
Flexible Online Energy Accounting in TinyOS

Simon Kellner

System Architecture Group
Karlsruhe Institute of Technology

kellner@kit.edu

Abstract. Energy is the most limiting resource in sensor networks. This
is particularly true for dynamic sensor networks in which the sensor-net
application changes its hardware utilization over time. In such networks,
offline estimation of energy consumption can not take into account all
changes to the application’s hardware utilization profile and thus invari-
ably returns inaccurate estimates. Online accounting methods offer more
precise energy consumption estimates. In this paper we describe an online
energy accounting system for TinyOS consisting of two components: An
energy-estimation system to collect information about energy consump-
tion of a node and an energy-container system that allows an application
to collect energy-consumption information about its tasks individually.
The evaluation with TinyDB shows that it is both accurate and efficient.

Keywords: energy accounting policy tinyos

1 Introduction

Energy still is the most critical resource in sensor networks. Limitations on en-
ergy supply as well as on other resources have led to operating system designs
that offer only minimalistic hardware abstractions. The core of TinyOS, for ex-
ample, is an event-based system that helps application developers in dealing with
asynchronous hardware requests, and little else. One effect of this design decision
is to make developers more considerate about hardware usage and therefore en-
ergy consumption. TinyOS makes it hard to actively wait for a hardware event
to occur, while making it easy to react to the same event, which is the more
energy-efficient approach in most situations.

One approach to designing sensor-net applications that meet pre-defined en-
ergy consumption requirements is to develop an application whose hardware
utilization pattern is simple enough to allow predictions on the application’s en-
ergy consumption. Global parameters of such applications can then be changed
to accommodate energy consumption requirements. But the lack of convenient
hardware abstractions does not necessarily limit developers in creating complex
applications. A sensor network running the TinyOS-based TinyDB application,
for example, allows users to issue (SQL-like) queries to the sensor network at a
time of their choosing. Planning the energy consumption of nodes in this net-
work can not be done a-priori, because the energy consumption characteristics
of a node running TinyDB change with the queries it processes.

Control of energy consumption in this scenario is only feasible using online
energy accounting on the sensor nodes. Information on the energy consumption
of whole nodes, however, does not offer much information. An energy-intensive
query might, for example, be only revealed by comparing node energy consump-
tion before and after a query was sent into the network. Energy consumption of
queries, on the other hand, can be readily used to decide if a query consumes too
much energy and has to be canceled before it wears down the energy supplies of
the sensor network.

This paper makes the following contributions:

– An online energy-estimation system for TinyOS that allows sensor nodes to
become aware of their energy consumption.

– An energy container system for TinyOS that allows application developers
to collect energy-consumption information about control flows in the appli-
cation.

– A set of accounting policies that can be used to adapt the energy-container
system to its purpose as set by the application developer.

The paper is structured as follows: After presenting related work in Sect. 2 we
define a usage scenario in Sect. 3 that will be referenced later on. Then we present
the design and selected implementation issues of the energy estimation system
(Section 4) and the energy container system (Section 5). Section 6 details several
accounting policies of our energy-container system. Following an evaluation of
our systems in Sect. 7 we conclude with an outline of future work in Sect. 8 and
closing remarks in Sect. 9.

2 Related Work

Management of energy in sensor networks has received significant attention in
research over the last years, as it concerns the primary resource of such networks.

PowerTOSSIM [7] is similar to our own energy estimation system. It instru-
ments OS components or simulations thereof to track power states and uses an
energy model to compute energy consumption for one or more sensor nodes.
PowerTOSSIM, however, targets off-line simulation, whereas our instrumenta-
tion and model are designed to be used in on-line energy accounting.

AEON [5] is the energy model used in the Avrora [8] simulator. It models the
hardware’s power states of a MICA2 node. Our energy model is based primarily
on the MICAz node and additionally considers transitions between hardware
states.

Schmidt, Krämer et al. [6] present another energy model used to make exist-
ing simulators energy-aware. Although they mention the potential to use their
energy model in online energy estimation, they do not elaborate on that option
further.

Dunkels et al. [2] present an energy-estimation system for the Contiki OS.
This system is used to estimate energy consumption per hardware components.

