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Abstract

Reduced performance is generally considered to be a drawback of microkernel
based multiserver operating systems. The reason for this loss of performance is
that typical operating system services, performed by the kernel in traditional
systems, are provided by the kernel and several user mode servers in a multiserver
operating system. As a result, performing these services requires a number of
thread switches as well as kernel entries and exits, whereas in a traditional
system only one kernel entry and exit usually suffices.

In modern systems with a tagged TLB and a dedicated system call instruction
most of the costs of a thread switch or kernel entry result from preserving register
contents in memory. Existing approaches to reduce these costs typically improve
the performance of kernel entry by delaying register preservation to thread
switching. If a kernel entry is followed by a thread switch — a frequent situation
in systems using a microkernel — these approaches do not improve total system
performance.

In this thesis I present a mechanism that can be used to increase the perfor-
mance of thread switching and kernel entry and exit by selection of a bank of
register file memory instead of exchange of register contents using main memory.
I describe in which way it can be used by a kernel and its implementation in the
OpenProcessor platform as well as its use by the associated kernel to increase
kernel entry and exit performance. Evaluation has shown that it can be used
to decrease system call overhead by 10% while providing further possibilities of
performance optimization.
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Chapter 1

Introduction

Historically, microkernel based multiserver operating systems [14] have been
perceived to have inherent bad performance characteristics that outweigh the
advantages of this operating system architecture in most fields of application
[2]. Especially first generation microkernels have been shown to have a low
performance compared to modern ones [4]. While modern microkernels — such
as L4 [6] — have proven that the overhead introduced by a microkernel can be
greatly reduced, the encapsulation of operating system services in user mode
servers generally leads to a performance overhead in comparison to systems that
provide these services using a monolithic kernel.

Part of this performance overhead is a result of the need to perform an
increased number of context switches, which I consider to occur on thread switch
as well as on kernel entry and exit in this thesis. Thus, improving the performance
of context switches can reduce the overhead of a multiserver operating system.

Context switches typically include a change of the address space, the execution
mode and the contents of registers. Modern systems reduce the cost of an address
space switch by means of translation lookaside buffers (TLBs). The cost of
execution mode changes can be reduced by using lightweight methods of doing
so like special instructions to perform kernel entry and exit. These measures
leave the preservation of register contents in main memory as a considerable
part of the costs of context switching.

Existing approaches to avoid the cost of register preservation typically only
improve kernel entry performance by delaying the need to preserve register
contents using main memory until a thread switch is performed. These approaches
do not provide any performance benefit if a kernel entry is followed by a thread
switch which is a common occurrence in multiserver operating systems.

In this thesis I present an approach to prevent the memory accesses that are
necessary to preserve register contents when a context switch is performed. This
approach consists of extending the register file of a processor to provide several
banks of register file memory, a mechanism for selecting these register banks and
its use by a microkernel. When a context switch is to be performed by the kernel,
it can change register contents by selecting a different register bank instead
of using main memory. To allow this behavior a bank needs to be assigned to a
context beforehand in an operation called bank assignment.
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CHAPTER 1. INTRODUCTION

The purpose of this approach is to decouple memory accesses necessary
to preserve register contents from context switches by storing register contents
associated with multiple contexts on the processor at the same time. This enables
the different banks to be used to increase the performance of thread switching in
addition to kernel entry and exit thereby decreasing the total number of memory
accesses necessary to perform context switching in the whole system.

I describe the implementation of a basic version of the mechanism on the
OpenProcessor [8] platform and the extension of the associated kernel to use
the mechanism to increase kernel entry and exit performance. Evaluation has
shown that this implementation reduces system call overhead by about 10%.

Chapter 2 covers related work and information on the OpenProcessor
hardware and operating system. Chapter 3 details the design of the register
bank mechanism and its possible applications in the OpenProcessor kernel.
Chapter 4 describes my implementation of register banks for the OpenPro-
cessor platform and their usage to increase kernel entry and exit performance.
Chapter 5 presents an evaluation of the implementation. Chapter 6 concludes
this thesis by summing up its results and providing directions for future work.
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Chapter 2

Background

2.1 Related Work

There is work on several topics related to this thesis: first there are a number
of approaches to utilize a bigger register file to achieve a general performance
increase in a computing system, second there are a number of works addressing
the specific problem of preserving register contents across context switches — in
particular kernel entries. These categories are not disjoint as most mechanisms
could at least be utilized to increase kernel entry and exit performance. In this
section I first present works that are closer to the first category, progressively
moving towards the second category.

Some early [12] as well as modern [13] RISC processors implement a concept
called register windows to increase call performance by utilizing a bigger register
file without increasing the number of registers encodeable in an instruction. A
similar concept, the Register Stack is used by the IA64 CISC architecture [1].
In these processors, the register file is organized as a ring buffer of overlapping
windows. The current window can be moved forwards or backwards on the ring
using special instructions with a number of registers local to each window and a
number of registers shared with adjacent windows for passing parameters and
return values. Usually, there is also a number of registers not affected by bank
selection.

When performing a context switch, register windows can be saved and
restored lazily. However, memory accesses cannot be avoided completely using
such an approach. [5]

It has been shown [15] that a system without register windows can achieve a
similar performance for function calls with a smaller register file by increasing
the number of registers encodeable in an instruction and improving the register
allocation logic of the compiler. In general register windows do not fit the needs
of a microkernel very well, but the possibility of preserving register contents
lazily could be applied to register banks as well.

Other RISC based processor designs provide a number of shadow registers as-
sociated with particular general purpose registers to increase exception, interrupt
and system call handling performance. MIPS [7] offers several banks of shadow
registers selected by the processor according to an operating system controlled
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CHAPTER 2. BACKGROUND

configuration. Since the kernel can configure hardware bank selection it could
utilize banks to increase thread switching performance similarly to the design I
present in this thesis. In contrast to my design, access to register contents on
another bank is only possible by either switching to it or by using special instruc-
tions to access the previously selected bank. This makes MIPS shadow registers
inflexible when used in a microkernel, in particular by potentially complicating
the implementation of data transfers for inter process communication.

Another popular RISC based processor design employing shadow registers is
ARM [11]. On ARM, shadow registers are available for a number of registers
when operating in privileged mode. In general, all privileged code parts have
a separate shadow register for the stack pointer and the link register. As an
exception, Fast Interrupt Handlers(FIQ) have shadow copies of roughly half of
the general purpose registers to enable fast handling of some interrupts. Access
to shadow registers not associated with the current mode is generally not possible,
special instructions to store them to and load them from memory exist instead
catering to the needs of exception handlers only.

Some ARM based processors also offer a (further) reduced instruction set,
called Thumb Instruction Set, with interesting properties in regard to register
access: to reduce the size of instruction words, only the lower half of the general
purpose register set is accessible using all instructions. The upper half can only
be accessed by a subset of the available instructions. This is interesting with
regard to register banks since it can be considered as a form of banking used to
reduce binary code size.

The specific problem of preserving register contents across context switches
has also been addressed by reducing the number of registers that need to be
preserved according to which are currently used [3]. This is made possible by
dividing the register set into several subsets and by having the compiler emit
instructions that indicate which of these subsets are currently in use. When
a context switch occurs, the kernel can evaluate this live set information to
determine which subsets need to be preserved.

2.2 The OpenProcessor Platform

This section describes relevant characteristics of the OpenProcessor platform
for which I designed the register bank mechanism. The OpenProcessor
platform is a minimal, flexible and representative research environment for
hardware/software co-design with a focus on operating systems. It consists of
hardware components written in the Verilog hardware description language and
a microkernel based multiserver operating system implemented on top of the
hardware.

The hardware is implemented using a Memec Virtex-4 MB Development Kit,
featuring a Xilinx XC4VLX60 [18] Field Programmable Gate Array (FPGA)
among other components such as different kinds of memory and I/O facilities.
The FPGA is used to implement all further hardware components on top of
which the kernel is executed.

The advantage of this system design is that it allows fast development of
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CHAPTER 2. BACKGROUND

hardware changes, since synthesis of a new hardware version can be performed
in about half an hour only. The bit stream programming of the FPGA takes a
few seconds allowing quick comparisons of different hardware versions.

