5.2 Mops/s with 31 clients.
This maximum throughput of 5.2 Mops/s is 28 % below the theoretical
limit of 7.26 Mops/s that we calculated above.

Between 34 and 37 clients the throughput for the pure GET workload
drops to 4.2 Mops/s and even further to 4 Mops/s with 40 clients. From 35
to 40 overall clients we run 7 to 8 clients per node. Each client uses several
threads, in particular one thread that performs the RDMA operations and
polls for their results. To make sure that the decrease in throughput is a
network limitation and not the result of some other resource limitation on
the client nodes, we run the same test as above on a single node for 1 to
8 clients. The server process is on a different node as before. Figure 5.7
shows the results of this test. We observe that the increase in operation
count gets lower when we add new clients. Though, for every new client
the overall number of operations per second increases. Therefore, the
non-network hardware limitations on a single client are not the reason
for the decrease in overall throughput that we observe for more than
35 clients.

Our observations show that the Falafel prototype is able to handle
the throughput of multiple clients. The throughput is limited by the
capabilities of the InfiniBand NIC in the server node, not by the other
hardware capabilities of server or clients.

5.4.4 Throughput and Hash Table Load
In Section 5.3 we discussed the increasing cost per operation on an increas-
ing load factor. We show that the cost per operation increases drastically
for higher load factors. In this section we explore the implications of this

48 CHAPTER 5. EVALUATION

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8

M
o
p
s
/
s

number of clients

Falafel Throughput by Client Count
on a Single Node

0% get
25% get
50% get
75% get
100% get

Figure 5.7: Throughput for different client counts and workloads from a
single client node, measured over 1 Mops. For every workload and client
count the hash table load factor is 0.1. We use a uniform key distribution
for SET and GET.

behavior on throughput.

We first examine the throughput implications for a single client. We use
the same benchmark as in Section 5.4.2 but vary the load factor between
runs. We run the benchmark for a load factor of 0.001 and 0.05 to 0.9 in
0.05 increments. Figure 5.8 shows our measurements for pure SET and
pure GET workloads.

For both workloads, we see a degradation of the throughput with
an increasing load factor. This is what we expect due to the increasing
operation cost on an increasing load factor as we discuss in Section 5.3.
Also, the throughput difference between the two workloads becomes
smaller with an increasing load factor. We can explain this with the
search proportion of SET, GET, and DELETE operations, which is the same
for all three operations. The difference in throughput comes from the
RDMA operations that are different for SET, GET, and DELETE. For higher
load factors, the clients spend most of the time of an operation finding
a suitable hash table entry for the key they are looking for. Therefore,
the latency difference of the other RDMA operations that SET, GET, and
DELETE perform become insignificant and the throughput of the SET and

5.4. THROUGHPUT 49

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
o
p
s
/
s

load foactor

Falafel single client throughput by load factor

100% GET workload
100% SET workload

Figure 5.8: Throughput for pure SET and pure GET workloads for a single
client depending on the load factor of the hash table. For each measure
point the client performs 100 Mops. We use a uniform key distribution for
SET and GET.

GET workloads converge.

We perform the same test with 15, 31, and 40 clients. For 31 clients
we achieved the highest throughput in Section 5.4.3, while for 40 clients
we could observe a performance degradation through the high number of
clients. The test with 15 clients showed no abnormality. We present our
results in Figure 5.9.

We see that all workloads and client counts are affected by the increas-
ing load factor, similar to the results of Figure 5.8. The pure SET workload
is less affected than the pure GET workload. We assume that though the
NICs are are bound to a maximum number of RDMA CAS operations,
they still can process additional RDMA read operations. The latency of
the RDMA reads is then hidden through the RDMA CAS until the NIC
is unable to process further RDMA reads on an increasing load factor
and the throughput of the pure SET workload and the pure GET workload
converge.

50 CHAPTER 5. EVALUATION

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
o
p
s
/
s

load foactor

Falafel multiple client throughput by load factor

15 clients 100% GET
15 clients 100% SET
31 clients 100% GET
31 clients 100% SET
40 clients 100% GET
40 clients 100% SET

Figure 5.9: Throughput for pure SET and pure GET workloads for a multiple
clients depending on the load factor of the hash table. For each measure
point every client performs 10 Mops. We use a uniform key distribution
for SET and GET.

5.5 Latency
We evaluate the latency for SET and GET operations for our Falafel proto-
type. We first measure the latency of individual operations and present
our findings in Section 5.5.1. In Section 5.5.2 we evaluate the latency of
SET and GET operations with multiple concurrent clients. In Section 5.5.3
we present our findings regarding the behavior of the Falafel prototype
for various hash table loads.

5.5.1 Latency of Individual Operations
We measure the time it takes a single client to perform SET and GET
operations for different value sizes.

The client performs the respective operations on the key-value store
for three different load factors. The first one resembles an empty hash
table, where the client finds an empty hash table entry for the requested
key. The second one resembles a near-empty hash table with the client’s
working set fully loaded. Here, the client can find the requested key in
the hash table on the first lookup. The third load factor resembles a hash

5.5. LATENCY 51

table with 80 % utilization and the client’s working set fully loaded. He
can find the requested key in the hash table and is likely to run into a
collision chain that requires multiple lookups.

We simulate the hash table load factor. Instead of filling the hash table
for each of the test runs of the second and third case we simulate the hash
table state. We manually insert a collision chain into the hash table and
instruct the client to start the search for an entry to set, get or delete, at
the beginning of the collision chain. In Section 5.3 we examine the number
of required lookups per hash table utilization and provide evidence that
our test setup with the manually inserted collision chain correctly models
the behavior of Falafel with an actually filled hash table.

We measure the latency for different value sizes. The size of the key
that the client is looking for is 12 B, the key size of the other entries is 10 B.
The readahead is set to 512 B. For each level of utilization and value size,
we performed 10 000 runs. Figure 5.10 shows the medians of the measured
data for the respective values.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 128 256 384 512 640 768 896 1024

t
i
m
e

i
n

µ
s

value size in B

Latency of SET and GET operations

SET (insert) empty HT
SET (update) near-empty HT
SET (update) 80% loaded HT
unsuccessful GET empty HT

successful GET near-empty HT
successful GET 80% loaded HT

Figure 5.10: Latency for complete SET and GET operations on Falafel
between two InfiniBand nodes for an empty, near-empty and an 80 % full
hash table. The readahead is set to 512 B. The steep increase in latency
for get operations around 464 B shows that the readahead is not sufficient
from there on.

