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Abstract

This thesis analyzes different workloads and their impact on memory sharing,
sharing opportunities, and memory merging. To make the analysis possible, we
have written a Linux kernel module to extract the needed information. It reduces
memory dumps to 1.5% of the full memory dump size by hashing the page’s
content. These dumps show unused potential of page cache sharings between host
and guest operating systems. Limitations of Kernel SamePage Merging as present
in recent Linux kernels.

We analyzed parallel kernel builds in virtual machines with activated KSM
and discovered that up to 60% of sharing opportunities remain unmerged, due to
the slow scanning rate of KSM. In this scenario up to 80% of data is redundant and
could be shared, because 54% of these sharing opportunities last longer than 20
seconds, even in VMs with high memory pressure. Most of this sharing potential
originates from the page cache, which also contains redudant pages (up to 10%).
A more sophisticated deduplicating file system and page merging approach could
speed up the whole system.
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Deutsche Zusammenfassung

Diese Studienarbeit beschäftigt sich mit Methoden zum Einsparen von Arbeitsspei-
cher, der Analyse ungenutzten Einsparungspotentials. Ferner gibt sie einen Über-
blick über bereits existierende Deduplikationslösungen und zeigt deren Beschrän-
kungen auf.

Arbeitsspeicher ist heute meist keine knappe Ressource mehr und wird daher
oft verschwendet, allerdings gibt es gute Gründe Speicher zu sparen. Eingebet-
tete Systeme, Smartphones und auch Cloudsysteme können es sich nicht leisten
die selben Daten mehrfach im Speicher vorzuhalten. Deshalb gibt es verschiedene
Ansätze, die den Speicherverbrauch reduzieren sollen. Kernel SamePage Merging
(KSM) ist einer dieser Ansätze und ist bereits in aktuellen Linuxkernen enthalten.
KSM untersucht den Speicher einer Anwendung (z.B. einer virtuellen Maschi-
ne) in regelmäßigen Abständen und legt gleiche Speicherseiten zusammen. Diese
Arbeit beleuchtet KSM und seine Beschränkungen und zeigt ungenutztes Sparpo-
tential, z.B. beim Bauen des Linuxkerns in verschiedenen Virtuellen Maschinen
oder bei rechenintensiven Benchmarks auf.
Da der Linuxkern nur über unzureichende Schnittstellen für Redundanzanalysen
verfügt und ein komplettes Arbeitsspeicherabbild zu aufwendig ist, wurde hierfür
ein Kernmodul für Linux entwickelt, das eine Analyse des virtuellen, sowie des
physischen Speichers ermöglicht. Es ist in der Lage einen Fingerabdruck (hash)
jeder Speicherseite im System, Anwendung oder des Seitencaches, sowie die da-
mit verbundenen Informationen (PFN, Page Table Flags, etc.) zu liefern. Ein sol-
ches Abbild umfasst nur noch 1.5% des zu analysierenden Speichers, lässt aber
dennoch eine vollständige Redundanzanalyse zu. Diese Analyse wird vollständig
im Userland durchgeführt, zeigt bereits geteilte Seiten (shared pages), potentielle
Kandidaten (sogenannte „sharing opportunities") und deren zeitlicher Verlauf auf.
Die Analyse virtueller Maschinen ergab, dass es Einsparungspotenzial von bis zu
80% gibt, wenn die ausgeführten Programme eine sehr hohe I/O Last aufweisen,
wie z.B. beim Bauen des Linuxkerns in verschiedenen virtuellen Maschinen.
Des Weiteren hat sich gezeigt, dass die momentane Implementierung von KSM
nicht in der Lage ist das volle Potenzial schnell und vollständig auszuschöpfen.
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Zum Einen kann KSM nur anonyme Seiten zusammenlegen und versagt bei Datei-
daten im Seitencache (page cache) vollständig, zum Anderen ist KSM zu langsam,
um alle teilbaren Seiten zu erfassen oder es verbraucht dabei zu viele Ressourcen.
Die Analysen verdeutlichen, dass es noch genügend unausgeschöpftes Einspa-
rungspotential und einige Geschwindigkeitsverbesserungen geben kann.
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Chapter 1

Introduction

Memory saving seems old-fashioned, and a problem of the past, as memory prices
are low and even falling.

This was true, but now, virtualization has become popular, even in small com-
puter systems. "Cloud computing" is the buzzword of our time and in this context,
it is more important than ever to save memory and deduplicate redundant infor-
mation. Why should a cloud environment waste its memory for the same system
image over and over again, or for the same data, loaded from different sources?
Furthermore, embedded platforms, or even smartphones can profit from memory
saving, power consumption of memory is not negligible. There are many differ-
ent ways to reduce the amount of consumed main memory, e.g, by deduplication
redundant data. Is there still unused potential, not yet exploited by any proposed
solution and is the remaining redundancy worth searching for new techniques?

A common way for analyzing memory deduplication is dumping a the com-
plete memory of a task or the whole system RAM to disk or network. To analyze
existing sharings and sharing opportunities, it is sufficient to get a hash of each
page’s content and its corresponding physical address. Faster changing pages are
hardly traceable with full memory dumps, because of there overhead. An existing
memory deduplication, can get this information from its internal data structures,
and need not to rely on memory dumps.

The default interfaces of Linux and Unix do not provide all required data to
analyze sharing opportunities in userspace. This lack of information requires a
new interface that can collect data within the kernel.

1.1 Basic ideas & Approach

We have come to terms, to collect PFNs (page frame numbers), as unique identi-
fiers of each page, page and page table flags, to get the current page state, and the
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4 CHAPTER 1. INTRODUCTION

page’s content, to detect redundant data. These information can then be used to
get a deeper understanding of shared pages, deduplication mechanisms, and un-
exploited sharing opportunities. The retrieval process should be done with little
impact on the analyzed system and without altering its state.

Our basic idea is to analyze a large amount of pages (associated with tasks, file
cache, system RAM), without fetching their whole content from physical memory
and dumping it to disk.

Our analyzing approach reduces the impact a snapshot has on the scanned
system/application, reduces the size of memory dumps (approximately 100 times
smaller), and allows an analysis of page information. Furthermore, compare-by-
hash is the only practical way to compare memory content in realistic time and
reduce its complexity from O (n2) to amortized O (n). A question arising from
previous works, why should a whole memory dump be transfered from kernel to
user land or via networks, and hashing the data afterwards, when the hash can be
already computed in kernel mode, and so reduce the amount of storage space and
bandwidth needed. The analysis can then be done afterwards offline. Hashing
swapped out pages should be avoided, to minimize the impact on the running
system.

We were looking for workloads, which primarily use I/O operations and pro-
cess large amount of data (mainly form disk) and in contrast workloads, which
favor the CPU. We assume that this two workload classes will show all effects of
memory sharing, merging, and unexploited sharing potentials.

With all the required information available and different workloads, there are
some interesting questions:

• What kind of sharing is not exploited yet?

• How long does potential sharing last?

• Which kind of tasks can profit from host to guest sharing?

• How many pages are already shared between tasks?

• Why can existing "solutions" not exploit all sharing opportunities?

1.2 Contribution
The target audience ranges from every interested student, who wants a closer look
at the memory layout of processes, the whole system, virtual machine content,
page table content, or find files inside an address space. To researchers that try
to evaluate their new solution, create a new deduplication technique, or just want
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to analyze new potentials before programing a concrete solution related to mem-
ory saving, sharing mechanisms. This thesis contains a analysis of unexploited
potential that we discovered during testing and evaluation.

Our tools are not limited to one platform and the kernel module is already
capable of ARM architectures and compatible with at least some Android kernels.
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Chapter 2

Background & Related Work

Memory content has various sources, it can be unrelated to files in background
storage (anonymous pages), it can map the content of a file directly into memory
(named pages) or it can hold copied (unchanged) file content (also anonymous
pages). Anonymous pages containing file content can not be treated like named
pages by common sharing techniques in operating systems, since their origin is
lost. It is the same problem most VMs suffer from, the source of the content is not
clear, which is very important, if memory should be saved or shared with other
tasks. Approaches have to overcome this semantic gap.