The hardware implemented in the FPGA consists of a 32-bit RISC processor
which is connected by a Wishbone bus [9] to several memory and I/O controllers.
Since the system aims at providing a basis for operating system research it has
state of the art hardware support for typical operating system functionalities,
such as a tagged translation lookaside buffer and special instructions for privileged
mode entry and exit.

The kernel implemented on top of the processor is conceptually akin to the L4
microkernel. Especially the paradigms of memory management and inter process
communication, which have been described in [6] and [4], have been adopted
to the OpenProcessor kernel. On top of the kernel, a few user mode servers
provide typical OS services such as file system access and memory management.

The rest of this section covers several aspects of the OpenProcessor plat-
form that impact the design and implementation of the register bank mechanism:
Section 2.2.1 describes the implementation and usage of registers on the Open-
Processor platform. Section 2.2.2 covers the concept of contexts and its
relevance to the OpenProcessor kernel. Finally, Section 2.2.3 describes the
processor pipeline with focus on the result and load forwarding logic.

2.2.1 Registers and their Usage

The OpenProcessor’s instruction encoding provides 6 bits to address registers,
which allows addressing of up to 64 different registers. The lower half of the
register address space is used to address general purpose registers, while the
upper half is reserved for special purpose registers. Special purpose registers are
implemented directly in the FPGA fabric due to their increased performance
demands resulting from implicit read and write accesses1 in several pipeline
stages. The general purpose registers are stored in a register file implemented
around two of the RAM blocks present on the FPGA.

Each RAM block offers 18 Kibit of memory accessible via two read/write
ports. The ports are configured to operate on 32 bit data words with 4 additional
unused bits per word for parity checks, resulting in 16 KiBit (or 512 32 bit words)
of memory available for the register file. While the capacity of a single block
would suffice to hold all general purpose register data, which is 1024 bit total for
the 32 general purpose registers, utilizing two blocks is still necessary since the
pipeline requires two read and one write port to the register file. The combination
of two blocks allows two read operations per cycle, which are each performed
on a different block, plus a write operation that is performed synchronously on
both blocks to ensure consistency.

The calling conventions employed by the system define most of the lower half
of the general purpose registers to be used for function variables (“callee saved”)
while the upper half is to be used for temporary variables (“caller saved”). When
a call is performed, the temporary variable registers are supposed to be saved by

1I use this term to denote direct accesses to registers as opposed to more complex ones
performed by the Operand Fetch or Write Back stage.
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the caller, while the callee is responsible for preserving the contents of function
variable registers.

A number of registers are dedicated to a specific purpose. Two of them are
defined by the hardware architecture: r0 is constant zero and r31 is the link
register, which is used to store the return address when a call is performed. The
stack is implemented using r2 as the stack pointer with no frame pointer present.
The kernel requires a register (typically r1) dedicated to perform kernel entry.
Registers r30 down to r27 are used to pass the first 4 arguments and return
results when a function or system call is performed.

2.2.2 Contexts

A context is the set of data that needs to be preserved when a task is interrupted
in order to resume it later. While this definition includes memory contents
visible to a task and its page table, both are loaded from memory on demand
and do not necessarily result in memory accesses when switching contexts on
the OpenProcessor platform. The register contents on the other hand need
to be preserved in any case — usually using memory.

The OpenProcessor kernel uses one kernel stack per thread. This means
that a thread, except when currently executing in user mode, can be considered
to have two contexts: a user mode and a kernel mode context. To resume a
thread, its kernel mode context is restored which in turn might restore the user
mode context. When inter process communication (IPC) is performed, the kernel
context of the sender thread accesses the user mode context of the receiver thread
in order to transfer the message. This makes it necessary for the kernel to be
aware of and differentiate the two contexts associated with a thread.

For the design of the register bank mechanism, a number of operations need
to be considered since they work with the contexts in one way or another. In
the rest of this section I first present possible ways to enter the kernel from user
mode and then describe a number of activities that may be performed by the
kernel mode context of a thread.

Two ways to enter the kernel can be distinguished on the OpenProcessor
platform: a number of events, such as exceptions or interrupts, implicitly cause
a kernel entry or a user mode application can explicitly perform a kernel entry
by using the SYSCALL instruction. Both cases are handled similarly: first the
processor starts execution at an exception vector the address of which depends
on whether the processor was executing in privileged mode when the kernel entry
was caused and what the cause for it was. Kernel code residing at this address
then branches to a vector-specific stub which in turn jumps to the appropriate
handler through trampoline code. One difference exists between a kernel entry
caused by a SYSCALL and the other exceptions: while the SYSCALL stores the
return address in the link register like a conventional call, the other exceptions
store the address of the faulting instruction in a special purpose register.

The responsibility to save and restore the current context is divided between
the stub, the trampoline and the handler. The involvement of the handler is a
result of the fact that its code is generated by the compiler and is thus subject to
the calling conventions, which require that every function preserves the contents
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of all callee saved registers. The stub and trampoline code rely on this to reduce
the set of registers that need their contents saved and restored to the set of
caller saved registers. These registers are saved by the stub on the kernel stack
and later restored from it by the trampoline. To make these register contents
available to kernel mode code they are stored in a well defined structure, referred
to as a trapframe. The address of the trapframe on the stack is passed to the
handler.

With the register bank mechanism, storing register contents in memory can
be avoided, which inherently prevents the creation of the trapframe. For this
reason an understanding of how and when it is used is crucial to assess the
impact of register banks on the kernel.

When a handler has performed the necessary actions, it needs to read the
return address or the address of the faulting instruction and set a special purpose
register to prepare the processor for returning to user mode. In the case of a
syscall, a number of user mode register may be read to access parameters passed
from user mode or they may be written to return results to user mode. If we
introduce register banks, avoiding to store register contents in memory, we need
to provide other means to access these values.

When a thread switch is performed the thread performing it is already
operating in kernel mode on its kernel mode stack and thus only its kernel mode
registers need to be backed up. Since the context switch is called as a function
from compiler generated code, only the callee saved registers need to be stored, as
the caller saved registers have already been stored on the kernel stack according
to calling conventions. When the remaining registers have been saved on the
kernel stack, the stack pointer is changed to that of the next thread. Then
its callee saved register contents are restored and the function returns to the
compiler generated code that the kernel context of the now current thread was
executing previously which will restore the caller saved registers.

Finally the trapframe plays a vital role in performing IPC. Since the Open-
Processor kernel only supports message items stored in registers the trapframe
contains all message items when the kernel performs IPC. All copying is per-
formed by the sending threads kernel context while the receiver is blocked in
receiving state. Since the IPC mechanism is quite complex its concept cannot
be covered in its entirety here, refer to [4] for an in-depth description.

In conclusion, the kernel requires read and write access to almost all registers
stored in the trapframe. This is not only necessary for context switches but also
to provide other important kernel functionalities.

2.2.3 Result and Load Forwarding

For the discussion of the register bank design in Chapter 3, a basic knowledge
of the OpenProcessor result and load forwarding is required. In particular,
different methods of replacing the communication channel in shared registers,
which is lost on a full bank switch (a problem introduced later in more detail),
require a modification of the forwarding logic.

To understand the result and load forwarding logic in the OpenProcessor a
basic understanding of its pipeline is needed: the pipeline has 5 logical stages, of
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which those concerned with memory access have been split up into several physical
stages depending on the speed of the used translation lookaside buffer (TLB)
and cache. The hardware version used as a basis for this thesis has 8 physical
pipeline stages.

The first step in the pipeline is the Instruction Fetch stage, which is responsible
for loading the next instruction. In a best case scenario (i.e. when no cache
or TLB misses occur) it takes 3 cycles to complete and thus is split up into
3 physical stages. When an instruction has been fetched from memory, it is
passed on to the Operand Fetch stage, which will decode and load the source
operands from the register file in 1 cycle. Afterwards, the Execute stage decodes
the instructions, including the destination operand, and performs requested ALU
operations in 1 cycle. After the Execute stage has finished, an instruction enters
the Data Memory stage which handles memory accesses caused by load and
store instructions in 2 cycles. In the last stage, called Write Back, write accesses
to the register file are performed to update the destination operand if present.

