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Abstract

In this paper, we present a light-weight, micro–kernel-based virtual machine monitor (VMM) for the Blue Gene/P

Supercomputer. Our VMM comprises a small µ-kernel with virtualization capabilities and, atop, a user-level

VMM component that manages virtual BG/P cores, memory, and interconnects; we also support running native

applications directly atop the µ-kernel. Our design goal is to enable compatibility to standard operating systems

such as Linux on BG/P via virtualization, but to also keep the amount of kernel functionality small enough to

facilitate shortening the path to applications and lowering operating system noise.

Our prototype implementation successfully virtualizes a BG/P version of Linux with support for Ethernet-based

communication mapped onto BG/P’s collective and torus network devices. First experiences and experiments show

that our VMM still shows a substantial performance hit; nevertheless, our approach poses an interesting operating

system alternative for Supercomputers, providing the convenience of a fully-featured commodity software stack,

while also promising to deliver the scalability and low latency of an HPC operating system.

Keywords: Operating Systems, Virtualization, Micro-Kernels, Light-Weight Kernels, Supercomput-

ing, High-Performance Computing
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1 Introduction

A substantial fraction of supercomputer programmers today write software using a parallel programming run-

time such as MPI on top of a customized light-weight kernel. For Blue Gene/P (BG/P) machines in production,

IBM provides such a light-weight kernel called Compute Node Kernel (CNK) [10]. CNK runs tasks massively

parallel, in a single-thread-per-core fashion. Like other light-weight kernels, CNK supports a subset of a stan-

dardized application interface (POSIX), facilitating the development of dedicated (POSIX-like) applications for a

supercomputer. However, CNK is not fully POSIX-compatible: it lacks, for instance, comprehensive scheduling or

memory management as well as standards-compatible networking or support for standard debugging tools. CNK

also supports I/O only via function-shipping to I/O nodes.

CNK’s lightweight kernel model is a good choice for the current set of BG/P HPC applications, providing

low operating system (OS) noise and focusing on performance, scalability, and extensibility. However, today’s

HPC application space is beginning to scale out towards Exascale systems of truly global dimensions, spanning

companies, institutions, and even countries. The restricted support for standardized application interfaces of light-

weight kernels in general and CNK in particular renders porting the sprawling diversity of scalable applications to

supercomputers more and more a bottleneck in the development path of HPC applications.

In this paper, we explore an alternative, hybrid OS design for BG/P: a µ-kernel–based virtual machine monitor

(VMM). At the lowest layer, in kernel mode, we run a µ-kernel that provides a small set of basic OS primitives for

constructing customized HPC applications and services at user level. We then construct a user-level VMM that

fully virtualizes the BG/P platform and allows arbitrary Blue Gene OSes to run in virtualized compartments. We

finally demonstrate the benefits of a µ-kernel to native HPC application development, by constructing a native

communication library that directly interfaces with BG/P’s high-performance torus interconnect.

The benefits of a µ-kernel–based VMM architecture are twofold: on the one hand, it provides compatibility to

BG/P hardware, allowing programmers to ship the OS they require for their particular applications along, like a

library. For instance, our VMM successfully virtualizes a Blue Gene version of Linux with support for Ethernet-

based communication, allowing virtually any general-purpose Linux application or service to run on BG/P. On

the other hand, our µ-kernel also resembles the light-weight kernel approach in that it reduces the amount of

1This research was mostly conducted by the authors while at IBM Watson Research Center, Yorktown Heights, NY.
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kernel functionality to basic resource management and communication. Those mechanisms are available to native

applications running directly on top of the µ-kernel, and programmers can use them to customize their HPC

applications for better efficiency and scalability, and to directly exploit the features of the tightly inter-connected

BG/P hardware. However, µ-kernel and VMM architectures also imply a potential penalty to efficiency, as they

increase kernel-user interaction and add another layer of indirection to the system software stack. Nevertheless,

the need for standardized application interfaces is becoming more prevalent, and we expect our work to be an

insightful step towards supporting such standardization on supercomputer platforms.

Our architecture thus strives to facilitate a path for easy development and porting of applications to the super-

computer world, where programmers can run a virtualized version of any general-purpose scalable and distributed

application on Blue Gene without much hassle; but where they can also customize those applications for better

efficiency and scalability, with help from the µ-kernel’s native interface.

The idea of a virtualization layer for HPC systems is not new [22], nor is the idea of using a decomposed

VMM architecture to deliver predictable application performance [13]. However, to our knowledge, this is the first

approach to providing a commodity system software stack and hiding the hardware peculiarities of such a highly-

customized architecture, while still being able to run hand-optimized code side-by-side. Initial results are promising:

Our prototype based on the L4 µ-kernel fully virtualizes BG/P compute nodes and their high-performance network

interconnects, and successfully runs multiple instances of a BG/P version of Linux.

The rest of the paper is structured as follows: Section 2 presents the basic architecture of our µ-kernel–based

virtualization approach for BG/P. Section 3 presents details of the µ-kernel, followed by Section 4 presenting details

about our user-level VMM component. Finally, Section 6 presents an initial evaluation of our prototype, followed

by related work in Section 7 and a summary in Section 8.

2 System Overview

In this section, we present the design of our decomposed VMM for BG/P. We start with a very brief overview

of the BG/P supercomputer: The basic building block of BG/P is a compute node, which is composed of an

embedded quad-core PowerPC, five networks, a DDR2 controller, and either 2 or 4 GB of RAM, integrated into a

system-on-a-chip (Figure 1). One of the largest BG/P configurations is a 256-rack system of 2 mid-planes each,
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which, in turn, comprise 16 node cards with 32 nodes each, totaling over 1 million cores and 1 Petabyte of RAM.

