
Multi–Core Energy Accounting

Studienarbeit
von

Johannes Weiß
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Hartmut Prautzsch

Bearbeitungszeit: 15. Juni 2011 – 15. Oktober 2011

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft http://www.kit.edu

III

Eigenständigkeitserklärung
Hiermit versichere ich, dass ich die Arbeit selbständig verfasst habe und

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, die
wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
habe und die Satzung des Karlsruher Instituts für Technologie zur Sicherung
guter wissenschaftlicher Praxis in der gültigen Fassung beachtet habe.

Karlsruhe, den 14. Oktober 2011

Johannes Weiß

IV

V

Multi–Core Energy Accounting
Johannes Weiß <mcea@tux4u.de>

VI

Typeset using LATEX on October 14, 2011, 12:15.
Repository Hashes: tree: 07158b3af604fd0ac753e9d0e8107e45f79eea32, last commit: 0daf6414adb914209ebb31a5be3cd4c3fea42d14

Contents

1 Introduction 1

1.1 Charges and Restrictions . 2

1.2 Acknowledgments . 2

1.3 Preliminaries . 3

2 Technical Prerequisites 5

2.1 Products . 5

2.2 Sandy Bridge Characteristics . 5

2.2.1 Performance Monitoring Unit 7

2.2.2 Architectural Differences between Sandy Bridge and its
Predecessors . 7

3 Design 9

3.1 Big Picture of the Setup . 9

3.2 Measuring Setup in Detail . 9

3.2.1 Measuring Device . 13

3.3 Calculation of the Electrical Work 13

3.4 The Energy Model . 14

3.4.1 Properties . 14

3.4.2 Finding the Energy Weights 15

3.4.3 Minimizing the Set of Performance Events 17

i

ii CONTENTS

4 Implementation 19

4.1 Data Formats . 19

4.1.1 Shot IDs . 19

4.1.2 Electrical Power Data Point Files 19

4.1.3 Counter Files . 20

4.1.4 Work Files . 20

4.2 Software Tools . 21

4.2.1 Standard Software . 21

4.2.2 Special Developments . 22

4.3 Toward the Energy Model . 26

4.3.1 The Set of Benchmarks 26

4.3.2 Finding a Useful Subset of Events 26

4.3.3 Final Energy Model . 27

5 Evaluation 31

5.1 Error of Estimation . 31

5.2 Comparison to a Simple Time Based Model 33

5.3 Overhead of this Implementation 33

6 Conclusion 37

6.1 Problems and Outlook . 37

Bibliography 39

Appendices 45

A Performance Event Selection and Description 45

B File Formats . 47

Chapter 1

Introduction

Energy is a crucial resource especially for mobile devices. Since the available
energy is either limited—on mobile devices—or can become expensive—on de-
vices connected to the regular power grid—as little as possible should be used.
Even though most modern operating systems try to maximize the CPU usage
by lowering the frequency [22] to eventually maximize the energy efficiency,
this reaction is not always appropriate. A lower CPU frequency may even
decrease energy efficiency [22,25].

The basis to intelligently minimize the energy consumption is per–task en-
ergy accounting because it reveals where exactly the energy is consumed. For
every running process the operating system should be aware of the present
contribution to the machine’s total power consumption. Furthermore, the
overall energy consumed by a process should be known after its termination
for accounting purposes.

Thus, for being able to develop good power management strategies, a good
live energy estimation is crucial. The approach in this study thesis is to use the
CPU’s performance monitoring counters. Since the turn of the millennium [1]
there have been many papers [2, 3, 14, 15, 25] doing energy estimation using
performance counters with impressive results.

Besides these points, various other applications of energy estimation are
possible: Temperature control [15] and thermal management [18] are just one
auxiliary field. Accounted energy may also serve as a customer cost model
for computing centers [2], because it much more accurately reflects the real
costs than simple computing time based models. Another possible application
in this field are migration decisions of either virtual machines between real
machines in clusters or processes between processing units [19]. Power–aware

1

2 CHAPTER 1. INTRODUCTION

scheduling can may help to improve the computing time efficiency.

1.1 Charges and Restrictions

Because of the limited amount of time and the start from scratch, some energy–
relevant features of processor and operating system have been disabled. Since
all of these individually raise some kind of events, this is not seen as a major
drawback of this work. Future work may certainly be able to flawlessly inte-
grate them into the known model. In particular, the following features lasted
disabled:

. Dynamic Frequency and Voltage Scaling [10]

. Hyper–threading [9]

. ACPI Processor States other than C0 [5]

. Intel R© Turbo Boost Technology 2.0 [11]

In addition to the advanced processor and operating system features men-
tioned above, all auxiliary processing units were not taken into account. The
problem with the auxiliary processing units, such as the floating point unit
(FPU), MMX [27], SSE [29] and AVX [16], is that they are mostly uncovered
by the processor performance events [7]. They somehow act as a black box not
revealing the work they do internally. Hence it is almost impossible to count
their energy using a performance event model.

1.2 Acknowledgments

. Prof. Dr. Frank Bellosa, my advisor

. Rainer Dosch who designed and soldered the circuits

. Simon Kellner for the introduction into the subject and valuable hints

. James McCuller who is responsible for the university workstations I used

1.3. PRELIMINARIES 3

1.3 Preliminaries

To be able to distinguish ordinary text from special entities, different fonts
and decorations have been typeset. File system paths (e. g. /bin/ls), CPU
performance events (e. g. CPU_CLK_UNHALTED) and measuring channels (e. g.
TRIGGER) appear in a typewriter font. Proper nouns of products, programs
and libraries (e. g. R’s leaps package) are typeset using a sans–serif font. The
names of programs and libraries specifically developed for this work (e. g. da-
tadump) appear in small caps. Finally, typescripts of terminal sessions are
decorated as in the following example:

$ echo ’Hello␣World!’
Hello World!

The International System of Units (SI) is used wherever appropriate. Ad-
ditionally, the following new definitions are introduced: S meaning samples,
MiB and KiB (1 MiB =̂ 1024 KiB =̂ 1 048 576 B = 1048576 byte).

4 CHAPTER 1. INTRODUCTION

Chapter 2

Technical Prerequisites

In the following chapter the hardware examined in this work will be discussed
in detail.

2.1 Products

The examinded computer consisted of:

. CPU: Intel R© CoreTM i7–2600K Processor (Sandy Bridge microarchitec-
ture)

. Motherboard: ASUS P8P67–M PRO (using a dedicated video controller)

2.2 Sandy Bridge Characteristics

The most evident characteristics of the Intel R© CoreTM i7–2600K Processor are
the four cores (on one chip) and the uniform distribution of the caches (see
figure 2.1). All caches except for the last–level cache (L3) are present on each
core [4]. The CPU’s performance monitoring unit (PMU) appears—because
of its central importance—in a separate chapter (2.2.1). A short overview of
the key features follows [8]:

. Number of cores: 4

. CPU clock speed: 3.4 GHz

5

http://ark.intel.com/products/52213
http://www.asus.com/Motherboards/Intel_Socket_1155/P8P67M_PRO/

6 CHAPTER 2. TECHNICAL PREREQUISITES

Intel Core i7 Processor

Logical

Proces

sor

Logical

Proces

sor

Logical

Proces

sor

Logical

Proces

sor

Logical

Proces

sor

Logical

Proces

sor

Logical

Proces

sor

Logical

Proces

sor

L1 and L2

Execution Engine

Third Level Cache

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

L1 and L2 L1 and L2 L1 and L2

Execution Engine Execution Engine Execution Engine

QPI
IMC

DDR3

Chipset

OM19810b

Figure 2.1: Intel R© CoreTM i7–2600K Processor cache organization (taken from
[12])

2.2. SANDY BRIDGE CHARACTERISTICS 7

. L1 cache of 64 KiB per core [12]

. L2 cache of 256 KiB per core [12]

. shared L3 cache of 8 MiB [12]

2.2.1 Performance Monitoring Unit

The CPU’s Performance Monitoring Unit (PMU) is present since the Intel R©

Pentium processor. It is able to monitor several of the CPU’s performance
parameters while the system is running. Originally meant for tuning system
and application performance [13], it is mostly used by compiler developers.