ALU results can be forwarded from the Execute stage when no load is to be
performed. Load forwarding can only be done after an instruction has passed the
Data Memory stage. When result forwarding is applied, the register contents are
available immediately, while load forwarding results in a stall of up to 3 cycles,
if no cache or TLB misses occur.

8



Chapter 3

Design

In this chapter I present the design of the register bank mechanism and its impact
on the kernel. The purpose of register banks, as has been motivated in Chapter 1,
is to reduce context switching overhead by reducing the number of memory
accesses resulting from them and as a result to increase the performance of the
following typical microkernel operations: (a) kernel entry and exit (b) thread
switch (c) inter-process communication (IPC). This is achieved by storing multiple
register sets at a time in the register file, instead of only keeping the current one
in it and the rest in main memory.

The register context of a thread is made up of the set of all register contents
which need to be restored in order to resume its execution. While this definition
may — depending on the platform — include different registers for different
threads, in the case of OpenProcessor the contexts of all threads comprise
all 32 general purpose registers. Some of the special purpose registers are also
relevant regarding the contexts of a thread. These special purpose registers are
small in number compared to the 32 general purpose registers, and the imple-
mentations of general and special purpose registers differ severely. Since banking
special purpose registers would have a significant impact on the complexity of the
solution without providing a significant benefit I did not consider them further.
Thus the register context referred to in this thesis is the set of all general purpose
register contents associated with the user mode or kernel mode context of a
thread.

Microkernel based operating systems usually provide most operating system
operations by a number of user mode servers. As a result, many operations
that only require a single kernel entry to be performed on traditional operating
systems based on monolithic kernels, additionally require a thread switch in
systems using a microkernel.

In the case of a monolithic kernel, the performance of many kernel operations
like interrupt handling can be increased by providing shadow copies of only
a small number of registers. These are used to preserve user mode register
contents while the kernel is working. When a thread switch occurs, the contents
of these shadow registers need to be preserved in addition to the contents of
their currently visible copy. As a result, the total number of registers that need
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Figure 3.1: context switching: traditional and using register banks

to be preserved if a kernel entry is followed by a thread switch does not change
through an approach like this.

Since many operating system operations require a kernel entry followed by
a thread switch in systems using a microkernel, it is of little use to provide a
banking mechanism to only increase kernel entry and exit performance in the case
of OpenProcessor. The register bank mechanism described in this chapter
addresses this issue by providing several banks of general purpose registers.
These banks are referred to as register banks.

Figure 3.0 shows how a context switch is performed traditionally and how it
can be done using register banks. Traditionally, as shown in Figure 3.0a, the
registers encoded in instructions each refer to one word in the register file. When
a context switch is performed the register file contents are written to memory to
preserve the current context and new values corresponding to another context
are loaded into the register file.

Register banks, shown in Figure 3.0b, can be used to decrease the number of
situations in which a context needs to be stored in memory and a different one
loaded from it. Register banks allow this by providing several banks of registers
and translating registers encoded in instructions into an address in the register
file according to a bank selector. This allows a decoupling of memory access from
a context switch. A context switch can now be performed by simply selecting a
different bank.

To assign a bank to a context, the contents of a bank still need to be saved
to and loaded from memory, this process is called bank (re)assignment. With a
sensible bank assignment policy, I assume that bank reassignment is necessary
less often than a context switch and thus an increase in total system performance
is possible by using register banks.

In order not to restrict which bank assignment policies might be implemented
by the operating system, the processor implements the bare mechanism, while
it is the responsibility of the operating system to configure the mechanism
accordingly.

The rest of this chapter is divided into two parts: while Section 3.1 is
concerned with the banking mechanism, Section 3.2 discusses its impact on the
kernel.
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CHAPTER 3. DESIGN

3.1 Requirement Analysis

Concerning the design of the register bank mechanism — apart from the increase
in required register file memory — two important aspects have to be taken into
consideration:

• If multiple banks of registers are offered, a translation of a register address
encoded in an instruction (referred to as an encoded register address in
this chapter) and a bank selector to an address in the register file of the
processor becomes necessary.

• Assuming a full switch of the register set whenever a context switch occurs,
the communication channel previously offered by shared registers needs to
be replaced.

A basic translation can be defined as follows: each bank is assigned a unique
number in the range of zero to the total number of banks minus one, this number
is referred to as the bank identifier. The offset of a bank into the register file
memory is calculated by multiplying its identifier by the constant bank size.
This bank offset is then added to an encoded register address to translate it into
a register file address.

This basic translation logic has a direct implication for the kernel: previously,
register contents were retained by default when a context switch occurred and
thus registers were a communication channel between different contexts. It
was the responsibility of the kernel to control this channel in a manner that
maintained system integrity. For example, if a system call had been performed,
the kernel must have cleared kernel data from all registers but the ones used to
return results to user mode before returning to it. This was necessary to prevent
possibly sensitive data of other contexts from being leaked.

With banks in place, a bank switch can be performed and thus no register
contents of other contexts can be visible to user mode, if the bank used has been
assigned to the user mode context already and bank switching is controlled by
the kernel. The kernel is not freed from the responsibility to control this channel,
but the necessity to act is shifted from the frequent context switching to the
rare bank reassignment operation.

The communication channel established through shared register contents
does not only burden the kernel, but is also used to facilitate communication
between different contexts without the need to rely on the slower main memory.
For example, if a system call is performed, this channel is used to pass parameters
such as the system call number from the user mode context of a thread to its
kernel mode context. Likewise the channel can be used to return values from a
system call back to user mode. Since this channel is lost in the presence of a
full register bank switch, it needs to be replaced either by using main memory
or by providing a new way of communication across register banks. Since the
purpose of the mechanism is to improve performance a way to communicate
using registers should be provided.

When designing a new way to allow inter context communication using
registers the following situations need to be considered since they may utilize the
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new channel to achieve an increase in performance or need to secure it: (a) kernel
entry and exit, (b) exception handling, (c) inter process communication, and
(d) thread switch.

While kernel entry is neither directly concerned with inter context communi-
cation nor must it secure the communication channel since the kernel is trusted, it
still needs to be considered since it might setup a way for the exception handlers
to access the user mode context. Kernel exit on the other hand needs to make
sure no sensitive data may be leaked to user mode.

Exception handlers provided by the OpenProcessor’s kernel usually do not
access user mode register contents. An exception from this rule is the system call
handler which needs at least access to the link register of the user mode as well
as a register containing the system call number; passing system call parameters
directly in registers is also preferable. Furthermore, the OpenProcessor is
constructed in a way that might allows trap & emulate virtualization. This system
property would be lost if privileged mode could not access all register contents
of unprivileged mode. For these two reasons the new communication channel
must enable the kernel to access arbitrary register contents on a semi-regular
basis and certain registers on a regular basis.

The IPC implementation used by the kernel relies on registers to contain
message items that need to be transferred. Thus kernel mode needs fast access
to register contents of two different user mode contexts — sending and receiving
context of the message. Since the number of items transferred during IPC is
determined at runtime and all items of a message are transferred at the same
time, access to a block of registers of an arbitrary user mode context would be
an advantage in this situation.

If a thread switch is performed, no data needs to be passed between contexts,
but a switch from one context to another must be performed. If a bank has
already been assigned to the target thread, this can be accomplished by simply
switching the register bank. When no bank is assigned to the target thread
one needs to be assigned and filled in properly, which requires access to the
register contents of the bank that is to be assigned. When switching threads,
securing the new communication channel might be prepared, performed partially
or entirely.

The rest of this section covers different ways to establish a new communication
channel in Sections 3.1.1 through 3.1.4. Section 3.1.5 describes the final design.

3.1.1 Globally Shared Registers

A number of general purpose registers which are not affected by bank selection
could provide the new communication channel between contexts. This could be
achieved by either adding new registers into the special purpose register address
range or by preventing some of the general purpose registers from being affected
by bank selection. The new channel offered by this solution is similar to the one
that it is supposed to replace.