We see that for all given data sizes the latency for an unsuccessful GET
on an empty hash table remains constant at around 2.3 µs. The reason for

52 CHAPTER 5. EVALUATION

this behavior is the way the client looks up the requested key in the hash
table. When a client begins a SET, GET, or DELETE, he first loads a chunk
of the hash table. In case of an unsuccessful GET on an empty hash table,
the client does not find a valid entry in the hash table and returns from
GET without loading any other data. As GET in this case does not transfer
a variable size of data, the latency remains constant for all value sizes. A
client may encounter an empty hash table entry for all load factors, yet
the probability for this event decreases as the load factor increases.

The latency of an unsuccessful GET that encounters an empty hash table
entry is the baseline latency for all operations. No operation can be faster.
In most cases operations will perform additional RDMA operations that
increase the overall latency. A SET that finds an empty hash table entry
at the position of the key that it wants to write a value for will perform
an additional write and compare and swap (CAS) operation. With the
additional operations, the latency for SET that inserts a new key into the
hash table increases to about 4.5 µs for small values of about 8 B to 1024 B.
If it encounters a full hash table entry at the position it wants to write to,
SET must read the key of the entry from the container the entry points to,
to test if it matches the key it wants to write a value for. Therefore, the
latency for SET that updates an already existing key increases to about
6.8 µs for small values. If SET encounters a collision chain and has to check
all keys along it until finding an appropriate entry to overwrite, the latency
increases again. For a hash table utilization of 80 % and a SET that updates
a key, Knuth predicts an average number of 3 lookups in the hash table
until SET finds a suitable entry [41]. The additional lookups increase the
latency for SET to about 11.8 µs for small values.

When GET finds a full hash table entry in the hash table at the position
it is looking for a key, it loads the container for that entry and all containers
for subsequent full entries until it either finds the key it is looking for
or reaches the end of the collision chain. In contrast to SET which has
to write a container for the new value to the client region and swap the
hash table entry, GET is done when it loaded the container for the key it is
looking for. Therefore, as can be seen in Figure 5.10, GET operations have
lower latency than SET operations for values up to 446 B. Reading from
a near-empty hash table takes around 4.5 µs, which is 2.3 µs faster than a
SET that overwrites a key in the same hash table. The difference stays the
same for a hash table utilization of 80 %, where the GET takes 9.5 µs.

When the 512 B readahead is not effective anymore to load the complete
container of the requested key, the latency for GET increases by the amount

5.5. LATENCY 53

of an RDMA read round trip. This happens at a value size of 464 B where
the size of the value plus header and CRC values in the container add
up to 520 B. From the point on the readahead is not effective anymore,
the latency of the additional RDMA read to load the complete container
adds directly to the overall latency of find. In contrast, the pipelining of
RDMA operations that is possible for SET partially hides the additional
write transfer cost for the larger value. Yet, from a value size of around
2 KiB the RDMA write takes too long to be hidden. Its latency then adds
up to the overall latency of SET. Figure 5.11 shows this effect.

The gradient for SET and GET decreases at a value size of 4 KiB. This
decrease is the result of the change in the latency increase of single RDMA
operations that we show in Section 4.1.

SET latency surpasses GET latency in our benchmark at around 15 KiB.
When GET returns a value to the calling process, it passes a pointer to the
library-internal RDMA buffer instead of creating a new buffer. This saves
an unnecessary copy of the value. In contrast, SET first copies a value
that the calling process passes to the library-internal RDMA buffer. This
copy operation yields additional overhead, resulting in a larger increase in
latency for SET in comparison to GET, despite the larger latency increase in
RDMA reads compared to RDMA writes as we show in Section 4.1.

From 15 KiB on, SET and GET latencies increase linearly up to a value
size of 1024 KiB, which is the largest value size that we tested.

Using the same test setup and hash table utilization levels as for SET
and GET above we evaluate the latency of DELETE operations. Figure 5.12
shows the result for value sizes of 8 B to 1024 B. We see that the latency
does not depend on the value size. In contrast to SET or GET, a DELETE
operation doesn’t transfer a variable size of data provided the readahead
is sufficient to load the key in case DELETE has to check the key of a hash
table entry. In our test setup the readahead is sufficient to load the key of
all containers. Therefore the latency of a DELETE operation only depends
on the time it takes DELETE to find the appropriate hash table entry.

For successful DELETE operations where DELETE finds a matching key
to delete, we see that a DELETE operation has approximately the same
latency as a SET for a small value size for the same load factor. They are
similar, because a DELETE operation comprises the same operations as a
SET operation without the RDMA write operations that SET needs to write
the new container data to the server memory. For small value sizes, the
latency of the RDMA write is hidden through pipelining as we can see in
the tests above. Therefore we can approximate the latency of successful

54 CHAPTER 5. EVALUATION

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

t
i
m
e

i
n

µ
s

value size in KiB

Latency of DELETE operations

SET (insert) empty HT
SET (update) near-empty HT
SET (update) 80% loaded HT
unsuccessful GET empty HT

successful GET near-empty HT
successful GET 80% loaded HT

Figure 5.11: Latency for complete SET and GET operations on Falafel
between two InfiniBand nodes for value sizes between 8 B and 16 KiB.
Between 464 B and 15 KiB the GET latency is higher than the SET latency.

DELETE operations with a SET operation with a small value size for the
same level of hash table utilization.

For unsuccessful DELETE operations where DELETE does not find a
matching key to delete, the DELETE operation has the same latency as an
unsuccessful GET operation. GET and DELETE perform the same RDMA
operations in this case. They walk the hash table to find a matching key but
do not find one and return. Therefore we can approximate unsuccessful
DELETE operations with unsuccessful GET operations.

5.5.2 Latency of Concurrent Operations

We evaluate the latency of SET and GET operations when running Falafel
with multiple clients. We use the same test setup as in Section 5.4. Fig-
ure 5.13 shows the results of this benchmark.

We see that for up to 10 clients the latency of SET and GET is nearly
the same. After a certain number of clients, the latency for all workloads
increases. As we can see in Figure 5.9, the number of clients from which
on the latency increases for each workload corresponds with the number
of clients at which the aggregate throughput gained with each client

5.5. LATENCY 55

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 128 256 384 512 640 768 896 1024

t
i
m
e

i
n

µ
s

value size in B

Latency of DELETE operations

unsuccessful DELETE empty HT
successful DELETE near-empty HT
successful DELETE 80% loaded HT

Figure 5.12: Latency for complete DELETE operations on Falafel between
two InfiniBand nodes for a near-empty and an 80 % full hash table. The
readahead is set to 512 B.

decreases. The server NIC is unable to process more RDMA operations,
and therefore each operation takes longer.

Like for the point where the throughput reaches its peak in Figure 5.9,
the point for when the latency increases is different among the workloads.
The higher the percentage of GETs in a workload, the later the latency
starts to increase, and the lower is the increase through the higher client
number. This also corresponds to our throughput measurements, where
workloads with higher GET portion reach a higher throughput.

