
Lazy Context Switching Algorithms for

Sparc-like Processors

Jochen Liedtke

German National Research Center for Computer Science (GMD) �

jochen.liedtke@gmd.de

GMD Technical Report No. 776

September 1993

�GMD SET-RS, Schlo Birlinghoven, 53757 Sankt Augustin, Germany

3

Abstract

Recent experiences show that inter-process communication (ipc)

can be implemented very fast and e�ciently. The necessary context

switching basically consists of changing the address space and sav-

ing/restoring the processor's registers. This may become a perfor-

mance bottleneck on processors with a large number of registers. For

example, ipc would be 5 times slower on a Sparc processor than on

a comparable 8-register processor, if all 136 Sparc registers are saved

and restored on context switch.

Therefore, we propose to delay saving and restoring most registers

until they are accessed (hoping that they are not accessed until the

next process switch occurs).

This paper presents lazy context switching algorithms and tuning

options on an abstract level. It is shown that on this level they do

never perform worse and often better than existing algorithms. There

are situations in which they need only about 4 memory references per

context switch.

Since real life performance of these algorithms will heavily depend

on coding, integration into an OS kernel and RPC pro�le, this paper

can only be a basis for further experiments.

4

CONTENTS 5

Contents

1 Motivation 7

2 Sparc Register Architecture 7

3 Frugal Context Switch 9

4 Lazy Context Switch 10

4.1 Over/Under
ow and Context Switch 13
4.2 Enregistering . 13

4.3 Window Flushing . 15

4.4 Cross-Domain Register Saving 16

5 Improving the Algorithms 19

5.1 Introducing Window Masks 19
5.1.1 Over/Under
ow and Context Switch 19
5.1.2 Window Flushing . 20

5.2 Using Cpu-Registers cwp and wim 21

5.2.1 Over/Under
ow and Context Switch 22
5.2.2 Window Flushing . 24

6 Improving the Single Thread Situation 25

6.1 Introducing Simple Mode . 25

6.1.1 Complex Over/Under
ow and Context Switch 26
6.1.2 Simple Over/Under
ow and Context Switch 28
6.1.3 Window Flushing . 29

6.2 Introducing Trivial Mode . 31
6.2.1 Simple Over/Under
ow and Context Switch 32
6.2.2 Trivial Over/Under
ow and Context Switch 32

7 Remarks 33

7.1 Performance . 33
7.2 Hardware Support . 34

7.3 Tuning . 35

7.4 Special RPC Support . 35
7.5 Entering and Leaving Kernel Mode 35

6 CONTENTS

7

1 Motivation

Inter-process communication (ipc) by message passing is one of the central

paradigms of most �-kernel based and other client/server architectures. It
helps to increase modularity,
exibility, security and scalability, and it is the

key for distributed systems and applications. It has to be fast and e�ective,

otherwise programmers will not use remote procedure calls (RPC), multi-
threading and multitasking adequately. Thus ipc performance is vital for

modern operating systems.

Recent experiences show that ipc can be implemented very fast and e�-
ciently. As described in [Lie 93], L3 running on an Intel 486 processor needs

approximately 250 cycles for a 8-byte cross-domain ipc. Due to the built-in
segment system1, entering and leaving kernel mode is very expensive (107
cycles) on 486 [i486]. Since most other modern processors need less than 10

cycles for this, you can hope to achieve a performance of about 150 cycles
per short ipc.

Compared to this value, context switching (which is used inside ipc and
also other routines) is a serious performance problem on processors with a
large number of registers. For example, saving and restoring all 136 registers

of the Cypress Sparc processor CY7C601 [Ross] costs at least 136=2 � 5 +
136=2 � 4 = 612 cycles, i.e. ipc would be 5 times slower than expected!

2 Sparc Register Architecture

We describe the Sparc's register architecture in so far as needed for discussing

context switch algorithms. Details can be found in [Ross].

A Sparc processor has 8 global registers and 8 or more register windows.

The active window is identi�ed by the current window pointer, an internal

register called cwp. Besides the global registers, only the registers of the
active window can be accessed.

For changing the active window there are two user level instructions which

increase/decrease the cwp register by one modulo the number of windows:

save : cwp := cwp � 1 (push)
restore : cwp := cwp + 1 (pop)

Remark: For operations on window indices we use + and { to denote addi-
tion and subtraction modulo the number of windows. This seems to be

better readable than special symbols � and 	 and is not ambiguous.

1The processor automatically loads and checks segment descriptors when switching

between user and kernel mode, even if a
at memory model instead of a segmented one is

used.