This similarity is an advantage in a number of situations: for example, the
shared registers could be used to pass parameters to a system call in the same
way as before. Assigning a new bank to a thread could be done by using one of
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the shared registers to store the memory address of the new register contents
while another one could be used to address the function loading the values from
memory into the appropriate registers.

A disadvantage of this solution, which also results from its similarity to the
communication channel that it is supposed to replace, is that the shared registers
necessarily become a part of the register context of a thread, since a thread
cannot be resumed without restoring the global registers. As a consequence they
need to be handled in the same way as general purpose registers were handled
before: they need to be saved and restored using main memory in most cases if
a context switch occurs. This is exactly what this design is trying to prevent
and thus a major drawback of this solution.

3.1.2 Memory Mapping

Mapping the register file to a region in the memory address range would provide
access to the register contents of all banks. This approach has the advantage
that the register data of other contexts can be accessed in the same way as
before banks were introduced, after the contents have been stored in memory.

To assess this technique, it is important to understand how memory accesses
are performed on the OpenProcessor platform and other load/store archi-
tectures: generally memory is accessed by a number of instructions typically
operating on an immediate and a register to address memory. This results in
the need to first load the register contents from the register file in one pipeline
stage, then computing the address from it and an immediate in another stage
after which the memory can be accessed.

Since main memory is slow and accessing it is a typical bottleneck in an
application the resulting minimum delay from instruction to data availability of
3 cycles as compared to 1 cycle for register access is not much of a disadvantage.
When accessing the register file on the other hand this delay has a much bigger
impact on performance.

Another side effect of this solution is that the stalling and result forwarding
logic would need to be extended as there is an additional pipeline stage accessing
the register file. Also the 3 cycle delay in itself is a disadvantage since it means
access to registers on banks other than the current one would be nearly as slow
as memory access in the case of a cache and TLB hit.

3.1.3 Inter Bank Copy

Access to register file contents could be performed by a new instruction dedicated
to this purpose. There are at least three possibilities to encode the register file
address: in (a) an immediate, (b) a register or (c) a combination of both.

If the address is encoded in an immediate, the accessed bank and register
would have to be determined at compile time, which would remove the ability to
dynamically assign banks to threads at runtime. For example this would prevent
assigning different banks to multiple instances of the same binary and should
therefore be avoided. Storing the address in a register is less problematic because
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the address could be computed at runtime from the bank number and register
that should be accessed.

Storing the address in a register would mean that the register file access
could not be performed until after the register storing it has been read from the
register file at which point another instruction might access the register file. This
problem could be handled either by introducing stalls to enable the instruction
to access the register file from different pipeline stages or the register file would
have to be extended to support more accesses in one cycle. This can be done on
the OpenProcessor platform by using an additional RAM block to implement
the register file for read accesses, while write accesses can be delayed until the
Write Back stage.

If a combination of a register and an immediate is used to address register
file contents, this solution would be mostly equivalent to the memory mapping
based solution presented above. The difference between the two solutions is that
a special instruction would establish a new address space whereas the memory
mapping based one would dedicate part of the existing memory address range to
register file access. The memory mapping based solution has the advantage that
no new instruction needs to be added to the processor.

Instead of encoding the address directly it can be encoded indirectly and
evaluated using an indirection table stored in the processor. Combined with
addresses encoded in an immediate neither of the drawbacks mentioned above
would apply. Still a drawback, which applies to all variations of the Inter Bank
Copy and Memory Mapping approaches, remains: since the contents of a register
on another bank need to be loaded into a register on the current bank prior
to their usage, solutions based on this approach would perform similarly to
accessing them using memory in that they cannot be operated on directly. They
need to be loaded into a register on the current bank instead before they can be
operated on.

3.1.4 Direct Access

Instead of mapping to the main memory address space or establishing a new
one, there is another address space that could be used: the register addresses
encodeable in an instruction form an address space of their own, into which a
part of the register file could be mapped in addition to the bank associated with
the current context. Since, when using this approach, contents of registers on
other banks can be accessed like conventional ones, a number of disadvantages
of the other solution are not present.

Since registers on other banks can be accessed like those on the current bank,
no extra read or write ports to the register file are needed. Since register file
addresses can be calculated in the Operand Fetch stage, result forwarding and
stalling logic can be adapted by extending it to take the bank number into
account in addition to the encoded register addresses, which means they only
need to be extended in bit width instead of changing the actual logic. As a result,
an access to registers on a different bank does not introduce different stalls than
an access to registers on the current bank. With regard to performance this
means that access to register on other banks can be performed as fast as access
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to registers on the current one.
A drawback of this solution is that register address space is valuable. This

problem could be solved by using more bits to encode registers in instructions.
On the OpenProcessor platform — and likely all others — this would require
major architectural changes and was therefore discarded.

3.1.5 Direct Access with Split General Purpose Region

The final design of the register bank mechanism uses a variant of the Direct
Access approach to enable fast communication between contexts. While the
scarcity of register address space is an issue on the OpenProcessor, as can
be seen below, this approach was chosen because of its promising performance
characteristics.

The design considerations done so far leave a number of important factors
undecided. Particularly the following questions need to be answered: (a) How
many registers should be mapped at one time? (b) How many banks should be
mapped at one time? (c) Where are they supposed to be mapped?

The situations presented in Section 3.1 have diverse requirements in terms
of the number of required accessible registers. Thus some flexibility in this
regard is preferable considering the scarcity of encodeable register addresses.
If a sensible bank assignment policy is implemented by the operating system,
bank assignment, which requires full access to the contents of a bank, can be
considered to be a rather rare event compared to inter process communication,
which has the next bigger demand in terms of the number of registers it needs
to access. Thus, concerning the number of registers mappable at one time IPC
performance should be the main concern. The largest IPC message sent by
components of the operating system should thus serve as a guideline for the
minimum number of registers which can be mapped at one time.

The number of mappable registers should also be a power of two to ease
implementation and prevent multiple mapping locations for the same register,
which would not be intuitive on assembly level.

Thus, concerning the number of mappable registers the following requirements
should be met by the design: At least as many registers as are used by the
largest IPC message should be mappable at once, with the maximum number
of mappable registers being a power of two. The number of mapped registers
should ideally be configurable, so the available register address space can be
used in the best possible way.

A context always has access to its own and thus at least one register bank.
The situation requiring access to the biggest number of banks is inter process
communication. The kernel mode context of a thread transfers register contents
from the bank assigned to its associated user mode context to the user mode
context of another thread. This seems to indicate that access to at least two
banks in addition to the current one should be supported, however this is not
required considering the following: When the actual copying of register contents
is performed by the kernel mode context, apart from a counter variable, it only
accesses data on the banks between which the copy is being performed. Thus a
routine to perform the copy operation could be implemented using either of the
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banks to store the counter and thereby only requires access to two banks at a
time.

This trick is only applicable when copying the raw register contents and
leads to a bank switching overhead if typed items are to be transferred since
typed items require additional work to be performed by the kernel. But, since
transferring typed items requires memory access anyway, I expect this overhead
to be insignificant. All other situations presented in Section 3.1 only access one
other context besides their own and thus only access to a further bank besides
the current one suffices.

There are in general two possible regions to which off bank contents could be
mapped: the special or the general purpose region. On the OpenProcessor a
number of addresses in the special purpose region are unused, but too few to fit
the criteria stated above and not aligned in a useful way, thus complicating the
implementation. Another option to utilize the special purpose region is to map
the off bank register into this region and conceptually treat the special purpose
registers as a bank. This would have the advantage that an entire bank of 32
registers could be visible while maintaining full visibility of the current bank.

While mapping to the general purpose area unavoidably leads to some
registers of the current bank not being visible, this mapping location offers a
great advantage as compared to the special purpose region: when mapping to the
special purpose region, any code that needs access to off bank register contents
has to be aware of banking whereas mapping to the general purpose region may
enable transparent mapping in some cases.