We employ a similar energy-estimation system and extend it with energy con-
tainers to a full energy-accounting system that is able to account energy based
on control flows, which may span multiple hardware components.

Quanto [3] is an energy profiling mechanism for TinyOS that accounts energy
consumption information of activities in an application. It employs a hardware
energy meter to measure the total energy consumption of a sensor node, and tries
to break this information down to energy consumption of individual hardware
components. Our energy estimation system does not require any hardware in-
strumentation. It also provides more options for accounting policies, facilitating
more use cases than energy profiling.

Resource Containers [1] are an abstraction in an operating system (OS) in-
troduced by Banga, Druschel and Mogul providing flexible, fine-grained resource
accounting on web-servers. The main idea is to separate execution (processes)
from resource accounting, so that an application itself can define the entity being
subject to accounting. In operating systems featuring CPU abstractions such as
threads or processes, Resource Containers give administrators and users the abil-
ity to account all activity connected to a user request, which usually has a higher
significance than process-based accounting. We adapt this concept to TinyOS
and focus solely on energy as a resource. Consequently, we call our containers
energy containers.

3 Scenario

In this paper we use the following reference scenario. A network of sensors is pro-
grammed with a dynamic application like TinyDB. We assume multiple users
of the sensor network who periodically retrieve data from the network. They
retrieve data by injecting queries into the network, which are then periodically
processed by the application on the sensor nodes until a user stops them. The
sensor-net application can process multiple queries concurrently over a long pe-
riod of time.

Network operators and users should be able to intervene in the query pro-
cessing to save energy.

4 Online Energy Estimation

An important part of the energy accounting system is the on-line estimation of
a sensor node’s energy consumption.

We recognize a sensor node as a collection of simple, independent hardware
components controlled by one microcontroller (MCU). Therefore, we model a
node’s energy consumption using a collection of small state machines, one for
each independent hardware component.

These state machines have a state for each distinguishable hardware power
state, i.e., a hardware state exhibiting a characteristic current draw. Each state s
is annotated with this current draw Is. Transitions t in this state machine are
annotated with the amount of electric charge Qt they consume.

To compute an estimation of the energy a hardware component has con-
sumed, we record the time Ts the hardware spent in each state s as well as
the number of times Nt each transition t occurred and compute the estimated
consumed energy E as

E

V
=

∑
s

TsIs +
∑
t

QtNt . (1)

This is the same idea Dunkels et al. [2] use in their online energy estimation for
the Contiki operating system.

We implemented the online energy estimation method presented above in
TinyOS 2 for the MICAz platform. At the time of writing, we have energy
estimation implementations for the ATmega128 microcontroller, the CC2420
radio chip, the LEDs, and the magnetometer on the MTS300 sensor board.

5 Energy Container System

To store the estimated energy usage per query, we employ a hierarchy of energy
containers. With multiple energy containers in the system (e.g., for concurrent
queries), we need some help from the application (e.g., TinyDB) to map activities
to energy containers. Our energy-container system keeps this association intact.

In this section we will first present energy-container types and their structure
in our system. We then will describe the way in which the application should
interact with the energy container system. Afterwards we will detail how our
system keeps energy-container associations intact.

5.1 Energy Container Structure

In our system, energy containers are hierarchically structured, as shown in Fig. 1.
Most containers in our energy container system are under the control of the

application developer. They can be allocated, read, and released at the applica-
tion’s discretion. The application can also switch between containers, indicating
that subsequent computations should be accounted to a different container.

In addition to these normal containers, the root container holds the energy
consumption of a whole sensor node: All energy consumption is accounted both
to the container selected by the application and to the root container. Together,
these two types of containers form a flat hierarchy.