Figure 5.14a shows the latency of SET operations for different numbers
of clients depending on the percentage of GET operations. For 1 to
15 clients SET latency lies between 8 µs to 10 µs. In this range of number
of clients we observe several types of client behavior that we cannot fully
explain. We see outliers in the measured data for one client though the
measure points are the medians of the measured data. In our tests, these
outliers are not reproducible and are not bound to a specific number of
clients or percentage of get operations. They also appear when we increase
the number of runs from 1 000 000 to 10 000 000 or more. Also, the latency
for one client is higher than for 5, 10, and 15 clients and increases for 10
and 15 clients with higher percentages of GET operations. We attribute

56 CHAPTER 5. EVALUATION

these observations to the InfiniBand noise that we describe in Section 5.2.
For each run with 20 to 40 clients we see that the latency is highest for

a workload with 100 % SET operations. With an increase in GET operation
count in the workload, SET latency decreases. This behavior is bound to the
number of operations that we examine in Section 5.4. For a workload with
100 % SET operations 20 clients already reach the maximum throughput
of 1.9 Mops/s. Additional clients increase the average latency of SET
operations for all clients.

The latency for GET operations shows the same pattern as the latency
for SET operations. We show this similarity in Figure 5.14b. The latency
for GET operations is lower though, which is in line with our observations
of Section 5.5.1.

For the test run with 40 clients we observe that we reach the lowest
latency with a workload with 74 % GET operations. From there on the
latency increases again. For the same number of clients we observe a
decrease in throughput as we show in Section 5.4.3. In Figure 5.13 we
see that the decrease in latency for workloads with 99 % and 100 % GET
percentage becomes more pronounced when we add more clients from
34 clients onwards.

Again we make sure this is a network limitation and not the result
of some other resource limitation on the nodes. As in Section 5.4.3, we
run the same test as above on a single node for 1 to 8 clients. The server
process is on a different node as before. Figure 5.15 shows the results of
this test. On a single node, we observe no increase in latency for SET or GET
operations through the number of clients. Therefore, the non-InfiniBand
hardware limitations on a single client are not the reason for the increase
in overall latency that we observe for more than 34 clients.

5.5.3 Latency and Hash Table Load
As for throughput in Section 5.4.4, we discuss the implications of higher
load factors that we describe in Section 5.3 for the latency of SET and GET
in this Section. We use the same test setup as in Section 5.4.1 and vary the
load factor. We run the benchmark for a load factor of 0.001 and 0.05 to
0.9 in 0.05 increments. Figure 5.16 shows our measurements for a pure
SET and a pure GET workload.

The measurements combine the results of Section 5.3 and Section 5.5.1.
We see the characteristic steep increase in latency from a load factor of 0.7
onwards for both workloads that resembles the higher number of lookups.

5.5. LATENCY 57

The latency for the pure SET workload is higher than the latency for the
pure GET workload as the latency of the single SET operation is higher than
the latency for the single GET operation under the same circumstances, as
we show in Section 5.5.1.

We perform the same test with 15, 31, and 40 clients. For 31 clients we
achieved the highest throughput in Section 5.4.3, while for 40 clients we
observed a performance degradation through the high number of clients.
The test with 15 clients showed no abnormality. We present our results in
Figure 5.17.

The SET and SET latencies for multiple clients behave like the corre-
sponding latencies for a single client. Up to a load factor of 0.6 there is
only a slight increase in latency, followed by an exponential increase for
higher load factors. Similar to our results in Section 5.5.2, the latencies are
higher for runs with more clients.

58 CHAPTER 5. EVALUATION

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

l
a
t
e
n
c
y

i
n

µ
s

number of clients

Falafel SET Latency by Client Count

0% get
25% get
50% get
75% get
99% get

(a) Latency of SET operations by client count.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

l
a
t
e
n
c
y

i
n

µ
s

number of clients

Falafel GET Latency by Client Count

1% get
25% get
50% get
75% get
100% get

(b) Latency of GET operations by client count.

Figure 5.13: SET and GET latency by client count for different workloads.
Measure points are medians of 1 000 000 operations. For every workload
and client count the hash table load factor is 0.1 We use five client nodes
and distribute the clients equally among them. We use a uniform key
distribution for SET and GET.

5.5. LATENCY 59

 0

 5

 10

 15

 20

 0 20 40 60 80 100

l
a
t
e
n
c
y

i
n

µ
s

get percentage

Falafel SET Latency by Workload

1 client
5 clients
10 clients
15 clients
20 clients
25 clients
30 clients
35 clients
40 clients

(a) Latency of SET operations by workload.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

l
a
t
e
n
c
y

i
n

µ
s

get percentage

Falafel GET Latency by Workload

1 client
5 clients
10 clients
15 clients
20 clients
25 clients
30 clients
35 clients
40 clients

(b) Latency of GET operations by workload.

Figure 5.14: SET and GET latency by workload with different numbers of
clients. Measure points are medians of 1 000 000 operations. For every
workload and client count the hash table load factor is 0.1. We use five
client nodes and distribute the clients equally among them. We use a
uniform key distribution for SET and GET.

60 CHAPTER 5. EVALUATION

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8

l
a
t
e
n
c
y

i
n

µ
s

number of clients

Falafel SET Latency by Client Count
for a Single Node

0% get
25% get
50% get
75% get
99% get

(a) Latency of SET operations by
client count for a single client node.

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8

l
a
t
e
n
c
y

i
n

µ
s

number of clients

Falafel GET Latency by Client Count
for a Single Node

1% get
25% get
50% get
75% get
100% get

(b) Latency of GET operations by
client count for a single client node.

Figure 5.15: SET and GET latency by client count for different workloads for
a single client node. Measure points are medians of 1 000 000 operations.
For every workload and client count the hash table load factor is 0.1 We
use a uniform key distribution for SET and GET.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l
a
t
e
n
c
y

i
n

µ
s

load foactor

Falafel single client latency by load factor

100% GET workload
100% SET workload

Figure 5.16: Latency for SET and GET workloads depending on the hash
table load factor. The measure points are medians of the latencies of
100 000 000 operations.

5.5. LATENCY 61

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l
a
t
e
n
c
y

i
n

µ
s

load foactor

Falafel multiple client latency by load factor

15 clients 100% GET
15 clients 100% SET
31 clients 100% GET
31 clients 100% SET
40 clients 100% GET
40 clients 100% SET

Figure 5.17: Latency for SET and GET workloads depending on the hash
table load factor. The measure points are medians of the latencies of
100 000 000 operations.

62 CHAPTER 5. EVALUATION

Chapter 6

Related Work

In this chapter, we discuss key-value stores that influenced the design of
Falafel and how Falafel differs from previous work in terms of memory
management, hash table design, and network access. We divide the related
work into two subgroups: In Section 6.1 we list the key-value stores that
use classical networking. In Section 6.2 we review the key-value stores
that use remote direct memory access (RDMA) [68] on their relation to
our work.