BG/P features three key communication networks, a torus and a collective interconnect, and an external 10GE

Ethernet network on I/O nodes.

Figure 1. Blue Gene/P Compute Node Card

The basic architecture of our VMM is illustrated in Figure 2. We use an enhanced version of the L4 µ-

kernel as privileged supercomputer kernel [25]. Our BG/P implementation uses a recent L4 version named

L4Ka::Pistachio [20]. Traditional hypervisors such as Xen [31] or VMware [2] are virtualization-only approaches in

the sense that they provide virtual hardware – virtual CPUs, memory, disks, networks, etc. – as first class abstrac-

tions. L4 is different in that it offers a limited set of OS abstractions to enforce safe and secure execution: threads,

address spaces and inter-process communication (IPC). Those abstractions are low-level enough for constructing

an efficient virtualization layer atop, as has been demonstrated on commodity systems [12,24].

L4 

VMM

VMVM VMVM

Figure 2. A µ-kernel based VMM virtualizing BG/P cores and interconnects

While L4 provides core primitives, the actual VMM functionality is implemented as a user-level application

outside of the privileged kernel. The basic mechanics of such an L4-based VMM is as follows: L4 merely acts as a
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safe messaging system propagating sensitive guest instructions to a user-level VMM. That VMM, in turn, decodes

the instruction and emulates it appropriately, and then responds with a fault reply message that instructs L4 to

update the guest VM’s context and then to resume guest VM execution.

Our decomposed, µ-kernel–based VMM architecture has benefits that are particularly interesting on HPC sys-

tems: Since L4 provides minimal yet sufficiently generic abstractions, it also supports native applications that can

bypass the complete virtualization stack whenever they need performance. Hybrid configurations are also possible:

An application can be started within a guest VM, with access to all legacy services of the guest kernel; for improved

efficiency, it can later choose to employ some native HPC library (e.g. an MPI library running directly atop L4).

In the following, we will first describe how L4 facilitates running a VMM atop; we will then describe the user-level

VMM part in the subsequent section.

3 A Micro-Kernel with Virtualization Capabilities

In our architecture, L4 acts as the privileged part of the VMM, responsible for partitioning processors, memory,

device memory, and interrupts. Our virtualization model is largely common to L4’s normal execution model: we

use i) L4 threads to virtualize the processor; ii) L4 memory mapping mechanisms to provide and manage guest-

physical memory, iii) IPC to allow emulation of sensitive instructions through the user-level VMM. However, in

virtualization mode, threads and address spaces have access to an extended ISA and memory model (including a

virtualized TLB), and have restricted access to L4-specific features, as we will describe in the following.

3.1 Virtual PowerPC Processor

L4 virtualizes cores by mapping each virtual CPU (vCPU) to a dedicated thread. Threads are schedulable

entities, and vCPUs are treated equally: They are dispatched regularly from a CPU-local scheduling queue, and

they can be moved and load-balanced among individual physical processors through standard L4 mechanisms.

In contrast to recent x86 and PowerPC based architectures, BG/P’s cores are based on the widely used embedded

440 architecture, which has no dedicated support to facilitate or accelerate virtualization. However, also in contrast

to the x86 architecture, PowerPC is much more virtualization-friendly in the first place: The ISA supports trap-

based virtualization, and fixed instruction lengths simplify decoding and emulating sensitive instructions. L4
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employs such a trap-and-emulate style virtualization method by compressing PowerPC privilege levels. L4 itself

runs in supervisor mode, while the guest kernel and user land both run in user mode (although with different

address space IDs, as described in Section 3.2). Guest application code runs undisturbed, but whenever the guest

kernel issues a sensitive instruction, the processor causes a trap into L4.

IPC-based Virtualization Unlike traditional VMMs, L4 itself does not emulate all sensitive instructions itself.

Unless the instruction is related to the virtual TLB or can quickly be handled such as the modification of guest

shadow register state, it hands off emulation to the user-level VMM component. Moving the virtualization service

out of the kernel makes a fast guest-VMM interaction mechanism a prerequisite for efficient execution. We therefore

rely on L4 IPCs to implement the virtualization protocol (i.e. the guest trap – VMM emulation – guest resume

cycle). In effect, L4 handles guest traps the same way it handles normal page faults and exceptions, by synthesizing

a fault IPC message on behalf of the guest to a designated per-vCPU exception handler.

PC
EXC

GPRegs

Virtualization Fault IPC IPC Reply

CPUCPU

L4

User
Level

CPUs

PC’
EXC’

GPRegs’
VM VMM VMVMM

Figure 3. vCPU exits are propagated to the VMM as IPC message; the user-level VMM responds by
sending back a reply IPC resuming the guest.

During a virtualization fault IPC, the trapping guest automatically blocks waiting for a reply message. To

facilitate proper decoding and emulation of sensitive instructions, the virtualization IPC contains the vCPU’s

current execution state such as instruction and stack pointer and general-purpose registers. The reply from the

VMM may contain updated state, which L4 then transparently installs into the vCPU’s execution frame. To

retain efficient transfer of guest vCPU state, the kernel allows the VMM to configure the particular state to be

transferred independently for each class of faults. For instance, a VMM may choose to always transfer general-

purpose registers, but to only transfer TLB-related guest state on TLB-related faults. L4 also offers a separate

system call to inspect and modify all guest state asynchronously from the VMM. That way, we keep the common
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virtualization fault path fast, while deferring loading of additional guest state to a non-critical path.

3.2 Virtualized Memory Management

PowerPC 440 avoids die costs for the page table walker and does not dictate any page table format (or even

construction). Instead, address translation is based solely on a translation look-aside buffer (TLB) managed in

software [14]. On BG/P cores, the TLB has 64 entries managed by the kernel. Each entry maps 32-bit logical

addresses to their physical counterparts, and can cover a configurable size ranging from 1 KByte to 1 GByte. For

translation, the TLB further uses an 8-bit process identifier (PID) and an 1-bit address space identifier (AS) that

can be freely set by the kernel, effectively implementing a tagged TLB (Figure 4).