As a special case, a temporary container is used in cases where the application
cannot know (yet) to which container the current energy consumption should be
accounted. On a sensor node such a situation only occurs whenever a message
is received by the radio: The message can belong to the query currently active,
lead to the creation of a new query, or it could not be associated to query
processing at all. For these cases we use one extra container that is activated
upon reception of a message and is treated in a special way: When the message
is found to belong to a known query, or creates a new one, the application has

container 1

temporary container

root container

container 2 container 3

attach

distribute

additionally
account to

Fig. 1. Hierarchy of energy containers

ec_id newContainer();

void attachToContainer(ec_id id);

void switchToContainer(ec_id id);

uint32_t getContainer(ec_id id);

uint32_t getRootContainer();

void stopMonitoring(ec_id id);

Fig. 2. Interface to the container sys-
tem

to attach the temporary container to the normal container used for that query.
In this case the contents of the temporary container are added to the normal
container, the currently active container is set to the normal container, and
the temporary container is deactivated. If the application does not attach the
temporary container to a normal one, our container system apportions the energy
accounted to the temporary container among all currently active containers at
the end of the message reception handler routine.

5.2 Energy Container Interface

Figure 2 shows the interface an application should use to work with our energy
container system. The commands are ordered as they would be used in an ap-
plication.

Upon reception of a query message, the application attaches itself to a known
container (attachToContainer) or to a newly created one (newContainer). Be-
fore an application starts a processing step of a query, it switches to the container
created for that query (switchToContainer). When creating a query response
message, the application may choose to include the contents of one or more
energy containers (get{,Root}Container). If a query should no longer be pro-
cessed (i.e., removed from the system), it invokes stopMonitoring to completely
deactivate the indicated container.

The presented interface intentionally does not provide full control over energy
containers. For instance, there is no command to deactivate the currently active
container without either removing it completely from the system or switching
to another container. In our opinion, every action on a sensor node should be
accountable to a request made by a user of a sensor network. Nevertheless it is
possible to create new containers, for example, to account a maintenance task
that is run on a sensor node and is independent of any queries.

Also intentionally absent from the energy container interface are commands
to operate on the contents of the energy containers. We separate operations
on energy containers within our energy container system from the operations
on energy values in the application. It is the responsibility of the application
to make network-wide use of these locally obtained energy values. Our energy-

container system can not automatically handle all cases of aggregation that an
application may perform on energy values.

5.3 Energy Container Implementation

As the previous section on the energy container interface shows, the application
has to be modified to use energy containers. Naturally we strive to require as
few changes to the application as possible, which means that our system has to
keep associations to energy containers intact.

Resource containers in UNIX are attached to threads, so thread control blocks
would be used to store references to associated resource containers, and the
reference to the currently active thread would be used to access the currently
active resource container. TinyOS, however, does not provide a CPU abstraction
such as threads. TOSthreads, a TinyOS library providing threads, is optional
and many applications do not require it, including TinyDB. TinyOS at its core
therefore lacks a structure like a thread control block and a reference to the
currently active thread.

In the absence of threads, we have to implement container associations in a
different way: We use a set of TinyOS components to track the control flow of
an application and to keep an energy container associated to this control flow.
By control flow we mean a series of actions (instruction execution, hardware
operation) where every action is a direct consequence of the actions preceding
it. For example, a control flow to sample a value from a sensor can comprise:
issuing a read() call, turning on the sensor, configuring it, reading it, turning
the sensor off, and returning the value to the application in a readDone event.

A control flow can be suspended several times during its course through
TinyOS, but all these suspensions stem from two cases: software queues and
hardware operations. We say that a control flow is suspended when a piece
of code performs an enqueue operation, and that it is resumed on the related
dequeue operation. Similarly, we say that a control flow is suspended when it
starts a hardware operation, and that it is resumed when the hardware causes
an interrupt handler to be executed.

Software queues are frequently used in TinyOS. For example, instances of
software queues are the queue of timer events in virtual timers, message output
queues of communication modules, access request queues of shared resources,
and the scheduler queue.

We instrumented several TinyOS components to send information about
enqueue-, dequeue-, and hardware operations to our subsystem for control flow
tracking. For software queues we implemented shadow queues of energy contain-
ers. During the enqueue operation, the shadow queue enqueues a reference to the
currently active energy container, thereby associating the object being enqueued
with this energy container. When an object is dequeued, the corresponding en-
ergy container from the shadow queue is activated, resuming the control flow
with the energy container association intact. Control flow tracking over software
queues is illustrated in Fig. 3.

enqueue dequeue

EC-MCU
associate resume

Fig. 3. Control flow tracking of soft-
ware queues

EC-MCU

EC-Hw

Hw-driver layer n+1

Hw-driver layer n

op opDone

Fig. 4. Control flow tracking of hard-
ware operations

Figure 4 shows that control flow tracking in hardware is handled differently.
Not only is there just one energy container association that has to be stored,
but, more importantly, the concurrency of hardware operations and program
execution on the microcontroller means that there can be multiple active energy
containers on one node, each one associated with a different hardware com-
ponent. Thus, our control-flow subsystem copies the current energy container
association from the microcontroller to the hardware, and copies the association
back when a hardware signal is received.