6.1 Key-Value Stores with Message-Based Net-
working

Classical key-value stores such as memcached [21] and redis [62] offer
their functionality over the socket interface [38] to clients. Here, the
server processes requests that he receives from the clients and sends an
appropriate answer. The client has no access to the server memory. For
every request, the client has to pass control and data flow to the server.
Both memcached and redis use a central memory allocator and a central
hash table with closed addressing and collision chains. Despite these
differences to Falafel, these key-value stores share the basic interface of a
network-accessible dictionary with our work.

Rumble et. al. create a log-structured memory management for their
RAMCloud storage system [55, 61]. The log-structured approach for mem-
ory management that is influenced by log-structured file systems [59] is
similar to the way that clients write data to the server memory in Falafel.
Like in Falafel, the RAMCloud memory is divided into regions and the

63

64 CHAPTER 6. RELATED WORK

log structured memory management uses a cleanup mechanism to clean
regions from garbage. Though, in RAMCloud the server process performs
the read and write operations to the memory as RAMCloud relies on mes-
sage passing instead of RDMA. Also, the cleanup mechanism is dedicated
to the replication mechanism of RAMCloud and compacts regions after
cleaning instead of reusing them.

Rumble et. al. modified memcached and replaced the builtin slab
allocator [14] with RAMCloud’s log and cleaner. They show that RAM-
Cloud’s memory management can improve the performance and memory
utilization of the key-value store memcached. Apart from the now simi-
lar memory management, memcached still bears the same differences to
Falafel as discussed above.

Hyeontaek et. al. present a scalable in-memory key-value store called
MICA [45]. They still rely on message passing between server and clients
but use direct network interface card (NIC) access to bypass the operating
system and direct the request packets to distinct CPU cores. Instead of
using a central hash table like Falafel, MICA shards data in partitions
between CPUs so that these can access the data in parallel and therefore
avoids concurrent access within each partition. Similar to Falafel and
RAMCloud, MICA can use a log structured memory management ap-
proach where it stores items in a circular log. In contrast to Falafel and
RAMCloud, this log structured memory management method has cache
semantics where keys may be evicted arbitrarily without explicit request
through a least recently used (LRU) strategy. MICA is optimized for small
key-value data sizes. Hyeontaek et. al. consider a key size of 128 B and a
value size of 1024 B as large. Larger sizes lead to older data being evicted
earlier from the circular log. In contrast, Falafel imposes no special penalty
for larger key-value sizes.

6.2 Key-Value Stores using RDMA
Instead of message passing, some key-value stores use RDMA [68] for the
clients as medium of data access.

Stuedi et. al. modify memcached to use the RDMA capabilities of
SoftiWARP [70] over Ethernet for GET operations [66]. Clients can read
data from the server’s memory with one-sided RDMA operations. Though,
this kind of operation is not always possible and the client might have to
fall back to a message based request, therefore passing the control flow

6.2. KEY-VALUE STORES USING RDMA 65

to the server process. This is not necessary in Falafel. With the modified
memcached, the client still has to perform SET operations on the key-value
store via message passing. The server processes the message and inserts
the new data into the hash table.

Pilaf by Mitchell et. al. is a key-value cache that also features RDMA
read operations for the client [53]. In contrast to the modified memcached
by Stuedi et. al., Pilaf is specifically designed for client RDMA read opera-
tions. Similar to Falafel, clients can perform lock-free reads from the hash
table and data structures directly without involving the server process.
For write operations, however, Pilaf relies on message exchange and a
server-side central memory management. Pilaf uses cuckoo hashing [56]
to limit the worst case number of necessary RDMA lookups in the hash
table.

Dragojević et. al. present a main memory distributed computing
platform called FaRM that also incorporates a key-value store interface [19].
They employ RDMA read and write operations to speed up the key-value
store operations. Like in Falafel, GET operations from the server are lock-
free and are done with one sided RDMA read operations. In contrast
to our work the FaRM server manages the data structures in the server
memory, while clients use RDMA to transfer data during write operations
to an intermediate buffer first. For the FaRM key-value store interface,
Dragojević et. al. use a newly designed hash algorithm that combines
hopscotch hashing [33] with chaining and associativity.

Szepesi et. al. propose a key-value cache named Nessie that shall
make client RDMA writes possible [67]. With cuckoo hashing Szepesi
et. al. try to employ the same hash table design as Pilaf. Apart from
the different hash table design, they also intend to organize the server
memory differently to our design: Instead of memory regions with garbage
collection, clients get a number of fixed-size storage slots. Clients notify
each other about overwritten entries, adding communication overhead
to the SET and DELETE operations. Because of the complexity of cuckoo
hashing paired with CAS-based hash table operations, the hash table in
Nessie may stay in an erroneous state when a client fails during a write
operation. In contrast to our hash table design which shows a continuous
exponential decrease in performance on an increasing load factor, cuckoo
hashing as used in Nessie only requires constant time for most operations
performed on it. With increasing load factor there is a growing chance
that an insert operation cannot succeed without server assistance.

66 CHAPTER 6. RELATED WORK

Chapter 7

Conclusion and Future Work

In this thesis we presented Falafel, a design for an in-memory key-value
store that allows concurrent remote direct memory access (RDMA) reads
and writes by clients. Inspired by previous work such as Pilaf [53] and
FaRM [19] which leverage RDMA read operations to make lock-free GET
operations on the key-value store possible, we use RDMA write operations
to enable lock-free SET and DELETE operations on the key-value store. This
development is driven by the need for faster SET and DELETE operations in
addition to fast GET operations on a key-value store [3, 7, 54].

To make concurrent SET operations possible, we designed a memory
management that provides the client with explicit regions to write to, and
that uses a generational semi-space garbage collector on the server side to
save the data written by clients when their region is full. Our memory
management scheme allows the client to write exclusively to a region of
memory in the server address space, while being able to read the data
written by other clients from their respective regions.

We use a central hash table with open addressing and linear probing that
the clients modify with RDMA compare-and-swap (CAS) operations. The
client SET, GET, and DELETE operations on the key-value store are lock-free
and resilient to client failure.

We implemented the Falafel design in a prototype and added hardware-
specific optimizations. We evaluated the Falafel prototype in a set of
benchmarks and showed that in our hardware environment the prototype
is able to handle up to 5.2 Mops/s GETs and 1.9 Mops/s SETs, in both cases
limited by the InfiniBand NIC on the server node. A client can perform
GET operations on the server that take as low as 4.5 µs and SET operations
that take as low as 6.8 µs. Throughput and latency of our Falafel prototype

67

68 CHAPTER 7. CONCLUSION AND FUTURE WORK

show an exponential decline on higher load factors of the hash table, as
is typical for a hash table design based on open addressing and linear
probing.