In general, there are four different kind of page sharing, created with a-priori
knowledge or with posteriori knowledge after page scans.

• a-priori

Anonymous shared memory sharing due to fork or shared memory re-
gions

Named shared memory sharing due to fork or mapping the same file

• a-posteriori

Merged anonymous memory sharing due to memory sharing methods, such
as KSM

Merged named memory does not exist yet (for a system wide usage)

Many different proposals have been made to reduce the memory consumption.
They fit into two different classes:

Instant Memory Sharing modify the host and guest system, and install shar-
ing when it occur, or utilize regular operating system mechanisms, such as
mmap. This is only possible with a-priori knowledge, due to this knowledge
gap, memory scanning must be involved.

7



8 CHAPTER 2. BACKGROUND & RELATED WORK

Memory Scanning scan the (unmodified) guests periodically and merge pages
with the same content, e.g., KSM.

The instant memory sharing approaches are completely based on Xen or other
cooperating operating systems (such as DISCO), and make extensive use of their
internal memory management structures to do their memory analysis, e.g. Satoris’
Page enlightenment [17].

Memory scanners on the other hand, introduce new data structures that can be
used for memory analysis, e.g., KSM maintains two trees and reverse mappings,
which otherwise would not exist in the Linux kernel [1].

Often it is not completely clear, how the other approaches acquire their ana-
lyzed data, in the most common cases, they use their internal data structures, their
shadow page tables or just complete memory dumps, but there is no general fast
and independent mechanism to get the actual sharing information. This makes an-
alyzing sharing opportunities more easy, if you have developed a solution and can
easily access these structures, otherwise exploring unexploited sharing potentials
is difficult, this is were our tools kick in.

2.1 Identifying Memory Duplicates in Virtual Ma-
chines

The greatest benefit of virtual machines, is also their greatest weakness, they sep-
arate and virtualize hardware to allow multiple guest to run on the same hardware.
This provides isolation, but leads to many challenges. Without VM, it is possi-
ble to share pages, because every task and the OS was aware of the source and
of its content (file mappings), to exploit shared anonymous memory mappings,
a application has to be modified. Memory sharing in VM is difficult, as there is
not enough knowledge about the content, a semantic gap, e.g., a VM does often
not know the source of a page, was it file backed or not. This problem exists also
outside VMs, a regular memcpy also breaks the linkage between a file and page.
This drawback was tackled. IBM introduced VMs in the early 1970s on their
mainframe and made special hardware adoptions (instruction set and page table
flags) that help the host to get extended knowledge of the guests activity, e.g.,

Anonymous Memory Named Memory

a-priori (shared) fork, shared memory regions fork, same mapped file
a-posteriori (merged) memory sharing, KSM does not exists yet

Table 2.1: Summery of page sharings
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special page table flags for memory reclaim. VMware’s solutions have special
drivers for the guest OS to provide more information (e.g. unused guest pages) or
even to compress the memory content inside the VM [8, 21]. Solutions running
on paravirtualized system like Xen, have both external knowledge and internal
knowledge about the guest OS activity and its memory content.

The idea of "transparent sharing" was introduced in DISCO [6], an OS spe-
cially developed to reduce memory redundancies, it was further improved by
Satori’s page enlightenment. The sharing possibility and potentials of Xen were
analyzed in [14] and showed a high sharing potential, in some workloads. Xen
hooks, replaces the copy mechanism of the guest operating system, and creates
the transparent sharing, by just mapping the page to both locations, without copy-
ing it, and mark it as a Copy-On-Write page. On the one hand, it seems clear that
an instrumented guest OS can perform better in many situations [6,14,17], but on
the other hand, there is often a need to run unmodified operating systems as well.
This is were memory scanning kick in.

One way to get an insight into a VM’s activity and memory usage, is to scan
the VM periodically, e.g., the page tables of the VM. Many approaches scan mem-
ory from outside, so a guest OS can execute without modifications. This approach
is taken by KSM [1] and Difference Engine [8]. Some inject special drivers, which
gather this information and use it for memory reclaims or memory merging [21].

Memory scanning is done by KSM [1] as well as in VMWare ESX Server [21]
and Difference Engine [8]. VMWare ESX Server tries to minimized the impact
on the VMs, with low scan rates (completely scans every 20 min, only few pages
at a time). Difference Engine goes beyond the other approaches and merges sub
pages, it patches pages, after calculating the related Rabin fingerprints to find
merging candidates.

2.2 Memory Merging
After having identified redundant page contents, it is possible to merge the pages
with the same content. Not all pages with equal content are good candidates
for merging, e.g., zero pages. Keep in mind, scanning, installing and breaking a
sharing takes time and very short lived sharings are not worth the effort.

For a more detailed discussion of KSM see Section 2.5.5.

2.3 Memory Mapping
Files, can be mapped into address spaces [16]. This mapping can be shared among
different tasks to preserve memory. The OS maps the pages into every address
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Facility Provided Information

/dev/mem complete memory contents
/proc/iomem physical memory layout
exmap PFN, page flags, address space layout
crash complete memory dump with data extraction helpers
/proc/<pid>/vmmap address space layout, vm region flags

Table 2.2: Information facilities available for Linux and information they pro-
vide

space which requests a copy of the same file, and marks them as Copy-on-Write
[18]. Shared libraries are mapped to memory in this way. Problems can arise,
if two different versions of the same library are needed, they cannot be shared,
even if large parts are identical [7]. This sharing approach is taken by Linux,
Windows and many other modern operating systems and works very well with
named mappings. In VMs however, the host does not know what content a virtual
guest page holds. The guest file systems is (probably) unknown, to the VMM,
which makes file mappings difficult or even impossible, so all types of memory
are handled as anonymous memory. Their are some architectures that tackle this
problem like the SystemZ series of IBM (for example, special page table flags)
or some paravirtualization approaches like Xen, but for all this cases the virtual
guest must be adapted to cope with this specialties of the hosting platform.

2.4 Memory Analysis

A common way to get information for an analysis is to dump the complete phys-
ical memory to disk or network. Linux provides some information through the
Proc FS, and separate available tools (see Table 2.2). There is a special device
(/dev/mem) for this purpose. Tools such as crash dump the memory and can
extract meaningful information (e.g. page frame numbers, hashes per page). On
the one hand, crash creates large dumps with all required information, which must
be transfered (e.g. 24GB), but on the other hand it is primarily focused on dead
systems [2] and can hardly be used for fast information acquisition. The exmap
module [3] retrieves only a subset of memory informations, such as PFNs, but
more than a regular /proc/<pid>/vmmap. It only provides the address space
layout, but not enough to analyze memory sharing opportunities, it is only suffi-
cient for already shared pages.

We took the basic ideas of KSM and VMware ESX Server and scan the address
space (e.g. of a VM), or physical RAM periodically, without interfering with the
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guest OS or the tasks. Since we are not interested in actual page merging, we
can use the compare-by-hash methodology and get the sharing opportunities and
all shared pages without a complete memory dump. The risk of false positives is
low even for weak hash functions ( see Chapter 5 and the general discussion of
hashing functions).

2.5 Linux Memory Subsystem
The virtual address space of every task, is represented by mm_struct (Figure
2.1). It contains all necessary memory management information, like code start,
list of virtual memory regions, amount of used pages and much more. This struc-
ture exists for every task in the system. VMs are no exception to this rule on
Linux based systems using the kernel virtual machine monitor (KVM) [1] as they
are regular processes executing along every other process in the system.

The physical memory is divided into pages that consist, of general structure
information of every page’s content, such as address space mappings, associated
file and flags.

The following section gives a short overview, how Linux manages the user
address space and the processors specific details.