A normal OS only needs to provide a single level of memory translation – from virtual to physical. A VMM, in

contrast, must support two such translation levels, from guest-virtual to guest-physical, and from guest-physical to

host-physical memory (details on virtualized translations can be found, e.g., in [2,19]). As PowerPC 440 hardware

only supports a single translation level, the VMM must merge the two levels when inserting translations into the

hardware TLB, effectively translating guest-virtual to host-physical addresses. Both L4 and the user-level VMM

are involved in providing a two-level memory translation: To provide guest-physical memory, we use L4’s existing

memory management abstractions based on external pagers [25]. We then provide a second, in-kernel virtual TLB

that caters for the additional notion of guest virtual memory. We will describe the L4-specific extensions in the

following two paragraphs.

Virtual Physical Memory Providing guest-physical memory is largely identical to the provisioning of normal

virtual memory: L4 treats a guest VM’s physical address space like a regular address space and exports establishing

of translations within that address-space to a user-level pager (which is, in this case, the user-level VMM). Whenever

a guest suffers a TLB miss, L4’s miss handler inspects its kernel data structures to find out whether the miss occured

because of a missing guest-physical to host-physical translation. This is the case if the VMM has not yet mapped

the physical memory into the VM’s guest-physical address space. If so, L4 synthesizes a page fault IPC message

to the user-level pager VMM on behalf of the faulting guest, requesting to service the fault.

When the VMM finds the guest-physical page fault to be valid, it responds with a mapping message, which
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Figure 4. Merging two levels of virtualized address translation into a single-level hardware TLB.

will cause L4 to insert a valid mapping into the TLB and then to resume guest execution. Otherwise, the VMM

may terminate the VM for an invalid access to non-existing physical memory or inject a hardware exception. To

keep track of a guest’s mappings independent of the actual state of the hardware TLB, L4 maintains them with

an in-kernel database. Should the user-level VMM revoke a particular mapping, L4 flushes the corresponding

database and hardware TLB entries.

Virtual TLB Emulating virtual address translations and the TLB is extremely critical for the overall perfor-

mance of a VMM. For that reason, most virtualization-enabled hardware platforms have specific support such as

recent x86 [6] or embedded PowerPC [15] processors. On BG/P, we lack such support and reverted to a software

solution using a table shadowing the hardware TLB, which we hence call virtual TLB. In order to further reduce

the cost of TLB updates, we employ a number of heuristics and tracking methods. From a security perspective we

only need to ensure that the hardware TLB always contains a subset of the virtual TLB.

L4 provides the notion of a virtual TLB, which the guest has access to via normal (trapped) hardware instructions

for TLB management. While management of guest-physical memory involves the user-level VMM, our solution for

guest-virtual memory is L4-internal: Whenever the guest kernel accesses the virtual TLB, L4’s internal instruction

emulator stores those entries into a per-VM virtual TLB data structure. On a hardware TLB miss, L4’s miss

handler parses that data structure to find out whether the guest has inserted a valid TLB mapping into its virtual

TLB for the given fault address. If not, it injects a TLB miss fault into the guest VM to have the miss handled

by the guest kernel. If the virtual TLB indeed contains a valid entry, L4 checks its mapping database to find out

whether the miss occured at the second stage, from guest-physical to host-physical. If that translation is valid as

well, L4 inserts the resulting guest-virtual to host-physical mapping into the hardware TLB and resumes the VM;

if it turns out to be missing, L4 synthesizes a page fault IPC to the VMM, as discussed in the previous paragraph.
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Virtual Address Space Protection Finally, a VMM must virtualize not only the translation engine of the

TLB but also its protection features. Again, the virtualization logically requires two levels, allowing the guest to

use the virtual TLB’s protection bits and identifiers in the same manner as on native hardware, but, at the second

level, also permitting L4 and its user-level address spaces to shield their data from being accessed by guest kernel

and applications. The TLB of the PowerPC 440 gives us great help. The 440 can hold up to 256 address space

mappings in the TLB, (via the TID field, see Figure 4). The particular mapping is chosen through a processor

register. Address space translation 0 is always accessible independently of which particular mapping is active. The

440 additionally features a 1-bit translation space, with the active translation space being selected via processor

register bits, one for instruction and one for data fetches.

To facilitate trap-and-emulate virtualization, both guest kernel and applications run in user mode. L4 puts guest

kernel and user into the second translation space, and keeps the first translation space reserved for itself, the VMM,

and native L4 applications. The processor automatically switches to the first translation space when an interrupt or

trap occurs, directly entering L4 with trap and interrupt handlers in place. To read guest memory when decoding

sensitive instructions, L4 temporarily switches the translation space for data fetches, while retaining the space for

instructions. Altogether, our solution allows the guest to receive a completely empty address space, but on any

exception, the processor switches to a hypervisor-owned address space. That way, we keep virtualization address

spaces clean without the need for ring compression as done on x86 systems lacking hardware-virtualization [33].

User 

Kernel L4

S U K
TID0 TID1 TID2

vTLB hwTLB

Figure 5. Virtualized TLB Protection. vTLB protection bits are mapped to TID in the hardware TLB,
with TID=0 for shared pages.

