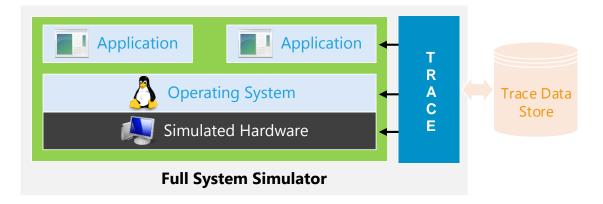


Efficient Full System Memory Tracing with Simutrace

GI Fachgruppentreffen Betriebssysteme (BS) 2014

Thorsten Gröninger, Marc Rittinghaus, Frank Bellosa



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Motivation

- Operating system performance analysis
 - Application and kernel interaction
 - Memory access patterns
 - Cache efficiency

Want to trace and do offline analysis

- Full system simulation is slow (100x)
- Repeatability/reproducibility of experiments/results

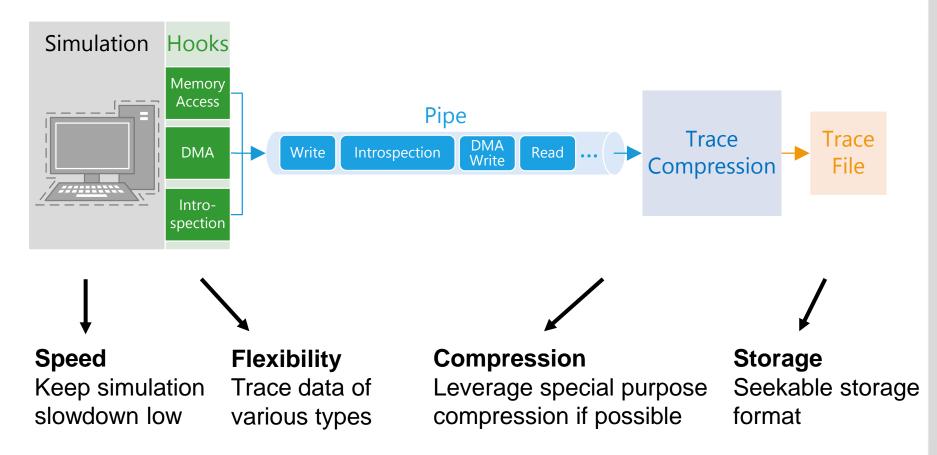
Memory Tracing

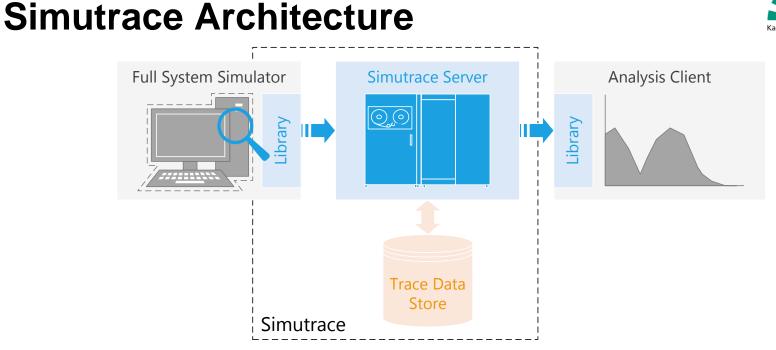
- Want: Record memory accesses and introspection data
 - Correlate operations with processes, memory areas, etc.
- Challenges
 - High event rate: approx. 150 MiB/s (QEmu single-threaded)
 - High amount of data:

Kernel Build	SPEC.h264 (w)	SPEC.gcc
3.6 TiB	11 TiB	8 TiB
150 bil. Entries	360 bil. Entries	310 bil. Entries

We need to compress traces

Memory Tracing


- Simple tracer: pipe data into compressor
 - ± Kernel build (3.6 TiB): 700 GiB (bzip2), 800 GiB (deflate)
 - Simulation slowdown: 7x (deflate)