For example, if a system call is performed and the bank assigned to the user
mode context is mapped to the special purpose region, access to parameters could
be done either by accessing the registers directly in the handler, which would
result in copying to a register on the current bank without modifications to the
compiler, or the stub could pass the system call parameter as a parameter to the
handler by copying it to an appropriate register. When mapping to the general
purpose region, the stub could map the user mode registers to the appropriate
register address and then call the handler which could access them like a normal
parameter without the need to perform a copy or modify the calling conventions.
To make use of this advantage, off bank registers are mapped to the general
purpose region.

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31

major bank registers minor bank registers

Figure 3.2: encoded register addresses (bottom) mapped to two banks in the
register file (top)

The final translation mechanism shown in Figure 3.1 provides this functional-
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ity by splitting the general purpose region of the encoded register address space
into two parts. The lower part is meant to map to the bank associated with
the current context which is referred to as the major bank, since generally more
registers of the current bank are visible than of the other. The upper part is
mapped to the bank the current context needs to communicate with, this bank
is referred to as the minor bank, since generally less of its registers are visible
than of the major bank.

While this design has been sufficient in the implementation, which only
used register banks to increase kernel entry and exit performance, the following
considerations seem to suggest that adding an offset into register address space
for the mapping region might allow a further increase in performance: the design
uses mapping to the general purpose region to allow transparent mapping in
some situations. One of the situations transparent mapping could be used is
if a client performs a call to a server. Instead of copying the register contents
from one bank to another the kernel could map the message registers containing
the send items into the region specified as receiving message registers by the
server. Especially for highly optimized IPC implementations, like fast path IPC
of L4 [4], this might offer a substantial increase in performance.

3.2 Kernel Changes

Most changes to the kernel design depend on the presence of a banking mechanism
that allows a full switch of registers and the possibility to access contents on other
banks. An exception to this is IPC since it is used to perform communication
between contexts and thus needs to use the new communication channel presented
above.

First Section 3.2.1 describes the changes to the context switching parts of the
kernel by means of the changed stack layout of a suspended thread. Then the
new approach to perform IPC is presented in Section 3.2.2. Finally Section 3.2.3
concludes this chapter by describing approaches to handle kernel reentry in
the presence of register banks, a problem neglected so far because reentry is
uncommon on the OpenProcessor.

3.2.1 Context Switches

The changes to context switching can best be understood in terms of the changed
stack layout of a suspended thread as shown in Figure 3.2. Figure 3.2a shows
the layout used by the unmodified kernel.

When the unmodified kernel is entered, the caller saved registers are pushed
onto the kernel stack by the stub before jumping to the compiler generated
handler code. This is possible since all compiler generated kernel code abides
the calling conventions and will thus preserve all callee saved registers on the
call stack.

When the thread is to be suspended, the compiler generated code will save the
caller saved registers using the kernel call stack before jumping to the switching
procedure. The switching procedure will then push the callee saved registers to
the stack before switching to the stack associated with the target thread.

17



CHAPTER 3. DESIGN

trapframe kernel call stack callee saved reg-
ister contents

SP

(a) no banks

kernel call stack

SP

(b) bank assigned

kernel call stack
callee saved

register contents user–mode bank contents

SP

(c) no banks assigned

Figure 3.3: Kernel stack layouts of a suspended thread

With the banking mechanism in place, only the kernel call stack remains as
shown in Figure 3.2b. Since all register contents of the user and kernel mode
context are preserved by switching the bank, the kernel call stack does neither
need to contain callee saved register contents (since their content is never used)
nor the caller saved register contents from kernel mode. However, this is not
possible without modifications to the compiler, for example by using special
calling conventions when generating handler code.

When the banks assigned to a thread need to be freed up to reassign them,
not all of their contents need to be saved, since the kernel mode caller saved
registers were pushed onto the kernel call stack before the thread was suspended.
What remains to be saved are the user mode bank contents and the callee saved
register contents from the kernel mode bank. This results in a stack, shown in
Figure 3.2c, that is bigger than the one in the unmodified kernel. This could
be prevented by mapping the caller saved user mode registers while running in
kernel mode, since the compiler generated code will preserve them using the
stack anyway. As a result, the stack of a suspended thread would be as big as in
the unmodified kernel.

However this approach has a drawback as compared to modifying the compiler
to incorporate the fact that kernel mode is entered with these register contents
already preserved: transparent mapping results in premature saving of the
registers using memory when they could still be stored in the register file. This
leads to two problems: since the callee saved registers of the bank assigned to
kernel mode are never visible, a fourth of the register file memory is wasted, if
a thread always is assigned two banks at once. If a lazy assignment policy is
applied that only assigns banks when they are needed, a fourth is a lower bound
for wasted register file memory with the upper bound being a half of the memory
if all banks are assigned to kernel mode contexts. The other problem occurring
is that accessing memory when there is no need to do so degrades performance.
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3.2.2 Inter Process Communication

In general, when performing inter process communication in the presence of
register banks, four cases can be distinguished, according to which of the com-
municating contexts currently have a bank assigned to them. If a context does
not have a bank assigned to it, the register contents associated with it are stored
on its associated kernel stack. To make them accessible, they should be stored
in a well defined structure. Using the trapframe for this purpose is convenient
as it is already accessed using a pointer in the thread control block and thus no
changes to the IPC code in the case of memory to memory IPC were necessary.
If the compiler is modified to take banking into account, extending the trapframe
or providing a new structure containing all general purpose registers has the
advantage that an increased number of items could be transferred.

The remaining three cases should each be handled using a function optimized
for the specific case. As stated above, in the OpenProcessor kernel, message
register contents are always copied by the kernel context associated with the
sending context. Since the kernel provides a combined system call for sending
and receiving and the common case is that both are performed, it can be assumed
that in general the address of the receiving register is lower than the address of
the corresponding sending register.

If neither of the participating contexts has a bank assigned to it, the bank
assigned to the senders kernel context can remain the major bank. If the
sending context is the one with an assigned bank it can be mapped as the minor
bank with all message registers containing send items mapped at once. Since
the sending registers always start at the same register address, the copying is
best performed by encoding the memory address of the first receiving message
register in a register and then jump to the appropriate target in a sequence of
store instructions that write each possible message register to the appropriate
offset into the memory address of the receiving message register contents of the
receiving context. The jump target is calculated depending on the number of
registers that need to be transferred.

The case that the sending context has no bank assigned but the receiving
context has only occurs in two situations: if typed items had to be transferred or
the receiver was not ready to receive the message. These are the only situations
in which a context switch, which might have resulted in reassigning the bank
of the sender’s user mode context, could have occurred between kernel entry
and performing IPC. Both are situations in which the IPC operation is already
costly and I consider this case to be the least important of the three cases where
banks store either of the participating contexts when considering performance.

In this case, copying can be performed by encoding the memory address of
the sending message “register” in a register, but in this case the addresses of the
participating registers might be offset as well. As a result the trick applied above
to encode the number and address of the register, that should be transferred, in
the instruction pointer cannot be applied so easily. Encoding the register file
offset instead of a bank number would solve this problem, as would an offset
for the mapping region, since this would provide a possibility to map the first
receiving register to a fixed location. In the absence of such an offset, the solution
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I propose for this situation is to either use memory for temporary storage (when
initiating the receive operation, in effect freeing up the user mode bank) or
provide a table pointing to a number of functions that read needed minor bank
registers into a major bank register. Another approach is to use the trick above,
but using one function for each possible starting receiving register instead of
only one function.

The last case to be considered is when both the sending and receiving context
have a bank assigned. As distinguished from the other cases, the kernel context
of the sending context cannot remain mapped into the register address space if
data is to be copied directly from the banks associated with the sending context
to the bank associated with the receiving context. Instead, the bank associated
with the sender should be mapped as the minor bank and the bank associated
with the receiver as major bank, since message registers containing send items
can be expected to have an address greater or equal to their target register.
With the design presented above copying would still be cumbersome since there
is no way of addressing registers besides a jump table. However, if an offset for
the mapping area is used, copying is not necessary since transparent mapping
can be applied. Another approach is to allow an offset into the major bank that
can be set to map the receiving registers to a fixed starting location in which
case the trick used for register to memory IPC can be applied.