2.5.1 Virtual Memory Areas
Each address space is divided into areas of usable, allocated memory. These struc-
tures are represented in Linux by the vm_area_struct (Figure 2.1), establishing
the complete available user address space. Every page fault must traverse these
structures to find the corresponding physical frame to the faulting virtual address.
Therefore the virtual memory region is not accessed as a linked list, although we
use this way for our snapshots, it is represented as a red black tree instead for
faster access [5]. This structure contains flags that describe the usage of every ad-
dress space region. For example, if it can be read, written, executed, contains I/O
pages or maps files to memory. Figure 2.1 shows the typical layout of an address
space and its structures.

The actual virtual to physical address translation is done via the page tables.

2.5.2 Page Tables, Page Struct and Page Access
The smallest memory management unit, a page, is described by a page struct
(page (Figure 2.3)). This structure describes the page content, and its location.
Each page can be associated with a file (for named mappings) or without any fur-
ther information (anonymous mappings). This structure tracks the current page’s
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0

0xbfffffff

vm_area_struct

start:0x00040000

end: 0x00080000
flags: VM_READ | VM_EXECUTE

vm_area_struct

start:0x00100000

end: 0x00120000
flags: VM_READ

vm_area_struct

start:0x00140000

end: 0x00240000
flags: VM_READ | VM_WRITE

vm_area_struct

start:0x00800000

end: 0x01000000
flags: VM_READ | VM_WRITE

vm_area_struct

start:0xbfffffffff

end: 0xbfffff0000
flags: VM_READ | VM_WRITE

mm_struct

total_pages

Code

BSS

Heap

Stack

Red Black Tree

Figure 2.1: A simplified address space layout of a Linux task.

location, present in RAM or swapped out, and in how many address spaces it is
mapped. Every page has an associated PFN (page frame number) that represents
the physical address, the page is currently mapped to. This mapping is not fixed
and changes over time.

Every task may accesses its pages via page tables [5], but in kernelspace it is
also possible to get the associated page with its PFN.

The page table layout, is not specific to certain HW characteristics and thus
can be applied to nearly every architecture with an MMU. Figure 2.2 show the
page table layout of Linux version 2.6.11 and following. It consists of a global,
upper, and middle directory. The upper directory can be fold for architectures
with different needs, three example configurations of this scheme are shown in
table 2.3. To collect all pages associated with an address space, the complete page
table has to be traversed.

As the kernel also uses virtual addresses every page must be mapped to its ad-
dress range, before it can be safely accessed, e.g., addresses above 3.2 GB, which
are often configured as high memory by the kernel. The kernel cannot access high
memory directly, for this purpose the kernel provides macros (kmap_atomic that
map a user page to special slots - address windows - in its address range [5], so it
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Global Directory Upper Directory Middle Directory Table Offset

Page

Page Table

Figure 2.2: Page Table Lookup since Linux 2.6.11

PFN: 4 PFN: 8 PFN: 12

page

flags: PG_swapcache

count:  12
mapcount: 9

page

flags: PG_mappedtodisk 

count:  2
mapcount: 1

page

flags: PG_active

count:  1
mapcount: 1

named page anonymous swapped page

anonymous page

Figure 2.3: The page structure associated with every page in Linux, describing
its current state and usage.

can access the stored page’s content (in our case for hashing). Afterwards it has
to been released with kunmap_atomic. If not released correctly, it might lead to
corrupted kernel structures.

2.5.3 x86 vs. x64

The Linux kernel hides most of the architecture specific details behind a general
interface, but some information is still important and special to the IA-32 and
IA-32e platform. Page tables are hardware walked; their structure is fixed. This
structure is called a page table entry (PTE) and has changed between the early IA-
32 processors and the current 64-Bit platforms. A recent PTE is shown in Figure
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Platform Size Global Dir Upper Dir Middle Dir Page Table Offset

x86 32 10 0 0 10 12
PAE 32 2 0 9 9 12
x64 64 9 9 9 9 12

Table 2.3: Address Bits and their usage; every address is divided in different
parts associated with each page table level used for page address
lookup [13].

63 12 11 10 9 8 7 6 5 4 3 2 1 0Page AddressIgnored

PTE Flags

must

 be 

zero

Figure 2.4: Page Table Entry on x64, table 2.4 describes the usage of the bits
[13]

2.4. Each PTE consists of flags (see Table 2.4), describing the actual page usage
and the associated physical address.

These flags are interesting for memory analysis, since they reflect the current
state and usage of a page in an address space, e.g., it makes it possible to see if
an application has written to a page or accessed it, after creation. In most VMMs,
they are just set to some default values. Virtual machines often retain an internal
state of each page (shadow page tables), so it makes perfect sense to use a default
setting. Furthermore, page table entry flags are architecture specific and do not
exist on ARM or MIPS [20].

0 Present Bit
1 Read/Write Bit - writable, if set
2 User/kernel - accessible in user space, if set
3 Page-level write-through
4 Page-level cache disabled
5 Accessed - page has been accessed, if set
6 Dirty - page has been written, if set
7 PAT
8 Global - global page, if set
63 No executions - page cannot be executed, if set

Table 2.4: Page Table bits and their meaning
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00000000-0000ffff : reserved
00010000-0009fbff : System RAM
0009fc00-0009ffff : reserved
000a0000-000bffff : PCI Bus 0000:00
000c0000-000cffff : pnp 00:0c
000d0000-000dffff : PCI Bus 0000:00
000e0000-000fffff : reserved
00100000-bf77ffff : System RAM

01000000-015e24ac : Kernel code
015e24ad-01aca27f : Kernel data
01bae000-01d03fff : Kernel bss
2e000000-35ffffff : Crash kernel

bf780000-bf78dfff : ACPI Tables
bf78e000-bf7cffff : ACPI Non-volatile Storage
bf7d0000-bf7dffff : reserved
bf7e0000-bf7ebfff : RAM buffer
bf7ec000-bfffffff : reserved
c0000000-dfffffff : PCI Bus 0000:00
e0000000-efffffff : PCI MMCONFIG 0000 [bus 00-ff]
f0000000-fed8ffff : PCI Bus 0000:00
fee00000-fee00fff : Local APIC
ffc00000-ffffffff : reserved
100000000-63fffffff : System RAM

Table 2.5: I/O memory layout (of Ubuntu Server 11.04 on our test machine)

2.5.4 Physical Address Space

The physical address space is divided into accessible regions. Regions can be
mapped to the system RAM, or to I/O devices. I/O mappings are common in
many different architectures, such as x86, ARM and PowerPC.
Linux maintains special resource management structures to keep track of every
region of system memory. A physical memory dump involves skipping unac-
cessible regions, this would otherwise cause a kernel panic, as a paging request
cannot been fulfilled. Figure 2.5 shows a typical physical address space layout -
as it is available through /proc/iomem.
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2.5.5 KSM

Kernel SamePage Merging is also known as Kernel Shared Memory. It finds
anonymous pages with equal content through scanning. For performance rea-
sons it does not scan the complete RAM [1], this reduces overhead greatly. The
madvise system call has been extended to support a new flag (MADV_MERGEABLE)
to advise virtual memory regions to KSM. Programs that are not aware of this new
flag cannot profit from this new facility. Named mappings cannot profit from KSM
as it is only implemented for anonymous memory. KSM made its first appearance
in Linux kernel 2.6.32 [15]. It decides based on the algorithm, whether it should
merge or leave the page untouched. KSM has two trees for this propose, a stable
tree, containing all merged pages and an unstable tree, containing advised pages
without any sharing candidates found yet. On a scan pass, KSM takes a page and
searches the stable tree, if it finds the same content it merges the pages, the hashes
are only used as an index in the tree, merging is done after a byte wise comparison.
If it fails to find the page content in the stable tree, it takes the unstable tree into
consideration, if a match exists the pages are merged and inserted into the stable
tree, otherwise it is inserted into the unstable tree. Merged pages are set to read
only and marked as Copy-on-Write pages [1].