Our ultimate goal is to reduce the number of TLB flushes to enforce protection on user-to-kernel switches. We

observed the following usage scenario for standard OSes (e.g., Linux) and implemented our algorithm to mimic

the behavior: Common OSes map application code and data as user and kernel accessible, while kernel code and

data is only accessible in privileged mode. We strive to make the transition from user to kernel and back fast to
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achieve good system call performance; we therefore disable the address space mappings completely and flush the

hardware TLB on each guest address space switch (Figure 5). We then use address space 0 for mappings that are

accessible to guest user and guest kernel. We use address space 1 for mappings that are only guest-user accessible

and address space 2 for mappings that are only guest-kernel accessible. A privilege level switch from guest-user to

guest-kernel mode therefore solely requires updating the address space identifier from 1 (user-mode mappings) to

2 (kernel-mode mappings).

Our virtual TLB effectively compresses guest user/kernel protection bits into address space identifiers; as a

result, it requires hardware TLB entries to be flushed whenever the guest kernel switches guest application address

spaces. Also, our scheme requires that TLB entries are flushed during world switches between different guests. It

does not require, however, any TLB flushes during guest system calls or other switches from guest user to kernel,

or during virtualization traps and resumes within the same VM. Thus, we optimize for frequent kernel/user and

kernel/VMM switches rather than for address space or world switches, as the former occur more frequently.

3.3 Interrupt Virtualization

BG/P provides a custom interrupt controller called Blue Gene Interrupt Controller (BIC), which gathers and

delivers device signals to the cores as interrupts or machine check exceptions. The BIC supports a large number

(several hundreds) of interrupts, which are organized in groups and have different types for prioritization and

routing purposes. The BIC supports delivering interrupts to different cores, as it supports core-to-core interrupts.

The original L4 version already provides support for user-level interrupt management, mapping interrupt mes-

sages and acknowledgments onto IPC. L4 further permits user software to migrate interrupts to different cores.

Our user-level VMM uses those L4 interrupt features to receive and acknowledge interrupts for BG/P devices. To

inject virtual interrupts into the guest, the VMM modifies guest vCPU state accordingly, either using L4’s state

modification system call (Section 3.1), or by piggybacking the state update onto a virtualization fault reply, in

case the guest VM is already waiting for the VMM when the interrupt occurs.
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4 User-Level VMM

Our user-level VMM component runs as a native L4 program, and provides the virtualization service based

on L4’s core abstractions. It can be described as an interface layer that translates virtualization API invocations

(i.e. sensitive instructions) into API invocations of the underlying L4 architecture. As described, L4 facilitates

virtualization by means of virtualization fault IPC. The user-level VMM mainly consists of a server executing

an IPC loop, waiting for any incoming IPC message from a faulting guest VM. Upon reception, it retrieves the

VM register context that L4 has sent along, emulates the sensitive instruction accordingly, and finally responds

with a reply IPC containing updated vCPU state such as result registers of the given sensitive instruction and an

incremented program counter. Before resuming the VM, L4 installs the updated context transparently into the

VM, while the VMM waits for the next message to arrive.

4.1 Emulating Sensitive Instructions

Our user-level VMM largely resembles typical other VMMs such as VMware or Xen: It contains a virtual CPU

object and a map translating guest physical memory pages into memory pages owned by the VMM. To emulate

sensitive instructions upon a virtualization fault IPC, the VMM decodes the instruction and its parameters based

on the program counter pointer and general-purpose register file of the guest VM, which are stored within the IPC

message that was sent from L4 on behalf of the trapping VM. For convenience, L4 also passes along the value of

the program counter, that is, the trapping instruction. In comparison to x86 processors, which have variable-sized

instructions of lengths up to 15 bytes, fetching and decoding sensitive instructions on embedded PowerPC are

rather trivial tasks, as instructions have a fixed size of 32 bits on PowerPC.

The following code snippet illustrates the emulation process by example of a move from device control

register (mfdcrx) instruction loading the value of a device register into a general-purpose register:

void vcpu_t :: emulate (ppc_instr_t opcode ,

word_t gva , paddr_t gpa)

{

// fetch guest GP registers from L4 IPC message

L4_GPRegsCtrlXferItem_t gpregs;
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L4_MsgGetGPRegsCtrlXferItem (&msg , mr, gpregs );

// Decode instruction

switch (opcode.primary ()) {

case 31:

switch (opcode.secondary ()) {

case 259: // mfdcrx

// invoke dcr/device specific emulation

emulate_mfdcr (Dcr (*gpr (gpregs , opcode.ra())),

gpr (gpregs , opcode.rt ()));

break;

}

}

4.2 Virtual Physical Memory

To the user-level VMM, paging a guest with virtualized physical memory is similar to regular user-level paging in

L4 systems [12]: Whenever the guest suffers a physical TLB miss, L4 sends a page fault IPC containing the faulting

instruction and address and other (virtual) TLB state necessary to service the fault. In its present implementation,

the VMM organizes guest-physical memory in linear segments. Thus, when handling a fault, the VMM checks

whether the accessed guest-physical address is within the segment limits. If so, it responds with a mapping IPC

message that causes L4 to insert the corresponding mapping into its database and into the hardware TLB.

4.3 Device Virtualization

Besides virtualization of BG/P cores, the main task of the user-level VMM is to virtualize BG/P hard-

ware devices. L4 traps and propagates sensitive device instructions such as moves to or from system registers

(mfdcr,mtdcr), as well as generic load/store instructions to sensitive device memory regions. It is up to the VMM

to back those transactions with appropriate device models and state machines that give the guest the illusion of

real devices, and to multiplex them onto actual physical hardware shared among all guests. The VMM currently
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provides virtual models for the BIC and for the collective and the torus network devices. Emulation of the BIC is

a rather straightforward task: The VMM intercepts all accesses to the memory-mapped BIC device and emulates

them using L4’s mechanisms for external interrupt handling and event injection. The following paragraphs detail

the emulation of the collective and torus network.