In future work we will explore possibilities to reduce the impact of
higher load factors, such as hinting which would speed up the lookup
process in the hash table, and more intelligent readahead that saves transfer
time by adjusting to the size of the key-value data. We also want to
investigate whether the RAMCloud [61] memory can improve memory
utilization in our client. We want to evaluate our Falafel prototype against
other key-value stores such as Pilaf [53] and FaRM [19], and see how
well our approach scales multiple sharded servers. As our design shifts
work from the server to the clients, we want to perform a power-efficiency
comparison against conventional key-value stores.

Bibliography

[1] IBM system/370 extended architecture principles of operation. (SA22-
7085-0), March 1983.

[2] CentOS, 2014. http://vault.centos.org/6.5/.

[3] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayana-
murthy, and Alexander J. Smola. Scalable inference in latent variable
models. In Proceedings of the Fifth ACM International Conference on Web
Search and Data Mining, WSDM ’12, page 123–132, New York, NY,
USA, 2012. ACM. http://doi.acm.org/10.1145/2124295.2124312.

[4] James H. Anderson and Mark Moir. Universal constructions for
large objects. In Distributed Algorithms, page 168–182. Springer, 1995.
http://link.springer.com/chapter/10.1007/BFb0022146.

[5] Austin Appleby. Murmurhash 2.0. 2009.

[6] InfiniBand Trade Association. InfiniBand architecture specification:
Release 1.2.1. November 2007.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint inter-
national conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. ACM.
http://doi.acm.org/10.1145/2254756.2254766.

[8] Pavan Balaji, Hemal V. Shah, and Dhabaleswar K. Panda. Sock-
ets vs RDMA interface over 10-gigabit networks: an in-depth
analysis of the memory traffic bottleneck. In IEEE Cluster 2004
RAIT Workshop (RDMA Applications, Implementations, and Technolo-
gies), 2004. https://nowlab.cse.ohio-state.edu/publications/
tech-reports/2004/balaji-rait04-10gige-tr.pdf.

69

http://vault.centos.org/6.5/
http://doi.acm.org/10.1145/2124295.2124312
http://link.springer.com/chapter/10.1007/BFb0022146
http://doi.acm.org/10.1145/2254756.2254766
https://nowlab.cse.ohio-state.edu/publications/tech-reports/2004/balaji-rait04-10gige-tr.pdf
https://nowlab.cse.ohio-state.edu/publications/tech-reports/2004/balaji-rait04-10gige-tr.pdf

70 BIBLIOGRAPHY

[9] Greg Barnes. A method for implementing lock-free shared-data
structures. In Proceedings of the Fifth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’93, page 261–270, New York, NY,
USA, 1993. ACM. http://doi.acm.org/10.1145/165231.165265.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter
as a computer: An introduction to the design of warehouse-scale
machines, second edition. Synthesis Lectures on Computer Architecture,
8(3):1–154, July 2013. http://www.morganclaypool.com/doi/abs/10.
2200/S00516ED2V01Y201306CAC024.

[11] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and
Paul R. Wilson. Hoard: A scalable memory allocator for multi-
threaded applications. In Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, page 117–128, New York, NY, USA, 2000. ACM.
http://doi.acm.org/10.1145/378993.379232.

[12] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths
and realities: The performance impact of garbage collection. In
Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’04/Performance ’04,
page 25–36, New York, NY, USA, 2004. ACM. http://doi.acm.org/
10.1145/1005686.1005693.

[13] Nanette J. Boden, Alan E. Kulawik, Charles L. Seitz, Danny Cohen,
Robert E. Felderman, Jakov N. Seizovic, and Wen-King Su. Myrinet:
A gigabit-per-second local area network. IEEE micro, 15(1):29–36, 1995.
http://www.computer.org/csdl/mags/mi/1995/01/m1029.pdf.

[14] Jeff Bonwick. The slab allocator: An object-caching kernel mem-
ory allocator. In Proceedings of the USENIX Summer 1994 Technical
Conference on USENIX Summer 1994 Technical Conference - Volume 1,
USTC’94, page 6–6, Berkeley, CA, USA, 1994. USENIX Association.
http://dl.acm.org/citation.cfm?id=1267257.1267263.

[15] Dries Buytaert, Kris Venstermans, Lieven Eeckhout, and Koen
De Bosschere. Garbage collection hints. In High Performance Em-
bedded Architectures and Compilers, page 233–248. Springer, 2005.
http://link.springer.com/chapter/10.1007/11587514_16.

http://doi.acm.org/10.1145/165231.165265
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024
http://doi.acm.org/10.1145/378993.379232
http://doi.acm.org/10.1145/1005686.1005693
http://doi.acm.org/10.1145/1005686.1005693
http://www.computer.org/csdl/mags/mi/1995/01/m1029.pdf
http://dl.acm.org/citation.cfm?id=1267257.1267263
http://link.springer.com/chapter/10.1007/11587514_16

BIBLIOGRAPHY 71

[16] Jacques Cohen. Garbage collection of linked data structures. ACM
Computing Survey (CSUR) 13.3 (1981), 13(3):341–367, September 1981.
http://doi.acm.org/10.1145/356850.356854.

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB.
In Proceedings of the 1st ACM symposium on Cloud computing, SoCC
’10, page 143–154, New York, NY, USA, 2010. ACM. http://doi.acm.
org/10.1145/1807128.1807152.

[18] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Understanding
and effectively preventing the ABA problem in descriptor-based
lock-free designs. In 2010 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), pages 185–192, May 2010.

[19] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. FaRM: fast remote memory. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX, April 2014. https://www.usenix.org/system/
files/conference/nsdi14/nsdi14-paper-dragojevic.pdf.

[20] Jason Evans. A scalable concurrent malloc (3) implementation for
FreeBSD. In Proceedings of the BSDCan Conference, Ottawa, Canada.
Citeseer, 2006. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.61.87&rep=rep1&type=pdf.

[21] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004(124):5–, August 2004. http://dl.acm.org/citation.cfm?id=
1012889.1012894.

[22] A.P. Foong, T.R. Huff, H.H. Hum, J.P. Patwardhan, and G.J. Regnier.
TCP performance re-visited. In 2003 IEEE International Symposium
on Performance Analysis of Systems and Software, 2003. ISPASS, pages
70–79, 2003.

[23] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free dy-
namic hash tables with open addressing. Distributed Comput-
ing, 18(1):21–42, July 2005. http://link.springer.com/article/10.
1007/s00446-004-0115-2.

http://doi.acm.org/10.1145/356850.356854
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-dragojevic.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-dragojevic.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.87&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.87&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://link.springer.com/article/10.1007/s00446-004-0115-2
http://link.springer.com/article/10.1007/s00446-004-0115-2

72 BIBLIOGRAPHY

[24] H. Gao and W. H. Hesselink. A general lock-free algorithm us-
ing compare-and-swap. Information and Computation, 205(2):225–241,
February 2007. http://www.sciencedirect.com/science/article/
pii/S0890540106001234.

