
A Naming Scheme for libRIPC

Bachelorarbeit
von

Andreas Waidler
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Hartmut Prautzsch
Betreuender Mitarbeiter: Dipl.-Inform. Jens Kehne

Bearbeitungszeit: 12. Juli 2013 – 11. November 2013

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 11. November 2013

iv

Abstract

Future cloud scenarios are expected to be realized in a fashion similar to current
high-performance computers. Instead of using few powerful nodes that are con-
nected by a simple network technology, they are expected to consist of low cost
nodes connected by a network that provides features like user-level I/O or remote
DMA. Processes are distributed individually among these nodes and can migrate
from one node to another, for example due to hardware failure or load balancing.

Efficient inter-process communication requires using operating system or li-
brary functions that take advantage of advanced features of the network and sup-
port persistent addressing of migrated communication partners. To make full
use of advanced features, current high-performance network architectures require
communication to be asynchronous and message-based. However, current operat-
ing systems rely on sockets for remote inter-process communication. Sockets have
synchronous and stream-based semantics, and identify processes by their physical
location. Thus, communication mechanisms of current operating systems are not
suited for future cloud applications.

LibRIPC [4] is an inter-process communication library designed for such cloud
scenarios. LibRIPC provides an interface compatible to the underlying network
hardware and improves performance of cloud applications by taking advantage of
the network’s advanced features. To identify processes, it uses hardware-agnostic
service IDs which it resolves to network addresses by using a simple broadcast-
based scheme. This approach has several disadvantages. First, service IDs are
mere integers and hard for humans to remember. Secondly, broadcasting reso-
lution requests creates communication overhead for all processes in the network.
Thirdly, any response to a resolution requests has to be trusted. Lastly, there is no
mechanism that a process could use to notify communication partners about the
fact that it just migrated to a different host.

This thesis presents a naming scheme for libRIPC that allows processes to
be identified by user-chosen service names instead of service IDs, and a resolu-
tion mechanism that reads network addresses securely from a central directory
in the network. Lookup results in a capability object, which our naming scheme
uses to address communication partners. By sending notifications when a service

v

vi ABSTRACT

migrates to a different host, we enable libRIPC instances of client processes to up-
date their capabilities. By keeping capabilities updated, we ensure that processes
can address services using the same token, regardless of whether the service has
migrated.

We describe how we implemented a prototype using Apache ZooKeeper [3].
While evaluation of this prototype against the current resolver of libRIPC showed
that ZooKeeper-based resolution of service names takes about 35 times the time it
takes to resolve a service ID by using InfiniBand broadcasts, addressing processes
via capabilities instead of service IDs proved to add no overhead.

Deutsche Zusammenfassung

Kommende Cloud-Netzwerke werden voraussichtlich ähnlich wie aktuelle Hoch-
leistungsrechner aufgebaut sein. Anstatt weniger, rechenstarker Knoten werden
voraussichtlich viele leistungsschwächere aber effizientere Prozessoren verwen-
det werden. Einfache Netzwerkhardware wird voraussichtlich durch Hochleistungs-
Netzwerke ersetzt werden. Diese Hochleistungs-Netzwerke bieten Möglichkeiten
wie user-level I/O oder remote DMA. Wegen möglicher Hardware-Defekte oder
Load Balancing kann sich die Adresse eines Dienstes ändern.

Effiziente Interprozesskommunikation in kommenden Cloud-Netzwerken er-
fordert die Verwendung von Betriebssystem- oder Programmbibliotheks-Funktion-
en, die besondere Möglichkeiten der Netzwerkhardware nutzen und es Nutzern er-
lauben, Prozesse zu adressieren, unabhängig davon, wo sich Sender und Empfänger
im Netzwerk befinden. Für bestmögliche Performanz auf aktuellen Hochleistungs-
Netzwerken müssen Schnittstellen für die Interprozesskommunikation für den
asynchronen Versand von abgeschlossenen Nachrichten ausgelegt sein. Aktuelle
Betriebssysteme benutzen jedoch Sockets, welche synchrone Kommunikation über
Datenströme realisiert. Außerdem identifizieren Sockets Prozesse über ihre Adresse
im Netzwerk. Daher sind Kommunikationsmechanismen aktueller Betriebssys-
teme nicht optimal für kommende Cloud-Netzwerke geeignet.

LibRIPC [4] ist eine Kommunikationsbibliothek für kommende Cloud-Netz-
werke. LibRIPC stellt eine Schnittstelle bereit, welche kompatibel zur Seman-
tik der unterliegenden Netzwerkhardware ist. LibRIPC nutzt die Möglichkeiten
der Netzwerkhardware und verbessert so die Performanz der Interprozesskommu-
nikation. Um Prozesse zu identifizieren verwendet LibRIPC hardware-unabhängige
Service-IDs. Diese Service-IDs löst LibRIPC mittels Nachrichten an alle Prozesse
im Netzwerk auf. Diese Herangehensweise an die Adressierung von Prozessen
hat Nachteile. Erstens, Service-IDs sind lediglich Ganzzahlen und lassen sich
von Menschen daher nur schwer merken. Zweitens, Auflösung von Service-IDs
mittels Broadcasts verursacht unnötigen Mehraufwand für alle Prozesse im Net-
zwerk. Drittens, jede Antwort auf einen Broadcast zur Namensauflösung wird von
LibRIPC als authentisch angesehen. Desweiteren bietet LibRIPC keine Möglichkeit,
Kommunikationspartnern mitzuteilen, wenn ein Dienst zu einem anderen Knoten

vii

viii DEUTSCHE ZUSAMMENFASSUNG

migriert ist.
Diese Arbeit stellt ein Modell vor, das es erlaubt, Prozesse die LibRIPC nutzen

mittels frei wählbarer Dienstnamen zu identifizieren. Desweiteren stellt diese Ar-
beit einen Mechanismus vor, der diese Dienstnamen mittels eines zentralen Verze-
ichnisses im Netzwerk sicher zu Adressen auflöst. Ergebnis einer Namensauflö-
sung ist ein Capability-Objekt, welches wir verwenden um Prozesse und Dien-
ste zu adressieren. Indem wir Kommunikationspartner benachrichtigen wenn ein
Dienst migriert, ermöglichen wir betroffenen LibRIPC-Instanzen, ihre Capabil-
ities zu aktualisieren. Dadurch, dass LibRIPC Capabilities aktualisiert, stellen
wir sicher, dass Prozesse weiterhin das selbe Objekt verwenden können um einen
Dienst zu kontaktieren, unabhängig davon, ob dieser Dienst migriert wurde.

Wir beschreiben, wie wir einen Prototypen unseres Modells mittels Apache
ZooKeeper [3] implementierten. Evaluation dieses Prototyps ergab, dass wir im
Vergleich zu LibRIPCs aktuellem Auflösungsmechanismus das 35-fache der Zeit
benötigen um eine Namensauflösung durchzuführen. Dennoch ermöglicht unser
Prototyp das Senden von Nachrichten an über Capabilities adressierte Kommu-
nikationspartner ohne Mehraufwand.

Contents

Abstract v

Deutsche Zusammenfassung vii

Contents 1

1 Introduction 3

2 Background 5
2.1 LibRIPC . 5

2.1.1 Broadcast Overhead . 6
2.1.2 Security Issues . 7
2.1.3 Stale Cache Entries . 8

2.2 Apache ZooKeeper . 9

3 Design 11
3.1 Dynamic Service-Based Architecture 12
3.2 Capability-Based Addressing . 13
3.3 User-Chosen Service Names . 14
3.4 Resolution Service . 14

3.4.1 Request Types . 15
3.4.2 Data Persistence . 16
3.4.3 Design Freedoms . 17

3.5 Security Considerations . 17
3.6 Service Migration . 18
3.7 Future Work . 19

4 Implementation 21
4.1 ZooKeeper Znodes . 22
4.2 Capabilities . 22
4.3 ZooKeeper Watches . 23

1

2 CONTENTS

4.4 Naming Scheme API . 23
4.4.1 ZooKeeper Connection 23
4.4.2 Capability Persistence 24
4.4.3 Service Registration . 24
4.4.4 Service Migration . 26
4.4.5 Service Lookup . 28

4.5 Future Work . 32

5 Evaluation 33
5.1 Short Message Send Performance 33
5.2 Lookup Performance . 35

6 Conclusion 37

Bibliography 39

Chapter 1

Introduction

Future cloud scenarios are expected to be realized in a fashion similar to cur-
rent high-performance computers [2]. Instead of using few powerful nodes that
are connected by a simple network technology, these applications are expected to
consist of low cost nodes connected by a network that provides features like user-
level I/O or remote DMA [4]. To make good use of these features, current high-
performance network architectures require communication to be asynchronous
and message-based [4]. Unfortunately, current operating systems present a socket
interface for remote inter-process communication. Sockets offer only stream-
based communication. Also, applications using sockets identify processes by their
physical location in the network. In future cloud networks, hardware failure of in-
dividual hosts is expected to be more common than in current architectures [4].
Services hosted on these nodes can be restarted on different hosts, resulting in a
change in their address. Furthermore, some applications might migrate processes
between different hosts for load balancing. Without dynamic reconfiguration on
side of the applications, processes in the network can not send messages to that
service anymore.