Collective Network BG/P’s collective network is an over-connected binary tree that spans the whole installa-

tion. The collective is a one-to-all medium for broadcast or reduction operations, with support for node-specific

filtering and a complex routing scheme that allows to partition the network to increase the total bandwidth. Col-

lective link bandwidth is 6.8 Gbit/s; hardware latencies are below 6µs for a 72-rack system [16]. Software transmits

data over the collective network via packets injected into two memory-mapped virtual channels. Each packet con-

sists of a header and 16 128-bit data words. The packet header is written and read using general-purpose register

to (device-) memory instructions, while packet data is written and read through the floating-point unit.

Our VMM provides a fully virtualized version of BG/P’s collective network device. The VMM leaves device

memory unmapped, so that each device register access leads to a virtualization trap. The VMM furthermore

emulates device control registers (DCRs) used to configure the collective network device. The corresponding

instructions (mtdcr,mfdcr) are sensitive and directly trap to L4 and the VMM. For emulation, the VMM provides

a per-VM shadow collective network interface model that contains virtual DCRs and, per channel, virtual injection

and reception FIFOs with a virtual header and 16 virtual FPU words per packet, as the following snippet illustrates:

word_t vcn_chan_t :: gpr_store (Reg reg , word_t *gpr)

{

switch (reg) {

case PIH:

if (ihead_cnt () == fifo_head_size)

cn ->pixf |= vcn_t:: PIX_HFO0 >> channel;

else {

ififo_head[ihead_add ++ % fifo_head_size] = *gpr;

send_packet ();

}
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cn->raise_irqs ();

break;

}

}

word_t vcn_chan_t :: fpr_store (Reg reg , unsigned fpr)

{

switch (reg) {

case PID:

if (idata_cnt () == fifo_dsize)

cn ->pixf |= vcn_t:: PIX_PFO0 >> channel;

else {

fpu_t::read (fpr ,

&ififo_data[idata_add ++ % fifo_dsize ]);

// Clear watermark exception

if (idata_cnt () / 16 > iwatermark)

cn ->pixf &= ~( vcn_t:: PIX_WM0 >> channel );

send_packet ();

}

cn->raise_irqs ();

}

The VMM registers itself to L4 as an interrupt handler for all collective network device interrupts, which will

cause L4 to emit an interrupt IPC message to the VMM whenever the physical device fires one of its hardware

interrupts. Whenever the guest causes a packet to be sent on its virtual collective network interface, the VMM

loads the corresponding virtual registers into the physical collective network device:

void vcn_chan_t :: send_packet ()

{

// Need at least one header and

// one payload to send a packet
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if (ihead_cnt () && idata_cnt () / 16) {

// Use corresponding phys channel

pcn_t::cn.chan[channel ].

send_packet (ififo_head[ihead_rem % fifo_hsize],

&ififo_data[idata_rem % fifo_dsize ]);

ihead_rem += 1;

idata_rem += 16;

// Flag watermark exception

if (idata_cnt () / 16 <= iwatermark)

cn ->pixf |= vcn_t:: PIX_WM0 >> channel;

}

}

Receiving data is slightly more complex: Whenever the VMM receives an interrupt message from L4, it reads

the packet header and data from the physical device into a private buffer, and then delivers a virtual interrupt

to the corresponding guest VM. Subsequent VM accesses to packet header and data are then served out of the

private buffer into the VM’s general-purpose or floating-point registers. Since copying packets induces substantial

software overhead to the high-performance collective network path (Section 6), we are also considering optimized

virtual packet handling by means of device pass-through and/or para-virtualization techniques.

Torus BG/P’s torus network is the most important data transport network with respect to bisectional bandwidth,

latency, and software overhead [1]. Each compute node is part of the 3D torus network spanning the whole

installation. On each node, the torus device has input and output links for each of its six neighbors, each with a

bandwidth of 3.4 Gbit/s, for a total node bandwidth of 40.8 Gbit/s. Worst-case end-to-end latency in a 64 k server

system is below 5µs. Nodes act as forwarding routers without software intervention.

The torus provides two transmission interfaces, a regular buffer-based interface and one based on remote direct

memory access (rDMA). For the latter, the torus DMA engine provides an advanced put/get-based interface to
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read or write segments of memory from remote nodes, based on memory descriptors inserted into its injection

and reception FIFOs. Each memory descriptor denotes a contiguous region in physical memory on the local node.

To facilitate rDMA transactions (e.g. a direct-put operation copying data directly to a remote node’s memory),

software identifies the corresponding remote memory segments via a selector/offset tuple that corresponds to a

descriptor in the receive FIFO on the remote node (Figure 6). To transmit data via the torus, software inserts one

or more packets into a torus injection FIFO, with the packet specifying the destination using its X,Y,Z coordinates.

For non-DMA transfer, the payload is embedded in the packet; for DMA transfers (local as well as remote), the

corresponding sender and receiver memory segment descriptors and selectors are instead appended to the packet.

VMM
VM

pTORUS FIFO
vTORUS FIFO

OFSGPA 
OFSHPA 

Figure 6. Virtualized Torus Interconnect. The VMM passes through guest VM descriptors, translating
addresses from guest- to host-physical.

As with the collective network, our VMM provides a virtualized version of Blue Gene’s torus device, and traps

and emulates all accesses to torus device registers. Again, DCR instructions directly trap into L4, while device

memory accesses trap by means of invalid host TLB entries. Again, the VMM registers itself for physical torus

interrupts and delivers them to the guests as needed.

However, in contrast to our virtual version of the collective network device, our virtual torus device only holds

the DMA descriptor registers, but does not copy the actual data around during DMA send or receive operations.

Instead, it passes along guest VM memory segment descriptors from virtual to physical FIFOs, merely validating

that they reference valid guest-physical memory before translating them into host-physical addresses. As the VMM

currently uses simple linear segmentation (see Section 4.2), that translation is merely an offset operation and the

descriptors in physical FIFOs always reference valid guest memory.