8 2 SPARC REGISTER ARCHITECTURE

As shown in �gure 1 the register �le is intended to be used as a circular

stack of overlapping register windows.

R
e
g
i
s
t
e
r

F
i
l
e

ins
r31

.

.

.

r24

locals
r23

.

.

.

r16

outs
r15

.

.

.

r8

ins
r31

.

.

.

r24

locals
r23

.

.

.

r16

outs
r15

.

.

.

r8

ins
r31

.

.

.

r24

locals
r23

.

.

.

r16

outs
r15

.

.

.

r8

previous window
(cwp+1)

current window

(cwp)
next window

(cwp{1)

Figure 1: Sparc Register Windows

Changing the current window is controlled by the window invalid mask,
a further internal register called wim, which associates a valid/invalid bit to
each window. If cwp is set to a window marked invalid, the processor raises

an exception.

Exceptions, traps and external interrupts decrease cwp but are not sen-
sitive to the window invalid mask. Thus one window marked invalid permits
safe handling of these events including window over
ow and under
ow.

Here and in the following we assume that register windows will be saved

by pushing them onto some user level memory stack. The operations

push (i,t)

pop (i,t)

push/pop the values of register window i to/from the stack of thread t. Due

to overlapping only the registers r16 � � � r31 of each window are saved/restored

by push/pop. The registers r8 � � � r15 of the top window must be handled

di�erently by

9

push stack top (i,t)

pop stack top (i,t)

Window over/under
ow exception handlers usually look like

over
ow :

n
wim cwp = invalid

o
push (cwp{1, actual) ;

wim cwp{1 := invalid ;

wim cwp := valid .

under
ow :

n
wim cwp+1 = invalid

o
wim cwp+2 := invalid ;

wim cwp+1 := valid ;
pop (cwp+1, actual) .

3 Frugal Context Switch

The costs for register saving can simply be reduced by only saving the used
part of the window stack. Since the current window belongs to the OS kernel
which is called by a trap, the top window to be saved is cwp+1; the bottom

window is the last valid one:

i := cwp + 1 ;
while wim i+1 = valid do i := i + 1 od ;

do

push (i, actual) ;

i := i + 1
until i = cwp od ;
push stack top (i, actual)

For a complete context switch to a new thread at least one window of this
thread has to be restored. Since the kernel does not know how many of its
previous windows will be used in the near future, restoring previous windows

should be delayed until they are accessed. In this way, the new thread has

a well de�ned current window and a maximum of unused windows available.
Previous windows will be restored on demand by window under
ow.

For preventing hidden channels, the values contained in the unused reg-

ister windows must be destroyed, e.g. by �lling them with zeroes.

10 4 LAZY CONTEXT SWITCH

switch to (new) :

bottom := cwp+1 ;

while wim bottom+1 = valid do bottom := bottom + 1 od ;

i := bottom ;

do

push (i, actual) ;

i := i + 1
until i = cwp od ;

push stack top (i, actual) ;

pop (bottom, new) ;

i := bottom { 1 ;
do

�ll with zero (i) ;
i := i { 1

until i = bottom od ;
cwp := bottom { 1 .

Let us assume that saving a window costs 4 time units, restoring 5, �lling

with zeroes 1, and all other operations are for free. Then on an n-window
processor, a frugal context switch from a thread actually using k windows
would cost

4k + 5 + (n� 1)

whereas the stupid context switch always saving and restoring all n � 1

windows costs (4 + 5)n. Thus on an 8 window processor 63 units would be
needed for stupid and 4k + 12 (16. . . 40) for frugal context switch. But if a
frugal context switch is immediately followed by 7 window under
ows, the

real costs can increase up to 75.

If remote procedure calls (RPC) are implemented adequately, only the

bottom window is in use when returning from server to client. Then the two

frugal context switches (client! server! client) cost 4k + 2n + 12. If we
assume that all k client windows have to be restored after RPC, the costs on

an 8-window processor sum up to 9k + 24 (33. . . 87) units.

4 Lazy Context Switch

The basic idea of lazy context switch is to associate windows and threads

in a
exible way. Not only restoring is delayed (as already in frugal context

switch), but also saving windows is delayed as long as possible. Ideally,

neither saving nor restoring is necessary on context switch.

11

�

�

�

�

$

%

'

& A B CC

Figure 2: Lazily Managed Register Windows

In the situation shown in �gure 2, a context switch from thread A to
thread B requires only to change wim and cwp. If a thread hits a window
belonging to a di�erent thread, this window is �rst saved and then given to
the requesting thread.