In prior work [1,3,15,22,25] some of these performance events have proved
to be somehow related to the power consumption of the CPU. The selection
of the events and the degree of their correlation to energy highly varies among
CPUs, or at least CPU microarchitectures. Therefore, selection and fitting
have been done again for the Intel R© Sandy Bridge microarchitecture and in
particular the Intel R© CoreTM i7–2600K Processor.

By examining the processor user’s manual [7] 184 events have been found
available and usable. Because the CPU is only able to count eight (four in
Hyper–threading [9] mode) user–programmable performance events simultane-
ously [12] the most useful events have to be selected. In addition to the eight
(four) events, the CPU provides three counters for fixed events, that will be
counted in any case: CPU_CLK_UNHALTED.REF_TSC, CPU_CLK_UNHALTED.THREAD
and INST_RETIRED.ANY.

The selection, configuration and usage of these performance event counters
is done via special model specific registers (MSRs) [13]. In this work a more
high–level approach via the perf_event-API (unofficial documentation at [24])
of newer Linux Kernels and libpfm4 (see chapter 4.2.1) has been used.

2.2.2 Architectural Differences between Sandy Bridge and
its Predecessors

The Intel R© Sandy Bridge microarchitecture is a further development of the
Core and Nehalem architectures [4]. Among other simplifications of the branch
prediction unit, the special loop predictor has been discontinued presumably
to reduce the overall pipeline length and to minimize the misprediction penal-

8 CHAPTER 2. TECHNICAL PREREQUISITES

ties [4]. For speed improvements a micro–operation (µop) cache and macro–
operation fusion have been introduced [4].

Chapter 3

Design

3.1 Big Picture of the Setup

As figure 3.1 illustrates, an additional workstation—the Examining Worksta-
tion (EW)—has been used while evolving this thesis. The System under Test
(SuT) counts the CPU’s performance events itself and the EW records the
energy consumption using a measuring device in the meantime. The resulting
data sets have thereafter been used to build up the energy model.

3.2 Measuring Setup in Detail

To fit the energy model afterwards, the current flows of the CPU and the
motherboard’s 12 V supply have to be measured. Voltage drops across the
sensing resistor are measured using four–terminal sensing [26] to deduce the
current flow. The motherboard’s 12 V current flow has been measured in this
thesis because it was unclear if the CPU is entirely fed by its own 12 V power
supply.

Because the SuT and the EW (see figure 3.1) have to agree about the
examination (time) interval a trigger wire is used. It is realized as a simple
analog signal using the parallel port’s high and low voltages.

This can be summed up to measure three potential differences. Since the
measuring device (chapter 3.2.1) provides up to eight differential, analog input
channels this seems easy at first. Unfortunately, two caveats apply: On the
one hand according to the user’s manual [21] the best measuring accuracy can

9

10 CHAPTER 3. DESIGN

CPU

BOARD

BOARD

CPU

P

P

TRIGGER

 NI

USB-6218

USB 2.0

Examining Workstation (EW)

System unter Test (SuT)

Measuring Device

Figure 3.1: Measuring setup overview

3.2. MEASURING SETUP IN DETAIL 11

12 V

 CPU /

BOARD

R Vout

Figure 3.2: Measuring circuit for CPU (R=10 mΩ) and BOARD (R=5 mΩ)

be achieved in range of −200 mV and 200 mV. On the other hand the overall
potential differences may not exceed ±10.4 V [20].

Choosing adequate sensing resistors for the CPU (R = 10 mΩ) and BOARD (R
= 5 mΩ) channels (see figure 3.2) worked out well. The parallel port trigger
wire has been a problem at first, though. The parallel port has a potential
difference range of more than 200 mV and our test machine’s port had a very
different potential level than the CPU and BOARD channels, exceeding the allowed
range of ±10.4 V. The potential equalizer illustrated in figure 3.3 solves both
problems.

Finally, three differential channels CPU, BOARD (12 V supply only!) and
TRIGGER in the range of ±200 mV and alike potential levels can be connected
to the measuring device. The performance events get counted on the SuT
itself which controls the trigger wire, too: The trigger is set to On directly
before executing the program to examine and is set to Off promptly after its
termination. To safely register all CPU energy consumption peaks, a high
sampling rate of 50 kS/s is chosen. An exemplary plot of an examination can
be found in figure 3.4.

12 CHAPTER 3. DESIGN

Figure 3.3: Potential equalizer

0 10 20 30 40 50 60

0
2

0
4

0
6

0
8

0

CPU (black) and BOARD (blue) 12V power, TRIGGER wire (red)

core 1: stream, core 2: SPEC/471.omnetpp, core 3: SPEC/456.hmmer, core 4: mispredict

t [s]

P
 [

W
]

Figure 3.4: Sample examination

3.3. CALCULATION OF THE ELECTRICAL WORK 13

Figure 3.5: NI USB–6218 (picture from http://www.pressebox.de/
pressemeldungen/national-instruments-germany-gmbh/boxid/75241)

3.2.1 Measuring Device

For measuring the voltage drops a NI USB–6218 from National Instruments
(shown in figure 3.5) was chosen because its support for high sampling rates of
up to 250000 samples per second (250 kS/s) and its high accuracy (accuracy
< 2.69 mV) [20].

3.3 Calculation of the Electrical Work

From elementary physics (resistance R, voltage U , electric current I and in-
stantaneous electric power P):

http://www.pressebox.de/pressemeldungen/national-instruments-germany-gmbh/boxid/75241
http://www.pressebox.de/pressemeldungen/national-instruments-germany-gmbh/boxid/75241
http://sine.ni.com/nips/cds/view/p/lang/en/nid/203484
http://www.ni.com

14 CHAPTER 3. DESIGN

U = R ∗ I ⇐⇒ I =
U

R
(3.1)

P = U ∗ I (3.2)

So, the current flow is calculable from the voltage drops across the mea-
suring resistor (UR). Accordingly, the instantaneous power can be calculated
as:

P = U ∗ I (3.3)

= U ∗ UR

R
(3.4)

P =
12V ∗ UR

R
(3.5)

Hence, integrating will result in the electrical work

W =

∫
P (t)dt (3.6)

3.4 The Energy Model

The following chapters will define the term energy model along with the formal
methods suggested to build such a model.