Altogether, the control flow tracking components ensure that an application
has to switch containers only inside its own components, and only on switching
query processing from one query to another.

6 Accounting Policy

Energy consumed during use of a hardware component is accounted to the energy
container associated with the active control flow on the hardware. But energy is
also consumed by the hardware before and after use: On startup, on shutdown,
and between uses. We call this kind of energy consumption collateral.

There are many ways in which collaterally consumed energy can be ac-
counted. The choice between these ways depends on the hardware usage pattern
of the operating system, as the usage pattern defines whether collaterally con-
sumed energy can be shared or not. It also depends on the reason why energy
accounting is used: For energy profiling purposes, for example, an application
developer might prefer not to account collaterally consumed energy at all, or
account it to a separate container. A provider of a TinyDB network, however,
might prefer to have all energy consumption accounted to TinyDB queries in a
fair manner. As energy profiling systems already exist, we focus on a fair energy
accounting in the TinyDB scenario. We identify hardware usage patterns and
choose a suitable apportioning policy.

6.1 Single Use

The hardware usage pattern of the microcontroller (MCU) is simple: Its startup
overhead is negligible, and then there is only one active control flow at a time.
The apportioning policy used on energy consumed by the MCU is equally simple:

Account energy consumption to the active energy container, or, if there is no
active energy container, distribute it evenly among all normal energy containers
in the system.

6.2 Shared Use

If the startup overhead of a hardware component is not negligible, other ap-
portioning policies must be used. A policy suited for most devices is to share
the collaterally consumed energy among all containers which were associated
in the time interval between startup and shutdown of a hardware component.
The collaterally consumed energy could either be apportioned evenly to these
containers, or proportionally to their hardware usage. We use an evenly appor-
tioning policy for the magnetometer sensor on the MTS300 sensor board, which
has a large startup overhead (waiting 100 ms for the sensor to stabilize) and neg-
ligible use costs (taking an A/D converter sample is done in a few clock cycles of
the MCU). The implementation is integrated into the ICEM [4] framework for
shared devices in TinyOS, so that other devices may easily be instrumented as
well.

We use the same policy to account the energy consumption of the radio chip
in the “low-power listening” mode offered by TinyOS. In this mode, TinyOS
repeats the transmission over a configurable time interval, until it either receives
an acknowledgment, or a timeout occurs. A node that should receive messages
can thus settle on periodically checking for transmissions and keeping the radio
chip turned off between checks. The repeated attempts at sending a message
can be viewed as a form of synchronization: Barring radio noise, if more mes-
sages are sent to the same receiver immediately after one transmission attempt
succeeded, those messages will arrive on their first transmission attempt. We
treat all transmission attempts but one (the successful one) as synchronization
overhead to be accounted to all energy containers of successive messages to the
same receiver.

6.3 Continuous Use

Yet another different policy is needed for the radio chip if the application is
not configured to use energy-saving mechanisms such as low-power listening. In
this case, TinyOS keeps the radio powered on continuously. The absence of use
intervals makes it difficult to assign a fair share of collaterally consumed energy
to a container. We employ a log of all energy containers that were used to send or
receive messages, and apportion collaterally consumed energy of the radio chip
to all these containers using a geometric distribution, so that containers using
the radio more often will bear most of the energy consumption.

7 Evaluation

We evaluated our energy container system using TinyDB. As a first step, we
ported TinyDB to TinyOS 2.1.0. TinyDB is a large sensor-net application con-

sisting of over 140 files with a total of over 25,000 lines. It does not fit in the
program memory of a TelosB node (48 kBytes) and uses nearly all program mem-
ory of a MICAz node (∼ 60 of 64 kBytes), even with several features such as
query sharing and “fancy” aggregations deactivated. The output file of the nesC
compiler comprises nearly 40,000 lines of code when TinyDB is compiled for
MICAz nodes.