Note that due to overlapping there must be always at least one free win-
dow between the regions of two di�erent threads. To leave things simple,

we insist that the windows associated to one thread must form a contiguous
region being the top of the thread's logical window stack.

Associating di�erent windows to di�erent threads requires more than the

window invalid mask. The kernel holds the owner thread of each window

and always ensures that exactly the windows owned by the actual thread

are marked valid in the wim register. Free windows have the owner nil.

Furthermore, the kernel has a per thread variable called top which holds
the index of the thread's actual top window, if there is at least one window

associated to the thread.

In this section we present the lazy context switch algorithms on an ab-

stract level, e.g. without using the processor registers cwp and wim. Opti-

mizations are also not yet considered.

12 4 LAZY CONTEXT SWITCH

For reasoning we will use some predicates:

registered (t) : 9i : owner i = t .

is min (i,t) : owner i = t ^ owner i{1 = nil .

is max (i,t) : owner i = t ^ owner i+1 = nil .

unde�ned (i) : registers of window i may be changed by OS.

de�ned (i) : registers of window i must not be changed by OS.

left unde�ned (i,t) : owner i = t =) unde�ned (i) ^ left unde�ned (i{1, t) .

right de�ned (i,t) : owner i = t =) de�ned (i) ^ right de�ned (i+1, t) .

The windows associated with a registered t are contiguous and always sepa-
rated by at least one free window:

I0 is min (i,t) ^ is min (j,t) =) i = j .

I1 owner i 6= owner i+1 =) owner i = nil _ owner i+1 = nil .

For each registered t holds

I2 owner top t
= t ,

I3 left unde�ned (top t{1,t) ,

I4 right de�ned (top t,t)) .

The invariants I0. . . I4 will be valid on entering and leaving the routines, but
not necessarily between these two points.

4.1 Over/Under
ow and Context Switch 13

4.1 Over/Under
ow and Context Switch

over
ow :

n
is min (top actual, actual)

o

ush (top actual{2) ;
owner topactual{1 := actual ;

�ll with zero (top actual{1) .
n
is min (top actual{1, actual)

o

under
ow :

n
is max (top actual, actual)

o

ush (top actual+2) ;
owner topactual+1 := actual ;

pop (top actual+1, actual) .
n
is max (top actual+1, actual)

o

switch to (new) :

n o
if : registered (new)

then enregister (new)
� .

n
registered (new)

o

4.2 Enregistering

\Enregistering" denotes the action of allocating (at least) one register window
to a thread which actually is not registered. In a way this corresponds to a

page replacement or cache line replacement algorithm.

The �rst algorithm, called outside actual enregistering, places the new

window left to the actual region (see �gure 3). If the actual region covers n�3

windows or less, the new region is outside the actual one which is not changed

by enregistering. The unused windows of the actual region remain allocated

to the actual thread. When the new region grows by window under
ow,
�rst these unused windows are used. Growing by over
ow sometime grabs

windows from the bottom of the actual region.

14 4 LAZY CONTEXT SWITCH

�

�

�

�

$

%

'

& actual
usedfree

new

Figure 3: Outside Actual Enregistering

enregister (t) :

n
: registered (t)

o
i := top actual ;
do i := i { 1 until owner i = nil od ;

ush (i{1) ;

ush (i{2) ;
owner i{1 := t ;
pop (i{1, t) ;

top t := i { 1 .
n
registered (t)

o

The second algorithm presented is called inline actual enregistering. It

tries to use the unused windows (left of the top) of the actual region (see
�gure 4). Now there are probably more windows available which can be used
without prior saving them and growing by over
ow hits the actual region

later than in the inside case. But on the other hand, growing by under
ow

immediately
ushes the actual region. In the same way, over
ow of the actual
region immediately induces saving the new bottom window to memory.