3.4.1 Properties

In this work, an energy model is considered as a linear function. It describes
a system with nc cores that is able to monitor ne performance events per core
simultaneously. Additionally to the per–core event counters, ng global event
counters make the model up. In the formal description (see chapter 4.3 for
the practical implementation) we assume four functions providing the actual
values:

. cg(i, t0, te) ∈ N{1,...,ne}×R≥0×R≥0 , the global event i’s count in the time
interval (t0, te)

3.4. THE ENERGY MODEL 15

. ce(j, k, t0, te) ∈ N{1,...,nc}×{1,...,ng}×R≥0×R≥0 , the performance event k’s count
on core j in the interval (t0, te)

. wg(i) ∈ R{1,...,ng}, the global event i’s energy weight in J

. we(j, k) ∈ R{1,...,nc}×{1,...,ng}, the weight of performance event k in J on
core j

Though, an energy model equates to a linear function. The function’s value
is the electrical work performed between two instants of time t0 and te:

W (t0, te) =

ng∑
i=1

cg(i, t0, te)wg(i) +
nc∑
j=1

ne∑
k=1

ce(j, k, t0, te)we(j, k) (3.7)

The functions ce and cg contain the system’s live data whereas the energy
weight functions we and wc can be calculated a priori as done in this work. Ob-
viously, the selection of the events and their respective weights highly depend
on the type of microprocessor. To calculate the electrical power the system
consumes, typically an arbitrary frequency f (period length T = 1

f
) is chosen

and the variables t0 and te are set accordingly (t0 =?, te = t0 + 1
f

= t0 + T).
The instantaneous power is then calculated as:

P (t) =
W (t− T, t)

T
(3.8)

=

ng∑
i=1

cg(i, t− T, t)wg(i) +
nc∑
j=1

ne∑
k=1

ce(j, k, t− T, t)we(j, k)

T
(3.9)

3.4.2 Finding the Energy Weights

Having seen what exactly constitutes an energy model (chapter 3.4.1), it is
crucial to find a small and significant set of performance events and appropriate
energy weights. This chapter will focus on how to find the weights. A separate
chapter (3.4.3) describes the downsizing of the event set. To find reasonable
energy weights test program (also called benchmark) execution observations
have to be recorded and evaluated. Each test program run record contains the
following data:

16 CHAPTER 3. DESIGN

. b, the point in time the run began

. e, the point in time the run ended

. The ng values of the functions cg(1 · · ·ng, b, e)

. The nc ∗ ne values of the functions ce(1 · · ·nc, 1 · · ·ne, b, e)

. The electrical work j the system performed between b and e

Since the fitting of the energy weights needs a large data set, a matrix
representation is appropriate. So, no observations in the non–overlapping time
intervals (b1···no , e1···no) lead to:

. b1···no , the points in time the runs began

. e1···no , the points in time the runs ended

. The matrix Cg containing the global counter values (see equation 3.10)

. The matrix Ce, containing the performance event counter values (see
equation 3.12)

. The vector j =< j1, · · · , jno >, containing the electrical work performed

Cg ∈ Nno×ng (3.10)

Cg =

 cg(1, b1, e1) · · · cg(ng, b1, e1)
...

cg(1, bno , eno) · · · cg(ng, bno , eno)

 (3.11)

Ce ∈ Nno×ncne (3.12)

Ce =

 ce(1, 1, b1, e1) · · ·∗ ce(nc, ne, b1, e1)
... . . .

∗ ...
ce(1, 1, bno , eno) · · ·∗ ce(nc, ne, bno , eno)

 (3.13)

∗) an arbitrary incrementation scheme—consistent with vector w—may be
chosen

Using a linear regression (of equation 3.14), suitable energy weight vectors
wc and wg can be found. The goal is to minimize the error term, i. e.

∑
ε2 as

small as possible.

3.4. THE ENERGY MODEL 17

j = Cw + ε (3.14)

j =

 j1
...
jno

C =

(
Cg|Ce

)
∈ Nno×ng+ncne

=

 Cg1,1 · · · Cg1,ng Ce1, 1 · · · Ce1, ncne
...

...
Cgno,1 · · · Cgno,ng Ceno, 1 · · · Ceno, ncne

w =

wg(1)
...

wg(ng)
we(1, 1)

...
we(nc, ne)

3.4.3 Minimizing the Set of Performance Events

It is not practical to take into account all events the microprocessor is aware of.
Today’s processors offer much more events than they can count simultaneously
[12]. The function and matrix names of the previous chapter (3.4.2) also apply
here. The single exception is that this chapter only focuses on the CPU’s
performance events. The global events are not taken into account here because
they are pseudo–events not obtained by the limited PMU and therefore have
no maximal quantity. The approach to find a subset of ne events (of emax

available) used in this work can be summed up to the following two steps
which will be discussed in detail later:

1. Generation of the matrix of performance event counters Ce and the cor-
responding vector of electrical works j

2. Obtaining Cefinal containing the ne most correlating columns of Ce that
will form the energy model’s performance events

Thereafter, the performance events the model finally uses are found. The
next step is to find the final energy weights as in the previous chapter (3.4.2).

18 CHAPTER 3. DESIGN

Step 1: Generating Ce and j

(a) Choose p test programs which use the CPU differently. The test programs
have to be independent from external events. We consider subsequent runs
of a test program as equal.

(b) Divide the emax available events in g disjoint, non–empty sets E1..g each of
size up to ne.

(c) For each set E1..g, run all the p test programs and record the electrical
work performed and the event counters of the set’s events.

(d) The electrical work of each of the runs of a test program should be roughly
equal. If they differ a lot, there is either a dependency on external events in
the benchmark or the machine is otherwisely stressed. In the former case
the test program selection should be improved, in the latter the affected
test runs have to be repeated.

(e) Folding all the results leads to a vector j ∈ Rp containing the electrical
work a run of each of the test programs performed. Additionally, a matrix
Ce (as in chapter 3.4.2) accrues, containing each event counter’s value for
a run of each of the test programs.

Step 2: Deriving Cefinal from Ce

(a) Eliminate duplicate columns in Ce

(b) Eliminate columns that contain only zeros in Ce

(c) Eliminate linear dependent columns in Ce

(d) Generate all column combinations of size ne (without repetition) of the
remaining columns in Ce and deduce the energy weights (as in chapter
3.4.2)

(e) Cefinal is the combination with the smallest error term (
∑
ε2)

Chapter 4

Implementation

4.1 Data Formats

This chapter will give a rough outline of the formats used to store data between
the various phases of the analysis. The lingua franca for most complex on–
disc formats are the schrieblesque GoogleTM Protocol Buffers. Though, when
interfacing with external software such as R, other formats had to be chosen.
The choice in favor of Protocol Buffers has been made because of think XML,
but smaller, faster, and simpler (Protocol Buffer’s slogan).

4.1.1 Shot IDs

A shot ID (shot identifier) is a string value uniquely identifying a measuring
experiment. More precisely it is a character string containing only a defined
set of ASCII characters. The following regular expression should match all
valid shot IDs: [a-zA-Z0-9@_-]{1,64}.

Such shot IDs are always used to associate power and performance event
measurements.

4.1.2 Electrical Power Data Point Files

The main matter of the electrical power data point files (called data point files
for simplicity) is to log the CPU’s power consumption by time. As described
in chapter 3.2, voltage drops are measured and electrical power and work are
calculated later on. This is why data point files do literally contain voltage drop

19

20 CHAPTER 4. IMPLEMENTATION

values by time. But since the sole reason they exist is to serve as calculation
input later on, they are named after their future purpose.

For practical reasons the representation is designed rather flexible: It sup-
ports arbitrary sampling rates, an arbitrary number of (named) channels and
high–resolution timestamps (up to 1 ns).