LibRIPC [4] is an inter-process communication library designed for future
cloud scenarios. It provides a message-based interface and improves the per-
formance of cloud applications by taking advantage of user-level I/O and re-
mote DMA. Instead of using physical network addresses, libRIPC uses hardware-
agnostic service IDs to identify processes. If one process wants to send a message
to another process, it has to know the service ID of the receiver. LibRIPC then re-
solves that service ID to the hardware-dependent network address of the receiver
by sending a message containing that service ID to all processes in the network.
After the process with that service ID has answered with its network address,
libRIPC sends the message to that process. However, this approach has several
disadvantages. First, service IDs are mere integers. They are non-descriptive
and hard for humans to remember. Secondly, since resolution requests are sent

3

4 CHAPTER 1. INTRODUCTION

via broadcast, every process has to deal with every resolution request from any
other process in the network. Broadcasting resolution requests creates communi-
cation overhead that a resolver based on unicasts could avoid. Thirdly, similar to
ARP spoofing [7], any process could maliciously respond to a broadcast and try
to impersonate the service that is to be looked up. Since libRIPC is designed for
networks of mutually untrusted processes [4], its current resolver poses a security
risk. Lastly, when a process migrates to a different host, communication partners
continue to send their messages to the now invalid address. Each communication
partner has to detect this situation and explicity send a broadcast for the process’
new network address.

This thesis presents a naming scheme for libRIPC that tries to solve these is-
sues. For users of libRIPC to be able to address processes in a descriptive manner,
we decided to use strings instead of integers. We call these strings service names.
A service name can only be resolved successfully if any process previously reg-
istered a service with that name at a distributed, central infrastructure. When a
process wants to communicate with another process, libRIPC resolves the name
describing the receiver to the receiver’s actual network address. To avoid com-
munication overhead, this request is sent as unicast to the central infrastructure
in the network. The naming layer then returns a capability object which libRIPC
uses to send messages to that process. Capabilities can be re-used without further
cost, thus avoiding lookup overhead. Similarly, when a process has successfully
registered a service, the naming layer returns a capability object which the process
can use to update the network address of that service in the central infrastructure.
Updating the network address of a service is not possible without the capability
returned by the call to register that service, thus preventing security issues like
man-in-the-middle attacks. When a service changes its network address, for ex-
ample due to migration to a different host, our naming scheme updates the corre-
sponding capabilities of all clients communicating with that service, and notifies
the processes posessing those capabilities.

In Chapter 2, we present the background of this thesis. In Chapter 3, we de-
scribe the design of this naming scheme in detail, including process addressing,
service identification, infrastructure required, security considerations, and han-
dling of service migration, To test our design, we implemented a prototype using
Apache ZooKeeper [3] as central network-internal infrastructure. We describe the
prototype’s implementation in Chapter 4. We evaluate the performance of this
prototype and compare it against the current resolver of libRIPC in Chapter 5.
Chapter 6 presents a conclusion.

Chapter 2

Background

2.1 LibRIPC

Future cloud scenarios are expected to be realized in a fashion similar to current
high-performance computers [2]. Instead of using few powerful nodes that are
connected by a simple network technology, they are expected to consist of low cost
nodes connected by a network that provides features like user-level I/O or remote
DMA [4]. LibRIPC [4] is an inter-process communication library designed for
such cloud scenarios. It provides a message-based interface that maps well to
the semantics of the underlying network hardware. LibRIPC presents an abstract
interface, allowing users to design their applications independently of the actual
network hardware used. Its message sending functions take advantage of user-
level I/O and remote DMA to improve application performance.

LibRIPC uses hardware-agnostic service IDs to identify processes instead of
physical network addresses. If one process wants to send a message to another
process, it has to know the service ID of the receiver. LibRIPC first resolves that
service ID to the hardware-dependent network address of the receiver. When the
service ID has been resolved, libRIPC sends the message to the network address
that it obtained by resolving the service ID. [4] This approach has several bene-
fits. Service IDs free processes using libRIPC from dealing with actual network
addresses and thus from dealing with the actual network hardware. There is no
need for users of libRIPC to know or care about the physical location of com-
munication partners. Applications in cloud networks can be distributed among
computation nodes. When a host fails, its processes can be restarted on different
hosts. In future cloud networks, hardware failure is expected to be more com-
mon [4]. When a process migrates from one node to another, resolution of its
service ID simply results in a different address. Additional services can be added
to an already existing network simply by using new service IDs, existing services

5

6 CHAPTER 2. BACKGROUND

can be removed by stopping the corresponding processes [4]. However, if all the
services in the network are described merely by integers, humans will have a hard
time remembering which integer describes which service. A service ID does not
describe the process it identifies.

To resolve service IDs to hardware addresses, libRIPC sends a broadcast con-
taining the service ID to be resolved. A responder thread in each libRIPC instance
then receives the broadcast and, if it is the intended receiver, answers with a uni-
cast containing the network address of the process. This approach creates several
problems. First, every process is involved in every resolution request, which cre-
ates communication overhead. If the broadcasted service ID does not belong to
a certain process, that process can either discard the resolution request or use the
source service ID the sender attached to fill its local resolver cache. We discuss
this overhead in section 2.1.1. Secondly, every response to a resolution request
is trusted. Since every process in the network receives the broadcast, every pro-
cess could respond with a resolution response. Thus, malicious processes have
the chance to perform a man-in-the-middle attack. We discuss security issues of
the current resolver in section 2.1.2. Thirdly, lookup always has to be explicit.
Clients of a service won’t be notified when the service, for example, migrates to
another host. Since libRIPC caches previously resolved service IDs, the cache
will contain invalid data in this case. Section 2.1.3 discusses the problem of stale
cache entries.

2.1.1 Broadcast Overhead
When sending a message to a service ID, the current resolver in libRIPC uses
a broadcast to request the network address of the corresponding process. This
request is received by every libRIPC instance in the network. Upon reception
of a resolution request, a libRIPC-internal thread decides whether to ignore this
request, use the attached sender service ID and sender network address to fill its
local resolver cache, and/or answer the request with its own hardware address.

Since every process is involved, this approach creates communication over-
head. To mitigate the overhead, the current implementation inserts the sender
service ID and sender hardware address into its local resolver cache, provided
that this service ID is not yet contained in it. Thus, a lookup can be avoided if
the owner of the service ID to be looked up has performed a broadcast while the
libRIPC instance that is about to perform a resolution was already running.

However, the resolver cache is not of much use in certain cases. Consider the
following scenario. A network of many client processes and few services; clients
want to use several of these services. The client processes are periodically stopped
and restarted. For each initial resolution request by a new or restarted client, all
other clients and services will receive the broadcast message. Furthermore, if the

2.1. LIBRIPC 7

clients are communicating with services only, caching the sender service ID of
resolution requests sent by other clients provides no benefit.

Responses to a resolution request are sent as a unicast. The libRIPC instance
corresponding to a the service ID that has been queried sends its response only to
the sender of that broadcast. Thus, when a service is migrated, all of its clients
will have to resolve its service ID again, which results in one broadcast for every
client.

2.1.2 Security Issues

LibRIPC does not use any form of authentication. It follows that every response to
a broadcasted resolution request is trusted and that every process in the network
can respond with such a response. Similar to ARP spoofing [7], attackers can
perform man-in-the-middle attacks. A malicious process can answer resolution
requests with its own network address, resulting in an impersonation or man-in-
the-middle attack. If the attacker’s response is received first, it will be accepted by
the sender of the resolution request. After the resolution request has been handled,
the sender of the resolution request will send its messages to the attacker.

If an attacker has successfully performed an impersonation and the rightful
owner of that service ID is online, the owner will send its hardware address to the
sender of the resolution request as well. The sender of the resolution request will
thus receive another response to the same broadcast in this case. Thus, receiving
two answers to a single broadcast indicates that one of these two responses could
have been malicious. The current scheme could be extended to detect this situation
and drop both addresses. While this modification could be used to detect and
stop attacks after they have occurred, a malicious process would then be able to
perform a denial of service for every lookup. The attacker could send a response
to any resolution request. When the sender of the resolution request receives the
second response, he would invalidate the entry for the service ID in the cache.
Thus, this entry would be invalidated regardless of whether the answer of the
attacker or the one of the victim was received first. Before the sender of the
original resolution request could continue sending messages to that service ID,
another resolution would have to be performed, which would result in the same
problem.

Since libRIPC uses a resolver cache, impersonation or man-in-the-middle at-
tacks are possible in another way. An attacker need not to wait until a resolution
request for its victim is sent, he can also actively inject invalid information into
the network without having to wait for an event. For this purpose, the attacker
attaches the victim’s service ID to an arbitrary resolution request. All processes
in the network will receive this broadcast and insert the mapping of the victim’s

8 CHAPTER 2. BACKGROUND

service ID to the attacker’s network address into their resolver caches if their re-
spective cache does not yet contain an entry for that service ID.

