
�-Kernels Must And Can Be Small

Jochen Liedtke

IBM T. J. Watson Research Center �

GMD | German National Research Center for Information Technology y

jochen@watson.ibm.com

Abstract

For a general acceptance, �-kernels must be fast and

not burden applications. For ful�lling these conditions,

cache architectures require �-kernels to be small. The

L4 �-kernel shows that smallness can be achieved.

1. �-kernels must be small

This is not obvious. Most �rst-generation �-kernels

were large; typically they need 300 Kbyte of code and

140 system calls. Some of their architects argued that

`�' in this context means `lower level' and not `small

size'. Demanding smallness radically di�ers from this

approach. It could (and in fact it does) change �-kernel

technology dramatically.

Why should �-kernels be as small as possible? (We

avoid the term \minimal" because of its mathematical

implications.) The reasons are performance, 
exibility

and perhaps correctness.

1.1. \A non-small �-kernel is not fast."

The most relevant performance costs of a �-kernel

result from its cache consumption. If a frequently in-

voked kernel operation accesses a substantial part of

the primary cache (\
oods the cache"), the user is

punished twice. First, the kernel operation itself is

degraded by cache misses, since it must displace user

code and data. Second, the user program has to pay

for additional cache misses, since it must re-establish

its cache working set. From Chen's [1993] measure-

ments for a Mach benchmark on a DS 5000/200, we

can calculate that on average 20% of the system cache

misses are caused by user-kernel competition. We ex-

pect a substantially higher number for more up-to-date

�30 Saw Mill River Road, Hawthorne, NY 10532, USA
yGMD SET{RS, 53754 Sankt Augustin, Germany

hardware and faster (but non-small) kernels.1

On modern processors, the mentioned cache misses

might consume up to 5 (�ve!) times as many cycles as

the kernel code required for execution in the ideal case.

What happens if the kernel working set is reduced,

say from 75% to 15% of the cache size?

� The small kernel needs only 1/5 of the instruc-

tions. Since �-kernel operations usually execute

very few loops, we can expect a corresponding 4

to 5 times speed improvement.

� There is a good chance that competition between

user working-set and kernel working-set is sub-

stantially reduced. Ideally, frequently invoking a

�-kernel operation does neither cost kernel-level

nor subsequent user-level cache misses.

Cache eating

A somehow strange e�ect occurs if the �-kernel work-

ing set is substantially larger than the cache: enlarging

the cache does not really improve the �-kernel's per-

formance; in the worst case, it might even degrade it

since the cache-reestablishing costs increase.

For a rough understanding of these e�ects, we look

at a rather naive model: the cache is highly associative

and the application always �lls it completely between

successive �-kernel operations. Assume that �lling the

complete cache costs c cycles and that the �-kernel

operation requires a working set twice as large as the

cache. Then 2c cycles are required for loading �-kernel

1The DS 5000/200 had a 64-K direct-mapped cache with 4-

byte lines. In spite of the large primary cache, cache misses

degraded on average each system instruction by 0.86 cycles. The

corresponding average penalty per user instructionwas only 0.15

cycles. Therefore, we can conclude that kernel cache working

sets were relatively large and user cache working sets relatively

small. This will change dramatically on a modern processor with

typically a 2- or 4-way set-associative primary cache of only 16

K. Furthermore, the larger cache lines (typically 32 bytes) will

increase competition.



code and data; re-establishing the application's work-

ing set needs c cycles additionally. Now we double the

cache size. The �-kernel cache-�ll costs remain 2c cy-

cles. However, re-establishing the application's work-

ing set may now cost up to 2c cycles. In total, doubling

the cache size can increase the �-kernel-operation net

cost from 3c to 4c cycles. If the larger cache improves

the pure application's speed, the �-kernel-operation

cost relative to the application increase even more than

25%.

If a system uses a �ne-grained client-server architec-

ture and makes heavy use of micro-kernel operations,

the mentioned e�ects might e�ectively neutralize the

cache enlargement for the application.

Server interaction

A popular counterargument against keeping kernels

small is: The server's cache consumption has to be

taken into consideration as well. What does it matter

whether the �-kernel or the server 
oods the cache?

Why not integrate the server in the kernel? The user

will pay the same.

This is a red herring. The �-kernel idea is to sepa-

rate function (the servers) and basic security structure

(the kernel). Any user is willing to pay for the func-

tion (e.g. copying a �le) but not for things like address

spaces or IPC which have no direct net e�ect for the

application. The required 
exibility and extensibility

by adding and modifying servers is widely accepted,

provided that the structural costs, i.e. the costs of the

�-kernel, are negligible. Ideally an application linked

together with a server should behave like a client/server

pair of tasks. If a speci�c system runs too many servers

and too many clients simultaneously, this is the stan-

dard problem of a too small machine. If all systems are

burdened by too many servers (which even do not do

the right things for you), even if you run only a small

application, you use a monolithic kernel.