While researching for this thesis, three channels have been recorded with a
sampling rate of 50 kS/s: CPU—the CPU’s voltage drops—, BOARD—the moth-
erboard’s voltage drops (unused)— and TRIGGER—the trigger wire used to
mark the periods of time the other machine counts performance events.

The data point files are also one notable exception of the Protocol Buffers
for everything principle in this work. Protocol Buffers were not designed to
handle large messages but to serve as individual messages within a large data
set [6]. So (as you can see in appendix B) small Protocol Buffer messages are
streamed one after another. The size of one of these chunks is not specified.
Usually one makes up a chunk when he receives one from a measuring device.
The rule of thumb is: Make them as large as practical, but not too large since
we only record one time stamp per chunk. The data points inside each chunk
are considered as equally distributed.

4.1.3 Counter Files

The counter files are used to save the performance event counter values after
the completion of one measuring experiment. Associating the performance
event counter values and the electrical work of a measuring experiment is an
essential part toward calculating an energy model (see chapter 4.3). The match
of corresponding data point files (chapter 4.1.2) and counter files is done using
the shot ID (chapter 4.1.1).

The counter files’ on–disc representation is—except for some magic bytes—
a Protocol Buffers–only format. For the technical definition see appendix B.

4.1.4 Work Files

The content of the work files is just the electrical work of a certain mea-
suring experiment in Joule. The file format is the ASCII representation of
the floating point value followed by optional garbage (separated by an ASCII
space or newline). In contrast to the other file formats, the work file’s file
names have to match the following format: work_<SHOT-ID>_.work (e. g.

4.2. SOFTWARE TOOLS 21

work_SPEC-gcc@2011-08-31_16-07-46.work).

The following listing shows a valid work file:

$ hexdump -C work_SPEC -gcc@2011 -08-31_16 -07 -46. work
0000 37 34 2e 30 31 35 32 35 36 0a |74.015256.|
000a

4.2 Software Tools

Since the building of a reasonable energy model is not an easy task, numerous
tools have been used. Most software was developed specifically for the purpose
of this study thesis. All of it is open–sourced and available on GitHub (https:
//github.com/weissi/studienarbeit).

This chapter will give an overview of the software used, both standard
software and tools developed specifically.

4.2.1 Standard Software

. GoogleTM Protocol Buffers — for saving and loading of all kinds of data

. protocol-buffers — for parsing GoogleTM Protocol Buffers files and gen-
erating code in Haskell

. protobuf-c — for parsing Protocol Buffer files and generating code in C

. R — for statistical computations and data plots

. leaps — a R library for regression subset selection (to minimize the set
of performance event counters)

. lm — a R library to fit linear models

. libpfm4 — for reading the performance event counters from user space

. NI–DAQmx Base — for interfacing NI USB–6218

. Glasgow Haskell Compiler

. Linux Kernel

. numerous GNU tools

https://github.com/weissi/studienarbeit
https://github.com/weissi/studienarbeit
https://github.com/weissi/studienarbeit
http://code.google.com/apis/protocolbuffers/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/protocol-buffers
http://code.google.com/p/protobuf-c/
http://www.r-project.org/
http://cran.r-project.org/web/packages/leaps/
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html
http://perfmon2.sourceforge.net/docs_v4.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/14480
http://www.haskell.org/ghc
http://kernel.org
http://gnu.org

22 CHAPTER 4. IMPLEMENTATION

4.2.2 Special Developments

libdatapoints

libdatapoints is responsible for loading and saving the measured data points
from and to the data point files (see chapter 4.1.2). Its API is straight forward
and the library is able to handle arbitrarily large files. The API can be found
in libdatapoints/datapoints.h.

datadump

datadump is the tool used to dump the measuring data to data point files
(see chapter 4.1.2). It currently records the three channels CPU, BOARD and
TRIGGER with a sampling rate of 50 kS/s using NI–DAQmx Base (see chapter
3.2.1 and 4.2.1) to a file. Again, the usage is quite simple and straight forward:

datadump out.dpts my-shot -id

The example saves the measuring experiment my-shot-id’s data to the file
out.dpts. The record runs until a SIGINT signal is caught. Optionally a
third parameter representing the desired maximal running time in seconds is
supported.

fastcalcwork

fastcalcwork can calculate the electrical work from data point files quick-
ly. As explained in chapter 3.3 it calculates and integrates the instantaneous
power to electrical work. But since discrete data is obtained by sampling (see
chapter 3.2), calculating the electrical work is easy and fast:

P (t) =
12V ∗ UR(t)

R
(4.1)

W =

∫ tmax

t0

P (t)dt =
max∑
i=1

P (ti) ∗ (ti − ti−1) (4.2)

The following example illustrates the usage of fastcalcwork:

fastcalcwork captured -17:15:00. dpts CPU 0.01 TRIGGER

4.2. SOFTWARE TOOLS 23

Using the command line above, fastcalcwork will calculate the electri-
cal work with a measuring resistor of 0.01 Ω. The measured data points will
be taken from column CPU, the analog trigger’s value (see chapter 3.2) from
TRIGGER.

dataexport

dataexport exports data point files (see chapter 4.1.2) to R’s read.table
format [23]. This format is less efficient and contains only parts of the in-
formation but enables the user to exploit R’s excellent analysis and plotting
capabilities.

dumpcounters

dumpcounters is a tool for retrieving the performance event counter values
on the target machine. Giving it a set of performance events and a command
to execute, it will record the events while the task is running. It always records
the whole system’s performance events for all CPUs. Along the way it also
controls the trigger wire. The trigger is crucial to match the time intervals for
counting performance events and measuring electrical power.

A working example executing /bin/ls and counting CPU_CLK_UNHALTED
and INST_RETIRED along the way follows:

dumpcounters -e CPU_CLK_UNHALTED ,INST_RETIRED \
-o ls_clock -cycles_inst -retired.ctrs \
-r /bin/ls

After the execution, the file ls_clock-cycles_inst-retired.ctrs will
contain the performance event counter values. The file format is described in
chapter 4.1.3.

ctrbenchmark suite

ctrbenchmark suite is a front end and a very small library making it easy
to write and use microbenchmarks. It is primarily meant to stress individual
performance event counters, hence its name. Working samples can be found
in the directory ctrbenchmark/benchlets/.

24 CHAPTER 4. IMPLEMENTATION

BuildSLE

BuildSLE is a Haskell program which is able to build the system of l inear
equations. It takes several counter files (chapter 4.1.3) and the corresponding
work files (4.1.4) as input and outputs a system of linear equations.

Given that R was always used to post–process the results of BuildSLE it
is obvious that, again, R’s read.table [23] format is outputted. Building a
system of linear equations and solving it in R works as the following example
shows:

$ buildsle *.work *.ctrs > /tmp/sle.rtab
BuildSLE , Copyright (C)2011 , Johannes Weiss
[...]
Processed work files: 500
[...]