TinyDB is a dynamic sensor-net application in that it allows users to inject
queries at run-time, and allows to run a limited number of different queries
simultaneously. This makes it an ideal application to benefit from our flexible
online energy accounting system.

We evaluated our system with regard to the following aspects:

– Ease of use: The work required to add energy containers to TinyDB.

– Overhead: The additional costs of using energy containers.

– Accounting fairness: Fairness of energy consumption distribution.

– Accuracy: Accuracy of the energy estimation system.

7.1 Experimental Setup

In our evaluation we used two TinyDB applications: TinyDB-noec is a regular
TinyDB application.

In TinyDB-full, which is based on TinyDB-noec, we create an energy con-
tainer for each new query, and send the energy consumption information in this
container back to the base station.

To measure the estimation error of our energy estimation system, we addi-
tionally modified TinyDB-full to include a new field in status messages. In this
field TinyDB-full reports the difference of the current root container contents to
its contents when the first query injection message arrived. Immediately after
terminating the last active query on our measured sensor node, we sent a status
request message and recorded the energy reported in the status message. Differ-
ences between the reported energy values and the measured energy consumption
are caused by errors in the energy estimation system.

We used three queries that exhibit different hardware usage. Each of these
queries is periodically processed by TinyDB in so-called epochs, each epoch being
about 750 ms in length by default. At the begin of an epoch, result values are
computed for each query, and at the beginning of the next epoch, they are sent
out in a query result message. The queries run until they are stopped by a user.

One query, select nodeid, qids, uses only information already present in
the microcontroller, namely the ID of the node and the IDs of the currently
active queries. We used two versions of this query, one using default settings
(sample period 1024) and one having an epoch length of double the default
value (sample period 2048).

The third query used, select nodeid, mag x, samples the x-direction of
the magnetometer on a MTS300 board, which makes this query consume signif-
icantly more energy than the first one.

7.2 Ease of Use

To provide energy containers in TinyDB-full, we had to add 59 lines of code
and to make small changes to 5 lines of code. About half of these changes were
straightforward changes, like adding fields to message structures and filling them.

7.3 Overhead

We measured two kinds of overhead in our test application: One is the increased
code size and memory usage, the other one is additional energy consumption.

As Table 1 shows, adding energy containers to TinyDB caused close to 4000
lines of code to be included in the C file generated by the nesC compiler (which
contains the whole application).

Table 1. Sizes of the applications used in our evaluation. Lines of (C) code as reported
by cloc (cloc.sourceforge.net), Program size and Memory usage as reported by the
TinyOS build system.

Application Lines of code Program size Memory usage Avg. current draw
[byte] [byte] [mA]

TinyDB-noec 39175 57382 3292 23.375
TinyDB-full 42971 63552 3449 23.312

We also measured the energy consumption overhead caused by our energy
container system. To this end we ran one query (select nodeid, mag x) for
about 40 seconds on each of our applications multiple times and measured the
current draw. The average current draw is also shown in Table 1. The difference in
current draws is 63.1 µA, which is only slightly larger than the standard deviation
of the average current draws (which was 31.1 µA for TinyDB-noec and 45 µA for
TinyDB-full).

7.4 Accounting Fairness

As an example of how energy containers could be used, we issued two queries
with different hardware usage: Both queries requests only information about the
software, which is available at virtually no cost (select nodeid, qids), but at
different sample rates. Query 2 (sample period 1024) should send at double
the rate of Query 1 (sample period 2048). Query 2 is injected after Query 1
and stopped before Query 1, so that energy is accounted first to one, then two,
and again one container.

When both queries are active and synchronized, the radio should be used
alternately by one and two queries. We configured the sensor node to use the low-
power listening mode of TinyOS, and used a shared policy to account collaterally
consumed energy on the two energy containers of the queries.

cloc.sourceforge.net

The energy container contents of the queries are reported in the query result
messages. Figure 5 shows these energy values plotted as they are sampled at the
sensor node. Also shown in the figure is the sum of the most recent energy values
of both queries, which should closely resemble the measured energy consumption.