[25] David Gay and Alex Aiken. Memory management with explicit
regions. In Proceedings of the ACM SIGPLAN 1998 Conference on Pro-
gramming Language Design and Implementation, PLDI ’98, page 313–323,
New York, NY, USA, 1998. ACM. http://doi.acm.org/10.1145/
277650.277748.

[26] David Gifford and Alfred Spector. Case study: IBM’s system/360-
370 architecture. 30(4):291–307. http://doi.acm.org/10.1145/32232.
32233.

[27] Michael Greenwald. Non-blocking synchronization and system de-
sign. Technical report, Stanford University, Stanford, CA, USA, 1999.

[28] David R. Hanson. Fast allocation and deallocation of mem-
ory based on object lifetimes. Software: Practice and Experience,
20(1):5–12, 1990. http://onlinelibrary.wiley.com/doi/10.1002/
spe.4380200104/abstract.

[29] Timothy L. Harris. A pragmatic implementation of non-blocking
linked-lists. In Distributed Computing, page 300–314. Springer, 2001.
http://link.springer.com/chapter/10.1007/3-540-45414-4_21.

[30] Rolf Hempel. The MPI standard for message passing. In Wolfgang
Gentzsch and Uwe Harms, editors, High-Performance Computing and
Networking, number 797 in Lecture Notes in Computer Science, pages
247–252. Springer Berlin Heidelberg, January 1994. http://link.
springer.com/chapter/10.1007/3-540-57981-8_126.

[31] Maurice Herlihy. A methodology for implementing highly concur-
rent data objects. ACM Trans. Program. Lang. Syst., 15(5):745–770,
November 1993. http://doi.acm.org/10.1145/161468.161469.

[32] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir.
Nonblocking memory management support for dynamic-sized data
structures. 23(2):146–196. http://doi.acm.org/10.1145/1062247.
1062249.

http://www.sciencedirect.com/science/article/pii/S0890540106001234
http://www.sciencedirect.com/science/article/pii/S0890540106001234
http://doi.acm.org/10.1145/277650.277748
http://doi.acm.org/10.1145/277650.277748
http://doi.acm.org/10.1145/32232.32233
http://doi.acm.org/10.1145/32232.32233
http://onlinelibrary.wiley.com/doi/10.1002/spe.4380200104/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.4380200104/abstract
http://link.springer.com/chapter/10.1007/3-540-45414-4_21
http://link.springer.com/chapter/10.1007/3-540-57981-8_126
http://link.springer.com/chapter/10.1007/3-540-57981-8_126
http://doi.acm.org/10.1145/161468.161469
http://doi.acm.org/10.1145/1062247.1062249
http://doi.acm.org/10.1145/1062247.1062249

BIBLIOGRAPHY 73

[33] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing.
In Distributed Computing, page 350–364. Springer, 2008. http://link.
springer.com/chapter/10.1007/978-3-540-87779-0_24.

[34] Yuuji Ichisugi and Akinori Yonezawa. Distributed garbage col-
lection using group reference counting. In Software Science and
Engineering: Selected Papers from the Kyoto Symposia, volume 31, page
212. World Scientific, 1991. http://books.google.de/books?hl=
de&lr=&id=pjf0ENmYEIAC&oi=fnd&pg=PA212&ots=6bkR0AOxPZ&sig=
9Ka4LyYfs4Z3X8ZPJt3Tn02LHcs.

[35] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel imple-
mentations of strong shared memory primitives. In Proceedings of the
Thirteenth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC ’94, page 151–160, New York, NY, USA, 1994. ACM.
http://doi.acm.org/10.1145/197917.198079.

[36] B. Jenkins. A new hash function for hash table lookup. Dr. Dobb’s
Journal, 1997.

[37] J. Jose, H. Subramoni, Miao Luo, Minjia Zhang, Jian Huang, M. Wasi-
ur Rahman, N.S. Islam, Xiangyong Ouyang, Hao Wang, S. Sur, and
D.K. Panda. Memcached design on high performance RDMA capable
interconnects. In 2011 International Conference on Parallel Processing
(ICPP), pages 743–752, 2011.

[38] William Joy, Robert Fabry, Samuel Leffler, M. Kirk McKusick, and
Michael Karels. Berkeley software architecture manual 4.3 BSD edi-
tion. UNIX Programmer’s Supplementary Documents, 1, 1986. http://
dandelion-patch.mit.edu/afs/athena/astaff/project/docsourc/
OldFiles/doc/unix.manual.progsupp1/06.sysman/sysman.PS.

[39] Jonathan Kay and Joseph Pasquale. The importance of non-data
touching processing overheads in TCP/IP. SIGCOMM Comput.
Commun. Rev., 23(4):259–268, 1993. http://doi.acm.org/10.1145/
167954.166262.

[40] Jens Kehne, Marius Hillenbrand, Jan Stoess, and Frank Bellosa. Light-
weight remote communication for high-performance cloud networks.
In 2012 IEEE 1st International Conference on Cloud Networking (CLOUD-
NET), pages 143–147, 2012.

http://link.springer.com/chapter/10.1007/978-3-540-87779-0_24
http://link.springer.com/chapter/10.1007/978-3-540-87779-0_24
http://books.google.de/books?hl=de&lr=&id=pjf0ENmYEIAC&oi=fnd&pg=PA212&ots=6bkR0AOxPZ&sig=9Ka4LyYfs4Z3X8ZPJt3Tn02LHcs
http://books.google.de/books?hl=de&lr=&id=pjf0ENmYEIAC&oi=fnd&pg=PA212&ots=6bkR0AOxPZ&sig=9Ka4LyYfs4Z3X8ZPJt3Tn02LHcs
http://books.google.de/books?hl=de&lr=&id=pjf0ENmYEIAC&oi=fnd&pg=PA212&ots=6bkR0AOxPZ&sig=9Ka4LyYfs4Z3X8ZPJt3Tn02LHcs
http://doi.acm.org/10.1145/197917.198079
http://dandelion-patch.mit.edu/afs/athena/astaff/project/docsourc/OldFiles/doc/unix.manual.progsupp1/06.sysman/sysman.PS
http://dandelion-patch.mit.edu/afs/athena/astaff/project/docsourc/OldFiles/doc/unix.manual.progsupp1/06.sysman/sysman.PS
http://dandelion-patch.mit.edu/afs/athena/astaff/project/docsourc/OldFiles/doc/unix.manual.progsupp1/06.sysman/sysman.PS
http://doi.acm.org/10.1145/167954.166262
http://doi.acm.org/10.1145/167954.166262

74 BIBLIOGRAPHY

[41] D. E. Knuth. The Art of Computer Programming. Sorting and Searching,
vol. III. Addison-Wesley, Reading, 1973.