$ R
R version 2.12.1 (2010 -12 -16)
[...]
> sle <- read.table(’/tmp/sle.rtab’, header=TRUE)
> m <- lm(WORK~., data=sle)

High–level Scripts

So far, there are several simple tools for simple tasks. To compose the en-
semble many of them have to be invoked correctly with each other. Since
this is not a trivial task, some high–level scripts have been developed, most
notably scripts/measure-n-counters-m-benchmarks.sh and scripts/do_
measuring.sh. The former script can control records of many benchmarks
with a fixed (chapter 4.3.3), rotational (chapter 4.3.2) or incremental (chapter
5.3) set of performance event counters; the latter automates the following steps
as shown in the example below:

1. Check if no other measuring experiment is currently running.

2. Check that NI USB–6218 is connected.

3. Check that the login to the remote machine (which has the hostname
i30pc59 in the example) works password–less and the remote user is
allowed to use sudo.

http://haskell.org

4.2. SOFTWARE TOOLS 25

4. Locally and remotely build the needed software tools.

5. Locally start datadump, remotely launch /bin/ls using dumpcoun-
ters. The counted performance events are CPU_CLK_UNHALTED and
INST_RETIRED.

6. Wait until /bin/ls has terminated and then stop datadump.

7. Calculate the electrical work using fastcalcwork.

8. Save the data dump file, the counter file and the work file under the
directory /tmp/demo-shot. The shot–id is demo-shot@2001-09-09_-
15-41-32.

$ do_measuring.sh -f \
-s 2011 -09 -09_15 -41-32 \
-p demo -shot \
-o /tmp/demo -shot \
i30pc59 \
’CPU_CLK_UNHALTED ,INST_RETIRED ’ \
/bin/ls

No other ’datadump ’ running: OK
Checking if NI device 3923:7272 is plugged: OK
Testing password -free SSH: OK
Testing password -free sudo: OK
Building: OK
Remote building: OK
INFO: logfile is ’/tmp/measuring_log_ [...]. log’
Waiting for sloooow NI call (e.g. 29s) [...]. OK[...]
Writing remote script: OK
Running remote benchmark: OK (time =1)
INFO: remote log is ’/tmp/remote -[...]. log’
Telling datadump to stop (SIGINT): OK
Waiting for dump process (23472) to finishOK
Calculating work to ’work_ [...]. work’ OK
Doing transformation

GREAT SUCCESS , EVERYTHING WENT FINE :-)

26 CHAPTER 4. IMPLEMENTATION

4.3 Toward the Energy Model

In this chapter a description of the steps toward the final energy model(s) is
given.

4.3.1 The Set of Benchmarks

The first step toward the energy model is to choose a good set of benchmarks.
The benchmarks should stress different parts of the CPU and should collec-
tively stress all parts and units of the CPU. As chapter 1.1 states some units
have been deliberately excluded in this work. The benchmarks should therefore
avoid the excluded units because their results would have bad consequences
on the final model.

The benchmark choice fell to the CINT2006 (Integer Component of SPEC
CPU2006) suite, the memory bandwidth benchmark STREAM, a benchmark
provoking many branch mispredictions and an ALU stress benchmark.

For the multi–core tests, different instances of these benchmarks have been
pinned to each core and were therefore running simultaneously.

4.3.2 Finding a Useful Subset of Events

Because of the symmetric architecture of the CPU (see chapter 2.2) the final
subset of events in the model has been gathered using only one enabled core
of the CPU. The other cores have been disabled using the BIOS.

To model the baseline energy of a core (the energy consumed when no
performance event is triggered), one pseudo–event per core (modeling the time
it is enabled) has been added. These events fall in the group of the global
events (see chapter 3.4.1). A core can only be enabled or disabled when the
machine gets (re)booted. Therefore each of these pseudo–events is either 0
(core disabled) or is equal to the entire running time of a benchmark (core
enabled).

The general methodology has already been described in chapter 3.4.3. First
the performance events were randomly distributed in disjoint groups of eight
events which is the maximal number of performance events the CPU can count
simultaneously (see chapter 2.2). Thereafter, for each group of events all bench-
marks have been executed consecutively. Then, all the runs of each benchmark
were considered as one run recording all available events. Since the electrical

http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.cs.virginia.edu/stream/

4.3. TOWARD THE ENERGY MODEL 27

work consumed and the running time were recorded for each run of its own,
they were averaged per benchmark. This was reasonable because the maximal
relative standard deviation was always below 4%.

The result was considered as one huge system of linear equations and the
best subset of events was chosen using R’s leaps package. The events CPU_-
CLK_UNHALTED (= CPU_CLK_UNHALTED.THREAD ∝ CPU_CLK_UNHALTED.REF_-
TSC) and INST_RETIRED (= INST_RETIRED.ANY) are counted using fixed coun-
ters (see chapter 2.2.1) and were therefore forced into the model. Except the
two fixed counters, R’s leaps package has been configured to find the best
model for eight counters.

Appendix A describes the events forming the energy model presented in
this paper.

4.3.3 Final Energy Model

After the event selection process, suitable energy weights for the (pseudo–)
events had to be found. To find these, the benchmark runs were repeated,
once again on a single core but recording all of the final events in one shot.
Thereafter all reasonable permutations for two and three cores and 500 ran-
dom permutations for all four cores have been generated. All in all over 3000
different benchmark runs have been recorded. The way the benchmark runs
were recorded is illustrated in figure 4.1. It was necessary to always reboot and
reconfigure the machine because the number of active cores cannot be changed
at run time. The taskset [17] utility has been used to pin the benchmark
processes to their target core.

To train the model only about 50 well chosen benchmark runs were used,
iteratively adding adequate sample runs when weaknesses of the model have
been discovered. To evaluate the model (chapter 5) the whole set was used.

Presumably due to the symmetric architecture of the CPU, the events’ en-
ergy weights proved to be similar on all cores. Hence, the model’s general form
could be simplified. Consequently the function wc is not anymore parametrized
by core. The following equation shows the new form, identifiers as in chapter
3.4.1.

W (t0, te) =

ng∑
i=1

cg(i, t0, te)wg(i) +
ne∑
k=1

we(k)
nc∑
j=1

ce(j, k, t0, te) (4.3)

28 CHAPTER 4. IMPLEMENTATION

core 1

Figure 4.1: Data acquisition by running benchmark permutations

4.3. TOWARD THE ENERGY MODEL 29

The following table shows the energy weights which form the functions wc

and wg. cg and ce are the system’s live data, available from the PMU (via
libpfm4). When running live on a system, the parameters t0 and te result from
the sampling process: t0 is the point in time of the last sample, te is “now”.
The functions’ values are then obtained by the performance event counter’s
difference between the last and the current sample. Obviously, cg and ce are
partial functions in reality: They are only defined if t0 matches the time of
the last sample and te the time of the current sample. The formula above and
the weights below represent the energy model presented in this thesis. That
is enough to estimate the electrical power the CPU consumes in selectable
sampling intervals.

(pseudo–)Event Energy Maximal Frequency
Weight compared to

(wc and wg) CPU_CLK_UNHALTED
time core 1 is enabled [ns] 7.122 nJ ∞
time core 2 is enabled [ns] 1.486 nJ ∞
time core 3 is enabled [ns] 1.591 nJ ∞
time core 4 is enabled [ns] 2.350 nJ ∞
INST_RETIRED −0.224 nJ 245.01%
CPU_CLK_UNHALTED 4.546 nJ 100.00%
LD_BLOCKS:DATA_UNKNOWN −6.281 nJ 83.28%
LD_BLOCKS:ALL_BLOCK 5.504 nJ 83.28%
UOPS_DISPATCHED:STALL_CYCLES −2.508 nJ 72.44%
ILD_STALL:IQ_FULL −1.425 nJ 18.17%
DSB2MITE_SWITCHES −5.972 nJ 5.31%
DSB_FILL:ALL_CANCEL 64.249 nJ 2.60%
L2_RQSTS:PF_HIT −22.837 nJ 1.23%
BR_INST_RETIRED:FAR_BRANCH −18 031.295 nJ 0.05%

30 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

This chapter evaluates usefulness, accuracy and overhead the energy model
imposes. The model’s strengths and weaknesses are pointed out and it is
compared to a simple computing time based model.