QEmu calls madvise and advises the entire guest memory. KSM wakes up
periodically scans the configurated amount of pages and sleeps afterwards for a
configured period of time, and must be configured wisely. KSM exposes interfaces
to dynamically change these settings (sleeptime between scans, amount of pages
scanned per period) via the Sys FS. As we will show later, KSM is useful in some
scenarios, but not fast enough in others. As the man page of madvise states, it
is also dangerous to make excessive use of madvise, with MADV_MERGEABLE (or
the kernel equivalent VM_MERGEABLE) flag. If someone advises pages, which are
not good candidates, it decreases the effectiveness of KSM and can slow down
the whole system [15]. On unicore systems it might be possible to stop execution
completely, if the KSM configuration allows too many pages to be scanned.

2.6 Hashes

There are many ways to compare data. The most obvious way is to compare it
byte by byte. In many applications it is infeasible to do such a comparison, due to
bandwidth or storage space limitations.

Difference Engine and the VMWare ESX Server suggested to compare hashes
instead of the entire contents, to shift spacial complexity to computational com-
plexity.

A Hash function is a function that takes a variable length input and produces
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a fixed length output value – the hash value [10]. Hashing is widely used for file
transfers (rsync, integrity check after download), to ensure integrity within a file
format (PNG, PKZIP, ...), and to detect malicious tampering with cryptographic
hashes.

Hashes vary in their collision resistance and size, which is why it is important
to choose carefully.

We will give a short overview of hash functions and checksums, analysis of
their applicability to analyze page contents.

Merging pages with the same hash, without checking the actual content might
lead to data loss due to collisions [9, 10]. If two distinct data (pages) map to the
same hash value, this is called a collision, and in our case this leads to false posi-
tives. Many checksums and hash functions are already part of the Linux kernel’s
Crypto API.

In the next sections we describe the candidates available in our kernel module.

2.6.1 Cryptographic Hash Functions
For a cryptographic hash function is by definition computationally infeasible to
find a collision.

MD5 was for long years a very fast and reliable hashing function that was
sufficient for all cryptographical uses, but nowadays it is broken [22] and not used
for cryptographics anymore, but due to its speed and the difficulty to produces a
reasonable collision, within minutes, it is still a often used function for integrity
checks outside a secured environment.

The SHA-1 function is still in use for cryptographical applications, but was
weakened years ago [10]. We will test all other hashes against SHA-1, since the
probability to get false positives (hash collision) is very low (see Table 2.6).

A discussion on collision resistance and attacking cryptographic checksums
can be found in [9, 10, 22]. SHA-1 hashes have 160 bits (2.2), which leads to a
collision, if 280 operations are executed, if not a more sophisticated approach is
used. MD5 length is 128 bits (2.1), which leads to collisions within 264 operations,
see Table 2.6.

f : 24096 → 216 (2.1)

f : 24096 → 220 (2.2)

2.6.2 CRC32
CRC32 (Cyclic Redundancy Check) is not a hash in the cryptographical sense, it
is a checksum, but is is often used for error checking in network protocols (e.g.
IEEE 802.3), in popular file formats (PKZIP, PNG, MPEG-2), and produces a fast
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Hash Length Collision Probability Probability for false positive

SHA-1 160 Bit 1 : 280 8.2718 · 10−25

MD5 128 Bit 1 : 264 5.4210 · 10−20

CRC32 32 Bit 1 : 216 1.5259 · 10−5

SuperFastHash 32 Bit 1 : 216 1.5259 · 10−5

Table 2.6: Probability for false positives (in random data), it doesn’t take the
malicious usage or weakness of the underlaying algorithms into ac-
count.

way to check data integrity [4]. It has hardware support in some architectures, like
the current Intel CPUs (CRC32 instruction) [12]. Although it is not very collision
resistant, it might still be useful in many cases, since it is fast compared to other
hash functions [11]. It takes 4096 bytes and returns a 32 Bit checksum (2.3).

f : 24096 → 24 (2.3)

2.6.3 SuperFastHash
SuperFastHash is a very fast non-cryptographical hash function, which was sug-
gested for usage in different papers [8] [21], as a hash function, to hash page
content and us it as an index into a lookup tree (similar to a hash map) for page
merging candidates. It is faster than a non-hardware-accelerated CRC32 check-
sum. Although it is just a checksum as CRC32 and has only 32 bits to represent
the page’s content, we guess it is a good candidate for comparison against other
hash functions and checksums [11].

2.6.4 Hashes, Checksums and the Kernel
The Linux Kernel provides the complete set of cryptographical hash functions
and checksums currently used, except for SuperFastHash, which must be include
from a different source [11]. Every module may use the functions and might even
profit from future improvements or hardware acceleration on different platforms.
Unfortunately most of these functions do not make use of hardware accelerators
(CPU instructions, or special Crypto Cards) yet [20]. For a speed comparison see
Figure 5.1.
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Analysis and Design

Designing a new toolset is difficult, and you must be sure what problem you try to
tackle. So we start with some definitions, give an overview of possible solutions
and conclude, how and why we choose a particular approach.

3.1 Sharing opportunities
Pages can be classified as shareable, shared and private. Shareable pages can be
further subdivided in:

• Shareable Pages

– Shared Pages (same PFN)

– Sharing Opportunities (same content)

Anonymous Opportunities: same content, different pages, not file-
backed

Named Opportunities: same content, different file, and therefore page
Mixed Opportunities: same content, different page type)

• Private Pages (unique Pages)

Pages that have the same content are shareable, and if they are already shared,
they have the same PFN, otherwise they are sharing opportunities. Pages which
cannot be found in the own address space (internal sharing) or in other domains
(caches, other tasks) are private or unsharable.

There is are third category, mixed sharing, anonymous pages containing the
content of a named page, or vice verse are counted as anonymous sharing, since
there is no way to exploit these sharings yet. We calculate the maximum of saved
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1::A

PFN::Content

4::0

5::0
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2::0

3::A

8::B

1::A

7::C

9::F

6::F
Shared

Sharing Opportunity

Sharing Opportunity Shared

Figure 3.1: Simple sharing example demonstrating all common forms of shar-
ing between two address spaces. It also illustrates the concept of
internal sharing, which occur more often, if files are mapped into
memory.

memory, by adding the amount of all internal and external sharing opportunities,
to give an upper bound of sharing potential. Figure 3.1 shows a simplified sharing
example between two address spaces.

In this particular case the page content is considered identical, if their hashes
are identical, although [9] [10] state, their might the danger of losing data, on the
one hand it seems very low, and on the other hand we will not make any merging
decisions on these hashes. The likeliness of false positives is much lower as the
flux of pages that change within scanning process, and furthermore we are not
planning to use weak hashing functions.

3.2 Userspace Application vs. Kernel Patch vs. Ker-
nel Module

The main question designing a framework is how to acquire the needed informa-
tion? We had to ask ourselves, which of the following approaches to take. There
are three different ways of acquiring information from the Linux kernel.

1. The default interfaces of Linux, provide only a small subset of the required
data. Furthermore it would have been a puzzle game, with a lot of overhead.

2. The kernel can be modified to export information through the Proc File
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System. If someone wants to use this new interface, the kernel would have
to be patched and rebuild. It might be incompatible to kernel versions.

3. A third possibility is to write a kernel module. It can be loaded on demand,
does not require a rebuild of the whole system, can be unloaded to avoid
errors caused by it after analysis.

A kernel module is the most flexible solution to provide snapshots without
hooking into a virtual machine monitor, kernel functions, or the guest OS itself.
Only the hosting system needs some adaption, this reduces overhead and allows
flexible analysis.