In contrast to general-purpose virtualization environments, which typically provide virtualized Ethernet devices

including virtual MAC addresses and a virtual switch architecture, or supercomputer VMM presently does not

cater for extra naming or multiplexing of multiple virtual torus devices. Instead, it preserves the naming of the
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real world and maps virtual torus coordinates and channel identifiers idempotently to their physical counterparts.

As a result, our VMM does not fully emulate the torus network, but merely provides safe and partitioned access to

the physical torus network for individual VMs. As BG/P’s torus features four independent DMA send and receive

groups, our VMM can supply up to four VMs with a different DMA channel holding all its descriptors, without

having to multiplex descriptors from different VMs onto a single FIFO.

At present, our VMM intercepts all accesses to the virtual DMA groups and multiplexes them among the physical

ones. However, since DMA groups are located on different physical pages and thus have different TLB entries,

we plan, for future versions, to directly map torus channels into guest applications, effectively allowing them to

bypass the guest OS and hypervisor. While such a pass-through approach will require a para-virtual torus driver

(to translate guest-physical to host-physical addresses), it can still be made safe without requiring interception, as

the torus DMA supports a set of range check registers that enable containment of valid DMA addresses into the

guest’s allowed allotment of physical memory.

5 Native Application Support

The field of research on native application frameworks for µ-kernels has been rich [11, 18], and has even been

explored for HPC systems [22]. To a certain extent, also the traditional Compute Node Kernel (CNK) approach

for BG/P can be termed a µ-kernels effort as well, since it also strives to provide a low-footprint core environment

for running HPC applications. In the following section, we describe how L4 facilitates construction of a user-level

environment that allows to run HPC applications and to control their resource demands and allocations such that

they perform well on high-performance hardware. We do so by means of an example: we construct a core HPC

communication library that can be used to perform rDMA-based data transfers at user-level. We then integrate

our library into a sample client-server application running natively atop L4.

Unlike typical HPC light-weight kernels, such as CNK or Palacios, L4 does not make any effort to preserve Linux

or POSIX compatibility as a first-class abstraction; rather, it provides a set of primitives that allow constructing

arbitrary OS personalities atop (amongst others, a VMM preserving POSIX compatibility at the guest OS layer).

The whole design of L4 is centered around the idea of a single, generic, and efficient local IPC communication

primitive.
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5.1 A native torus communication library

Our torus communication library is a protocol library that allows a communication partner to read and write

portions of the memory of another partner via remote DMA. As already described in Section 4.3, the torus supports

different rDMA operations. The two most important for our library are: i) the remote-get function copying

memory from a remote node’s memory into the local (or a different) node’s memory; and ii) the direct-put

operation copying data directly from a local to a remote node’s memory.

The torus hardware features multiple injection and reception FIFOs that can be used to transfer data; for rDMA

operations, the torus additionally provides four different DMA groups (one per core) that allow offloading the whole

packetizing of memory segments to hardware. To denote memory segments, the torus hardware introduces the

notion of counters; a counter denotes a physically contiguous memory segment between two associated physical

addresses (base and limit); the counter additionally features a counter variable that is incremented by the data

size whenever data has been transferred via that counter, allowing software to keep track of the data transmissions.

Our library directly exposes those functions as its main interface; in addition, the library provides and manages

the contiguous memory segments necessary for the actual data transfer. Thus, a typical remote-get operation in

our library looks like this snippet:

torus_remote_get(to_coordinates , to_counter_id , to_buffer_ofs ,

from_coordinates , from_fifo_id , from_ctr_id , from_offset , len));

if (poll)

bg_torus_poll_rx(len);

In this example, the invoker instructs the torus to fetch some data portion from the node specified by from coordinates

and, on that node, within the memory segment specified by counter from ctr id at offset from offset. It further

instructs the torus to copy that data portion to node to coordinates, and again, on that node, into the memory

segment specified by counter to ctr id at offset to offset. The destination node usually is (but need not be) the

invoker’s own node. Note that the actual memory layout on the nodes stays opaque to the user of the torus; only

counter identifiers and relative offsets need to be published to transmit data. As also illustrated by this example,

the transfer can be monitored for completion by polling the receive channel. In order to overlap torus I/O with
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other computation, the torus can be alternatively be configured to generate an interrupt after a certain number of

bytes has been transferred.

5.2 Memory Management

Like with most DMA engines, the Torus rDMA engines operates on physical addresses: As a result, memory

segments used to communicate data between nodes must be contiguous physical regions.

For our communication library, we therefore employ a two-level memory provisioning and management scheme:

we first map coarse-grain memory chunks into the address space where the communication library lives, using stan-

dard L4 recursive mapping primitives. Within that address space, we then use a standard malloc/free/realloc

implementation to allow library users to further sub-allocate segments usable for data communication:

User-level allocation of physically contiguous memory L4’s main memory management primitive is a

mapping operation that allows the invoking thread to transfer its own permissions to access memory to another

address space. The operations leverages L4’s IPC mechanism presented beforehand; that is, an IPC can contain

special message items denoting a memory mapping from the source to the destination address space. For revocation

of memory rights, L4 provides a separate kernel primitive that does not require explicit consent from any of the

existing right receivers. This recursive mapping starts with a root-level address-space called sigma0 [25], which

“owns” all physical memory in the system, that is, which has all physical memory mapped idempotently in its own

address space.