[42] Henry Lieberman and Carl Hewitt. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM, 26(6):419–429, June
1983. http://doi.acm.org/10.1145/358141.358147.

[43] Jochen Liedtke. Toward real microkernels. Communications of the ACM,
39(9):70–77, 1996. http://dl.acm.org/citation.cfm?id=234473.

[44] David J. Lilja. Measuring computer performance: a practi-
tioner’s guide. Cambridge University Press, 2005. http:
//books.google.de/books?hl=de&lr=&id=R8RLniX5DNQC&oi=
fnd&pg=PR11&dq=measuring+computer+performance+&ots=irFr_
wyquy&sig=PlgDfeqaA2PtNarNHIvXw6f_JNg.

[45] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael
Kaminsky. MICA: a holistic approach to fast in-memory key-value
storage. management, 15(32):36, 2014. https://www.usenix.org/
system/files/conference/nsdi14/nsdi14-paper-lim.pdf.

[46] Jiuxing Liu, Weihang Jiang, Pete Wyckoff, Dhabaleswar K. Panda,
David Ashton, Darius Buntinas, William Gropp, and Brian Too-
nen. Design and implementation of MPICH2 over InfiniBand with
RDMA support. In Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, page 16. IEEE, 2004. http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1302922.

[47] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dha-
baleswar K. Panda. High performance RDMA-based MPI implemen-
tation over InfiniBand. In Proceedings of the 17th Annual International
Conference on Supercomputing, ICS ’03, page 295–304, New York, NY,
USA, 2003. ACM. http://doi.acm.org/10.1145/782814.782855.

[48] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi
Kleen, Orran Krieger, and Rusty Russell. Read copy up-
date. 2001. http://www.ittc.ku.edu/~niehaus/classes/750-s07/
documents/rcu-ols-2002.pdf.

[49] Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek.
CPHASH: a cache-partitioned hash table. In Proceedings of the 17th

http://doi.acm.org/10.1145/358141.358147
http://dl.acm.org/citation.cfm?id=234473
http://books.google.de/books?hl=de&lr=&id=R8RLniX5DNQC&oi=fnd&pg=PR11&dq=measuring+computer+performance+&ots=irFr_wyquy&sig=PlgDfeqaA2PtNarNHIvXw6f_JNg
http://books.google.de/books?hl=de&lr=&id=R8RLniX5DNQC&oi=fnd&pg=PR11&dq=measuring+computer+performance+&ots=irFr_wyquy&sig=PlgDfeqaA2PtNarNHIvXw6f_JNg
http://books.google.de/books?hl=de&lr=&id=R8RLniX5DNQC&oi=fnd&pg=PR11&dq=measuring+computer+performance+&ots=irFr_wyquy&sig=PlgDfeqaA2PtNarNHIvXw6f_JNg
http://books.google.de/books?hl=de&lr=&id=R8RLniX5DNQC&oi=fnd&pg=PR11&dq=measuring+computer+performance+&ots=irFr_wyquy&sig=PlgDfeqaA2PtNarNHIvXw6f_JNg
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-lim.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-lim.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1302922
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1302922
http://doi.acm.org/10.1145/782814.782855
http://www.ittc.ku.edu/~niehaus/classes/750-s07/documents/rcu-ols-2002.pdf
http://www.ittc.ku.edu/~niehaus/classes/750-s07/documents/rcu-ols-2002.pdf

BIBLIOGRAPHY 75

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’12, page 319–320, New York, NY, USA, 2012. ACM.
http://doi.acm.org/10.1145/2145816.2145874.

[50] Maged M. Michael. Safe memory reclamation for dynamic lock-free
objects using atomic reads and writes. In Proceedings of the Twenty-first
Annual Symposium on Principles of Distributed Computing, PODC ’02,
page 21–30. ACM. http://doi.acm.org/10.1145/571825.571829.

[51] Maged M. Michael. High performance dynamic lock-free hash tables
and list-based sets. In Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’02, page
73–82, New York, NY, USA, 2002. ACM. http://doi.acm.org/10.
1145/564870.564881.

[52] Maged M. Michael. Scalable lock-free dynamic memory allocation. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Lan-
guage Design and Implementation, PLDI ’04, page 35–46, New York, NY,
USA, 2004. ACM. http://doi.acm.org/10.1145/996841.996848.

[53] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-
sided RDMA reads to build a fast, CPU-efficient key-value store.
In Proceedings of the 2013 USENIX conference on Annual Technical
Conference, USENIX ATC’13, page 103–114. USENIX Association.
http://dl.acm.org/citation.cfm?id=2535461.2535475.

[54] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski,
Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel
Peek, and Paul Saab. Scaling memcache at facebook. In Pro-
ceedings of the 10th USENIX conference on Networked Systems
Design and Implementation, page 385–398. USENIX Association,
2013. https://www.usenix.org/system/files/conference/nsdi13/
nsdi13-final170_update.pdf?utm_content=buffer6e057&utm_
medium=social&utm_source=twitter.com&utm_campaign=buffer.

[55] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Strat-
mann, and Ryan Stutsman. The case for RAMClouds: scalable high-
performance storage entirely in DRAM. SIGOPS Oper. Syst. Rev.,

http://doi.acm.org/10.1145/2145816.2145874
http://doi.acm.org/10.1145/571825.571829
http://doi.acm.org/10.1145/564870.564881
http://doi.acm.org/10.1145/564870.564881
http://doi.acm.org/10.1145/996841.996848
http://dl.acm.org/citation.cfm?id=2535461.2535475
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf?utm_content=buffer6e057&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf?utm_content=buffer6e057&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf?utm_content=buffer6e057&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

76 BIBLIOGRAPHY

43(4):92–105, January 2010. http://doi.acm.org/10.1145/1713254.
1713276.

[56] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal
of Algorithms, 51(2):122–144, 2004. http://www.sciencedirect.com/
science/article/pii/S0196677403001925.

[57] F. Petrini, Wu-chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The
quadrics network (QsNet): high-performance clustering technology.
In Hot Interconnects 9, 2001., pages 125–130, 2001.

[58] Chris Purcell and Tim Harris. Non-blocking hashtables with open
addressing. In Pierre Fraigniaud, editor, Distributed Computing, num-
ber 3724 in Lecture Notes in Computer Science, pages 108–121.
Springer Berlin Heidelberg, January 2005. http://link.springer.
com/chapter/10.1007/11561927_10.

[59] Mendel Rosenblum and John K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Trans. Comput. Syst.,
10(1):26–52, February 1992. http://doi.acm.org/10.1145/146941.
146943.