Since libRIPC considers processes to be mutually distrusting [4] and there is
no trusted instance on the network, all simple dynamic strategies to solve these
problems require the victim to be online when using the current broadcast-based
scheme. As soon as a process is not running, any process could take over its
service ID. Without additional precautions taken by the applications, such attacks
on the current resolver can not be noticed.

2.1.3 Stale Cache Entries
Due to reasons like hardware failure or load balancing, processes might be mi-
grated between hosts. In some scenarios, process migrations might occur fre-
quently. Furthermore, processes might crash and take some time to be restarted,
or be restarted on a random host. In the current resolver, clients of a service won’t
be notified when the service is migrating to another host, when it is shutting down
temporarily or when it has restarted on another host. Thus, the resolver caches
of the service’s clients will contain a stale entry in these cases. Since libRIPC
uses asynchronous, unreliable messages [4], sending messages to a service whose
cache entry is stale results in a silent failure. To detect a failure in sending a
message, applications need to implement their own error handling.

If a process implements, for example, timeouts and detected a stale cache en-
try, it has to perform another resolution of the same service ID. Resolution will
result in a different physical address, or no answer at all if that service is down. A
service might be down temporarily during migration. To handle temporary down-
times of the service, processes have to try to resolve the service ID periodically.
Each attempt requires a broadcast to be performed, which results in “polling” for
the new network address by broadcast messages until an answer is received. Hav-
ing to rely on busy waiting via broadcasts creates even larger overhead than using
broadcasts for regular resolution alone.

One possible solution against busy waiting would be to allow applications to
discard entries from libRIPC’s resolver cache. When an application recognizes a
service as being down, it would clear the corresponding cache entry. When migra-
tion is completed, the service would broadcast its new address, either as a special
message or as an attempt to resolve an arbitrary service ID. Since the client then
would not have an entry in its resolver cache for that service ID, it would cache
the new network address of the service that has just been restarted. Additionally,
libRIPC could and should execute a user callback function to notify the appli-
cation of this event. Upon receiving this event, the application would continue
its normal operation. However, the client’s libRIPC instance would behave the
same way if an attacker sends such a broadcast with the goal to impersonate that

2.2. APACHE ZOOKEEPER 9

service. Also, broadcasting the new network address would notify every process
in network. Most of these processes would never contact the service. Thus, the
workaround would solve neither of the two problems we discussed in the previous
subsections.

Thus, if applications do not build additional mechanisms on top of libRIPC,
they will suffer from stale cache entries and silent failures when sending mes-
sages. Detecting and handling this situation inflicts high management overhead
on applications, further communication overhead on the network and additional
latency while waiting for timeouts. We therefore conclude that libRIPC needs a
mechanism for services to notify all communication partners about a change in its
power state or physical location.

2.2 Apache ZooKeeper
ZooKeeper [3] provides mechanisms to coordinate distributed processes. As op-
posed to other coordination mechanisms, ZooKeeper does not provide synchro-
nization primitives but rather exposes an API that lets developers create their
own primitives. ZooKeeper does not provide any locking mechanisms. It rather
presents information created by different processes as a file system like tree hier-
archy called data tree. Nodes in this tree are called znodes. Modification of the
data tree is done in a wait-free manner: Clients can send several asynchronous
read or write requests without having to wait for their completion. Nodes in the
data tree can at the same time contain data and have children. [3]

A ZooKeeper ensemble consists of at least one server. Each ZooKeeper server
instance has a local copy of the data tree and communicates write requests back to
the other servers. ZooKeeper clients connect to an arbitrary server of an ensemble
to establish a session. Once a client has established a session, several properties
hold for this session: First, the client can connect to an any other ZooKeeper
server in that ensemble and still continue using the same session, and thus, the
client will see all changes it made to the data tree while being connected to a
different service. Secondly, multiple requests of that client are processed in the
order they were sent. Thirdly, any read request sent by this client can and will be
satisfied by the ZooKeeper instance the client is currently connected to. Lastly,
any change to the data tree will be sent to all other servers of the ensemble and
thus be visible by all other clients, regardless of which server they are connected
to. [3, 5]

When issuing any kind of read request, clients can set a so-called “watch” by
passing a boolean flag. Clients that have set a watch on a certain znode when
reading its contents or children will be notified when any client changes the data
that was queried. Upon receiving the notification, the client can issue another

10 CHAPTER 2. BACKGROUND

read request to get the latest version of the data, again with the option to request
notification in case of changes. [3, 6]

While supporting fast writes, ZooKeeper was designed for scenarios in which
frequent reads are the common case [3].

Chapter 3

Design

The naming scheme presented in this thesis tries to improve libRIPC’s current
naming and resolution mechanism. Thus, we want to maintain its advantageous
properties.

One benefit of libRIPC’s current approach is its flexibility. Processes can be
added to and removed from an existing network at any time. Our naming scheme
maintains this property and extends it with the differentiation between regular pro-
cesses and services. Thus, libRIPC realizes a dynamic service-based architecture
for networks, as we describe in section 3.1.

Another benefit of the current version of libRIPC is that processes can address
communication partners independently of physical locations. Using capabilities
instead of service IDs allows us to keep addressing transparent. Users can treat
capability objects similarly to service IDs but do not have to know their contents.
We describe how we designed capabilities in section 3.2.

Applications using libRIPC identify services by user-chosen service names. A
service’s name is chosen by the user when he registers that service, thus allowing
services to be identified in a descriptive manner. As we describe in section 3.3, it
is possible to modify the current resolution mechanism to support service names
instead of service IDs. However, all of the other problems of the current resolver
would remain unsolved. Thus, we designed a completely different resolution
mechanism.

To avoid the overhead caused by broadcasts, processes send resolution re-
quests via libRIPC to a central resolution service in the network. Lookup of a
service name succeeds if some process previously registered a service with that
name. To register a service, a process sends a service creation request via libRIPC
to the resolution service. Section 3.4 describes that resolution service in detail.

To decrease lookup overhead even further, successful resolution of a service
name returns a capability object. This object authorizes the process to send mes-
sages via libRIPC to that service, regardless of the service’s physical location.

11

12 CHAPTER 3. DESIGN

Capabilities also allow us to realize security: Upon creation of a service, lib-
RIPC’s naming layer again returns a capability. To publicly update a service’s
network address, a process has to send an address update request to the resolution
service. The resolution service prevents unauthorized updates by ensuring that
this request will only succeed if the process submitting the request possesses the
capability that was returned on creation of that service. We describe our approach
to security in section 3.5.

To be able to provide efficient location-transparent addressing even in the face
of process migration, libRIPC instances have to be notified about changes in the
network address of services they use. Section 3.6 presents our design of this
notification.

There remains further work to be done on libRIPC and this naming scheme,
which we discuss in section 3.7.

3.1 Dynamic Service-Based Architecture

The naming scheme presented in this thesis differentiates between a process and
a service. Services are realized by processes. Each process can provide zero or
more services.

A service is an abstract entity. While each service is provided by at most one
process at any given time, there can be another process providing that service later.
For example, when a process crashes, a different process of the same program can
be created and start providing this service. As long as the protocol between the
service and its clients has been designed with recoverability in mind, communi-
cation between clients and the new instance of the program can continue without
problems. It is also possible to create different implementations (for example dif-
ferent patch-level versions) of one service and switch between them at random by
stopping the current process and executing a different program.

Regular processes have no service name and thus can not be looked up. They
can resolve service names and take part in communication. Like a service can
be realized by multiple processes, each process can provide as many services as
wanted.

Submitting resolution requests is possible for any process in the network.
However, only services can be looked up. Even though regular processes can not
be resolved, bi-directional communication is possible. Every message sent via
libRIPC contains addressing information about the sender, allowing the receiver
to respond to the message.

3.2. CAPABILITY-BASED ADDRESSING 13

3.2 Capability-Based Addressing

To send messages to a process or service, we need some token that addresses a
certain process. Using network addresses only would make the naming scheme
inflexible, as communication would break off and could not be restored when the
receiver is a service that has just migrated. While this form of addressing would
be possible for regular processes because they cannot be looked up anyways, we
decided to make the API of our naming scheme conistent. In other words, a user of
libRIPC has to be able to send messages in a uniform way, regardless of whether
the receiver is a regular processes or a registered service, and regardless of the
current physical location of the receiver.

We chose to use capabilities for addressing communication partners. A ca-
pability contains the network address of the process it references. In case the
capability references a service, the capability additionally contains the name of
the service. In case the capability is obtained by a call to register a service, the
capability additionally contains an access token required for authentication. We
call the latter kind of capability a service management capability. However, the
user of libRIPC does not need to know about the contents or type of a capability.
The user can send messages to a certain process or service via libRIPC if, and only
if, he supplies a capability object that references that process. When the receiver
is a service, the sender does not need to care whether the service has migrated to
a different host. By using an appropriate capability, libRIPC makes sure that the
message will be sent to the endpoint providing that service, even if the endpoint
has changed since the last message sent to that service by that process. Further-
more, capabilities are particularly suited for service management. By having the
service creation functions return a highly-privileged capability for that individual
service, we initially allow only the creating process to manage that service. By us-
ing capabilities for service management as well, our API addresses both processes
and services solely via capabilities and is thus easy to learn and use.