3.2.3 Reentry

A side effect of changing the register bank on kernel entry has not been covered
so far: if a kernel reentry occurs, the current thread is already operating on its
kernel mode context and thus its kernel mode bank. As a result of this it is
not possible to switch to the kernel mode bank to preserve the executing kernel
mode context. There are two possible approaches to this problem: either switch
to another bank or use the kernel stack to store the current register contents as
it was done before register banks were introduced.

When switching the bank on reentry the bank switched to can either be
reassigned from a different context on demand or a number of banks could be
dedicated to this purpose. Reassigning a bank on demand makes the reentry
slower than before since not only a register set needs to be stored in memory
but a bank switch is performed additionally. Dedicating a number of banks to
this purpose has the disadvantage that register file memory is expensive and the
maximum reentry depth is limited to the number of banks dedicated to it where
before it was limited only by the maximum kernel stack size.

Which of the three solutions is the best fit for a system depends on a number
of factors. In general reassigning a bank on reentry is worth the higher cost if
threads are suspended on a regular basis when they are reentrant. If reentry is a
frequent event, dedicating a number of banks can pay off. However, neither is
true for the OpenProcessor platform and thus in this case storing the current
register contents on the kernel stack is the best solution.

Storing current register contents on the kernel stack leads to another problem:
exception handling code needs to be aware of two different ways to access register
contents of the causing context. This problem is solved by duplicating the
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handler implementation, with one version for reentry and one for entry from user
space. In a system where reentry is more common than on the OpenProcessor
platform this would result in a performance overhead due to increased demand
on the TLB and cache.

21



CHAPTER 3. DESIGN

22



Chapter 4

Implementation

In this chapter I cover the implementation of the register bank mechanism and
its kernel support as described in Chapter 3. While I fully implemented the
basic banking mechanism in the processor, the operating system modifications
are limited to preserve and restore register contents on kernel entry and exit,
removing any need for memory access to preserve the user mode context. Using
register banks to perform thread switching or inter process communication has
not been implemented.

The changes to the processor were tested using Ikarus Verilog [16] to
simulate the hardware which executed a special application that mimicked the
entry and exit code of the original kernel — the full kernel code was too big for
simulation. Once simulation results indicated functional hardware, the hardware
was synthesized to run the kernel on the FPGA development board. Synthesis
was performed by Xilinx ISE [17].

Since the kernel execution could not be simulated, a combination of sim-
ulation of code snippets, debug output by the kernel and output from the
OpenProcessor’s trace unit was used for debugging purposes.

4.1 Processor

As stated above, the basic version of the register bank mechanism design described
in Section 3.1 was implemented. It is based on bank selection using bank numbers,
as opposed to register file offsets, for major and minor bank and without an
offsettable mapping region. This section describes all changes done to the
implementation following a bottom up approach.

The register file of the unmodified processor already offered a 4 bit set selector
for each of its three ports. As stated in Chapter 2, every port takes a 5 bit
address for access to the register file memory, allowing to address the 32 general
purpose registers. The block RAM used to implement the register file is byte
addressable using 11 bit addresses. The existing register file addresses the block
RAM by wiring the set selector to bits 10–7, the register address to bits 6–2
and constant zero to bits 1 and 0. This addressing scheme provides access to
the whole block RAM divided into 16 non-overlapping sets of 32 32 bit words.
Since this is exactly what is required to implement the design, no changes to the
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register file were necessary.

4.1.1 Register Address Translation

The two read ports of the register file are accessed from the Operand Fetch stage
while the Write Back stage accesses the write port. The Operand Fetch stage
is also responsible for decoding the source operand and thus neither the source
register addresses nor their set number need to be tracked to further pipeline
stages. In contrast, the destination operand is decoded in the Execute stage and
thus its address and set number need to be tracked to the Write Back stage.

Both stages evaluate the set selector for each operand according to the
following formula, where m is the minor bank number, M is the major bank
number, c is the minor bank register count and e is the encoded register address:

set =


0 e ≥ 32 =⇒ special purpose register{

m e > 31− c
M else else =⇒ general purpose register

While setting the set selector to zero on access to a special purpose registers
is not necessary, since no access to the register file needs to be performed, it
simplifies adapting the forwarding logic to register banks, since special purpose
register do not need to be handled differently by it.

The forwarding logic is the reason why the set selector for result registers needs
to be evaluated in the Execute stage — otherwise the translation configuration
would need to be tracked and the forwarding logic would need to calculate the
selector for every stage between Execute and the one that finally evaluates the
set selector. Another approach would be to operate on the same register bank
configuration in every pipeline stage in effect requiring a pipeline flush whenever
it changes.

With the set selector available as soon as the operands are decoded and
tracking the destination operand set selector and address from the Execute to
the Write Back stage, the forwarding logic can be adapted to register banks by
augmenting it with a comparison of the set selector in addition to the operand
address.

All the aforementioned changes to the pipeline make it in effect operate on
register file memory addresses instead of encoded register addresses.

4.1.2 Translation Control Register

To encode the configuration of the translation logic, a special purpose register
was added to the processor. Its encoding is shown in Figure 4.0.

0
MMMM

34
mmmm

78
ccccc

1213
---

1516
--------

2324
--------

31

c: minor bank count; m: minor bank id; M: major bank id; -: unused

Figure 4.1: Control Register Encoding
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As stated in Section 2.2.1, special purpose registers on the OpenProcessor
are implemented directly in the FPGA fabric instead of block RAM. This is
necessary due to implicit accesses to them in several pipeline stages. As a side
effect of its implementation the forwarding logic does not apply to implicit reads
of special purpose registers. As a result, explicit updates to special purpose
registers are only visible to implicit reads after the instruction that updates the
special purpose register has completed the Write Back stage. This leads to a
delay of 4 cycles for the new value to take effect after the instruction writing to
it has passed the Operand Fetch stage.

For the existing special purpose registers, this delay is of little significance
because they are rarely and in some cases never updated explicitly. If explicit
updates are performed, they are usually done well before the registers are
evaluated. This is different for the bank translation control register.

First, all writes to it are explicit since banking is controlled by the operating
system, while it is read implicitly nearly every time an instruction enters the
Operand Fetch stage.

Second, updates to it can be frequent at times since parts of the kernel need
random access to minor bank register contents in the current implementation.
This is performed by changing the minor bank register count, reading the
appropriate minor bank register into a major bank register and then resetting
the minor bank register count, as described in Section 4.2. While the design
with all extensions to the register address translation would remove this need,
a pipeline stall until the control register value is committed would still reduce
kernel entry and exit performance. Evaluation has shown that forwarding the
control register reduces the time to perform a kernel exit by one cycle.

Third, a bank switch occurs when a kernel entry is performed. Since this
cannot be predicted in every case and unprivileged mode cannot write the control
register for security reasons, the visibility delay always results in a number of
instructions that operate on the old configuration. To make matters worse, it
cannot be predicted how many of the instructions operate on the old configuration
if some of these instructions might result in a pipeline stall or even an exception.

Since in most cases it has to be assumed that an instruction can cause
an instruction fetch stall, predicting which instructions still work on the old
configuration is rarely an option. This leaves the option to use instructions
not affected by bank selection after a change to the control register. These
fall into two categories: (a) instructions not operating on registers, in the case
of OpenProcessor this is true only for instruction pointer relative branches
operating only on an immediate; (b) instructions which operate only on registers
the location of which is independent of the change, e.g. the special purpose
registers. Neither of these instructions were found to be useful after a change
to the control register, let alone four of them to fill all cycles in which bank
configuration was uncertain. In an early stage of the implementation, NOP
instructions were added instead after each update of the control register.

To address this issue, without the need to add NOP instructions after most
bank switches and thereby increase binary code size unnecessarily, two approaches
were taken: one solution is to stall the pipeline until the register has been updated,
which still has the same performance characteristics but keeps code size down.
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To improve performance, the next approach was to add dedicated forwarding
logic to complement the stalling logic.