[60] Douglas T. Ross. The AED free storage package. Commun. ACM,
10(8):481–492, August 1967. http://doi.acm.org/10.1145/363534.
363546.

[61] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-
structured memory for DRAM-based storage. In Proceedings of the
12th USENIX Conference on File and Storage Technologies, FAST’14, page
1–16. USENIX Association. http://dl.acm.org/citation.cfm?id=
2591305.2591307.

[62] Salvatore Sanfilippo and Pieter Noordhuis. Redis, 2013. http://
redis.io.

[63] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S.
Nikolopoulos. Scalable locality-conscious multithreaded memory
allocation. In Proceedings of the 5th International Symposium on Memory
Management, ISMM ’06, page 84–94, New York, NY, USA, 2006. ACM.
http://doi.acm.org/10.1145/1133956.1133968.

http://doi.acm.org/10.1145/1713254.1713276
http://doi.acm.org/10.1145/1713254.1713276
http://www.sciencedirect.com/science/article/pii/S0196677403001925
http://www.sciencedirect.com/science/article/pii/S0196677403001925
http://link.springer.com/chapter/10.1007/11561927_10
http://link.springer.com/chapter/10.1007/11561927_10
http://doi.acm.org/10.1145/146941.146943
http://doi.acm.org/10.1145/146941.146943
http://doi.acm.org/10.1145/363534.363546
http://doi.acm.org/10.1145/363534.363546
http://dl.acm.org/citation.cfm?id=2591305.2591307
http://dl.acm.org/citation.cfm?id=2591305.2591307
http://redis.io
http://redis.io
http://doi.acm.org/10.1145/1133956.1133968

BIBLIOGRAPHY 77

[64] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, PODC ’95, page 204–213, New York, NY, USA,
1995. ACM. http://doi.acm.org/10.1145/224964.224987.

[65] Galen M. Shipman, Timothy S. Woodall, Richard L. Graham, Arthur B.
Maccabe, and Patrick G. Bridges. Infiniband scalability in open MPI.
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, page 10–pp. IEEE, 2006. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=1639335.

[66] Patrick Stuedi, Animesh Trivedi, and Bernard Metzler. Wimpy nodes
with 10GbE: leveraging one-sided operations in soft-RDMA to boost
memcached. In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, page 31–31, Berkeley, CA, USA,
2012. USENIX Association. http://dl.acm.org/citation.cfm?id=
2342821.2342852.

[67] Tyler Szepesi, Bernard Wong, Ben Cassell, and Tim Brecht. Designing
a low-latency cuckoo hash table for write-intensive workloads. April
2014. http://research.microsoft.com/en-us/events/wrsc2014/.

[68] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. La-
zowska. Separating data and control transfer in distributed operating
systems. In Proceedings of the Sixth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS VI, page 2–11. ACM. http://doi.acm.org/10.1145/195473.
195481.

[69] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Scalable
concurrent hash tables via relativistic programming. SIGOPS Oper.
Syst. Rev., 44(3):102–109, August 2010. http://doi.acm.org/10.1145/
1842733.1842750.

[70] Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. A case for
RDMA in clouds: Turning supercomputer networking into com-
modity. In Proceedings of the Second Asia-Pacific Workshop on Sys-
tems, APSys ’11, page 17:1–17:5, New York, NY, USA, 2011. ACM.
http://doi.acm.org/10.1145/2103799.2103820.

[71] John Turek, Dennis Shasha, and Sundeep Prakash. Locking without
blocking: Making lock based concurrent data structure algorithms

http://doi.acm.org/10.1145/224964.224987
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1639335
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1639335
http://dl.acm.org/citation.cfm?id=2342821.2342852
http://dl.acm.org/citation.cfm?id=2342821.2342852
http://research.microsoft.com/en-us/events/wrsc2014/
http://doi.acm.org/10.1145/195473.195481
http://doi.acm.org/10.1145/195473.195481
http://doi.acm.org/10.1145/1842733.1842750
http://doi.acm.org/10.1145/1842733.1842750
http://doi.acm.org/10.1145/2103799.2103820

78 BIBLIOGRAPHY

nonblocking. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’92, page
212–222, New York, NY, USA, 1992. ACM. http://doi.acm.org/10.
1145/137097.137873.

[72] David Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. In Proceedings of the First ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, SDE 1, page 157–167, New York, NY,
USA, 1984. ACM. http://doi.acm.org/10.1145/800020.808261.

[73] John D. Valois. Lock-free linked lists using compare-and-swap. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’95, page 214–222, New York, NY, USA,
1995. ACM. http://doi.acm.org/10.1145/224964.224988.

[74] Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves
Bekkers and Jacques Cohen, editors, Memory Management, number 637
in Lecture Notes in Computer Science, pages 1–42. Springer Berlin
Heidelberg, January 1992. http://link.springer.com/chapter/10.
1007/BFb0017182.

[75] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In Memory
Management, page 1–116. Springer, 1995. http://link.springer.com/
chapter/10.1007/3-540-60368-9_19.

http://doi.acm.org/10.1145/137097.137873
http://doi.acm.org/10.1145/137097.137873
http://doi.acm.org/10.1145/800020.808261
http://doi.acm.org/10.1145/224964.224988
http://link.springer.com/chapter/10.1007/BFb0017182
http://link.springer.com/chapter/10.1007/BFb0017182
http://link.springer.com/chapter/10.1007/3-540-60368-9_19
http://link.springer.com/chapter/10.1007/3-540-60368-9_19

	Deutsche Zusammenfassung
	Abstract
	Contents
	Introduction
	Background
	Key-Value Stores
	RDMA
	Memory Management
	Hash Tables

	Design
	Application Scenario: In-Memory Key-Value Store
	Design Overview
	Memory Management
	Hash Table Design
	Client Hash Table Operations
	Find
	Set
	Get
	Delete
	Lock-Freedom and Concurrency

	Server Hash Table Operations
	Garbage Collection
	Hash Table Cleanup

	Implementation
	InfiniBand Characteristics
	Limitations
	Hash Table Entry Field Size
	Addressable Memory
	Client Heartbeat
	Compare-And-Swap on the Server

	Optimizations
	RDMA Pipelining
	CRC Hardware Instructions
	Readahead

	Proposed Hardware Features

	Evaluation
	Experimental Setup
	InfiniBand Noise
	Lookup Cost
	Throughput
	Throughput Benchmark
	Throughput for a Single Client
	Throughput for Multiple Clients
	Throughput and Hash Table Load

	Latency
	Latency of Individual Operations
	Latency of Concurrent Operations
	Latency and Hash Table Load

	Related Work
	Key-Value Stores with Message-Based Networking
	Key-Value Stores using RDMA

	Conclusion and Future Work
	Bibliography