3.2.1 Communication with the userland
To keep the data acquisition fast, the kernel module is capable of raw output
through the Proc FS, but to keep it compatible, it also provides data in human-
readable form. The raw output must be explicitly triggered during snapshot cre-
ation.

The module collects every present page in the scanned task or system RAM,
it leaves swapped out pages untouched, because this would cause the system to
bring the page back into main memory or it would raise a page fault. In both
cases this would harm performance and leaves the system in an altered state. For
instance, an idling application, with 100 swapped out pages has more physical
memory in use afterwards, an unwanted effect.
The general data acquisition is simple. First of all a PID must be specified, then
the module locates the corresponding task structure and its associated memory
descriptor. Then it starts walking down the virtual memory regions and their asso-
ciated pages in the page table. If the page is present, the specified function hashes
its content. When the snapshots is ready, it can be retrieved via the proc interface.

One special PID is reserved and never used by Linux and has no task associ-
ated. This PID (zero) can be used for special requests. If PID 0 is specified, the
whole RAM or the file cache will be fetched, depending on the specified flags.

A full snapshot includes all information present in the page table, even absent
pages, pages which have been allocated and not used yet. To reduce the data
passed to userland further, these empty page table entries can be omitted. This
can reduce the amount of transfered data in many cases (regular applications see
Section 5).
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Following, is a list of the most important information for every snapshot.
Snapshot Information

• Total Pages associated with Task

• Committed Pages and Swapped Pages

• Code Size and Position

• Heap Size and Position

• Stack Size and Position

Virtual Memory Area Information
These structures represent the data associated with every virtual memory regions.

• Begin and End Address

• Page Table Prototype Flags

• VMA Flags

• Associated File Mapping

• Associated File Name

Page/Page Table Entry Information
The structure describing every page in the scanned address space. Some of those
fields exist only for task and will be set to zero, for full system memory scans.

• Page Flags

• Page Table Entry Flags

• Associated I-node, if any

• Hash of page content

• Reference Count of page

• Mapping Count of page

3.3 Userland Utilities
The userland utilities are based on the API and should assist the user to get the
data from the kernel module as fast as possible and save them to disk or do some
analysis on- or offline. They also capable of doing snapshots periodically, tracking
frames, testing sharing opportunities and calculate the savable RAM. They do
some preprocessing that reduces the amount of data that has to be saved to disk.



Chapter 4

Implementation

The following chapter gives a brief overview, what obstacles we had to master and
what interesting aspects of the system are used for data acquisition.

The kernel module (vm_module) is the main component of this tool set. The
Linux kernel does not export every function it uses internally to be used by mod-
ules. Most functions are only exported in a more general abstraction,
e.g. get_user_pages, and the helper functions are unaccessible for modules.
It was necessary to rebuild these functions or some of their functionality, to get
around this limitation and acquire required data.

Since it uses infrequently changed kernel interfaces, it is compatible from
Linux Kernel 2.6.11 to the latest release (3.1). And with small adaption working
with ARM on a slightly modified Linux kernel (Android kernel), as the designated
platform x64, x86 as well.

4.1 The scanning process
There are two different mechanisms. Acquiring data form regular tasks only, and
acquiring data from the whole physical RAM.

The scan of a task, involves locking of the task itself and its associated page
tables. If the semaphore of a task is not acquired, the task might exit during a scan.
If the page table’s spinlock is not held, the pages tables can be altered and the page
table walk fails, the snapshot is in the best case incomplete and in the worst case
the kernel module crashes, depending on the system configuration this leads to
an unusable module or a panicked system. So the impact on the target application
cannot be minimized completely. These locks imply that task are unable to modify
page table content, allocate new memory or change any attributes of a page.

The physical RAM snapshot lacks semantic information. There are no page
tables available, only the attributes stored in the page structure and the pages’ con-
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tents. To determine which pages belong to the System RAM, the same structure
is accessed by the Proc FS entry (/proc/iomem). Trying to access other regions,
depending on the device, who is referred, causes the kernel to crash the module or
the entire system.

4.1.1 User Page Access in Kernel
The kernel cannot access all pages directly, because it is working with virtual
addresses. On 32 Bit system, it is thus limited to 4 GB of memory, but the sys-
tem might be capable of more than 4 GB memory using PAE (Physical Address
Extension). This is why the macros need to map the user addresses to special ker-
nel address ranges, to ensure accessibility before hashing page’s content. Special
functions must be used for this mapping, because holding a lock or semaphore
or even both, the regular mapping mechanisms kmap, kunmap cannot be used,
these functions cause bug traces or even kernel panics on some systems. Parts of
the crypto interface suffer from this problem on some kernels. They make use of
a special structure that takes pages and hashes, encrypt, decrypted them and the
kernel module cannot influence their mapping functions. They only possible way,
would be to change the kernel for these platforms or waiting for an upgrade.

4.1.2 Hashes
Hash functions are part of the kernel’s infrastructure. So the module will profit
from any improvements done to this basic kernel functionality. For some architec-
tures a new instruction set has been introduced and should therefore be accessible
through those interfaces in the future.

The hash functions, implemented by the Linux kernel, have some overhead,
because every time they are used, a string lookup is done and a structure is al-
located and initialized for the hash function. All details are hidden behind that
interface and cannot be used directly, as they are not exported. Our implemen-
tation uses the CRC32 macro of the kernel. The cryptographic hash functions
are done via the crypto interface. Only the SuperFastHash requires external code,
which we included and made it usable with the kernel.

The kernel module spends most of its time hashing page contents, so it is wise
to consider, which hash function is suitable for our analysis.

The module provides support for different hashes (Table 4.1). The simplest
way to get a fingerprint of data, is to take some bytes. This method is used for the
so called "simple pattern".

for(i=0;i<12;i++)
buffer[i] = page[1 << i];
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It is very fast, only little data is touched and no calculation is done, but also it
is very faulty and produces many false positives (collisions). More sophisticated
functions are also supported. MD5 is commonly used for checksums. SHA-1 has
no known collisions yet, and might therefore used as an reference. It is easy to
add new hashes, in future releases of our module.

Method Description Resulting bytes

Simple Pattern 12 bytes + 4 bytes 16 bytes
SuperFastHash PAGE_SIZE considered 4 bytes
CRC32 PAGE_SIZE considered 4 bytes
CRC32_EX Page divided into 4 equal blocks 16 bytes
MD5 PAGE_SIZE considered 16 bytes
SHA-1 PAGE_SIZE considered 20 bytes

Table 4.1: Provided hash functions, sorted by expected speed (for speed mea-
surements see Figure 5.2

We proposed CRC32_EX to make CRC32 more reliable, each page is divided
into 4 equal blocks and each gets its own checksum, this provides speed like
CRC32 and more collision resistance, furthermore it retains more information
that can be used for subpage analysis.

4.1.3 Page Table Walk

The page table walk is the same on all IA-32 and ARM platforms, and is described
in the function get_user_pages [20], which is used to get all user pages content.
This function cannot be used for our approach. We need more information about
every page and its hashed content. Also, this function swaps pages back in, which
is a unwanted behavior as mentioned before.

Not all entries in the page table lead to pages that can be accessed directly, I/O
pages have some restrictions and should not be touched. Large regions of a virtual
address space are not mapped to physical addresses and have to be skipped.

4.1.4 Memory Consumption

Our kernel module and our tools need memory to store a snapshot till it is pro-
cessed. The kernel allocates the maximum amount of memory to hold a complete
snapshot (including the absent pages), the userland components need to allocate
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Real Memory Usage Kernel Memory User Memory Peak

RAM 24 GB 402 MB max. 402 MB max. 804 MB
Process 1 GB 16 MB + VMRD max 18 MB max. 36 MB

Table 4.2: Memory Consumption during snapshots approximated with 64 bytes
per Page. A regular dump would need the amount of the real used
memory.

additional memory for the data transfer. The userland buffers fit exactly to the
actual snapshot size, which in most cases is smaller than the kernel buffer.