It is up to the user to decide how capabilities are used. For example, a process
can pass a capability to another process, allowing the receiver to contact the cor-
responding process, manage the corresponding service, or do both, depending on
the actual capability.

Using capabilities seperates policy from mechanism. Internals of and imple-
mentation details concerning capabilities are managed by libRIPC. Neither does
the user need to know the contents of capability objects nor how exactly they are
accessed by libRIPC. However, it is up to the user to decide how they are used.
Thus, capabilities allow for fine-grained, dynamic access control.

14 CHAPTER 3. DESIGN

3.3 User-Chosen Service Names
To allow descriptive addressing of services, we want to extend libRIPC to support
user-chosen names to identify services.

There exist several workarounds to add this feature on top of the current re-
solver. As a hack, one could use an additional central C or C++ header file using
enum or #define to define service IDs as constants with “speaking names”.
This header and its corresponding library could also contain a mapping from those
constants to the actual service names as strings. Since clients usually use only ser-
vices that have been planned or designed before or during the time the client was
developed, this header file would contain all services a client might want to use.

A cleaner solution would be to modify the current broadcast scheme to not
broadcast an integer but a string of characters. This string is the name of the
service to be resolved and could have a fixed or maximum length. The libRIPC
instance in the corresponding service would, after receiving the broadcast, respond
with the current hardware address of the process.

There might be other approaches that could be used to realize service names on
top of the current resolver. However, all of the other problems we described would
remain unsolved. Thus, we decided to design a completely different resolution
mechanism.

For this purpose, services are registered at a central network-internal infras-
tructure. A service is registered by a process sending a service creation request
and a string to that infrastructure. That string will be the name of the service after
it is registered. While its contents are arbitrary, in practice, that string is likely to
be hard-coded during development of service and client programs.

Service names identify services like services IDs do. However, as opposed
to the current design, users of libRIPC will not pass them directly to libRIPC’s
message sending functions. Instead, they explicitly perform a resolution of a ser-
vice name, which results in a capability. LibRIPC’s message sending functions
will only require such an object, they will not perform an implicit resolution of
service names. This approach seperates the concerns of resolution and message
sending, and allows for more flexibility in usage while maintainining the level of
abstraction.

3.4 Resolution Service
To prevent the communication overhead of the current resolver, our naming scheme
is designed in a way that communication involves interested processes only. Thus,
libRIPC sends requests relevant for the addressing of services to only one resolu-
tion service. The tasks of the resolution service are maintaining a central directory

3.4. RESOLUTION SERVICE 15

of services names and addresses, and answering requests concerning the address
resolution of those services.

3.4.1 Request Types
There are four kinds of requests the resolution service must understand and handle
properly: Requests to resolve a service name to the current network address of
that service, requests to create a service with a certain name, requests to update
the current network address of a certain service, and requests to delete a certain
service.

Service Name Resolution Request

A resolution request contains a string to be looked up. When receiving a res-
olution request, the resolution service answers with the physical address of the
service with that name, or a descriptive error number. To prevent communication
overhead, this answer is sent only to the libRIPC instance that sent the request.
The libRIPC instance then creates or updates a capability and returns it to the
user.

Service Registration Request

Initially, the resolution service contains no entries. To perform an address resolu-
tion of a certain service, that service first has to be created.

For this reason, a process can send a service registration request. That request
contains the service name. The service creation request is successful if there is not
already a service with that name. When the request was successful, the service
name is stored in the internal directory. Resolution of that service name is then
possible globally. Also, the resolution service responds with an access token used
for authentication. The libRIPC instance that sent this request uses this token to
create a capability which it returns to the user. Thus, the process that created
the service obtains a capability that can be used to update that service’s network
address via address update requests and to delete that service via deletion requests.

Service Address Update Request

To support process migration, a process providing a certain service has to be able
to publicly change the network address of that service. Since this address is stored
by the resolution service, the resolution service has to provide functionality for
changing service network addresses. A service address update request contains
the name of the service to be updated and the new address of that service.

16 CHAPTER 3. DESIGN

The network address of a service can be changed by all processes that possess
the corresponding capability that was returned as response to the registration re-
quest of that service. Note that the process sending the update request does not
need to be the process currently providing that service. For example, scenarios
are possible in which a certain process is responsible for migrating other process.
We call the process responsible for migrating other processes migration service.
If this migration service possesses service management capabilities for the pro-
cesses to be managed, it could update the network addresses of those processes
after having moved them to a different host, thereby making migration—and, thus,
physical location—transparent for the process that is migrated.

Service Deletion Request

Administrators can remove a service by shutting down the process or processes
providing that service. If the administrator removes all client processes of that
service as well, all that remains is the entry of the service name in the data storage
of the resolution service.

In some cases, administrators might want to remove that entry as well, allow-
ing processes to re-register that service name. For that reason, any process that
holds a capability that was returned by the service registration request can delete
that service.

Note that once that service has been deleted, any process in the network is free
to register another service under that name. If there are clients of the old service
left, a malicious process can take advantage of the situation by re-registering that
service name and impersonate the service that has just been deleted.

3.4.2 Data Persistence

The resolution service has to store information about registered services. This
information consists of service names and the current network address of each
service. To support service management capabilities in this distributed setting, the
resolution service also has to store a hash of a large and random identifier for each
service. Posessing this access token allows processes to change the corresponding
service’s network address or to delete that service.

The resolution service has to store this information in a persistent manner, so
that the network survives restarts of the resolution service. Thus, when a service
has been created, that service exists until it is explicitly deleted. Data associated
with that service will only change if a user sends either an address update request
or a service deletion request using the corresponding management capability.

3.5. SECURITY CONSIDERATIONS 17

3.4.3 Design Freedoms

Our design leaves many freedoms for the implementation of the resolution service.
For example, we do not define how or where the information has to be stored.

storage could, for example, be handled by a seperate process. Also, there could be
not just one but several resolver processes in the network. These processes could
employ some form of replication or distribution.

However, a libRIPC instance will always communicate with only one process
of this set. Using two or more resolver processes is possible as long as the in-
formation stored by those processes is consistent. That is, if a request to create a
service was sent to one process of the resolution service and succeeded, there must
be no conflicts if another process has just created a service with the same name via
a different process of the resolution service. Thus, service creation must be propa-
gated to all processes of the resolution service without conflicts. This propagation
must happen in a reasonable amount of time, so that all processes in the network
can resolve the service name and use the service, regardless of which process of
the resolution service they are connected to. Changes in the network address of
a service have to be propagated as well and are more time-critical. When a ser-
vice continues being available on a different endpoint, its clients should receive
information about the change in the services network address as soon as possible.

Furthermore, when a libRIPC instance has created a service, the processes of
the resolution service have to make sure that this libRIPC instance can reconnect
to different server and still be able to manage the newly created service.

3.5 Security Considerations

To guarantee secure operation of cloud applications using libRIPC, we have to
make sure that messages are sent to the intended receiver. Attackers must not be
able to redirect the flow of communication.

By using a central, trusted resolution service and knowing its network address
in advance, there is no possibility for regular processes in the network to attack
the message routing between libRIPC instances and the resolution service. Our
naming scheme thus will not communicate with an attacker during lookup.

To actually prevent man-in-the-middle attacks against communication between
processes, we have to go further and guarantee that the resolution service returns
authenticated information only. Thus, the resolution service must only accept up-
date or delete requests sent by authorized processes. For this reason, a successful
service creation request returns a capability. Updating that service’s address or
deleting that service can only be done by processes that possess this capability.
Also, when a service has been created, processes have to be able to rely on the

18 CHAPTER 3. DESIGN

fact that a simultaneous service creation request for a service with the same name
will not succeed and grant the same rights. When a process tries to register a ser-
vice, that request fails if a service with that name already exists. If one request
succeeded, all requests to create a service with an identical name will fail, regard-
less of the order in which these requests were transmitted and regardless of which
process of the resolution service these requests were sent to.

It is important that the resolution service remembers services from when they
have been created until they are explicitly deleted. If the resolution service would
only keep track of currently running services, an attacker could wait until a service
goes offline temporarily, for example due to a hardware crash, and then register
that service name again with its own network address. Performing man-in-the-
middle attacks would be easy.

3.6 Service Migration
Due to reasons like hardware failure or load balancing, processes might migrate
between hosts. In some scenarios, process migrations might occur frequently.
Furthermore, processes might crash and take some time to restart, or be restarted
on a random host. LibRIPC abstracts from hardware details like a service’s physi-
cal location in the network. It follows that migration of a certain service from one
host to another should not have any noticable impact on clients currently commu-
nicating with that service. It should be possible for communication to continue
without requiring that users of libRIPC intervene and handle this situation. Thus,
to be able to realize reliable, persistent communication, we have to consider these
scenarios.