�

�

�

�

$

%

'

& actual
used

new

Figure 4: Inside Actual Enregistering

4.3 Window Flushing 15

enregister (t) :

n
: registered (t)

o
i := top actual - 1 ;

while owner i = actual do

owner i := nil ;
i := i { 1

od ;

ush (top actual{2) ;

ush (top actual{3) ;

owner topactual{2 := t ;

top t := top actual{2 ;
pop (top t, t) .

n
registered (t)

o

4.3 Window Flushing

Regions of windows belonging to the same thread must not be split (invariant
I0). Therefore only windows at the left or right margin of such a region (or
nil-owned ones, of course) can be
ushed. Furthermore,
ushing a (used)
top window requires
ushing the complete region. Otherwise the stack of
windows saved in memory would be inconsistent.

ush (i) :

n
owner i+1 = nil _ owner i+1 = nil

o
if owner i 6= nil

then if top owner i
= i

then
ush all (owner i)

elif is max (i,owner i)

then push (i, owner i) ;

owner i := nil
else fis min (i,owner i), unde�ned (i)g

owner i := nil

�

� .
n
owner i = nil

o

16 4 LAZY CONTEXT SWITCH

ush all (t) :

n
registered (t)

o
i := top t ;

while owner i+1 6= nil do i := i + 1 od ;

while i 6= top t{1 do
push (i, t) ;

owner i := nil ;

i := i { 1

od ;

push stack top (i) ;
while owner i = t do

owner i := nil ;
i := i { 1 ;

od .
n
: registered (t)

o

4.4 Cross-Domain Register Saving

We take the routines for push/pop register windows on/from a thread's stack
as already de�ned. But since lazy context switch delays register saving, a

thread's memory may be inaccessible when saving is demanded. Therefore

we introduce a stack extension in each thread's control block (tcb):

push (i,t) :

(
de�ned (i)

tcb accessible (t)

)

if user stack accessible (t) AND tcb stack empty (t)

then push onto user stack (i,t)

else push onto tcb stack (i,t)

� .
n
unde�ned (i)

o

pop (i,t) :

8><
>:

unde�ned (i)

tcb accessible (t)

user stack accessible (t)

9>=
>;

if tcb stack empty (t)

then pop from user stack (i,t)

else pop from tcb stack (i,t)
� .

n
de�ned (i)

o

4.4 Cross-Domain Register Saving 17

In this way, registers can be pushed as long as the tcb remains accessible.

Of course, on closing a tcb the thread must be deregistered:

close (t) :

(
tcb accessible (t)

t 6= actual

)

if registered (t)
then
ush all (t)

� .
n
: registered (t)

o

The tcb stack must be able to hold at least one maximum sized window

region, but this is not su�cient. Unfortunately, arbitrary growth of the tcb
stack is possible:

t1 t2 kernel

n� save
rpc (t2) switch (t2) 3 � push user (t1)

n� save over
ow (n-3)� push tcb (t1)

rpc (t1) switch (t1) 3 � push user (t2)

n� save over
ow (n-3)� push tcb (t2)

rpc (t2) switch 3 � push user (t1)
...

...
...

For solving this problem we assume that the user stack of the actual

thread is always accessible. We use a �xed size tcb stack which is large
enough to hold at least 2(n � 1) windows, i.e. twice the available processor
registers. (The processor supports n windows and at least one must be free.)

We de�ne a tcb stack to be critical, if its free space is less than needed for

n � 1 windows. Then we extend push/pop and the enregister operation as
follows:

1. If the actual thread's tcb stack is critical and a window is pushed onto
it, the complete tcb stack will be copied to the user stack so that the

actual tcb stack becomes empty.

2. If pushing onto a non actual tcb stack leads to a critical tcb, the cor-
responding thread will be completely deregistered.

3. Enregistering a thread with a critical tcb stack leads to restore all n�1

windows.

18 4 LAZY CONTEXT SWITCH

push (i,t) :

(
de�ned (i)

tcb accessible (t)

)

if user stack accessible (t) AND tcb stack empty (t)

then push onto user stack (i,t)

else push onto tcb stack (i,t) ;

if critical (t)

then if t = actual

then copy tcb stack to user (t)

ftcb stack empty (t)g

else
ush all (t)
f: registered (t)g

�

�

� . (
unde�ned (i)

registered (t) =): critical (t)

)

enregister (t) :

n
: registered (t)

o
...
if critical (t)

then i := top t ;

while i 6= top t-1 do

i := i + 1 ;

ush (i) ;

owner i := t ;

pop from tcb stack (i,t)
od

� . (
registered (t)

: critical (t)

)

Now for each registered t holds

I5 : critical (t) .

19

5 Improving the Algorithms

5.1 Introducing Window Masks

For better performance we introduce a per thread variable wmask. Its se-

mantics is de�ned by a new invariant:

For each t holds

I6 owner i = t () wmask t , i = valid .

As a consequence, for each t holds

registered (t) () wmask t = invalid
n
.

Most loops parsing the owner-array will disappear and deciding whether
a thread is registered or not can be done fast, because the wmask array of

one thread �ts into one machine word.