Figure 5 shows that query 2 draws more power than query 1, which can be
explained by its higher message sending rate. Query 1 profits from Query 2 in
that it is charged with less energy consumption when Query 2 is active. 0 1 2 3 4 5 6 0 50 100 150 200 250 300 350Energy consumption [J] Time [s]Measured energy consumptionSum of reported energy consumptionQuery 1 (sample period 2048)Query 2 (sample period 1024)

Fig. 5. Energy consumption reported by queries

7.5 Accuracy

To determine the accuracy of our energy estimation system, we measured the real
energy consumption of our node and compared the measurements to the contents
of the node’s root energy container in all of the tests involving TinyDB-full, i.e.,
some of the overhead tests and the previous example.

The energy consumption recorded in the root container was within 3 % of
the measured energy consumption.

8 Future Work

In further work, we plan to improve our implementation to support a greater
variety of hardware. Preliminary measurements indicate that the supply voltage

has an effect on current draw that varies between chips. We are looking on how
best to capture this behavior appropriately in our energy model.

We also plan to incorporate distributed energy management into TinyDB
that makes use of our energy-container system.

9 Conclusion

In this paper, we described a flexible online energy accounting system for TinyOS,
the basis of which is an online energy estimation system. We introduced energy
containers in TinyOS as specialized resource containers, allowing us to account
energy consumption of parts of a sensor-net application separately. Evaluation of
our implementation shows it to be accurate and to have a low energy overhead.

References

1. Banga, G., Druschel, P., Mogul, J.: Resource containers: A new facility for re-
source management in server systems. In: Proceedings of the Third Symposium
on Operating System Design and Implementation (OSDI’99). pp. 45–58 (Feb 1999),
http://www.cs.rice.edu/~druschel/osdi99rc.ps.gz

2. Dunkels, A., Österlind, F., Tsiftes, N., He, Z.: Software-based on-line energy estima-
tion for sensor nodes. In: Proceedings of the 4th workshop on Embedded networked
sensors (EMNETS 2007). pp. 28–32. ACM, New York, NY, USA (2007)

3. Fonseca, R., Dutta, P., Levis, P., Stoica, I.: Quanto: Tracking energy in networked
embedded systems. In: Proceedings of the 8th USENIX Symposium on Operat-
ing System Design and Implementation (OSDI’08). pp. 323–338. USENIX Asso-
ciation (Dec 2008), http://www.usenix.org/events/osdi08/tech/full_papers/

fonseca/fonseca.pdf

4. Klues, K., Handziski, V., Lu, C., Wolisz, A., Culler, D., Gay, D., Levis, P.: Inte-
grating concurrency control and energy management in device drivers. In: Proceed-
ings of the twenty-first ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’07). pp. 251–264. ACM, New York, NY, USA (2007)

5. Landsiedel, O., Wehrle, K., Götz, S.: Accurate prediction of power consumption
in sensor networks. In: Proceedings of the second IEEE Workshop on Embedded
Networked Sensors (EmNetS-II). pp. 37–44 (May 2005)

6. Schmidt, D., Krämer, M., Kuhn, T., Wehn, N.: Energy modelling in sensor networks.
Advances in Radio Science 5, 347–351 (Jun 2007), http://www.adv-radio-sci.

net/5/347/2007/ars-5-347-2007.pdf

7. Shnayder, V., Hempstead, M., Chen, B., Werner-Allen, G., Welsh, M.: Simulating
the power consumption of large-scale sensor network applications. In: SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor
systems. pp. 188–200. ACM Press, New York, NY, USA (Nov 2004)

8. Titzeri, B.L., Lee, K.D., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: IPSN ’05: Proceedings of the 4th international symposium
on Information processing in sensor networks. p. 67. IEEE Press, Piscataway, NJ,
USA (2005)

http://www.cs.rice.edu/~druschel/osdi99rc.ps.gz
http://www.usenix.org/events/osdi08/tech/full_papers/fonseca/fonseca.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/fonseca/fonseca.pdf
http://www.adv-radio-sci.net/5/347/2007/ars-5-347-2007.pdf
http://www.adv-radio-sci.net/5/347/2007/ars-5-347-2007.pdf

	Flexible Online Energy Accounting in TinyOS