TORUS

initial address space

physical memory

rDMA buf communication library 
address space

lib

Figure 7. Mapping physically contiguous addresses in native L4 address spaces

We use standard L4 mapping semantics to bring memory into the native applications using our torus communica-

tion library. We additionally ensure, by means of a user-protocol, that i) memory reserved for torus communication

is physically contiguous and the translation from virtual to physical is known to the library, and ii) that memory
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will not be revoked from the library address space without notice. To ensure the former, we map each chunk as a

whole and communicate the physical base addresses from the root pager down the mapping chain to the library

addresses space, with each pager hierarchy performing the translation of its own source to destination mapping

(Figure 7). To ensure the latter, we currently mark the mappings globally unrevokeable, disallowing each pager to

ever revoke any of those mappings.

With the architecture of the embedded PowerPC 440 architecture, it is up to the L4 kernel to maintain active

translations in the TLB. As a result, a memory mapping from one to the other address space that is never revoked

will cause L4 to store a permanent mapping in its internal mapping database; however, the translation may still

be evicted from the TLB occasionally due to pressure (and L4’s TLB handler has to re-insert them on the next

access). While the torus rDMA engine operates on physical memory and bypasses the TLB, our software library

may suffer performance drawbacks when reading or writing communication memory regions in case they are not

present in the TLB. To avoid the resulting jitter and non-deterministic performance variations, we propose to add

special flags to the L4 mapping primitive indicating L4 it should mark the translations as pinned in the TLB, such

that they never fault. Obviously, such pinned mappings constitute a scarce resource and their use needs to be

managed. While we currently rely an a cooperative scheme to avoid exhaustion, we refer to the literature for more

elaborate scheduling and/or pinning of un-trusted memory [26].

Fine-Grain allocation within physically contiguous memory Within each address space where our com-

munication library is running, we sub-divide coarse grain memory chunks into smaller pieces by means of a slab

memory allocator [7]. The memory allocator allows sub-dividing a memory chunk into memory spaces called

mspace; whenever the torus library needs to setup a new receive or send memory segment for use by the torus,

it creates a new mspace; subsequent rDMA transactions (such as torus remote get described above) can then

conveniently use malloc and free to acquire buffer space usable for transmitting data via the torus. The following

snippet illustrates the memory management by describing the function that sets up a new receive counter and

memory segment for use by the torus:

int torus_alloc_rx(torus_t *torus , torus_channel_t *chan , size_t buf_size)

{
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long long pbuf;

int ctr_grp , ctr_idx;

// allocate a DMAable mspace

chan ->dma_space = create_mspace(buf_size );

chan ->buf = mpace_base(chan ->dma_space );

chan ->buf_size = mspace_size(chan ->dma_space );

// allocate a torus receive counter

chan ->ctr = alloc_rx_counter ();

// enable torus receive counter

ctr_grp = ctr / BGP_TORUS_COUNTERS;

ctr_idx = ctr % BGP_TORUS_COUNTERS;

torus ->dma[ctr_grp ].rcv.counter_enable[ctr_idx / 32] =

(0 x80000000 >> (ctr_idx % 32));

chan ->rx.ctr = &torus ->dma[ctr_grp ].rcv.counter[ctr_idx ];

// install mspace in torus using its physical address

pbuf = dma_vmem_to_pmem(chan ->buf);

chan ->rx.ctr ->base = pbuf >> 4;

chan ->rx.ctr ->counter = 0xffffffff;

chan ->rx.received = 0;

return 0;

}
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6 Initial Evaluation

Our approach is in an prototypical stage, and we did not optimize any of the frequently executed trap-and-

emulate paths yet. For evaluation, we thus focused mostly on functionality rather than performance. Nevertheless,

we have run some initial performance benchmarks to find out whether our approach is generally viable and where

the most important bottlenecks and possibilities of optimization reside.

Guest OS Support Our L4-based VMM generally supports running arbitrary guest OSes on BG/P, like

CNK [10], or ZeptoOS [5]. With respect to the the implementation of the virtualized TLB, L4 is currently

limited in that it reserves one of the two translation spaces. We have verified our implementation with Kittyhawk

Linux, a BG/P version of the Linux Kernel [4] with support for BG/P’s hardware devices. It also provides an

overlay that maps standard Linux Ethernet communication onto Blue Gene’s high-speed collective and torus in-

terconnects [3]. Our VMM allows one or more instances of Kittyhawk Linux to run in a VM. Kittyhawk Linux

runs unmodified, that is, the same Kittyhawk Linux binary that runs on BG/P also runs on top of our VMM.

We currently support uni-processor guests only; however, as L4 itself supports multi-processing, individual guest

vCPUs can be scheduled on each of the four physical cores of the Blue Gene node.

Initial Benchmark Results For initial evaluation, we ran three experiments. In the first experiment, we

compiled a small source-code project (about 1000 lines of code) under virtualized Kittyhawk Linux. We then used

a debug build of L4 with an internal event tracing facility to find out frequently executed VM-related code paths.

In this configuration, compilation took about 126 s compared to 3 s when running on native Kittyhawk Linux.

Table 8 lists the results.

We note that the number of IPCs – that is, the number of VM exits that involve the user-level VMM – is

relatively low, meaning that L4 handles most guest exits internally. Also the experiment shows a high number of

TLB misses and TLB-related instructions, indicating that virtualized memory subsystem is a bottleneck of our

implementation.

In the second experiment, we measured Ethernet network throughput and latency between two compute nodes.

Packets are delivered to the torus interconnect, by means of Kittyhawk Linux’ Ethernet driver module. For
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comparison, we ran the experiments for both a native and virtualized Kittyhawk Linux each running on a compute

node. For benchmarking we used netperf’s TCP stream test for throughput and the TCP request/response test

for latency measurements [30]. Figure 8 shows the results.