It is a problem with the forwarding logic that it resulted in a critical path
that reduced the safe operating frequency of the resulting system from 50 MHz
to 37 MHz. This critical path is a result of complex ALU operations to a
considerable extend the results of which are used in the same cycle to translate
a register address. Since no actual wrong system behavior was observed when
operating the system at 50 MHz, this issue was not investigated further. I assume
it could safely be resolved by introducing a one cycle stall or delay after the new
control register value has been determined, if restructuring the translation logic
or avoiding the use of certain ALU operations with the control register does not
suffice.

Lastly, tracking the control register value to the Execute stage has not been
covered yet. The reason is that this is not done and is actually not necessary
as long as no load instructions are used to update the control register. Not
tracking the control register results in the possibility that an instruction uses a
translation of its destination operand different from the translation of the source
operands. However this can only occur if the control register is updated while an
instructions is in the Execute stage. With stalling until the new value has been
committed this can never occur. If forwarding is used for the control register
this happens when the instruction in the Execute stage writes to the control
register, in which case the control register does not need to be evaluated.

Another possible location for control register updates is the Write Back stage,
if a load instruction was used to update the control register. In this case the
operation in the Execute stage might in fact be affected by the change and use
a different configuration for its source and destination operands, if forwarding
is used for the control register. Thus this approach is safe as long as no load
instructions are used to update the control register, which was not necessary for
the implementation of the kernel changes.

4.2 Kernel

To prove the feasibility of the kernel design described in Section 3.2 I changed
the OpenProcessor kernel to use banks to preserve the user mode context on
kernel entry. This is achieved by assigning the same two banks to any thread
when it gets scheduled, in effect having one bank reserved for user mode and one
for kernel mode. When a thread is executing on its user mode context, it always
has full visibility of the associated bank, while the kernel code responsible for
context switches operates on an intermediate state where parts of the user mode
bank are visible. Other kernel code accesses the user mode bank contents by
temporarily mapping the user mode bank for each register it needs to access.

Even though this limited implementation only improves kernel entry and
exit performance, all code parts of the kernel that directly deal with threads
had to be adapted. Section 4.2.1 describes how banks are utilized to increase
the performance of kernel/user mode transitions and the resulting changes to
exception handlers. The necessary changes to the rest of the kernel are covered
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in Section 4.2.2.

4.2.1 Kernel Entry and Handler Code

Before banking was implemented, the kernel passed the same parameters to
any exception handler: the faulting instruction pointer, the fault address and
a pointer to the trapframe. Instead of using the stack to preserve user mode
caller saved register contents when the kernel is entered, a switch to the kernel
mode bank is performed. As a result, no trapframe is constructed and thus no
trapframe address can be passed to the handlers as a parameter. This requires a
new approach to access user mode register contents, particularly from within
the system call handler.

Since the trapframe is not available anymore, it was removed as a parameter
and replaced by two parameters to directly pass user mode arguments in the
case of a system call. While it would be possible to transparently map the
argument registers to kernel mode, they are copied instead for the following
reasons: first, the implementation of the banking mechanism does not allow an
offset into the minor bank or for the mapping region and as a result the minor
bank always contains r31, which is the link register. Since its contents, unlike
the argument registers, needs to be preserved to return to user mode, a memory
access would become necessary. Second the code providing random access to
user mode register contents, described below, resets the minor bank register
count to zero.

In the case of reentry, as described in Section 3.2.3, a trapframe is still
constructed. This makes it necessary to distinguish two methods of access to
user mode register contents in some parts of the kernel and all handler code.
Deciding which method to use every time a user mode register is accessed would
result in a branch for each access. Since this would result in overhead in terms of
both code size and performance, two versions of each handler are generated by
the C preprocessor: one version uses banks for normal entry and the other one
uses the trapframe for use on reentry. While this approach has an even bigger
impact on code size than a case by case decision, it can be expected to have a
lower impact on performance and the cache, since half of the code, the handlers
invoked on reentry, is rarely executed and does not have an impact on the cache
if not invoked, if it is linked properly.

Before banking support was implemented, kernel code that needs access to
user mode register contents, invoked by the system call handler, would get the
trapframe passed as a parameter to acquire the parameters passed to the system
call and return results. However most functions called from the handler only
need access to the four argument registers and one register to return results.
Thus I could adapt functions called from within the system call handler to take
their parameters and return a result directly instead of passing them in the
trapframe.

An exception to this is the function performing IPC, since it needs access
to up to 14 user mode registers. This is handled by passing a value indicating
the absence of a trapframe instead of an address to it to the function. This is
sensible when considering performance since IPC does not need random access to
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register content instead it accesses user mode register contents in one block. The
changes to the code performing IPC are described in more detail in Section 4.2.2.

Since the registers an exception handler needs to access are known at compile
time, access to them is facilitated by a number of inline functions, in effect
requiring 4 instructions for each access. This approach was taken because the
inline functions were required to provide access to generic user mode register
contents for debugging purposes already and thus was simple to implement.
However all the registers accessed had their content in fact available on the
kernel mode bank, but access to those values would have required a distinction
of case in the preprocessor, which is not possible using simple means, or less
maintainable handler code.

4.2.2 Threading Code

Other locations in the kernel code that required modification for the implemen-
tation of register bank support without directly benefiting from it are: thread
creation, thread startup, thread switch and inter process communication.

Thread creation code needed to be adapted because the user mode register
contents were set completely on thread switch in this implementation. As a
result, the stack layout of a new thread changed. However, if the transparent
mapping technique described in Section 3.2.1 had been applied, no change would
have been necessary.

Since user mode register contents are already restored on thread switch,
thread startup code does not need to set their initial values anymore. The
startup code was thus reduced to perform an initial kernel exit.

In this implementation, bank assignment is the responsibility of the thread
switching function. In addition to backing up and restoring callee saved kernel
mode registers and the kernel mode stack pointer, it is now responsible for
preserving the user mode bank. This is performed by backing both banks up to
and restoring them from the kernel stack of their associated thread.

The last kernel change that needs to be covered is the changed IPC code.
Since in this implementation the sender would always have a bank assigned to
its user mode context whereas the receiver would not have a bank assigned, only
this case needed to be covered as described in Section 3.2.2.

At the point the IPC code was changed it was done to create a runnable
system to test the changed kernel entry and exit code and thus was implemented
with a fast implementation and not performance in mind. Thus the trapframe
as a structure to hold the message registers of the receiver was not removed but
rather created and restored on demand. A better approach to this would have
been to create it appropriately on thread switch, since its contents are saved on
the kernel stack anyway due to bank reassignment.
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Evaluation

In this chapter I present an evaluation of the register bank mechanism implemen-
tation described in Chapter 4. Since I only implemented banks to increase kernel
entry and exit performance and the current kernel implementation in general is
not optimized for performance, only two micro benchmarks were evaluated.

One benchmark measures the number of cycles to perform a null operation
system call to allow an evaluation of the impact on actual system call performance.
The other benchmark measures the number of cycles necessary for kernel entry
and exit, including register backup and restoration, using the SYSCALL instruction
to perform kernel entry.

In the rest of this chapter first Section 5.1 describes the hardware/software
combinations that were benchmarked. Finally Section 5.2 presents and discusses
the benchmark results.

5.1 Combinations

All benchmarking was done on the following hardware/software combinations:

Vanilla This combination consists of the unmodified operating system, extended
by testing code. The hardware version used has no influence on results
since they behave exactly the same when the control register is not changed.
Vanilla benchmarks provide reference values for the evaluation of the other
pairs.

Banked This combination consists of the modified operation system and a
hardware build with register bank support but no special forwarding logic
for the control register. The results of this benchmark allow an evaluation
of performance increases due to using register banks to increase kernel
entry and exit performance.

Forwarded This combination is similar to the Banked one except that forward-
ing for the control register was enabled in the processor. This combination
allows evaluation of further increases in performance due to forwarding.

I evaluated the hardware version without control register forwarding sepa-
rately because the forwarding logic did not meet all timing constraints according
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to the synthesis tools [17]. While I observed no errors when using control register
forwarding, the results obtained when it was used should be viewed critically. I
present them to provide an estimation of the upper bound of possible increases
in performance by improving the hardware. For example, if the control register
was set implicitly by SYSCALL and RTU in a way that the system call stub and
exception trampoline did not need to modify it, performance of the benchmarked
operations would be similar to “Forwarded” even without forwarding of the
control register.