The size of the page describing structure varies form platform to platform, so
we assume a size of 64 byte per page for our calculations. On IA32 architec-
tures the structure is 52 bytes (without SHA-1 support 48 bytes) and 68 bytes on
x64 architectures (64 bytes with disabled SHA-1 support). Additional memory is
needed for the virtual memory region descriptors (VMRD). Table 4.2 shows some
common scenarios and their memory consumption in kernel, userland and during
data transfer. To dump a complete system equipped with 24 GB of RAM (such
as the machine in our test setup), you need 804 MB of free memory, during the
kernel to userland transfer, which reduces the dump size to 3.4% of a full dump.

4.2 API & Tools
The API manages all tasks of communication with the kernel, memory manage-
ment and conversions to human-readable strings or CSV format. We choose the
CSV format, because it can be processed with common spreadsheet programs and
has a simple structure.

The part of the API to communicate with the kernel module, is done in pure
C90 using the system supplied functionality, where needed, a port to a differ-
ent OS should be simple, but has not been done yet. The analysis programs are
written in C++, since it needs some features that are only available in general im-
plementations of C++ (since Technical Report 1), the unordered set, a hash
map implementation, to find shared/shareable pages.These tools are command-
line based and calculate the maximum of savable memory, they fetch, save and
print snapshots, track the amount of changing pages. Some test tools to validate
the kernel module exist. This following command takes 200 snapshots of the task
1 and task 42 every 1 second, calculates the maximum of savable memory and
prints the CSV output to stdout.

./savedmemory -t=1 -n=200 -c 1:29 42:29
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Evaluation

To begin with, we had to find the best fitting hash function. Best fitting in this
case means a tradeoff between collisions (false positives) and speed. After these
initial testing, we evaluated the different workloads and their potential sharings.

5.1 Testing Environment & Procedures

The testing environment (Table 5.1) is completely based on Linux, the host OS.
The guests may vary, but we stick to Linux. We decided to use Ubuntu, since it is
available and widely used. The common configuration (Table 5.2), which is used
for all benchmarks, with the default KSM configuration of Ubuntu Server 11.04,
which scans 100 advised pages every 200 ms, if not noted otherwise.

There are many different benchmarks out there, some of them more compu-
tational intensive some more I/O bound. Although a kernel build is not a distinct
benchmark, it is still a good I/O bound job and was suggested in [17]. Kernel
building process and SPEC CPU2006 are our candidates for testing. It is possible
to see all effects with these two benchmarks.

We executed the kernel builds in parallel in two VMs booting the same disk
image, with the same amount of memory. The snapshot tool triggered a snapshot
every 2 seconds, and merged the results in a hash map, to divided the shared pages,
from the sharing opportunities and the unsharable onces. No disk access were
invoked from the snapshot tools, they work completely in memory. Although the
tools increase their memory usage over time, it had no impact on the target VM,
since the system was well equipped with RAM and there were enough free pages,
so Linux had not to reclaim, or swap pages.

To measure the exact usage of the host file cache, we rebooted the machine
before each test and no other programs were running before and during the tests, to
keep external impacts on the file cache as low as possible. For every kernel build,
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CPU Intel Core i7 980 @ 2.67GHz
RAM 24 GB DDR3
OS Ubuntu 11.04 Server running Kernel 2.6.38-11-server

Table 5.1: Testing Machine Configuration

CPU x86_64
OS Ubuntu 11.04 Server running Kernel 2.6.38-8-server
KVM enabled
RAM configuration depends on experiment

Table 5.2: Virtual Machine QEMU Configuration

we restored the original image, so every build started from the same basis. The
kernel build used the original Ubuntu build scripts, as available in the repositories
of Ubuntu Server 11.04. All test run till they have finished or they started to build
human interface drivers ( approximately 45 min later in this configuration).

The same rules apply to the SPEC benchmarks, we aborted them after 45
minutes. We executed them with different memory configurations, but we became
no new insights.

The kernel builds were also used to test the tools, the kernel module and ac-
quire the data for analysis as well.
The first task is to determine the best fitting hash, according to its throughput
and its collision resistance. The selected hash function will than be used for the
concrete analysis.

The idea here is to take large address spaces resulting form a kernel build in a
VM – and pausing their execution and take snapshots with different hashes. The
SHA-1 is the reference hash function and every other hash has to compete with it.
SHA-1 is too slow to be used for fast analysis.

5.2 Tool Set
The following section contains the tests of our tool set, their overhead and the
performances graphs for the different supported hashes.

5.2.1 Linux Kernel Module

We developed test tools, with which we validate the collected information, and
compare our results, with the internal counters of Linux, for example with /proc/<pid>/statm
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Task Memory Usage Kernel Memory User Memory Peak

FileCache 11.7 GB 402 MB 185 MB 587 MB
RAM 13.1 GB 402 MB 207 MB 609 MB
bash 2.4 MB 48 KB 48 KB 96 KB
QEmu 13.7 MB 260 KB 260 KB 520 KB

Table 5.3: Memory Consumption during snapshots with 68 bytes per page on
test machine. Some small real world scenarios - a bash and a QEmu
with booted Linux kernel. A full memory dump would need 13.1 GB
disk space.

and the amount of consumed memory by the file cache with /proc/meminfo or
the amount of shared pages with the KSM counters. It passed these tests. The
fluctuations were about 300 of 250 000 scanned pages, in the worst case it was
around 0.5%. The calculated sharing opportunities and the actual shared pages
were even better, the error was less than 100 pages in average, about 0.31% in our
test scenarios. The slight time difference was the main cause for this differences,
and it is rather complicated to eliminate this problem completely, but its estimated
error is less than 1%.

Our snapshot mechanism produces overhead. It is mainly caused by the copy
operation from kernel to user land – one improvement for future releases would
be direct file system access, page donation from kernel to userland, or network
transfer. Table 5.3 shows the memory consumption of our tools during snapshot
acquisition.

This reduces the memory consumption in contrast to other solutions, which
make a full memory dump, to approximately 1.5%. And also the temporal drift
within a snapshot is lowered, due to faster acquisition process. The actual used
User Memory depends on how many pages are populated. In regular processes
(user applications common in Ubuntu), only 50% of the reserved memory is ac-
tually used. This is also true for most VM on startup, but once all pages were
touched, there must be a reclaim mechanism to shrink the VM again, which is not
done by default.

5.2.2 Hashes
After testing with different workloads, it became obvious that CRC32_EX should
be sufficient, for all planned tests and fast enough (see Figure 5.2). In every tested
scenario it performed as well as MD5 and SHA-1, but with much better perfor-
mance. Its performance is nearly as good as the regular CRC32 and is only out-
performed by SuperFastHash (Figure 5.1).
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Figure 5.1: Comparison of the different hashing functions and their throughput.
Measured with a VM building the Linux kernel and equipped with
1024 MB of memory.

Algorithm False Positives

SHA-1 0
MD5 0
CRC32 7
CRC32_EX 0
SuperFastHash 7
Simple Pattern 9736

Table 5.4: Comparison of collisions. Here a 1 GB address space running a Linux
kernel build. Reference is SHA-1. It clearly shows simple patterns
are too faulty, but every other hash is a candidate for most testing
scenarios.

As table 5.4 shows the amount of colliding pages is low. So all functions,
except Simple pattern, were candidates for the following tests. There is of course
a flux between every snapshot, which might be even higher than the false positives,
this is an other reason to choose a robust candidate.
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Figure 5.2: Time it takes to hash 1 GB of a frozen VM (QEmu), which executes
a Linux kernel build. The test has been done 10x and the average
processing time is displayed in this diagram.

5.3 Benchmarks
We executed the benchmarks on the testing machine as described in section 5.1.
The regular scan period was 2 seconds, which leads to an effective resolution of
4 seconds, for large address spaces (> 1 GB), since this period is large enough,
we were able to do an online analysis. The CPU has enough cores (4 cores with
8 threads) to run the VM on one and the analysis on a different core. An offline
analysis would have on the one hand polluted the Page Cache, using cached I/O
or on the other hand slowed the snapshots period down even further, using direct
I/O.