5.1 Error of Estimation

Most of the 3000 benchmark runs mentioned in chapter 4.3.1 and 4.3.3 are
estimated with an error of 5% or better, as model in figure 5.1 shows. The
bars named cpu_time_based are a comparison to a simple computing time
based model, discussed in a chapter of its own (5.2). The overall worst sample
was estimated with an error of about 40% (seemodel in figure 5.3). This sample
is from a special benchmark run where all four cores were enabled but mostly
idle (real average power usage 8.9 W, 12.5 W estimated). This erratic behavior
is explainable by the design of the model: The goal has been to develop a
model which will not produce completely faulty results but focuses on higher
power consumptions. The power consumptions observed were between 6 W
and 60 W and the focus has been set on the range above 15 W. This decision
was motivated by the fact that an operating system will typically spend little
time in ACPI Processor State C0 [5] when little energy is consumed. But
as chapter 1.1 states, the energy model worked out in this thesis is valid iff
the CPU is in state C0 all along. Nevertheless, a similar energy model may
be evolved with particular support for low–power CPU usage and the other
ACPI Processor States in mind.

Regarding most of the benchmarks—which consume more than 15 W on

31

32 CHAPTER 5. EVALUATION

Percent Error

N
u

m
b

e
r

o
f

B
e

n
c
h

m
a

rk
s

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90 100

variable

model

cpu_time_based

Figure 5.1: Histogram of percent error, sophisticated versus simple model

Percent Error

N
u

m
b

e
r

o
f

B
e

n
c
h

m
a

rk
s

0 5 10 15 20 25 30

0
2

0
0

4
0

0
6

0
0

Figure 5.2: Histogram of percent error for 15 W+–benchmarks

m
o

d
e

l
c
p

u
_

ti
m

e
_

b
a

s
e

d

0 20 40 60 80 100

Percent Error

M
e

th
o

d

Figure 5.3: Percent error, sophisticated versus simple model

5.2. COMPARISON TO A SIMPLE TIME BASED MODEL 33

average—the model’s estimation is clearly better. Figure 5.2 illustrates a per-
cent error classification of the benchmarks consuming more than 15 W on av-
erage. The 15 W+–benchmarks show an average estimation error of only 5.3%.

5.2 Comparison to a Simple Time Based Model

As it is still today’s standard to use computing time based models, this chapter
will compare the estimations to the more sophisticated energy model presented
here (chapter 4.3.3).

The comparison of the overall average energy estimation error shows the
benefit of a reasonable energy model: 5.4% versus 13.1% for the simple com-
puting time based model. Figure 5.3 illustrates the results, where the final
energy model is listed as model in the figures. The computing time based
model was built by using only the event CPU_CLK_UNHALTED and is referred to
in the figures as cpu_time_model. It has been fitted using a linear regression
on the same training data as the regular model, resulting in the formula

W = 5.885J ∗ 10−9 ∗ CPU_CLK_UNHALTED. (5.1)

5.3 Overhead of this Implementation

To evaluate the overhead of this implementation three metrics have been ap-
plied: Running time, average power usage and unhalted CPU clock cycles.
To compare the results the 473.astar benchmark of the CINT2006 (Integer
Component of SPEC CPU2006) benchmark suite has been used. Besides a
warm–up run, every configuration has been executed ten times. The perfor-
mance events have been added consecutively in the order they are listed in
appendix A. Before measuring the costs of adding a counter, the system has
been benchmarked without even setting up libpfm4 (see chapter 4.2.1). In the
plots these configurations are listed as 0 performance events measured. Be-
cause the unhalted CPU clock cycles are measured using the PMU (chapter
2.2.1) and libpfm4, no benchmark could be recorded without even setting up
libpfm4.

As one can see in figures 5.4 and 5.5, the number of counted performance
events or not using the PMU (see chapter 2.2.1) does not seem to correlate to
the CPU clock cycles or the time a process needs to complete. The Pearson

http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/

34 CHAPTER 5. EVALUATION

2 4 6 8 10

2
6

2
2

6
4

2
6

6
2

6
8

2
7

0
Relation between Number of Counters and Clock Cycles

Considering 10 executions of SPECint 2006/473.astar (median in red)

number of recorded performance events

U
n

h
a

lt
e

d
 G

ig
a

 C
lo

c
k
 C

y
c
le

s
 n

e
e

d
e

d
 t

o
 c

o
m

p
le

te

1 2 3 4 5 6 7 8 9 10

2
6

2
2

6
4

2
6

6
2

6
8

2
7

0

Figure 5.4: Counter Costs Cycles

0 1 2 3 4 5 6 7 8 9 10

8
5

.0
8

5
.5

8
6

.0
8

6
.5

Relation between Number of Counters and Execution Time

Considering 10 executions of SPECint 2006/473.astar (median in red)

number of recorded performance events

B
e

n
c
h

m
a

rk
 E

xe
c
u

ti
o

n
 T

im
e

 [
s
]

Figure 5.5: Counter Costs Time

5.3. OVERHEAD OF THIS IMPLEMENTATION 35

0 1 2 3 4 5 6 7 8 9 10

2
9

.0
5

2
9

.1
0

2
9

.1
5

2
9

.2
0

2
9

.2
5

2
9

.3
0

2
9

.3
5

Relation between Number of Counters and Electrical Power

Considering 10 executions of SPECint 2006/473.astar (median in red)

number of recorded performance events

A
ve

ra
g

e
 P

o
w

e
r

c
o

n
s
u

m
e

d
 [

W
]

Figure 5.6: Counter Costs Power

product–moment correlation coefficients (PCCs) [28] are −0.18 with respect to
the running time and −0.12 to the clock cycles. Considering the average elec-
trical power there’s some correlation (PCC: 0.72, figure 5.6), but the absolute
value (< 0.3 W) is negligible.

So, this implementation does not harm the system’s performance and its
contribution to the overall energy consumption is negligible.

36 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

As of our knowledge the energy model presented in this thesis is the first
performance event counter based for the Intel R© Sandy Bridge microarchitec-
ture. More than that, it is the first for CPUs with more than two cores. The
evaluation results prove the general concept is also applicable to today’s and
tomorrow’s multi–core CPUs.

The software developed along with this thesis provides a convenient and
freely available way to build energy models in the future.

6.1 Problems and Outlook

Even though the resulting energy model already proved its efficiency and ne-
cessity, there is room for further improvements. On the one hand for the model
itself, on the other hand for the process of building energy models for new tar-
get architectures. First, the restrictions mentioned in chapter 1.1 should be
eliminated. To improve the practical usefulness real multi–threading programs
should be better kept in mind. The challenge with threads is that shared mem-
ory regions get accessed on the same time. This will probably attract interest
on other or additional performance events which are not well covered here.
The latter also shows the need to develop a convenient event selection process.
Supplementary, the upcoming many–core architectures with � 4 cores might
become challenging.

37

38 CHAPTER 6. CONCLUSION

Bibliography

[1] F. Bellosa. The benefits of event: driven energy accounting in power-
sensitive systems. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating sys-
tem, pages 37–42. ACM, 2000.