5.1.1 Over/Under
ow and Context Switch

over
ow :

n
is min (top actual, actual)

o

ush bottom (top actual{2) ;

owner topactual{1 := actual ;

wmask actual, topactual{1
:= valid ;

�ll with zero (top actual{1) .
n
is min (top actual{1, actual)

o

under
ow :

n
is max (top actual, actual)

o

ush top (top actual+2) ;
owner topactual+1 := actual ;

wmask actual, topactual+1 := valid ;

pop (top actual+1, actual) .
n
is max (top actual+1, actual)

o

switch to (new) :

n o
if : registered (new)

then enregister (new)

� .
n
registered (new)

o

20 5 IMPROVING THE ALGORITHMS

enregister (t) :

n
: registered (t)

o
i := top actual ;

do i := i { 1 until owner i = nil od ;

ush bottom (i{1) ;

ush bottom (i{2) ;

owner i{1 := t ;

wmask t , i{1 := valid ;

pop (i{1, t) ;

top t := i { 1 .
n
registered (t)

o

5.1.2 Window Flushing

ush bottom (i) :

n
owner i+1 = nil

o
if owner i 6= nil

then if top owner i
= i

then
ush all (owner i)
else push (i, owner i) ;

owner i := nil ;

wmask owner i , i
:= invalid

� ;
� .

n
owner i = nil

o

ush top (i) :

n
owner i{1 = nil

o
if owner i 6= nil

then if top owner i
= i

then
ush all (owner i)

else owner i := nil ;
wmask owner i , i

:= invalid

� ;

� .
n
owner i = nil

o

5.2 Using Cpu-Registers cwp and wim 21

ush all (t) :

n
registered (t)

o
i := top t ;

while owner i+1 6= nil do i := i + 1 od ;

while i 6= top t{1 do
push (i, t) ;

owner i := nil ;

i := i { 1

od ;

push stack top (i) ;
while owner i = t do

owner i := nil ;
i := i { 1 ;

od ;

wmask t := invalidn .
n
: registered (t)

o

5.2 Using Cpu-Registers cwp and wim

For further improvement we use the processor's built in registers cwp and
wim directly. For this purpose we rede�ne the invariants I2. . . I4 and I6:

For each registered t holds

I20

owner TOP t
= t ,

I30

left unde�ned (TOP t{1,t) ,

I40

right de�ned (TOP t,t)) .

I60

owner i = t ()WMASK t , i = valid .

where

TOP t =

8><
>:

top t if t 6= actual

cwp if t = actual, : is min (cwp{1,actual)

cwp{1 if t = actual, is min (cwp{1,actual)

WMASK t , i =

(
wmask t , i if t 6= actual

wim i if t = actual

22 5 IMPROVING THE ALGORITHMS

5.2.1 Over/Under
ow and Context Switch

over
ow :

n
is min (cwp+1, actual)

o

ush bottom (cwp{1) ;

owner cwp := actual ;
wim cwp := valid ;

�ll with zero (cwp) .
n
is min (cwp, actual)

o

under
ow :

n
is max (cwp, actual)

o

ush top (cwp+2) ;
owner cwp+1 := actual ;

wim cwp+1 := valid ;

pop (cwp+1, actual) .
n
is max (cwp+1, actual)

o

switch to (new) :

n o
if : registered (new)

then enregister (new)
� ;
wmask actual := wim ;
top actual := cwp+1 ;

wim := wmask new ;

cwp := top new{1 ;
actual := new .

n
registered (new) , actual = new .

o

enregister (t) :

n
: registered (t)

o
i := min valid window ;

ush bottom (i{1) ;

ush bottom (i{2) ;
owner i{1 := t ;

wmask t , i{1 := valid ;
pop (i{1, t) ;

top t := i { 1 .
n
registered (t)

o

5.2 Using Cpu-Registers cwp and wim 23

The function `min valid window' can be implemented by means of a loop:

min valid window :

j := cwp ;

while wim j = valid do j := j { 1 od ;
j .

Obviously, the cost of this function depends on n, the number of register

windows. For avoiding this you can interpret wim 0. . . n-1 as an integer, rotate
it by cwp and use as index into a given array which holds the index of the
lowest bit set minus one:

min valid window :
j := (2n�wim + wim)=2cwp ;
indexj .

index = [-1, 0, 1, 0, 2, 0, 1, 0, 3, . . .] .

If n is too large, i.e. if an index array of size 2n would be too expensive,
halve or quarter its size by :

if j and 0x� = 0

then indexj=256+ 8

else indexj
�

In this way, for n = 32 (the maximum number of windows in the Sparc

architecture) the function can be calculated by approximately 6 integer op-
erations and 1 memory reference.