A second counterargument is: �-kernels need more

copying, in particular between drivers and applications.

This is not true if the address spaces are constructed

properly.

Second-level caches

Modern high-performance processors use three-level

cache systems. A small and very fast primary on-chip

cache (typically 16 K), a fast second-level near-chip

cache (typically 128 K) and a large third-level o�-chip

cache. Because of its limited size, the above-mentioned

primary-cache-related arguments apply as well to the

second-level cache. However, we have not only to take

into consideration the working set of one frequently-

used �-kernel operation but the combined working set

of all operations, except the extraordinarily infrequent

ones.

Code and data

Theoretically, a large �-kernel could have a small

instruction-cache working set. However, in practice,

this never happens. Our experience taught us that the

only chance to get small code working sets is to con-

struct a small kernel.

However, a �-kernel's data-cache working set much

more depends on the structure than on the total size of

the kernel data. It is essential to minimize global kernel

data, e.g. to avoid system-wide hash tables. Data per

task, per thread or per page are less critical, since they

burden the cache only if the corresponding objects are

manipulated.

1.2. \A non-small �-kernel is in
exible."

All that is wired in the kernel cannot be modi�ed by

higher levels. Since �-kernels are in a way the most gen-

eral software (used by any application and potentially

even by any OS), generality, 
exibility and adaptibility

is vital for them. We know two strategies for solving

the problem:

1. Many alternate policies in the �-kernel!

The method does not work, because (a) compet-

ing policies contradict each other, (b) the number

of useful policies is too huge, (c) the set of policies

required for current and future applications and

OSs is unknown and (d) policy integration en-

larges the �-kernel and thus costs performance.

2. Only basic mechanisms in the �-kernel, no poli-

cies!

If the mechanisms are general and powerful

enough, they should permit to implement any

reasonable policy. For example, Exokernel [En-

gler et al. 1995] and L4 [Liedtke 1995] presently

explore this strategy.

Making the �-kernel extensible like in the Spin

OS [Bershad et al. 1995] belongs to the second cat-

egory. There is no real conceptional di�erence between

extending the kernel code by a user-written handler

and extending the system at user-level by a new server.

In both cases, the new software runs on top of an ab-

stract machine, the \�-kernel". Whether the new code



runs in kernel mode or in user mode is a technical de-

tail. It might have consequences in performance (al-

though the Spin results are discouraging) but not in

functionality.

For the second strategy, we must look for basic

mechanisms which are general and e�cient. Although

it cannot be proven formally, most engineers strongly

believe that such basic mechanisms can be found only if

(a) the underlying concepts are simple and orthogonal,

(b) operate at the lowest possible level and (c) are suf-

�ciently abstract (independent of concrete hardware).

1.3. \Even a small �-kernel is incorrect."

Undoubtedly, correctness is a reason to keep soft-

ware small. In the �-kernel context, however, the argu-

ment is probably not as strong as most people believe:

1. The �-kernel has to tame the hardware's paral-

lism (due to external interrupts even on a unipro-

cessor) and the software's concurrency. These

inherently hard problems are relatively indepen-

dent of the kernel size.

2. Small �-kernels require better integration of

hardware architecture and kernel architecture.

Correspondingly, they enable and require more

non-simple optimizations. Both integration and

optimization are di�cult and hence improve the

probability of including bugs.

From our experience, the chance that a small

�-kernel becomes \su�ciently correct" over time is

greater than in the case of a large kernel. However,

the correlation between size and errors is sublinear.

2. �-kernels can be small

2.1. Abstractions: 3

The L4 �-kernel [Liedtke 1996] is based on two basic

concepts, threads and address spaces:

� A Thread is an independent 
ow of control in-

side an address space. Threads are identi�ed

by unique ident�ers and communicate via IPC.

The �-kernel o�ers preemption RPC to imple-

ment user-level schedulers, user-level threads, op-

timistic fast synchronization etc. Whenever a

preemption occurs, the kernel generates an RPC

to a user-speci�ed preempter (if the user speci-

�ed one). Like a pager handles space faults, a

preempter handles time faults.

� Address spaces are recursively constructed by

user-level servers, also called pagers. Basic mech-

anisms are map, grant and unmap of fpages. An

fpage (or 
expage) is a logical page of size 2n,

ranging from one physical page up to a complete

address space.