5.3.1 KSM Activities
KSM activities are slow and computationally intensive, even the corresponding
man pages contains a warning: "It can consume a lot of processing power; use
with care." [15]. Figure 5.3 shows the work of KSM over time, in three different
KSM configurations, which increased "pages_to_scan" values (200, 500, 1000),
the scan period ("sleep_millisecs") remains at 200 ms. The maximum savable
memory, is the amount of memory that would be saved with all possible memory
sharing and reclaiming techniques, a calculated value.

We used a balloon test, a simple program that can be inflated with different
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page contents, allocating 512 MB of RAM in two different VMs. Every negative
peak indicates a change in page data content of one or both VMs.

Figure 5.3: KSM activity during two VMs executing a balloon test, it clearly
shows how lazy KSM scans and merges pages, in its default setting.
Even with more aggressive scans (second half), it takes time and
computational power to merge pages.

KSM needs more than one minute to merge 245 MB of data, in a increased
setting (200 pages scanned every 200 ms), and the whole machine is just idling
(no changes in the guests memory allocation). With much aggressive scans it
is faster, but takes more CPU power. KSM is only a good solution if enough
computational time is available. If two programs open the same file content from
different files and map it into their address spaces, KSM is unable to merge any
page (since these pages are named and not anonymous). The effect would be the
same for user programs installed with 0install, or redundant disk data. Figure 5.4
illustrates this scenario. There is no way reducing the pages, although the files are
mapped shared, they cannot be shared – and consume two times the size in system
memory. Anonymous mappings cannot save the day, it just creates new overhead
(2 pages in the file cache + 1 page mapped anonymously into two processes), if
the file cache is not flushed afterwards.
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Figure 5.4: Two processes opening the same file and map it into their address
spaces (second diagram). The residual set of each process is extreme
low. If the same processes open files with the same content, but
with different inodes, there is no default sharing, furthermore KSM
cannot merge any of them.

5.3.2 Linux Kernel Builds

The kernel build process reads many source files, compiles them and writes object
files, which are later linked into executable binaries. This causes a lot of I/O op-
erations, which pollute the file caches, both of the VM guest and the host system.

We tested different memory configurations, Satori suggested 256 and 512 MB
of RAM, this was a good starting point, but then we turned to even smaller 128
MB configuration and bigger 1024 MB or even 2048 MB. As figure 5.8 shows
the fluctuations over time, it is clear that kernel build expects are working set with
more available memory, 256 MB seems sufficient, but 512 MB is more common.

As you can see, the amount of memory for a VM is essential, less memory
leads to less shareable pages and slows down the execution as shown in Figure
5.6. The more memory is available the more pages can be shared and the faster
the kernel builds. This was also shown in [17].

If there is not enough memory for a kernel build working set (see Figure 5.12),
most of the potential sharable pages are short lived, their big sharing potential is
wasted (compare Figure 5.5 with Figure 5.6).

The testing VMs have been reduced in memory size to show the effects of
low memory conditions. Now the sharing opportunities are changing quickly and
KSM is not able to merge all shareable pages. QEmu has been configured to use
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Figure 5.5: The potential sharing between two VMs building the Linux kernel
with 1024 MB allocated memory per machine. This figures shows
the maximum percentage of pages that can be shared between VMs
at every moment in time and their internal redundancy. And it is
increasing as processing continues. With a average saving potential
of 75%.

128 MB of RAM for the guest OS, since our observations and [17] suggested that
it needs at least 200 MB (256 MB) of memory to work fast and hold the minimum
of the building process’ working set. The contrast between Figure 5.7 and Figure
5.8 is enormous, the maximum amount of shared pages has dropped drastically -
to an average of 25%. furthermore the theoretical memory savings are fluctuating
even faster.

We wanted to know, where most of the sharing potential originate from, so
we compared the file cache (of the host) and a VM building the Linux kernel.
We discovered that most pages can be shared between the guest and the host file
cache, the astonishing results (Figure 5.10) show the increasing amount of file
cache pages of the host and the growing memory consumption of the guest in the
VM. The host file cache keeps growing, whereas the VM is limited to 1 GB. The
inability of KSM to merge pages with the file cache is shown in Figure 5.9.
There are sets of 3 pages with the same content in the testing system. Two of
them can be merged because they are anonymously mapped into the VMs, but
one page, the original in the file cache is still there, although this page could also
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Figure 5.6: The potential sharings between to VMs building the Linux kernel
with 128 MB. The sharings have more fluctuations compared to Fig-
ure 5.5. With only an average saving potential of 47%. This is a the-
oretical saving and it is hardly possible to exploit all opportunities,
due to the fast changing page’s content, in real systems.

be merged. This could be done without scanning, since every I/O operation must
be processed by the VM monitor, or the underlying OS, it can instantly map the
page into this address space and make it a Copy-on-Write page.

Another problem of KSM is illustrated in figure 5.13. When only one sharing
candidate exists in the system, in this case one VM builds the kernel and the other
just doing a balloon test, there is no merging candidate available for the current
implementation of KSM.

The previous tests suggested that the amount of shareable data increases with
the amount of memory allocated to each VM. Figure 5.11 shows the different
VM configurations and their average sharing potential. This clearly shows the
correlation between allocated memory and sharing potential. The private pages
are growing linearly, whereas the shareable pages growing exponentially. The
amount of private data is low, compared to the shareable pages. If a file cache
sharing system exist, it would allow many different kernel builds to execute with
200 MB of private memory, and complete their task as if they had 1024 MB of
RAM allocated to each.

As figure 5.12 shows, about 47% of these sharings last longer than 16 seconds,
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Figure 5.7: Two VMs executing a nearly synchrony Linux kernel build with
1024 MB of RAM. It clearly shows the growing of the VM dur-
ing execution and their sharing potential between these VMs and
the amount of memory that KSM merges during execution.

Figure 5.8: Two VMs building the Linux kernel with only 128MB of RAM al-
located. The building process is slower and the page cache of the
guest OS can hardly be utilized due to high memory pressure in the
VM, it has to reclaim pages very fast.
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Figure 5.9: The sharing potential between a VM building the Linux kernel and
the host file cache with 1024 MB. The freshly rebooted machine has
a small file cache, which is growing over time, in the same way the
amount of shareable pages grows. When we compare this figure
with Figure 5.7 it become obvious that most sharings belong to file
caches of the two VMs. In this scenarios KSM is unable to merge
pages, since it cannot get hold of the named file cache pages.

Figure 5.10: The sharing potential between a VM building the Linux kernel and
the host file cache (VM equipped with 1024 MB). The rebooted
machine has a small file cache, which is growing over time, in the
same way the amount of shareable pages grows. When we compare
this figure with Figure 5.7 it become obvious that most sharing
belong to file caches of the two VMs. In this scenarios KSM is
unable to merge pages, since it cannot get hold of the named file
cache pages.
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Figure 5.11: Sharing potential in different VM memory configurations. This
figures shows the average amount of unsharable (private) data and
the potentially sharable data. This clearly shows the correlation
of memory associated with a VM and its saving potentials. The
amount of private data increases linearly, whereas the sharing po-
tentials are rising exponentially until they reach a certain level.

this is approximately the same amount that can be shared with the file cache. But
for a complete run this reduces to 32% due to the enourmous memory usage,
the file cache in the guest machine has to shrink every time, the building process
requires more memory.

It is clearly possible to reduce the amount of shareable pages, when one VM
executes a benchmark and they others just idling with large amount of memory
used. These machines can surely be compressed by KSM or other means, but a
machine executing, without a sharing partner. Figure 5.14 shows such a situation,
at the beginning of this test, the kernel build has not been started yet, and the
sharing potential with other VMs is high, since the executing the identical Linux
kernel and balloons. Then both begin their work, one starts the kernel build, the
other leaving their balloon untouched – just changing its content over time. The
file cache is still growing but not used for the VMs, but would be a good candidate.