We designed our naming scheme in a way to automatically perform notifica-
tions when a service continues being provided at a different address. Similar to the
case against broadcasted resolution requests we made, we decided against broad-
casting these notifications. Instead, notifications are sent only to those clients that
are currently interested in an up-to-date network address of the service whose
physical location has changed. To indicate whether a user of libRIPC is interested
in notifications about changes in a service’s physical location, libRIPC passes a
boolean flag when requesting resolution of a service name to that service’s cur-
rently effective physical location. A client is deemed to be interested in notifica-
tions if no previous notification has been sent to this client since it it last indicated
its interest.

Notifications do not contain the new address of the service. They merely
inform a client about the name of the service which triggered the event, and
whether that service has just been created, deleted or whether its address has sim-
ply changed. After receiving a notification, libRIPC can decide whether or not to

3.7. FUTURE WORK 19

perform another resolution of the service name contained within the notification
message. Until this libRIPC instance performs another resolution of that service
name with the flag set to indicate interest in notifications, the corresponding pro-
cess will be regarded as not interested in that service’s current physical location
and thus not receive further notifications. By following this approach, we can pre-
vent superflous notifications, and thus, communication overhead. Until the client
receives a response to a resolution request, it is aware that its local information is
outdated, regardless of how many times the service’s address has changed since
the client received the notification. Once the resolution service has started send-
ing its answer, the client will again be notified if that service changes its physical
location, provided the client indicated further interest. Thus, there are two rea-
sons for clients not receiving information about an intermediate state: disinterest
and slow operation. In both cases, there is no need to send another notification to
that client. As soon as that client performs a resolution, it will receive the latest
information.

To guarantee secure operation of the network, we have to ensure that informa-
tion about service addresses is authenticated. Notifications do not include any ad-
dresses but rather require the affected libRIPC instance to perform another lookup.
Since the information returned by these requests is authenticated, the notification
feature of our naming scheme can not be misused by attackers to inject invalid
addresses.

Notifications are sent upon change in the service’s physical location in the net-
work. Thus, clients are not only notified when a service continues being available
on a different host, but also when that service stops being available at all.

3.7 Future Work
Currently, every process can register any service name that is not yet registered.
Malicious processes could try to exhaust available service names or register ser-
vice names that are similar to names of currently existing trusted services. For
this reason, scenarios might require that creation of services is only allowed after
these requests have been checked by a trusted administrator.

There exists a race condition between message sending and address change
notification. Consider the scenario that a process has looked up a service. Now,
that process sends messages to that service while simultaneously that service mi-
grates to a different host. After the service has logged out and stopped being avail-
able under its old address, the process might not yet have received the notification
about the change in the power state of the service. Thus, some of the messages
the process sends will not reach their destination but result in silent failures. The
process will only become aware of that fact when it received the notification. At

20 CHAPTER 3. DESIGN

that point, however, libRIPC provides no means of reporting which or how many
message sends failed.

Similarly, when a process providing a service crashes or fails to perform a
logout, the service will still be registered as online and reachable under a certain
address. Other processes could successfully perform a lookup but would repeat-
edly fail to send messages. As a consequence, they would have to implement
additional logic to deal with invalid responses of the resolution service. Addition-
ally, if that service is down for a long time, attackers could take note of it and try
to start a malicious process that is reachable under the hardware address of the
defunct service.

Both of these problems could be solved by using “heart beats” or “pings”.
When a process has changed the network address of a service, libRIPC periodi-
cally sends a request to the resolution service. if the resolution service does not
receive such a request withing a certain amount of time, it assumes the corre-
sponding process is dead and will clear the network address of that service. Also,
any process can sent a request to the resolution service indicating that a certain
service appears to be down. The resolution service then sends a message to that
service’s libRIPC instance to check whether it is dead. If so, the resolution service
will clear the network address of that service to reflect that the service is offline.

Chapter 4

Implementation

To test the design of our naming scheme, we implemented a prototype. Imple-
mentation of our naming scheme consists of two major components: extension of
libRIPC and the network-internal resolution service.

Apache ZooKeeper provides coordination mechanisms for distributed pro-
cesses. Our research proved it to be suited for most tasks required from our reso-
lution service. In the following, we show how we configured and used ZooKeeper
to realize our prototype.

Apache ZooKeeper stores data in a filesystem-like hierarchy called data tree.
The data tree consists of so-called znodes. Each znode is discribed by a unique
path and can contain user-chosen data. [3] ZooKeeper controls access to znodes
by using Access Control Lists (ACLs) [6]. In section 4.1 we show how we store
service names and their current network address in ZooKeeper’s data tree and how
we control access to znodes.

We use ZooKeeper to realize central storage of service information in the net-
work. For process-local storage, we designed capabilities as images of znodes.
Our capabilities contain the name of the corresponding service, its network ad-
dress, and all information required to authenticate a client with ZooKeeper. Thus,
they allow for transparent addressing and realize authorization. We describe the
design of our capabilities in detail in section 4.2.

A process starts providing a service by writing its network address into the cor-
responding znode. Persistent addressing of services that have migrated requires
updating process-local capabilities with the latest information contained within
znodes. Thus, to support both service migration and persistent addressing of mi-
grated services, we have to synchronize capabilities and znodes. Section 4.3 de-
scribes how we use ZooKeeper’s notification mechanism to update locally cached
information about services. In section 4.4, we present the API of our naming
scheme and how we use ZooKeeper to update network-global service information
stored within znodes.

21

22 CHAPTER 4. IMPLEMENTATION

4.1 ZooKeeper Znodes
Apache ZooKeeper stores data in a filesystem-like hierarchy called data tree.
Nodes in this tree are called znodes. The structure of the data tree can be modified
dynamically by ZooKeeper clients by creating or deleting znodes. The data tree
is persistent [6]: ZooKeeper periodically creates snapshots and stores them on the
hard disk.

Znodes are referenced by paths similar to file paths in filesystems. As opposed
to traditional file systems, each znode can both have children and store informa-
tion. ZooKeeper clients can read data from and write data into znodes. ZooKeeper
controls access to znodes by using Access Control Lists (ACLs). An ACL is a list
of entries, each consisting of an identifier and a set of permissions [8]. Identifiers
consist of a string describing the authentication scheme to be used and a string
containing credentials required to verify authentication attempts of clients [8].

Since our naming scheme requires network addresses to be looked up by ser-
vice names, we use service names as keys for ZooKeeper. Thus, for each service,
there is a znode that is referenced by the name of the service. That znode con-
tains the corresponding network address. For simplicity, we use the service name
without any modifications to identify the corresponding znode.

To group all services created and managed via libRIPC and to avoid interfer-
ence with other processes using ZooKeeper, we create znodes as children of a
libRIPC base znode. Thus, given a service named S, the ZooKeeper path of the
znode of that service is /libRIPC/S.

4.2 Capabilities
We implemented capabilities as local caches of the network address stored in zn-
odes and as token that authorizes processes to change this data in ZooKeeper.

A capability is a data structure that contains the name of the service it ref-
erences, a cache of its network address, and authorization information. Since
capabilities contain service names, they also identify the corresponding znode.

When creating a new capability to be used to register a service, libRIPC gen-
erates a large and random access token. This token is stored in the capability
and used to create credentials for the ACL of that znode. To modify that znode
after creation, the client has to authenticate itself at the ZooKeeper server it is
connected to. For this purpose, the client needs to supply the correct credentials.
Since the access token is stored within the capability, as long as a client possesses
the capability, it can modify the corresponding znode. While all capability objects
are presented in a uniform manner to the user, in the following, we call such a
capability a service management capability.

4.3. ZOOKEEPER WATCHES 23

Capabilities are stored in user-level. Thus, they are forgeable. However, write
access to znodes is controlled by ACLs in ZooKeeper. A write is only permitted if
the client transmits the correct access token. Since the token is large and random,
we prevent unauthorized modification of znodes, and thus unauthorized changes
in the network addresses of services. In fact, due to the flat and self-contained
structure of capabilities, they can easily be serialized for persistent storage or to
be sent to other processes.

4.3 ZooKeeper Watches

When reading a znode, ZooKeeper clients can indicate their interest in being no-
tified if the data of a znode changes by passing a boolean flag, called “watch”.
While ZooKeeper provides no means to remove a watch that has been set [1],
each watch will only be triggered once.

When a znode is written, ZooKeeper will notify all clients that have set a
watch for this event and znode. This notification will contain the path of the
znode that was changed. It will not contain the new data of the znode. To obtain
that data, ZooKeeper clients have to read that znode manually after receiving the
notification [3].

When reading a znode, the ZooKeeper client library not only allows user to set
a watch, but also to pass a pointer to a “watcher context”. When the ZooKeeper
client receives a notification about the change of a certain znode, the client library
will call the watch event handler once for each call of the read function that passed
a watcher context. The watcher context that the user passed to the read function of
the ZooKeeper client library will be passed to watch event handler as parameter.