5.2 Results

The benchmarks show an absolute reduction of 20 cycles (cyc.) in kernel entry,
27 cyc. in kernel exit and 53 cyc. in null operation system call cost for Banked
compared to Vanilla. Forwarded shows a further improvement of 8 cyc. in kernel
entry, 1 cyc. in kernel exit and 9 cyc. in null operation system call performance.
Figure 5.0 shows the individual benchmark results.

Two observations resulting from the benchmarks are of particular interest:
first, the number of cycles saved on kernel exit exceeds the savings on kernel
entry in Banked even though the original kernel restores fewer registers on kernel
exit than are saved on kernel entry. Second, the increase in performance for the
null operation system call exceeds the sum of the increases in entry and exit,
proving that further improvements of the system call performance are possible
by using register banks.
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Figure 5.1: Benchmark Results

The (unexpected) difference in performance improvements of kernel entry and
exit are in part a result of optimizing the entry code for system call performance.
Instead of only preserving the contents of user mode registers, the stub now
moves the link register contents to a special purpose register that indicates the
faulting instructions address in the case of other exceptions. The advantage of
this is that register access to the system call return address from the system call
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handler is possible without having to switch to the user mode bank. Additionally,
the contents of argument registers r30 and r29 of the user mode bank are copied
to r28 and r27 on the kernel mode bank, effectively passing them as additional
arguments to the handler. As a result, an additional change of the bank control
register is necessary.

These four operations increase the time necessary to perform kernel entry
by at least 7 cycles (3 for the register accesses, 4 for changing the bank control
register) and should be attributed to calling the handler rather than to the
kernel entry proper, which was not measured for the kernel entry in Vanilla. If
we add these cycles to the saving on kernel entry in Banked, the performance
improvement for kernel entry are equal to those of kernel exit. However, one
would expect the improvements in kernel entry time to exceed those of the kernel
exit time, since in Vanilla more registers are saved on entry than are restored
on exit. This can be explained when considering that Forwarded only improves
exit times by 1 cycle compared to Banked: RTU introduces a number of pipeline
stalls, which do not affect the instruction changing the control register since it is
executed in the branch delay slot of RTU. Thus switching to the user mode bank
results in 1 additional stall cycle, whereas switching to the kernel mode bank
results in a stall of 4 cycles.

Results of the nop system call benchmark should be considered with caution,
because they do not capture the full increase in performance possible from
register banks. Since the compiler generated handler code preserves 13 registers
(r4–r11) using the stack, which at that point do not contain any values that ever
are used. With a slight change to the calling conventions used for the handlers
these 26 unnecessary memory accesses for saving and restoring these 13 “dead”
registers can be prevented and at least 26 cycles saved when performing a system
call. Since the total performance improvement in the system call benchmark is
only 53 cycles for Banked and 60 cycles for Forwarded another improvement of
at least 26 cycles due to register banks is significant.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Closing Remarks

In this thesis I presented a mechanism to reduce context switching overheads
by utilizing increased register file memory. Experiments have shown that the
mechanism can be utilized to decrease system call overhead by at least 10%.
I also presented a number of possible improvements to the OpenProcessor
platform and banking mechanism that are likely to provide further performance
increases.

The presented banking mechanism distinguishes itself from similar approaches
by taking two properties of microkernels using one kernel stack per thread into
account: (a) if a kernel uses one kernel stack per thread, a thread can be
considered to have two associated contexts; (b) many operations that only
require a kernel entry in monolithic kernels, additionally require a thread switch
on a microkernel. Thus the performance of these operations cannot be improved
by traditional approaches like shadow registers [11] that improve kernel entry
performance but increase the cost of thread switching by a similar amount.

The design is based on a number of assumptions: (a) performance critical
kernel code accesses user mode register contents in continuous blocks; (b) registers
can be ordered and used so that kernel code that accesses one user mode register
also needs access to all user mode registers with a higher encoded register address,
at the same time it does not need to access these registers on the current bank;
(c) the compiler can be extended and the kernel source code modified accordingly
to take into account that neither handlers need to preserve callee saved registers
nor do caller saved registers need to be preserved before performing a thread
switch; (d) kernel reentry is rare and not performance critical.

Assumptions (a) and (b) have been discussed in Chapter 3 and are true if a
special purpose register instead of the link register is used to store the return
address when a SYSCALL is issued. An exception from this, for assumption (b),
is when a thread with a register bank assigned to its user mode context receives
an IPC message from a thread with no bank assigned to its user mode context.
In this case there are unneeded registers with an encoded address higher than
needed registers. This problem can be solved by changing this assumption and
for example adding a offset for the mapping area.
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Assumption (c) can be supported for kernel entry by the fact that GCC [10]
offers function attributes for similar purposes on several architectures. For thread
switches this could be achieved by using inline assembly to perform the call to
the thread switching function. Assumption (d) has been supported by further
development of the OpenProcessor platform, which was done independently
of this thesis and eliminated kernel reentry under regular conditions.

6.2 Future Work

Since I did not fully implement usage of the register bank mechanism in the
kernel and described a number of improvements which remain unimplemented,
the results of this thesis should be viewed as a preliminary evaluation of the
feasibility of the concept. In this section I will first describe a number of changes
to the OpenProcessor platform that could allow a more accurate evaluation
of the concept, then I will list questions about the concept in general that arise
from this thesis but remain unanswered.

Possible improvements that allow a better utilization of the register bank
mechanism are:

Storing the SYSCALL return address in fault_next_ip
instead of the link register would be beneficial for a lot of reasons, the
most important ones are: (a) system calls could be handled more similar
to other exceptions; (b) it could be accessed from within the system call
handler directly without the need of passing it as a parameter and thus
allow (c) to pass (all) four system call parameters in argument registers to
the system call handler.

Changing the link register to a lower register
allows to use r31-r28 as argument registers and thus mapping them trans-
parently when the system call handler is executed.

Eliminating the exception stubs
would improve kernel entry performance and is possible when using register
banks. This is because the kernel stack can now be loaded in the trampoline,
reducing the functionality performed by the stubs to switching to the kernel
mode bank, set a register to the handler address and then branch to the
trampoline. Since this is a small number of instructions, this could be
performed by the exception vectors, if their size was increased. As a result
one branch on kernel entry could be eliminated, the unused branch delay
slot in the vector could be utilized and r1 might be freed to be used in
user mode.

Removing unneeded register preservation on the kernel stack
would improve general handler performance. If banks are employed to
perform fast thread switches, additional savings would also become possible.

Implicit bank switches on kernel entry and exit
were excluded from the design to not restrict the bank assignment policies
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implementable by the operating systems. If the bank assignment policy is
known however, depending on the policy, implicit bank switches on kernel
entry and exit might become feasible.

More general questions with regard to the register bank mechanism are as
follows:

How much can banks increase thread switching performance?
Since the register bank mechanism was designed with thread switching in
mind, the possible increase in thread switching performance are interesting.

How much can banks increase IPC performance?
IPC was a big consideration in the design of the register bank mechanism
the questions of how and by how much IPC performance can be increased
is important.

Evaluation of the improvements mentioned above
Since at least 26 cycles are wasted in the current system call handler to per-
form unneeded work, the question arises how much all of the improvements
mentioned above can increase the performance of kernel entry.

What is an efficient bank assignment policy?
As with any scarce resource in a computing system its impact on total
system performance is highly dependent on the used assignment policy.
Such a policy has so far only been assumed to exist for register banks. In
a small and predictable system the banks might be assigned statically to a
number of threads but in a more complex one dynamic reassignment of
banks based on run time information is most likely needed.

How much can register banks increase total system performance?
Assuming a perfect assignment algorithm, how much can register bank
increase the performance of an actual system? The impact is clearly
dependent on the actual system, but a methodology to determine a best
case performance improvement allows an evaluation of available assignment
algorithms.
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