Even the file cache has redundancies and so unexploited sharing opportuni-
ties, that could be merged, so at least 10% (9.53% in this example) of memory
can be saved. If a system detects this kind of named sharing, it can furthermore
deduplicate these files back to physical storage, and save even disk space. For this
porpuse it need not to scan its disks periodically, it just gets this information for
free, if the file cache supports sharing and a self redundancy check.
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Figure 5.12: This 1 minute snapshot during kernel builds with 128 MB of RAM
gives a impression how long sharings last in a high memory pres-
sure environment. 47% last longer than 16 secondes, but only 32%
last longer than 10 minutes. Whereas in a bigger VMs, more shar-
ings, last longer, this was also discovered by the Satori paper [17].

5.3.3 SPEC Benchmark
SPEC (Standard Performance Evaluation Corporation) benchmarks such as bzip2
in CPU2006 are computationally intensive and work completely in memory [19].

To show the effects of KSM and the general sharing opportunities not touched
by KSM. We executed 401.bzip2 in two VMs. The peaks in figure 5.15 illustrate
its work and its progress. The operations are repeated, so the same peaks appear
again and again. It is an interesting task and shows the limitations of a memory
scanner, every time the work seems to be finished the shared pages are lost and
have to be merged again. One third of all allocated pages are merged in average,
for short periods of time, although more than 60% of all pages are shareable,
excluding the zero pages (with zero pages up to 80%).
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Figure 5.13: A kernel build versus VM with a balloon in it, both configured to
use 1024 MB of RAM. KSM is able to merge the parts of the disk
image that both machines have loaded into anonymous pages, but
is unable to merge the pages in the file cache of the host with the
guest.

Figure 5.14: This figure shows the development of the file cache during a Linux
kernel build and its redundancy. Approximately 9.53% of memory
occupied by the file cache can be deduplicated.
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Figure 5.15: SPEC CPU2006 401.bzip2’s execution in two VMs (equipped with
1024 MB of RAM each) over time, with KSM scanning 200 pages
in 200 ms. Every time a sharing has been established it is destroyed
within 15 seconds due to the changing compression workload of
the benchmark. Although the theoretically sharing potential is high
(60% of the pages could be shared, even without the large amount
of zero pages), it can hardly be exploited by KSM. The sharing
opportunities are non-zero pages, which have not been merged.
KSM excludes zero pages, but they still slow down the scanning
process.
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Chapter 6

Conclusion

We discovered that impressive sharing potential exists, between VMs executing
the same tasks or just using the same source data. The most sharing potential
originates from VMs executing code with a lot of disk I/O, utilizing the file caches.
This potential cannot be harvested by KSM, since it is unable to merge named
pages. Furthermore it takes a lot of CPU power to compare and merge pages, if
it is possible to get such sharing with the file cache of the host OS, they could
be instantly in place and would only break on write operations. For example two
VMs – maybe in an cloud environment, try to build the Linux Kernel in parallel.
In most case there would be three times the same page, one copy for every VM
and one page for the file cache. KSM would take its time to reduce this to two
pages, still one for the file cache left. Some might argue that it would be possible
to use direct I/O for the VMs, but there still would be two pages that KSM would
have to merge and every VM must reread their data from disk or a special cache
in the virtual machine monitor.

KSM does a good job, when only anonymous pages are involved and compu-
tational power is cheap (compared to memory) or the guest OS cannot be instru-
mented to give hints about the page’s content.
A complete and general solution to every problem described earlier is hardly pos-
sible, but a combination of memory scanners for anonymous pages and a similar
approach for named pages, might reduce the demand for physical memory drasti-
cally.

The CPU2006 benchmark suite can hardly profit form cached files or a similar
mechanism. CPU2006 benchmark does not write or read from disks, except the
basic parts of the OS and the actual executable code. And most of the sharings
are short lived, there might be only a instrumented guest OS, an approach done by
Satori [17] or by balloon drivers [21], which might be able to regain some memory
from time to time. If all CPUs are in use for computations, it might be impossible
to do a reasonable merging or reclaiming, without freezing the VM.
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6.1 Tools

The tools performed as expected, we reduced the overhead of each memory dump
to 1.5% and fetched all information required for sharing analysis. The speed is
acceptable (see Figure 5.1), but further improvements are possible. When the
Linux kernel is capable of accalerations for hashing, the kernel module will profit
automatically.

These tools make it possible to scan, compare and explore new sharing poten-
tials, on Linux based systems. It also runs on the slightly changed Android kernel
on ARM. Future ports to other operating systems, such as Windows are easily
possible.

6.2 Benchmarks

The benchmarks have shown the potential of new unexploited sharing opportu-
nities and how computationally intensive benchmarks with nearly no disk access
profit from Kernel SamePage Merging, if enough CPU power is left, for the KSM
daemon. But on the other hand, it also shows the limitations of KSM. Sharings
are often broken and the work of KSM was a waste of time, e.g. int the CPU2006
benchmark suite.

The benchmarks show the potential for named page sharing between host to
guest and guest to guest. As anonymous pages are already merged by KSM, it
would be great to have a similar mechanism for named pages or a mechanism
instant installing sharing without scanning and without a instrumented guest OS.
This all should be transparent for the guest, so even older, unmodified operating
systems can profit, the necessity is shown by Waldspurger et al [8, 21].

All in all, it seems to be a good idea to combine these approaches, to save the
maximum amount of memory with less overhead and small impacts on the guest.
If you prefer a unmodified guest operating system, then a yet-to-develop named
page merger and Kernel Shared Memory will save a great deal of memory. If a
guest can still contain adapted drivers, it is best combined with a balloon driver,
which can fast reclaim memory for other usages and might even be easily extended
to control the file cache of the guest OS and so provide even better performance.
For example, this specialized balloon driver can reclaim the guest’s unused file
cache pages immediately, if the host has to shrink its caches. So a VM would
have 256 MB of private memory and the whole file cache of the host available.
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6.3 Limitation & Future Work
Our kernel module is not able to take snapshots on different cores simultaneously
and has not been tested on different architectures and different configurations,
e.g., with huge pages enabled. Although some initial test on ARM and Android
kernels were successful. Furthermore, it has only one interface to acquire the
collected information (through the Proc FS), future versions might include a di-
rect to disk interface, network interface (Android cellphone to host computer) or
memory donation from kernel to userland, which reduces the overhead caused by
transferring the snapshot’s data to disk or user space memory. The amount of free
memory required for snapshots can than be less than 2% of the installed memory.

Although we provide many different hashing methods, it might be still useful
to test a specific hash before using it. The module can be easily adapted to new
hashing functions and different architectures.
Furthermore, the userland tools are not capable of every possible comparison, but
with the provided API it should be easy to create specialized tools very fast, with
less knowledge of the underlying acquisition functionality.

It would be interesting, if someone exploits the potentials of file cache merg-
ing, provide a driver, which allows simple host file cache access, or special hints
for KSM to work faster and more efficient.
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Chapter 7

Glossary

Hash in this thesis, everything that reduces data to a fixed size hash value

File Cache also Page Cache, Buffer Cache, pages which contain data associated
with files

Frame also physical page, machine page, it is the physical representation of the
host pages

KSM Kernel SamePage Merging, also Kernel Shared Memory

KVM Kernel Virtual Machine, a hypervisor included in the Linux kernel

Page smallest administrative structure of the physically available RAM

System RAM physically installed memory, excluding memory allocated by de-
vices

Task also Process, address space with at least one thread

x86 also IA-32 (Intel Architecture for 32 Bit)

x64 also amd64
the architecture introduced by AMD for 64-Bit extension to x86
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