4.4 Naming Scheme API

In the following, we describe how we implemented our API by using the Zoo-
Keeper client API. Our API is coarsely divided into connection management
(section 4.4.1), capability management (section 4.4.2), service registration (sec-
tion 4.4.3), migration (section 4.4.4), and lookup (section 4.4.5).

4.4.1 ZooKeeper Connection

Before a process can register or look up services, libRIPC needs to connect to
ZooKeeper. While our prototype connects to ZooKeeper implicitly, the user needs
to specify a list of ZooKeeper servers. LibRIPC stores this string internally and

24 CHAPTER 4. IMPLEMENTATION

adds a globally constant “chroot” suffix. This string will be passed to the initial-
ization function of ZooKeeper’s client library when connecting. Similar to the
Unix command chroot, all path names to znodes sent ZooKeeper by using this
connection will be resolved with the znode referenced by the “chroot” suffix as
“root directory” [6]. Thus, libRIPC won’t accidentally read or write znodes that
are used by other processes accessing the same ZooKeeper ensemble, as long as
those processes do not access libRIPC’s base directory or its children.

When a function of our API is called that requires a call to ZooKeeper to take
place, our prototype first checks whether it is currently connected to ZooKeeper
and, if not, instructs the ZooKeeper client library to establish a connection by
using the previously stored address string. The ZooKeeper client will then connect
to an arbitrary host of this list.

4.4.2 Capability Persistence

Since capabilities are stored in local main memory, a process that possess a certain
capability will lose that capability if it crashes. After that process has restarted,
services that were registered in ZooKeeper before will still exist. If that pro-
cess was the sole process providing a certain service, all management capabilities
for that service will be lost. Data required for authentication to modify the cor-
responding znode was only contained within that capability. Due to the crash,
no process in the network can authenticate itself as “owner” of the correspond-
ing znode. Thus, to prevent loss of authorization for service management, pro-
cesses have to be able to persist capabilities locally. For this reason, we designed
capability_serialize and capability_deserialize. The user of libR-
IPC can call those functions to store an individual capability in an individual file,
or respectively to read an individual capability from an individual file.

4.4.3 Service Registration

Before a certain service name can be resolved successfully, a service with that
name has to be created. A call to service_create registers a service at Zoo-
Keeper by creating a znode with the name of the service.

LibRIPC ensures that after a successful call to service_create, the process
possesses a capability that can be used to manage that service. This capability
grants the process that possesses it permission to change the service’s network
address, to send messages to it, and to receive messages sent to that service.

Note that attempts to serialize that capability could fail, for example if there
is no space left on the filesystem. Even if the process immediately calls cap

ability_serialize after it has registered the service, the process still might

4.4. NAMING SCHEME API 25

crash before it has stored this capability on persistent storage. As a result, Zoo-
Keeper would contain a znode but there would be no process in the network that
is authorized to write into that znode. To prevent this situation from happening,
we designed service_create to expect a capability as parameter instead of a
service name. This capability references the process that is to be registered as ser-
vice. A process can obtain a capability referencing itself by calling capability_
create. capability_create, on the other hand, expects a name as parameter
that identifies the process. service_create will name the service after the pro-
cess identified by the capability passed as parameter. Thus, processes can decide
on a name, create a capability referencing themselves, serialize this capability,
and then try to register a service. Even in case the process crashes immediately
after registering the service and another instance of that program is started, that
instance can deserialize the capability and continue providing that service.

To create a service, service_create ultimately creates a znode in ZooKee-
per. To create a znode, ZooKeeper requires a path name, an ACL, and the data to
store in the znode to be created.

Znode Path Name

We want to store all znodes representing services as children of the libRIPC base
znode. Our connection to ZooKeeper already specifies this znode as “chroot” base
znode. Since all paths in ZooKeeper have to be absolute, we create the znode path
by simply prefixing the service name with a “/”.

Znode ACL

In our setting, we have to consider two roles when creating the ACL for a znode.
First, every process is allowed to look up any service. Thus, every ZooKeeper
client has to be authorized to read the znode to be created. Secondly, modification
of a znode is only allowed for processes possessing the corresponding manage-
ment capability. Thus, the ACL has to contain an entry that authorizes the client
creating the znode to modify the znode afterwards. Other clients must not be au-
thorized to do so, unless this permission has been passed on. Thus, the ACL we
pass to ZooKeeper consists of two entries: The first gives read access to any client,
the second gives read and write accss to all clients that possess the management
capability.

We decided to use the ZooKeeper-builtin “digest” scheme for determining
whether a client possesses the management capability. The digest scheme ex-
pects credentials in ACLs to be made up of a user name, followed by a colon, fol-
lowed by a base64-encoded sha1 hash of user name and password sepearated by
a colon. In pseudo-code: "username:" + base64(sha1("username:pass

26 CHAPTER 4. IMPLEMENTATION

word")). We use the service name as user name. During creation of the capa-
bility, a large and random access token has been generated and stored within the
capability. We supply this token as password.

To modify that znode after its creation, the ZooKeeper client has to authen-
ticate itself at the ZooKeeper server it is connected to. The client authenticates
itself by providing user name and password. Thus, the client has to transmit ser-
vice name and access token. Both service name and access token are stored within
the management capability. Thus, as long as a client possesses the management
capability, it can modify the corresponding znode. Since the access token is prac-
tically unforgeable, we prevent unauthorized modification of znodes, and thus
unauthorized changes in the reporting of service network addresses.

Znode Data

service_create expects a capability as parameter. The process referenced by
this capability is registered as service. Thus, the znode we create initially contains
the network address stored within that capability.

4.4.4 Service Migration
A service migrates to a different endpoint if the process that currently provides that
service is shut down and another process, probably of a different program, starts
providing that service under a different network address, probably on a different
host.

LibRIPC instances of clients of that service have to be notified about the fact
that the service stops being available under its current network address, and, when
another process has taken over, about the new address of the service. For this
purpose, we designed the functions service_logout and service_login, re-
spectively. Both expect the user to supply a management capability and implicitly
authenticate the ZooKeeper client at the server.

Authentication

We change the network address of a service by changing the data contained in the
corresponding znodes. Since writes to znodes are only possible for authenticated
clients, libRIPC checks whether it has performed this authentication during the
current connection to ZooKeeper. If libRIPC did not yet authenticate itself as a
client possessing the right to write this znode, it will add an authentication to the
current connection.

Authentication requires sending the identifier for the scheme to be used, as
well as the credentials to be used for authentication. Contents of the credentials

4.4. NAMING SCHEME API 27

depend on the scheme to be used. LibRIPC uses the “digest” scheme. In this case,
libRIPC has to pass a string consisting of user name and a password sepearated
by colon to the ZooKeeper client library [6]. We created the znode’s ACL with
service name as user name and a randomly generated access token as password.
Since both service name and access token are stored in the capability, all infor-
mation required for authentication is contained within it. LibRIPC uses this data
to create the credentials required by the “digest” scheme. It sends these creden-
tials to ZooKeeper to add authentication information to the current connection.
Afterwards, this ZooKeeper client has write access to that znode.

Service Logout

To notify clients of a service about the fact that the service stops being online, the
process currently providing the service has to pass the management capability to
service_logout.

When service_logout is called, libRIPC first checks whether its ZooKee-
per client is currently connected to a ZooKeeper server and creates a connection,
if necessary. Since writes to znodes are only possible for certain authenticated
clients, libRIPC checks whether it has authenticated itself as a client possessing
the right to write this znode. If libRIPC has not yet performed this authentication
for the current connection to ZooKeeper, it will do so.

To mark the service as offline, libRIPC clears the data contained in the corre-
sponding znode by doing a standard ZooKeeper write with length 0. Writing data
to a znode triggers notifications in ZooKeeper. Thus, when libRIPC has cleared
the address of the service, ZooKeeper notifies all ZooKeeper clients that have set
a watch. The ZooKeeper client executes the event handler of the libRIPC instance
it belongs to. Each libRIPC instance then updates its capability for that service.

Service Login

To start providing a service, a process passes the management capability to ser

vice_login. LibRIPC determines the current hardware address of the process.
Again, libRIPC tries to ensure that it is connected to ZooKeeper and authorized
to change the znode referenced by that capability. Afterwards, libRIPC writes
the network address it has determined into the znode references by the capability.
Writing this address into the znode results in the same event as clearing the con-
tents of that znode. Thus, notifications will be triggered and handled in the same
manner.

28 CHAPTER 4. IMPLEMENTATION

4.4.5 Service Lookup

The primary use case of the naming API is service name resolution. Our API
supports both automatic updates and manual lookup. While the latter performs
service name resolution only once, the former variant additionally requests notifi-
cation in case the service to be looked up changes its physical location or ceases
to exist.