Regardless of the version used, we will assume that the costs of calculating

min valid window are de facto independent of n.

24 5 IMPROVING THE ALGORITHMS

5.2.2 Window Flushing

ush bottom (i) :

n
owner i+1 = nil

o
if wim i = valid

then push (i, actual) ;

owner i := nil ;

wim i := invalid
elif owner i 6= nil

then if top owner i
= i

then
ush all (owner i)

else push (i, owner i) ;
owner i := nil ;
wmask owner i , i

:= invalid

� ;

� .
n
owner i = nil

o

ush top (i) :

n
owner i{1 = nil

o
if wim i = valid

then owner i := nil ;
wim i := invalid

elif owner i 6= nil
then if top owner i

= i

then
ush all (owner i)
else owner i := nil ;

wmask owner i , i
:= invalid

� ;

� .
n
owner i = nil

o

25

ush all (t) :

n
registered (t) , t 6= actual

o
i := top t ;

while owner i+1 6= nil do i := i + 1 od ;

while i 6= top t{1 do
push (i, t) ;

owner i := nil ;

i := i { 1

od ;

push stack top (i) ;
while owner i = t do

owner i := nil ;
i := i { 1 ;

od ;

wmask t := invalidn .
n
: registered (t)

o

6 Improving the Single Thread Situation

The window over/under
ow handlers are still burdened by inspecting the

owner variable and the tcb stack state for each push or pop. Although
these operations are not expensive, they may count in situations when
over/under
ow events dominate context switching.

6.1 Introducing Simple Mode

To get rid of this overhead we di�erentiate between simple mode, when all
windows (but the one neeed as a barrier) are owned by the actual thread,

and complex mode (otherwise). In simple mode, it is no longer necessary to

inspect or change the owner �eld. This fact can be used without dynamic

mode check on each exception. Since the exception handlers are always
invoked indirectly, mode switch can be very e�ciently done by establishing

new exception handlers.

A further bene�t of simple mode is that zeroing a register window on

over
ow can be omitted, since the values in this window have been generated

by the same thread.

The invariants I20. . . I40 are slightly reformulated to become independent

of the owner array in simple mode:

26 6 IMPROVING THE SINGLE THREAD SITUATION

For each registered t holds

I200

owner TOP t
= t ,

I300

left unde�ned (TOP t{1,t) ,

I400

right de�ned (TOP t,t)) .

where

TOP t =

8><
>:

top t if t 6= actual

cwp if t = actual, wim cwp = valid

cwp{1 if t = actual, wim cwp = invalid

The other invariants are replaced by two predicates:

complex mode : I0 ^ I1 ^ I2 ^ I6.

simple mode : 8i : owner i = actual ,

9j : 8i : wim i = invalid () i = j .

6.1.1 Complex Over/Under
ow and Context Switch

complex over
ow :

(
is min (cwp+1, actual)

complex mode

)

if wim cwp{1 = valid

then enter simple mode by over
ow

else
ush bottom non actual (cwp{1) ;

owner cwp := actual ;

wim cwp := valid ;

�ll with zero (cwp)
� . (

complex mode _ simple mode

is min (cwp, actual)

)

6.1 Introducing Simple Mode 27

complex under
ow :

(
is max (cwp, actual)

complex mode

)

if wim cwp+2 = valid

then enter simple mode by under
ow

else
ush top non actual (cwp+2) ;

owner cwp+1 := actual ;

wim cwp+1 := valid ;

pop (cwp+1, actual)

� . (
complex mode _ simple mode

is max (cwp+1, actual)

)

switch to (new) :

n
complex mode

o
if : registered (new)

then enregister (new)
� ;

wmask actual := wim ;
top actual := cwp+1 ;
wim := wmask new ;
cwp := top new{1 ;
actual := new . (

complex mode

registered (new) , actual = new

)

enregister (t) :

(
: registered (t)

complex mode

)

i := cwp ;

while wim i = valid do i := i { 1 od ;

ush bottom (i{1) ;

ush bottom (i{2) ;

owner i{1 := t ;

wmask t , i{1 := valid ;

pop (i{1, t) ;

top t := i { 1 . (
complex mode

registered (t)

)

28 6 IMPROVING THE SINGLE THREAD SITUATION

6.1.2 Simple Over/Under
ow and Context Switch

enter simple mode by over
ow :

8><
>:
8 i 6= cwp: owner i = actual

owner cwp = nil

is min (cwp+1, actual)