Threads and address spaces are complemented by

the Clan & Chief concept. A Clan is a set of tasks2

headed by a Chief task. Inside the Clan, all messages

are transferred directly. Messages crossing Clan bor-

derlines are redirected by the �-kernel to the corre-

sponding Chief. Clans are not required for normal se-

curity but can be used to implement e.g. local reference

monitors, multi-level-security policies and distributed

systems. Since chiefs are user-level tasks, the clan con-

cept allows sophisticated and user-de�nable checks as

well as active control.

2.2. System calls: 7

ipc is the basic system call for inter-process commu-

nication and synchronization. All communica-

tion is synchronous and unbu�ered: a message is

transferred from the sender to the recipient if and

only if the recipient has invoked a corresponding

ipc operation. The sender blocks until this hap-

pens or a sender-speci�ed timeout occurs.

Ipc can be used to copy data as well as to map or

grant fpages from the sender's to the recipient's

address space.

id nearest delivers either the invoker's own id or the

nearest chief towards the speci�ed destination.

fpage unmap unmaps the speci�ed fpage from all ad-

dress spaces into which the invoker mapped it

directly or indirectly.

thread switch releases the processor so that either a

speci�ed or an arbitrary thread can be executed.

thread schedule Tasks acting as schedulers can de-

�ne priority, timeslice length and an external pre-

empter for all threads that currently run at a pri-

ority less or equal to the invoking task's maxi-

mum controlled priority.

lthread ex regs reads and writes (exchanges) some

register values (e.g. instruction pointer and stack

pointer) of another thread belonging to the same

2We use the term `task' to denote an address space in con-

junction with with its threads.



task. The system call serves to implement sig-

nalling, user-level threads and even thread cre-

ation and deletion. Conceptually, creating a task

includes creating all of its threads. All except

the �rst one initially run an idle loop. Of course,

the kernel does neither allocate control blocks nor

time slices etc. to them. Setting stack pointer and

instruction pointer of such a thread then really

generates the thread.

task new deletes and creates (exchanges) a task.

Tasks can be active or inactive. An active task

consists of an address space and threads execut-

ing (or waiting) in this space. An inactive task is

empty. It occupies no resources, has no address

space and no threads. Loosely speaking, inac-

tive tasks are not really existing but represent

only the right to create an active task. Any task,

active or inactive, belongs to a Clan. Only the

Clan's Chief can modify the task by this system

call. Besides deletion (active ! inactive), cre-

ation (inactive! active) and replacement (active

! active), the chief can also transfer an inactive

task to another clan (inactive ! inactive).

2.3. Code size: 12 K

The L4/486 �-kernel needs slightly less than 12 K

of code. This value does not cover the optional ker-

nel debugger (10 K) and the initialization code (4 K)

whose memory is released after initialization and made

available at user level.

A short IPC operation needs approximately 10% of

the 8 K primary cache.

Global kernel data (except page tables and the map-

ping database) are 4 to 12 K, depending on the num-

ber of allocated tasks. Besides some small tables re-

quired by the processor (IDT, GDT), it uses basically

one (486) or two (Pentium) words per allocated task

which points to the corresponding address-space root.

The mapping database consists of one tree per physical

page frame re
ecting the e�ective mappings (by map,

unmap and grant operations) of each frame. Since the

nodes of the trees are more or less randomly distributed

(it is a heap), the corresponding table has the bad cache

properties of system-global data. However, the map-

ping database is only accessed when the mapping re-

ally changes which usually occurs infrequently. The

frequent operations, IPC and address-space switch, do

not access the mapping database.

References

Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczyn-

ski, M., Becker, D., Eggers, S., and Chambers, C. 1995.

Extensibility, safety and performance in the Spin operat-

ing system. In 15th ACM Symposium on Operating Sys-

tem Principles (SOSP), Copper Mountain Resort, CO,

pp. 267{284.

Chen, J. B. and Bershad, B. N. 1993. The impact of operat-

ing system structure on memory system performance. In

14th ACM Symposium on Operating System Principles

(SOSP), Asheville, NC, pp. 120{133.

Engler, D., Kaashoek, M. F., and O'Toole, J. 1995. Exokernel,

an operating system architecture for application-level re-

source management. In 15th ACM Symposium on Operat-

ing System Principles (SOSP), Copper Mountain Resort,

CO, pp. 251{266.

Liedtke, J. 1995.On �-kernel construction. In 15th ACM Sym-

posium on Operating System Principles (SOSP), Copper

Mountain Resort, CO, pp. 237{250.

Liedtke, J. 1996. L4 reference manual (486, Pentium, PPro).

Arbeitspapiere der GMD No. 1021 (Sept.), GMD | Ger-

man National Research Center for Information Technol-

ogy, Sankt Augustin. also Research Report RC 20549,

IBM T. J. Watson Research Center, Yorktown Heights,

NY, Sep 1996.