 0

 2000

 4000

 6000

 8000

 0  200  400  600  800  1000

Tr
an

sa
ct

io
n 

ra
te

 (1
/s

ec
)

Packet size (byte)

native -> native
native -> VM

VM -> VM

(a) Latency

 0

 100

 200

 300

 400

 500

 600

 700

Th
ro

ug
hp

ut
 (M

B
it/

se
c) native -> native

native -> VM
VM -> VM

(b) Throughput

Figure 8. Performance of Torus-Routed Virtualized Ethernet Networks.

Our virtualization layer poses significant overhead to the Ethernet network performance (which is already

off the actual performance that the torus and collective hardware can deliver [3]). We are confident, however,

that optimizations such as para-virtual device support can render virtualization substantially more efficient. A

recent study reports that VMware’s engineers faced, and eventually addressed, similarly dismal performance with

prototypical versions of their VMM [2]. We conclude from the preliminary evaluation and our own experiences,

that our L4-based VMM is a promising approach for successfully deploying, running, and using virtualized OSes

and applications on BG/P, warranting further exploration and optimization.

Native communication library Finally, in the third experiment, we compared the throughput of our native

communication library against a version of our library running within a Linux guest VM. To that end, we ported

our communication library to Kittyhawk Linux, allowing it to run within a normal Linux application. For mea-

surements, we developed a simple benchmark that repeatedly fetches fixed-sized chunks of memory from a remote

compute node via the torus, using our communication library. We ran the benchmark application natively on L4

and virtualized in a guest Linux application, and compared the respective time necessary to fetch the data. In

contrast to the second experiment, there is no Ethernet virtualization layer involved, since the library interfaces

directly with the torus (or virtual torus) to transmit data. Figure 9 shows the results, for different chunk sizes.
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The first plot shows the transfer time for a single chunk in a logarithmic scale, while the second plot shows the

total time needed to transfer 100 MB of data.
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Figure 9. Performance of our torus communication library running natively atop L4 versus running
virtualized in a Linux guest VM.

As can be seen, native rDMA performance is significantly higher than with the virtualized torus implementation,

clearly showing the potential of L4’s support for native applications stack. For small payloads (1 KB), the native

transmission outperforms the virtualized by far. This can be attributed to the high performance of the interconnect,

the relatively low speed of the cores, and the resulting high processing costs for VM exits and entries that are

necessary on each transmit of a chunk. For larger chunk sizes, the virtualization overhead becomes less dominant.

7 Related Work

There exists a plethora of VMM efforts, including Xen [31], VMware [2], and, directly related, micro-hypervisor-

based systems [12, 13, 32]; those approaches mostly address the embedded or server rather than HPC space. The

studies in [8, 27] identified virtualization as a system-level alternative to address the development challenges of

HPC systems. Gavrilovska et al. explored virtualized HPC for x86/InfiniBand-based hardware [9]; P.R.O.S.E.

explored a partitioning hypervisor architecture for PowerPC and x86 based HPC systems [34]. However, both

approaches focus mostly on hypervisor infrastructure rather than on decomposed OS designs or on support for

native applications. Finally, there exists a port of the KVM monitor to PowerPC Book E cores [19]; although

designed towards embedded systems, it shares some implementation details with our PowerPC version of L4 and
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the VMM.

Arguably the most related effort to our approach is Palacios and Kitten [22], a light-weight kernel/VMM combi-

nation striving to achieve high performance and scalability on HPC machines. Palacios runs as a module extension

within Kitten. Like L4, Kitten also provides a native environment that can be used to develop customizations. The

most notable differences are: that Palacios and Kitten are being developed for x86-based HPC systems rather than

for a highly-specialized Supercomputer platform such as BG/P; that Palacios runs as a kernel module in Kitten’s

privileged domain, whereas our VMM runs completely decomposed and deprivileged as user-level process; and

that their approach to device virtualization introduces a scheme relying on guest cooperation in order to achieve

high-performance virtualization of HPC network devices [21], whereas our approach currently fully intercepts guest

device accesses (although it could be adapted to support a similar scheme).

Examples of traditional light-weight kernel approaches for Supercomputers are CNK [10,29] and Sandia’s Cata-

mount [17]. Our approach strives to enhance such light-weight kernel approaches in that it provides the ability

to virtualize guest OSes. Finally, research has explored whether a more fully-fledged OS such as Plan9 [28] or

Linux [4,5,23] may be a more viable alternative than light-weight kernels for Supercomputers. Our approach com-

plements those efforts with the alternative idea of a decomposed OS architecture with support for virtualization.

8 Conclusion

In this paper, we have presented a virtualization-capable µ-kernel OS architecture for BG/P. Our architecture

consists of a virtualization-capable µ-kernel and a user-level VMM component running atop. The µ-kernel also

supports running applications natively. Our L4-based prototype successfully virtualizes Kittyhawk Linux with

support for virtualized collective and torus network devices. First experiences and experiments show that our

VMM still takes a substantial performance hit. However, we believe that, pending optimizations, our approach

poses an interesting OS alternative for Supercomputers, providing the convenience of a fully-featured commodity

OS software stack, while also promising to satisfy the need for low latency and scalability of a HPC system. This

research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is

supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. The

infrastructure presented herein is part of the the projects L4Ka and Kittyhawk. The software is open source and
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can be downloaded from l4ka.org and kittyhawk.bu.edu.
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Execution frequency of VMM-related L4 code paths for a compilation job in a VM.

Trace Point Count Trace Point Count

SYSCALL IPC 106 K ITLB MISS 4756 K

EXCEPT DECR 66 K EMUL RFI 5021 K

EMUL MTMSR 102 K DTLB MISS 6514 K

EMUL WRTEE 117 K EMUL TLBWE 14745 K

EMUL MFMSR 228 K EMUL MFSPR 29964 K

EMUL WRTEEI 403 K EMUL MTSPR 30036 K

Table 1. Execution frequency of VMM-related L4 code paths for a compilation job in a VM.
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