LibRIPC resolves a service name S by trying to read the znode located at
/libRIPC/S. Since the base znode /libRIPC has been set as chroot prefix dur-
ing login to ZooKeeper, libRIPC actually passes the path /S to the client library
of ZooKeeper. If that znode exists, ZooKeeper responds with the data contained
in the znode and the ZooKeeper client library writes this data in a buffer supplied
by libRIPC. The ZooKeeper client library responds with a result code indicating
success or the type of error that occured. If reading the znode was successful,
libRIPC stores this network address in a capability. This capability will then be
returned to the user. It can only be used to send messages to the network address
currently providing that service. It cannot be used to receive messages sent to that
service, manage that service’s network address, or delete it. Lookup fails if no
service with the specified name is currently registered. That is, if no znode with
that name exists. Lookup succeeds even if the service is currently offline. In that
case, the corresponding znode does not contain data. LibRIPC will return a capa-
bility for this znode nevertheless. Combined with automatic updates, this feature
allows users of libRIPC to wait for startup of a certain service.

It is possible to resolve a single service name several times and thus obtain
multiple capabilities for the same service. Users can decide to use manual lookup
for some capabilities and automatic updates for others. Additionally, the update
dynamics of each capability can be changed individually from manual lookup to
automatic updates.

In the following, we describe manual lookup and automatic updates of capabil-
ities in detail, and how users can switch dynamically between those mechanisms
for individual capabilities.

Manual Lookup

The user can manage the local network address cache in each capability manually.
For this purpose, users can resolve a service name by calling lookup_once. By
calling this method, the service name is resolved exactly once. LibRIPC will
instruct its ZooKeeper client to read the corresponding znode without setting a
watch. There will be no notification when the data contained in the znode changes.
Thus, the resulting capability will not be updated when the service is migrated or
shut down. Sending messages using that capability works as long as the receiver

4.4. NAMING SCHEME API 29

can be reached under the address that was returned by ZooKeeper.
Once the service is migrated to a different host, the user has to query the

current network address manually. There are two ways to obtain up-to-date in-
formation about a service. The first is to simply resolve that service name again
by calling lookup_once and using the newly created capability. Since almost
all functions of our API expect a capability as parameter, we decided to design
another function. To update an existing capability, users can pass it to update_

once. This function uses the service name stored within the capability. Then, it
reads the corresponding znode in the same way as lookup_once does. However,
libRIPC then stores the data contained in that znode as network address in the
supplied capability instead of creating a new one. Afterwards, the user-supplied
capability can again be used to send messages until the receiver migrates.

Using manual lookup allows clients of a service to implement application-
specific update policies at the cost of less abstraction from the network.

Automatic Updates

Handling failures in sending messages manually by repeatedly calling libRIPC’s
lookup or update functions adds management overhead to the application. Also,
libRIPC currently uses unreliable messaging. To detect a failure in sending a
message, users have to create their own timeout handling, which further increases
implementation overhead.

Generally, users of libRIPC are not interested in changes in the physical loca-
tion of a service in itself. They are interested in being able to communicate with
it, regardless of which process on which host is currently providing it legitimately.
Especially in scenarios where services are migrating often, processes might want
to let libRIPC handle these situations.

For this reason, our API includes the lookup function. Similarly to lookup_
once, this function will perform a resolution of a service name and return a ca-
pability. The difference, however, is that lookup sets a watch when reading the
znode. When a process changes the network address of that service, it writes the
new address into that znode. The ZooKeeper servers notify all ZooKeeper clients
that currently have a watch for the data of this znode. Upon receiving the notifi-
cation, the individual ZooKeeper clients execute libRIPC’s watch event handler.
Thus, libRIPC is notified by ZooKeeper when the network address of that service
is changed. Upon receiving the notification, libRIPC reads the znode and renews
the watch. LibRIPC then updates the corresponding capability. Thus, processes
can always sent message to services that have been looked up via lookup, regard-
less of whether the service has migrated.

Additionally to updating capabilities automatically, lookup gives users the
possibility to specify a callback function that expects a capability as parameter.

30 CHAPTER 4. IMPLEMENTATION

When libRIPC receives a notification, it updates the affected capabilities. For
each capability that was updated, libRIPC will then execute the corresponding
callback function.

This feature allows users to implement their own event handling. For example,
lookup might have returned a capability to a service that was not running. In this
case, a client of that service might want to wait until the service has started. By
providing the mechanism of a callback function, clients do not have to rely on
busy waiting (“polling”). Instead, they can implement proper waiting by using
semaphores themselves.

The user can obtain several capabilities for each service by calling lookup or
lookup_once several times. Thus, the user may obtain both static and dynamic
capabilities for a certain service. When receiving the notification that a certain
znode has changed, libRIPC must not update static capabilities because the user
expects them not to change. On the other hand, we have to update all dynamic
capabilities. If the user obtained multiple dynamic capabilities of the same service
by calling lookup with different callback functions, libRIPC has to determine the
correct callback to execute for each capability.

To be able to update each dynamic capability and execute the corresponding
user callback in libRIPC’s watch event handler, we created a watcher context data
structure. The watcher context contains pointers to the corresponding capability
and user-set callback function. LibRIPC creates a watcher context for each call
to lookup and passes it to ZooKeeper’s read function. Since the ZooKeeper
client library passes the watcher context as parameter to libRIPC’s watch handler,
libRIPC can easily determine which capability to update and which user-supplied
callback to execute.

Since libRIPC reads the corresponding znode again on each notification it re-
ceives, automatic updates can create lookup overhead. If the user sends messages
infrequently, libRIPC will request the new network address of the service once
the services changes its address, without the user ever sending a message to that
particular address.

Managing Update Dynamics

Each capability can either be updated automatically by libRIPC or explicitly via
manual calls to update functions by the user. To change the update dynamics
of a capability between automatic and manual, our naming scheme provides the
functions update and update_disable.

When a user passes a capability to update, libRIPC updates the capability
and ensures that it will be updated when the corresponding service changes its
network address. Regardless of the original update dynamics of the supplied ca-
pability, that capability will from then on be automatically updated until libRIPC

4.4. NAMING SCHEME API 31

is instructed otherwise. Similarly to lookup, the user can specify a callback func-
tion to be executed after that capability has been updated.

LibRIPC updates a capability by reading the corresponding znode and, in case
of update, creating an appropriate watcher context. When the ZooKeeper client
receives a notification that a certain znode has changed, it will call the watcher
event handler of libRIPC once for each call of ZooKeeper’s read function that
passed a watcher context. The user is allowed to perform manual updates at any
time. In particular, the user is allowed to perform multiple updates of the same
capability. In this case, when the watch is triggered for the corresponding znode,
the ZooKeeper client library calls libRIPC’s watch event handler several times
for a single capability even though only one watch was triggered. Without pre-
caution, libRIPC would execute the user-supplied callback several times for that
capability. To ensure that libRIPC executes that callback only once for each ca-
pability, we added a boolean flag to the watcher context data structure. This flag
determines whether that individual watcher context is still enabled. When the user
calls update on a capability that already has a watcher associated, libRIPC cre-
ates a new watcher context and disables the old one. On watcher events, libRIPC
will only update the capability referenced by the supplied watcher context if the
watcher context is enabled.

Similarly, users can pass capabilities that are currently to be updated automat-
ically to update_disable. LibRIPC simply disables the watcher context and
returns control to the user. When the ZooKeeper server sends a notification to the
ZooKeeper client, the internal event handler of libRIPC will still be called with
that watcher context. LibRIPC recognizes that the watch is disabled and will not
read the znode corresponding to the capability referenced by the watcher con-
text. Thus, libRIPC will not set another watch and no further notification will be
generated for this capability.

ZooKeeper watches are only triggered once. Provided that a certain watcher
context was passed to ZooKeeper’s read function only once, once ZooKeeper has
called libRIPC’s event handler with that watcher context as parameter, it will not
use that watcher context again. When the event handler of libRIPC is called with
a watcher context that has been disabled, libRIPC will not perform another read
of that znode and, thus, not renew the watch. Instead, libRIPC frees the memory
allocated for the watcher context.

Thus, after update_disable returns, the capability passed by the user will
not be updated if the corresponding service changes its network address, even if
that change triggers an existing ZooKeeper watch.

32 CHAPTER 4. IMPLEMENTATION

4.5 Future Work
After receiving a notification, libRIPC is aware that the locally stored address of
the service is outdated. To prevent silent failures when the user tries to send a
message, libRIPC could internally queue all messages the user tries to sent during
this time via that capability. When libRIPC has retrieved the new address of that
service, it could send the messages contained in that queue.

During migration, a service will be offline temporarily. When a service goes
offline, it clears the address stored in the corresponding znode. LibRIPC will re-
ceive a notification and read the corresponding znode. After reading the znode,
libRIPC is aware that the service is offline. By having set a watch, libRIPC will
receive another notification once the address of that service changes again. Thus,
libRIPC could continue queueing messages sent via that capability until the ser-
vice is online again.

Chapter 5

Evaluation

To evaluate the performance of our prototype, we implemented a simple client-
server application. On one node of our cluster, we started a process providing
a message acknowledgement service. This service listens for messages and re-
sponds to each one with an acknowledgement message containing the string ACK.
We started client processes on other nodes of this cluster, at most one client per
node. These processes resolve the network address of the service and send mes-
sages containing a four byte wide integer to the server. After each message a client
has sent, it waits for an acknowledgement before sending the next message.