9>=
>;

owner cwp := actual) ;

establish (simple over
ow, simple under
ow, simple switch to) ;

simple over
ow . (
simple mode

is min (cwp, actual)

)

enter simple mode by under
ow :

8><
>:
8 i 6= cwp: owner i = actual

owner cwp+1 = nil

is max (cwp, actual)

9>=
>;

owner cwp+1 := actual ;

establish (simple over
ow, simple under
ow, simple switch to) ;
simple under
ow . (

simple mode

is max (cwp+1, actual)

)

simple over
ow :

(
is min (cwp+1, actual)

simple mode

)

push (cwp{1, actual) ;
fzeroing the window is not necessaryg

wim cwp{1 := invalid ;

wim cwp := valid . (
simple mode

is min (cwp, actual)

)

simple under
ow :

(
is max (cwp, actual)

simple mode

)

pop (cwp+1, actual) ;

wim cwp+1 := valid ;

wim cwp+2 := invalid . (
simple mode

is max (cwp+1, actual)

)

6.1 Introducing Simple Mode 29

simple switch to (new) :

n
simple mode

o
i := cwp ;

while wim i = valid do i := i { 1 od ;

owner i := nil ;
wim i := invalid ;

establish (complex over
ow, complex under
ow, switch to) ;

switch to (new) . (
complex mode

registered (new) , actual = new

)

6.1.3 Window Flushing

ush bottom (i) :

(
owner i+1 = nil

complex mode

)

if wim i = valid

then push (i, actual) ;
owner i := nil ;

wim i := invalid

else
ush bottom non actual (i)
� . (

complex mode

owner i = nil

)

ush bottom non actual (i) :

8><
>:

owner i+1 = nil

owner i 6= actual

complex mode

9>=
>;

if owner i 6= nil

then if top owner i
= i

then
ush all (owner i)

else push (i, owner i) ;

owner i := nil ;
wmask owner i , i

:= invalid

� ;

� . (
complex mode

owner i = nil

)

30 6 IMPROVING THE SINGLE THREAD SITUATION

ush top (i) :

(
owner i{1 = nil

complex mode

)

if wim i = valid

then owner i := nil ;

wim i := invalid

else
ush top non actual (i)

� . (
complex mode

owner i = nil

)

ush top non actual (i) :

8><
>:

owner i{1 = nil

owner i 6= actual

complex mode

9>=
>;

if owner i 6= nil
then if top owner i

= i
then
ush all (owner i)
else owner i := nil ;

wmask owner i , i
:= invalid

� ;
� . (

complex mode

owner i = nil

)

6.2 Introducing Trivial Mode 31

ush all (t) :

(
registered (t) , t 6= actual

complex mode

)

i := top t ;

while owner i+1 6= nil do i := i + 1 od ;

while i 6= top t{1 do

push (i, t) ;

owner i := nil ;

i := i { 1

od ;

push stack top (i) ;
while owner i = t do

owner i := nil ;
i := i { 1 ;

od ;
wmask t := invalidn . (

complex mode

: registered (t)

)

6.2 Introducing Trivial Mode

In simple mode, the tcb stacks have still to be inspected on push/pop op-
erations. So we apply the same technique once more to get rid of this and

introduce trivial mode.

trivial mode : simple mode, tcb stack empty (actual) .

Recall that we assume that the user stack of the actual thread is always

accessible!

32 6 IMPROVING THE SINGLE THREAD SITUATION

6.2.1 Simple Over/Under
ow and Context Switch

simple over
ow :

(
is min (cwp+1, actual)

simple mode

)

if tcb stack empty (actual)

then enter trivial mode by over
ow
else push tcb (cwp{1, actual) ;

wim cwp{1 := invalid ;

wim cwp := valid
� . (

simple mode _ trivial mode

is min (cwp, actual)

)

simple under
ow :

(
is max (cwp, actual)

simple mode

)

if tcb stack empty (actual)

then enter trivial mode by under
ow
else pop (cwp+1, actual) ;

wim cwp+1 := valid ;

wim cwp+2 := invalid
� . (

simple mode _ trivial mode

is max (cwp+1, actual)

)

6.2.2 Trivial Over/Under
ow and Context Switch

enter trivial mode by over
ow :

(
is min (cwp+1, actual)

simple mode

)

establish (trivial over
ow, trivial under
ow) ;

trivial over
ow . (
trivial mode

is min (cwp, actual)

)

33

enter trivial mode by under
ow :