[2] R. Bertran, Y. Becerra, D. Carrera, V. Beltran, M. Gonzalez, X. Mar-
torell, J. Torres, and E. Ayguade. Accurate energy accounting for shared
virtualized environments using pmc-based power modeling techniques. In
Proc. 11th IEEE/ACM Int Grid Computing (GRID) Conf, pages 1–8,
2010. doi:10.1109/GRID.2010.5697889.

[3] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade.
Decomposable and responsive power models for multicore processors us-
ing performance counters. In Proceedings of the 24th ACM International
Conference on Supercomputing, pages 147–158. ACM, 2010.

[4] Agner Fog. The microarchitecture of Intel and AMD CPUs. Available
from: http://www.agner.org/optimize/microarchitecture.pdf.

[5] Hewlett Packard/Intel/Microsoft/Phoenix/Toshiba. Advanced Configu-
ration and Power Interface Specification, April 2010. Available from:
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.

[6] Google Inc. Protocol Buffers – Techniques. Available from: http://
code.google.com/apis/protocolbuffers/docs/techniques.html.

[7] Intel Corporation. Reference for Processor Events. Available from:
http://software.intel.com/sites/products/documentation/
hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm#snb/
events/about_events.html.

[8] Intel Corporation. Specifications of the Intel R© CoreTM i7-2600 Processor.
Available from: http://ark.intel.com/products/52213.

39

http://dx.doi.org/10.1109/GRID.2010.5697889
http://www.agner.org/optimize/microarchitecture.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://code.google.com/apis/protocolbuffers/docs/techniques.html
http://code.google.com/apis/protocolbuffers/docs/techniques.html
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm#snb/events/about_events.html
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm#snb/events/about_events.html
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm#snb/events/about_events.html
http://ark.intel.com/products/52213

40 BIBLIOGRAPHY

[9] Intel Corporation. Hyper-Threading Technology, February 2002.
Available from: http://download.intel.com/technology/itj/2002/
volume06issue01/vol6iss1_hyper_threading_technology.pdf.

[10] Intel Corporation. Enhanced Intel R© SpeedStep R© Technology for the
Intel R© Pentium R© M Processor, March 2004. Available from: ftp:
//download.intel.com/design/network/papers/30117401.pdf.

[11] Intel Corporation. Intel R© Turbo Boost Technology in Intel R© CoreTM Mi-
croarchitecture (Nehalem) Based Processors, November 2008. Available
from: http://download.intel.com/design/processor/applnots/
320354.pdf?iid=tech_tb+paper.

[12] Intel Corporation. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 (Basic Architecture) , May 2011.
Available from: http://www.intel.com/content/dam/doc/manual/
64-ia-32-architectures-software-developer-vol-1-manual.pdf.

[13] Intel Corporation. Intel R© 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3B (System Programming Guide, Part 2),
May 2011. Available from: http://www.intel.com/Assets/en_US/PDF/
manual/253669.pdf?wapkw=(915).

[14] C. Isci and M. Martonosi. Runtime power monitoring in high-end pro-
cessors: Methodology and empirical data. In Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitecture, page 93.
IEEE Computer Society, 2003.

[15] Simon Kellner. Event-driven temperature control in operating sys-
tems, April 30 2003. Available from: http://www4.informatik.
uni-erlangen.de/SA/pdf/SA-I4-2003-02-Kellner.pdf.

[16] Chris Lomont. Introduction to Intel R© Advanced Vector Extensions.
Technical report, Intel Corporation, May 2011. Available from: http:
//software.intel.com/file/37205.

[17] Robert M. Love. Linux User’s Manual – taskset, April 2003. Available
from: http://linuxcommand.org/man_pages/taskset1.html.

[18] Andreas Merkel, Frank Bellosa, and Andreas Weissel. Event-Driven Ther-
mal Management in SMP Systems. In Second Workshop on Temperature-
Aware Computer Systems (TACS’05), Madison, USA, June 2005.

http://download.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
http://download.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/Assets/en_US/PDF/manual/253669.pdf?wapkw=(915)
http://www.intel.com/Assets/en_US/PDF/manual/253669.pdf?wapkw=(915)
http://www4.informatik.uni-erlangen.de/SA/pdf/SA-I4-2003-02-Kellner.pdf
http://www4.informatik.uni-erlangen.de/SA/pdf/SA-I4-2003-02-Kellner.pdf
http://software.intel.com/file/37205
http://software.intel.com/file/37205
http://linuxcommand.org/man_pages/taskset1.html

BIBLIOGRAPHY 41

[19] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-conscious
Scheduling for Energy Efficiency on Multicore Processors. In Fifth ACM
SIGOPS EuroSys Conference, Paris, France, April 13– 16 2010.

[20] National Instruments Corporation. NI USB-621x Specifications, apr2009
edition, April 2009. Available from: www.ni.com/pdf/manuals/371932f.
pdf.

[21] National Instruments Corporation. NI USB-621x User Manual, april 2009
edition, April 2009. Available from: http://www.ni.com/pdf/manuals/
371931f.pdf.

[22] D. Snowdon. Operating System Directed Power Management. PhD thesis,
The University of New South Wales, 2010.

[23] R Development Core Team. R Data Import/Export, version 2.13.1 (2011-
07-08) edition, July 2011. Available from: http://cran.r-project.org/
doc/manuals/R-data.pdf.

[24] Vince Weaver. perf_event programming guide. [Online; accessed
12-September-2011]. Available from: http://web.eecs.utk.edu/
~vweaver1/projects/perf-events/programming.html.

[25] A. Weissel and F. Bellosa. Process cruise control: event-driven clock scal-
ing for dynamic power management. In Proceedings of the 2002 interna-
tional conference on Compilers, architecture, and synthesis for embedded
systems, pages 238–246. ACM, 2002.

[26] Wikipedia. Four-terminal sensing — wikipedia, the free encyclope-
dia, 2011. [Online; accessed 13-September-2011]. Available from:
http://en.wikipedia.org/w/index.php?title=Four-terminal_
sensing&oldid=447874833.

[27] Wikipedia. MMX (instruction set) — Wikipedia, The Free Encyclo-
pedia, 2011. [Online; accessed 9-September-2011]. Available from:
http://en.wikipedia.org/w/index.php?title=MMX_(instruction_
set)&oldid=443484618.

[28] Wikipedia. Pearson product-moment correlation coefficient — wikipedia,
the free encyclopedia, 2011. [Online; accessed 26-September-2011]. Avail-
able from: http://en.wikipedia.org/w/index.php?title=Pearson_
product-moment_correlation_coefficient&oldid=452476020.

www.ni.com/pdf/manuals/371932f.pdf
www.ni.com/pdf/manuals/371932f.pdf
http://www.ni.com/pdf/manuals/371931f.pdf
http://www.ni.com/pdf/manuals/371931f.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/programming.html
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/programming.html
http://en.wikipedia.org/w/index.php?title=Four-terminal_sensing&oldid=447874833
http://en.wikipedia.org/w/index.php?title=Four-terminal_sensing&oldid=447874833
http://en.wikipedia.org/w/index.php?title=MMX_(instruction_set)&oldid=443484618
http://en.wikipedia.org/w/index.php?title=MMX_(instruction_set)&oldid=443484618
http://en.wikipedia.org/w/index.php?title=Pearson_product-moment_correlation_coefficient&oldid=452476020
http://en.wikipedia.org/w/index.php?title=Pearson_product-moment_correlation_coefficient&oldid=452476020

42 BIBLIOGRAPHY

[29] Wikipedia. Streaming SIMD Extensions — Wikipedia, The Free En-
cyclopedia, 2011. [Online; accessed 9-September-2011]. Available from:
http://en.wikipedia.org/w/index.php?title=Streaming_SIMD_
Extensions&oldid=444134351.

http://en.wikipedia.org/w/index.php?title=Streaming_SIMD_Extensions&oldid=444134351
http://en.wikipedia.org/w/index.php?title=Streaming_SIMD_Extensions&oldid=444134351

Appendices

43

A. PERFORMANCE EVENT SELECTION AND DESCRIPTION 45

A Performance Event Selection and Description

This appendix lists all the performance events that form the energy model
presented in this work. The descriptive texts are all taken from [7].