We evaluated the performance of both the old broadcast-based resolver and
our prototype, both with and without using resolver caching.

We performed each of these experiments using two, three and four nodes of the
cluster. In each case, we started all clients at the same time. All evaluations of our
prototype were done using a ZooKeeper ensemble consisting of one ZooKeeper
server per node.

5.1 Short Message Send Performance

We compared the current implementation of libRIPC, using its broadcast-based
resolver and cache, against our prototype, re-using the capability that the client
has looked up. In each run, the client sent 1000000 messages to the service and
received the same amount of acknowledgement messages.

Relying on the local resolver cache or re-using a capability obtained by one of
the lookup functions is the default usage pattern of libRIPC. After the client has
sent its first message, the network address is contained in the resolver cache. Re-
spectively, after initial lookup, the network address is contained in the capability.
Due to the fact that resolution is performed only when sending the first message,
we expect performance of current libRIPC and our prototype to be equal. We

33

34 CHAPTER 5. EVALUATION

expect runtime to depend almost exclusively on time required to send and ac-
knowledge messages.

Figure 5.1: Time required to send and acknowledge 1000000 messages

However, Figure 5.1 shows that our prototype was even faster than the current
implementation of libRIPC. One reason for this result is that we started measuring
time required to send all messages after initialization of the client. Our prototype
has, at that point, already performed its resolution. Since resolution of service
IDs is done implicitly, measurement of time required to send these messages in-
cludes time required to perform one broadcast-based resolution. However, a sin-
gle broadcast should not take this much time. Thus, further reasons for this result
remain to be investigated.

Nevertheless, we conclude that using capabilities as token to address services
does not add overhead to message sending.

5.2. LOOKUP PERFORMANCE 35

5.2 Lookup Performance
We evaluated our prototype with individual lookup before each message against
the broadcast-based resolver without using its cache. We extended the previous
experiment to perform a resolution of the service prior each message sent from
the client. In each run of the experiment, we sent 10000 messages from both
client and server and performed the 10000 lookups of the service by the client.
Comparing these results against the results we obtained by using caches and re-
using capabilities, we can determine the amount of lookup overhead caused by
resolution.

To disable the resolver cache of libRIPC on the client-side, we cleared the
client’s cache entry for the service ID of the acknowledgement service after each
acknowledgement message received. To evaluate the resolution mechanism of our
prototype, the client calls service_update_once before each message it sends.

We use service_update_once to prevent overhead caused by allocating
new capability data structures in service_lookup_once. Since the service will
not migrate in our case, the client is not interested in having libRIPC automatically
keep its capability up-to-date. Thus, we use service_update_once instead of
service_update to prevent allocation of watcher contexts that will not be used.

Figure 5.2 shows that, with increasing number of clients simultaneously per-
forming lookups using our prototype, time required to perform those lookups in-
creases exponentially. Also, resolving a service name by using our prototype
takes about 35 times as long as resolving a service ID by using libRIPC’s current
resolver, even though we used one ZooKeeper server on each node.

There are several reasons for these results. First, we did not implement the
prototype with performance in mind. For example, every single time libRIPC
reads a znode it generates the path name to be passed to ZooKeeper again. Lib-
RIPC allocates a buffer for the path, writes a forward slash into it, and appends
the service name that is stored in the capability. For optimization, we could cache
the path name in the capability The service name could then be obtained by read-
ing the path name starting at its second character. Secondly, all communication
required for resolution is done by ZooKeeper. ZooKeeper client and server com-
municate using ethernet and TCP/IP. This communication involves hardware of
comparatively low performance, protocol overhead, and context switches. The
broadcast-based resolver of libRIPC is handcrafted for service ID resolution and
uses the infiniband hardware directly. Thirdly, the ZooKeeper client connects
to an arbitrary server of the ensemble. As long as libRIPC performs only reads
of znodes, network traffic could probably be decreased if each ZooKeeper client
connects to the server instance on the local host. While these arguments could
explain constant overhead, we have yet to identify the “bottleneck” which causes
exponential growth.

36 CHAPTER 5. EVALUATION

Figure 5.2: Time required to send and acknowledge 10000 messages and perform
a resolution before each one

Chapter 6

Conclusion

In this thesis, we presented a naming scheme that allows users of libRIPC to iden-
tify services by descriptive names. We designed resolution of those name to be
secure and scalable by using a distributed, central infrastructure in the network.
To avoid overhead, resolution returns capabilities which are used and re-used by
processes to address communication partners. Our naming scheme avoids mes-
sage loss due to migration by notifying affected libRIPC instances when a service
has changed its physical location. We implemented a prototype of this naming
scheme using Apache ZooKeeper.

Evaluation showed that our prototype takes about 35 times the time to resolve
a service compared to libRIPC’s current broadcast-based resolver. However, ad-
dressing processes via capabilities instead of service IDs proved to add no over-
head.

We therefore conclude that, while there remains work to be done, our naming
scheme improves libRIPC to be better suited to fulfilling requirements of process
addressing in future cloud applications.

37

38 CHAPTER 6. CONCLUSION

Bibliography

[1] https://issues.apache.org/jira/browse/
ZOOKEEPER-442. ZooKeeper feature request to remove watches.

[2] Jonathan Appavoo, Volkmar Uhlig, Jan Stoess, Amos Waterland, Bryan
Rosenburg, Robert Wisniewski, Dilma Da Silva, Eric Van Hensbergen, and
Udo Steinberg. Providing a cloud network infrastructure on a supercom-
puter. In Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pages 385–394, Chicago, Illinois, USA,
June 21 2010.

[3] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zoo-
keeper: Wait-free coordination for internet-scale systems. In In USENIX An-
nual Technical Conference.

[4] Jens Kehne, Marius Hillenbrand, Jan Stoess, and Frank Bellosa. Light-weight
remote communication for high-performance cloud networks. In Proceedings
of the 1st IEEE International Conference on Cloud Networking, Paris, France,
November 28–30 2012.

[5] Scott Leberknight. Distributed Coordination With ZooKeeper
Part 4: Architecture from 30,000 Feet. July 2013. http:
//www.nofluffjuststuff.com/blog/scott_leberknight/
2013/07/distributed_coordination_with_zookeeper_
part_4_architecture_from_30_000_feet.

[6] The Apache Software Foundation. ZooKeeper Programmer’s Guide: Devel-
oping Distributed Applications that use ZooKeeper. http://zookeeper.
apache.org/doc/r3.4.5/zookeeperProgrammers.html. Offi-
cial documentation bundled with ZooKeeper version 3.4.5.

[7] Zouheir Trabelsi and Wassim El-Hajj. Arp spoofing: a comparative study for
education purposes. In 2009 Information Security Curriculum Development
Conference, InfoSecCD ’09, pages 60–66, New York, NY, USA, 2009. ACM.
http://doi.acm.org/10.1145/1940976.1940989.

39

https://issues.apache.org/jira/browse/ZOOKEEPER-442
https://issues.apache.org/jira/browse/ZOOKEEPER-442
http://www.nofluffjuststuff.com/blog/scott_leberknight/2013/07/distributed_coordination_with_zookeeper_part_4_architecture_from_30_000_feet
http://www.nofluffjuststuff.com/blog/scott_leberknight/2013/07/distributed_coordination_with_zookeeper_part_4_architecture_from_30_000_feet
http://www.nofluffjuststuff.com/blog/scott_leberknight/2013/07/distributed_coordination_with_zookeeper_part_4_architecture_from_30_000_feet
http://www.nofluffjuststuff.com/blog/scott_leberknight/2013/07/distributed_coordination_with_zookeeper_part_4_architecture_from_30_000_feet
http://zookeeper.apache.org/doc/r3.4.5/zookeeperProgrammers.html
http://zookeeper.apache.org/doc/r3.4.5/zookeeperProgrammers.html
http://doi.acm.org/10.1145/1940976.1940989

40 BIBLIOGRAPHY

[8] ZooKeeper. zookeeper/zookeeper.jute.h. Internal header file of the ZooKee-
per client C binding (version 3.4.5).

	Abstract
	Deutsche Zusammenfassung
	Contents
	Introduction
	Background
	LibRIPC
	Broadcast Overhead
	Security Issues
	Stale Cache Entries

	Apache ZooKeeper

	Design
	Dynamic Service-Based Architecture
	Capability-Based Addressing
	User-Chosen Service Names
	Resolution Service
	Request Types
	Data Persistence
	Design Freedoms

	Security Considerations
	Service Migration
	Future Work

	Implementation
	ZooKeeper Znodes
	Capabilities
	ZooKeeper Watches
	Naming Scheme API
	ZooKeeper Connection
	Capability Persistence
	Service Registration
	Service Migration
	Service Lookup

	Future Work

	Evaluation
	Short Message Send Performance
	Lookup Performance

	Conclusion
	Bibliography