(
is max (cwp, actual)

simple mode

)

establish (trivial over
ow, trivial under
ow) ;

trivial under
ow . (
trivial mode

is max (cwp+1, actual)

)

trivial over
ow :

(
is min (cwp+1, actual)

trivial mode

)

push onto user stack (cwp{1, actual) ;
wim cwp{1 := invalid ;
wim cwp := valid . (

trivial mode

is min (cwp, actual)

)

trivial under
ow :

(
is max (cwp, actual)

trivial mode

)

pop from user stack (cwp+1, actual) ;
wim cwp+1 := valid ;
wim cwp+2 := invalid . (

trivial mode

is max (cwp+1, actual)

)

7 Remarks

7.1 Performance

The resulting algorithms are rather complex and their performance relies
heavily on the application dependent interplay of window over
ows, under-

ows and context switches. A precise performance analysis seems impossible,

but we can state some interesting highlights:

� Properly implemented RPC saves and restores register windows on a
n-window-processor exactly like a normal procedure call on a n � 1-

window-processor, if inside actual enregistering is used. This means,
RPC pro�ts in the same way from multiple windows as local PC. (Clas-

sically, PC pro�ts, whereas RPC su�ers.)

34 7 REMARKS

� In periods of dominating window under/over
ow and less context

switches (trivial mode), the algorithms perform exactly like the classi-

cal ones.

� Window over
ow and context switch costs are independent of the num-
ber of the processor's windows, if outside actual enregistering is used.2

Over
ow saves at most 1, context switch saves at most 2 and restores

1 register window.

Unfortunately, under
ow is not completely lazily handled, since it
ushes

a total region then hitting it and not only its top window. We discuss three
ideas to overcome this problem:

- You could save only the bottom window to memory and all others of
the same region move one window towards the bottom. Unfortunately,
copy window i to i+ 1 is nearly as expensive as copying it to memory.
Although this method is cheaper in some cases, it can also be much

more expensive than the original one.

- You could give up the restriction that the windows in the processor's
register �le are always the stack top of the thread's logical window
stack. Then the top window can be saved to memory while the other

windows of the region still stay in registers. But as long as there is one
window left of the region, a new activation of the thread would induce
reloading all register windows at the same place. In most cases this
would be very ine�cient due to clashing with the same windows which

were restored just before.

Additionally you could allow region splitting. Then the stack top of a

partially
ushed region could be restored elsewhere.

Indeed, the last method is probably the only promising one. But it would
complicate the algorithms a lot and it is not sure whether it will lead to

increased or decreased e�ciency. Furthermore, practice may even show that
`
ush all on window under
ow' is a non-problem.

7.2 Hardware Support

An elegant, e�ective and cheap method supporting lazy context switch even
better would be to replace the window invalid mask register by a simple

register management unit (RMU). This should extend the currently used

2For inside actual enregistering, owner i must be set to nil from the actual top to the

leftmost valid window.

7.3 Tuning 35

wim register (1 bit per window) by log2(n) bits per window mapping each

logical window to a physical one. Then window allocation would no longer

be restricted to contiguous regions and `
ush all' becomes obsolete. Instead,
window allocation would be free of topological constraints.

7.3 Tuning

Due to a Sparc processor's low exception raising time (4 cycles) presaving

or prerestoring register windows is not helpful, neither on over
ow nor on

under
ow nor when enregistering a new thread.

The e�ective tuning point is choosing the bottom window of the new

region when enregistering. Statements about the real e�ects of outside ac-
tual, inside actual and further enregistering methods require practical exper-

iments. One should also try combinations of the inside and outside method,
for example

if is rpc call switch

then use inside
elif actual region is small

then use outside

elif most of the actual region is free
then use half outside

else use outside

�

7.4 Special RPC Support

RPC-related context switch can be supported by

� omitting the barrier nil window and using inside actual enregistering
on call,

� deallocating the complete actual region on return,

� on return using the actual region as new region, if the new (return to)
thread is deregistered during executing RPC.

7.5 Entering and Leaving Kernel Mode

The techniques presented here should also be applied to handle (non ipc)

system calls, page faults and other exceptions/interrupts.

36 REFERENCES

References

[i486] Intel Corporation. i486 Processor Programmer's Reference Manual. Santa

Clara, 1986

[Lie 93] J.Liedtke. Improving IPC by Kernel Design. Proceedings 14th ACM Sympo-

sium on Operating Principles, Asheville, North Carolina, December 1993.

[Ross] Ross Technology Inc. SPARC RISC User's Guide. Austin 1990.