. CPU_CLK_UNHALTED

This is an architectural event that counts the number of
thread cycles while the thread is not in a halt state. The thread
enters the halt state when it is running the HLT instruction.
The core frequency may change from time to time due to power
or thermal throttling. For this reason, this event may have a
changing ratio with regards to wall clock time.

. INST_RETIRED

This event counts the number of instructions retired from
execution. For instructions that consist of multiple micro–
ops, this event counts the retirement of the last micro–op of
the instruction. Counting continues during hardware inter-
rupts, traps, and inside interrupt handlers. Notes: INST_-
RETIRED.ANY is counted by a designated fixed counter, leav-
ing the four (eight when Hyper–threading is disabled) pro-
grammable counters available for other events. INST_RETI-
RED.ANY_P is counted by a programmable counter and it is an
architectural performance event. Counting: Faulting execu-
tions of GETSEC / VM entry / VM Exit / MWait will not
count as retired instructions.

. BR_INST_RETIRED:FAR_BRANCH

This is a non–precise version (that is, does not use PEBS)
of the event that counts far branch instructions retired.

. DSB2MITE_SWITCHES

This event counts the number of the Decode Stream Buffer
(DSB)-to-MITE switches including all misses because of miss-
ing Decode Stream Buffer (DSB) cache and µ–arch forced
misses. Note: Invoking MITE requires two or three cycles
delay.

. DSB_FILL:ALL_CANCEL

46

This event counts the number of times when a valid De-
code Stream Buffer (DSB) fill has been actually cancelled not
because of exceeding the way limit. Cancelling Decode Stream
Buffer (DSB) fill may also result, for example, from Decode
Stream Buffer Queue (DSBQ) snoop hits. This is because the
Decode Stream Buffer (DSB) full hit is guaranteed to delivery
from Decode Stream Buffer (DSB). In the B step a four–bit
counter will count the number of cancel operations and will
reverse the priority upon look ing up the same set.

. ILD_STALL:IQ_FULL

This event counts stall cycles when instructions cannot be
written because IQ is full. Note: If there is no Resource Allo-
cation Table (RAT) stalls, it indicates the decoders issue.

. L2_RQSTS:PF_HIT

This event counts the number of requests from the L2 hard-
ware prefetchers that hit L2 cache. LLC prefetch new types

. LD_BLOCKS:ALL_BLOCK

Number of cases where any load ends up with a valid block–
code written to the load buffer (including blocks due to Mem-
ory Order Buffer (MOB), Data Cache Unit (DCU), TLB, but
load has no DCU miss)

. LD_BLOCKS:DATA_UNKNOWN

This event counts the number of load operations delayed
due to store buffer blocks, preceding store operations with
known addresses but unknown data. Counting happens ac-
cording to the final blocking codes. This does not include
inline wakeups.

. UOPS_DISPATCHED:STALL_CYCLES

This event counts cycles during which no uops were dis-
patched from the Reservation Station (RS) per thread.

B. FILE FORMATS 47

B File Formats

Data Point Files

For the definition of the Protocol Buffers used, see below. For the definition
of the Protocol Buffer’s language see their web site.

byte 0x03; # \
byte 0x01; # THESE BYTES FORM THE FILE
byte 0x86; # FORMAT’S MAGIC BYTES
byte 0x01; # /

byte version; # THE FORMAT’S VERSION: 0x1

uint32_t header_length; # LENGTH OF FOLLOWING PROTOCOL BUFFER IN
BYTES (ENCODING: LITTLE ENDIAN)

<Protocol Buffer type ’MessageData’> # THE "HEADER" PROTO BUF

REPEATED FOR EVERY CHUNK:
byte 0x03; # \
byte 0x01; # THESE BYTES FORM THE FILE
byte 0x86; # CHUNK’S MAGIC BYTES
byte 0x02; # /

uint32_t message_length; # LENGTH OF FOLLOWING PROTOCOL BUFFER IN
BYTES (ENCODING: LITTLE ENDIAN)

<Protocol Buffer type ’DataSet’> # THE DATA OF ONE CHUNK

Generic Protocol Buffers

This file contains generic Protocol Buffers definitions. Its file path is protos/
generic.proto.

message Timestamp {
required int64 sec = 1;
required int64 nsec = 2;

}

Data Points Protocol Buffers

This file contains the Protocol Buffers definition as used by libdatapoints
(see chapter 4.1.2 and 4.2.2). Its file path is protos/measured-data.proto.

import "generic.proto";

message MeasuredData {

http://code.google.com/apis/protocolbuffers/docs/proto.html

48

required string shot_id = 1;
required double sampling_rate = 2;
required uint32 channel_count = 3;
required bool has_external_data = 4;
repeated DataSet inline_data = 5;
repeated string channel_names = 6; //ordered!

}

message DataSet {
required Timestamp time = 1;
repeated DataPoints channel_data = 2;

}

message DataPoints {
repeated double data_points = 1 [packed=true];
optional uint32 channel_no = 2;
optional string channel_name = 3;

}

Performance Event Counter Protocol Buffers

This file contains the Protocol Buffers definition as used by datadump, Build-
SLE and dataexport (see chapter 4.1.3 and 4.2.2). Its file path is protos/
perf-counters.proto.

import "generic.proto";

message CounterData {
required string shot_id = 1;
required Timestamp start_time = 2;
required Timestamp stop_time = 3;
required uint32 cpu_count = 4;
repeated CounterValue counters = 5;
optional string benchmark_cmd = 6;

}

message CounterValue {
required string counter_name = 1;
repeated uint64 counter_value_per_cpu = 2; //ordered by cpu id
optional uint64 global_counter_value = 3;

}

	Introduction
	Charges and Restrictions
	Acknowledgments
	Preliminaries

	Technical Prerequisites
	Products
	Sandy Bridge Characteristics
	Performance Monitoring Unit
	Architectural Differences between Sandy Bridge and its Predecessors

	Design
	Big Picture of the Setup
	Measuring Setup in Detail
	Measuring Device

	Calculation of the Electrical Work
	The Energy Model
	Properties
	Finding the Energy Weights
	Minimizing the Set of Performance Events

	Implementation
	Data Formats
	Shot IDs
	Electrical Power Data Point Files
	Counter Files
	Work Files

	Software Tools
	Standard Software
	Special Developments

	Toward the Energy Model
	The Set of Benchmarks
	Finding a Useful Subset of Events
	Final Energy Model

	Evaluation
	Error of Estimation
	Comparison to a Simple Time Based Model
	Overhead of this Implementation

	Conclusion
	Problems and Outlook

	Bibliography
	Appendices
	Performance Event Selection and Description
	File Formats