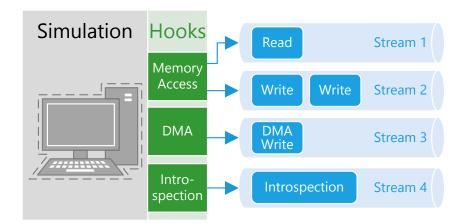

Simulation	Trace Compression and Storage	
10 %	90 %	

We need a more sophisticated approach

Simutrace Design Goals

- Client-server architecture
 - Clients submit or query data
 - Server processes traces and manages storage
- Library in client manages connection
 - Trace data exchange over shared memory or sockets

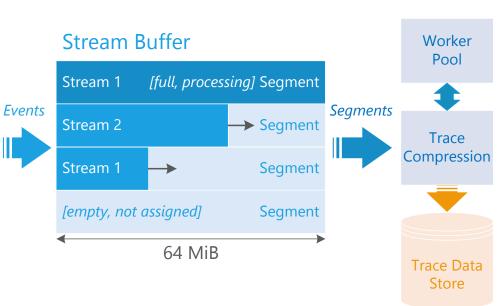
Simutrace – Flexibility


Want: Trace data of various types

- Challenges
 - Entries of different size and compressibility are interleaved
 - Varying number of entries per type

Separate entries of different type

Streams


- Contain only one type
- Group semantically connected entries
- Ease type specific compression
- Ease addition of further data

Simutrace – Speed

Want: Keep simulation slowdown low

- Asynchronous compression
 - Shared buffer (zero-copy)
 - Segment granularity
- Parallel compression
 - Scales with submission rate

- Simulation runs at near full speed
 - Simulation slowdown: 1.1x

SimulationTracing90 %10 %

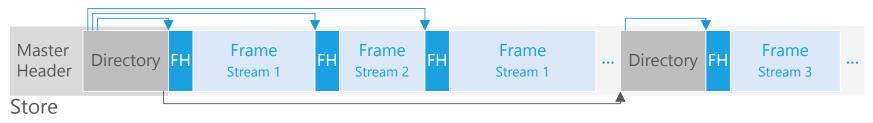
Karlsruhe Institute of

Simutrace – Compression

Want: Leverage special purpose compression schemes

- Compression scheme depends on stream's data type
 - General purpose as default (LZMA)
- Memory access: Modified version of VPC4 (SVPC)
 - Leverages memory access locality
 - Combines prediction-based compression with LZMA
 - Improves compression ratio and speed
- Detailed traces become manageable

	Kernel Build	SPEC.gcc	memtest
RAW	3.6 TiB	8 TiB	308 GiB
Simutrace	110 GiB (1:32)	70 GiB (1:114)	98 MiB (1:3142)



Simutrace – Storage

Want: Seekable storage format

- Record metadata in trace
 - Simulation time, wall clock time, etc.
 - Index to find position in file

We need partial decompression

- Trace: List of compressed segments
 - + Partial decompression
 - Segments have varying size
 - Segments may be in wrong order

Directory for fast discovery

FrameBuffer Content:

[0.274781]	NetLabel: domain hash size = 128
[[[0.2747991	NetLabel: protocols = UNLABELED CIPSOv4
[0.2748571	NetLabel: unlabeled traffic allowed by default
[0.275113]	HPET: 3 timers in total, 0 timers will be used for per-cpu timer
[0.275139]	hpet0: at MMIO 0xfed00000, IRQs 2, 8, 0
[0.2751751	hpet0: 3 comparators, 64-bit 100.000000 MHz counter
[0.2770661	Switching to clocksource hpet
[0.3027061	AppArmor: AppArmor Filesystem Enabled
[0.3027581	pnp: PnP ACPI init
[0.3027991	ACPI: bus type PNP registered
[0.304590]	pnp: PnP ACPI: found 7 devices
[0.304608]	ACPI: bus type PNP unregistered
[0.315054]	NET: Registered protocol family 2
[0.315570]	TCP established hash table entries: 2048 (order: 3, 32768 bytes)
[0.3156651	TCP bind hash table entries: 2048 (order: 3, 32768 bytes)
[0.315726]	TCP: Hash tables configured (established 2048 bind 2048)
[0.315781]	TCP: reno registered
[0.315805]	UDP hash table entries: 256 (order: 1, 8192 bytes)
[0.315849]	UDP-Lite hash table entries: 256 (order: 1, 8192 bytes)
[NET: Registered protocol family 1
I		pci 0000:00:00.0: Limiting direct PCI/PCI transfers
[pci 0000:00:01.0: PIIX3: Enabling Passive Release
ſ	0.3161751	pci 0000:00:01.0: Activating ISA DMA hang workarounds
[0.3163511	Trying to unpack rootfs image as initramfs

Log:

fork(): swapper/0 (PID: 2) => 5 (kthreadd)
fork(): swapper/0 (PID: 2) => 6 (kthreadd)
fork(): swapper/0 (PID: 2) => 7 (kthreadd)
fork(): swapper/0 (PID: 2) => 8 (kthreadd)
fork(): swapper/0 (PID: 2) => 9 (kthreadd)
fork(): swapper/0 (PID: 2) => 10 (kthreadd)
fork(): swapper/0 (PID: 2) => 11 (kthreadd)
fork(): swapper/0 (PID: 2) => 12 (kthreadd)
fork(): swapper/0 (PID: 2) => 13 (kthreadd)
fork(): swapper/0 (PID: 2) => 14 (kthreadd)
fork(): swapper/0 (PID: 2) => 15 (kthreadd)
fork(): swapper/0 (PID: 2) => 16 (kthreadd)
fork(): swapper/0 (PID: 2) => 17 (kthreadd)
fork(): swapper/0 (PID: 2) => 18 (kthreadd)
fork(): swapper/0 (PID: 2) => 19 (kthreadd)
fork(): swapper/0 (PID: 2) => 20 (kthreadd)
fork(): swapper/0 (PID: 2) => 21 (kthreadd)
fork(): swapper/0 (PID: 2) => 22 (kthreadd)

Physical Memory Content: _____ The second second second and the second the second s ------

 CycleCount:
 1,582,727,143

 RealTime:
 00:01:18.036

 SimulationTime:
 00:00:03.141

 Writes:
 326,796,211

 1 Byte Writes:
 70,790,401 (21%)

 2 Byte Writes:
 13,868,141 (4%)

 4 Byte Writes:
 68,339,895 (20%)

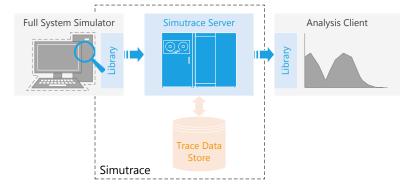
 8 Byte Writes:
 173,797,774 (53%)

Reads:	402,192,802
Written Data:	1,762,268,455 B
Processed Data:	20,343,675,216 B
Total Write Entries:	27,858,951,214
Total Read Entries:	47,602,879,275

Simutrace

Timeline:

Simutrace


Demo

Thorsten Gröninger, Marc Rittinghaus, Frank Bellosa – Simutrace

Conclusion

- Memory tracing puts high pressure on tracing infrastructure
 - Many terabytes of data
 - Billions of entries
- Simutrace: Flexible full system tracing
 - Keeps slowdown at a minimum
 - Delivers high compression
 - Eases access to recorded data
- Will be available as open source
 - http://simutrace.org

Simutrace makes memory tracing efficient

Simutrace in Research

- Student projects at KIT
 - Characteristics of memory duplication
 - Applicability of more accurate page access information
- Analysis of memory duplication on NUMA systems

SimuBoost

- Accelerate full system simulation through massive parallelization
- Significantly increases requirements for tracing infrastructure
 - > 50 simulations in parallel