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Abstract

Dynamic object allocation usually stresses the

randomness of data memory usage; the variables

of a dynamic cache working set are to some degree

distributed stochastically in the virtual or physical

address space. This interferes with cache architec-

tures, since, currently, most of them are highly sen-

sitive to access patterns. In the above mentioned

stochastically distributed case, the true capacity is

far below the cache size and largely di�ers from

processor to processor. As a consequence, object

allocation schemes may substantially inuence ca-

che/TLB hit rates and thus overall program perfor-

mance.

After presenting basic cache architectures in

short, we sketch an analytical model for evaluating

their true capacities. Some industrial processors are

evaluated way and potential implications for mem-

ory management techniques are discussed.

1. Rationale

This paper deals with the secondary costs of

memory allocation. Does a program the objects

which of have been dynamically allocated and per-

haps reallocated by garbage collectors behave and

perform like other programs? And can we reduce

negative e�ects by modi�cation of memorymanage-

ment algorithms and/or by hardware?

Suppose that you use a simple block struc-

tured programming language which does not sup-

port pointers, allocates variables solely on the stack

and passes parameters and results always by value.
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When running a program written in such a lan-

guage, select by random a sequence of a few thou-

sand instructions and mark all data (variables) ac-

cessed in the sequence. There is a good chance

that this (�ne-grained) working set has a highly

systematic structure: all addresses �t into a rela-

tively small interval which is the stack's hot part,

and there are only few unused holes in it. If the size

of the interval is less than or equal to the data cache

size, you can expect a hit rate of nearly 100%.

(Un)fortuantely, programming languages are not

as restricted as assumed above. They have refer-

ence parameters, pointers, heaps and sometimes use

rather sophisticated memory management mecha-

nisms including garbage collection. An extreme

example might be a concurrent logic program-

ming language, where all variables are written at

most once and data structures are implemented as

pointer arrays. As a consequence, a data working

set is usually spread over a fairly large interval and

has a stochastically inuenced structure. Dynamic

memory management usually leads to more or less

randomly allocated variables.

Since caches and translation lookaside bu�ers

(TLBs) are in most cases not fully-associative, the

e�ect of stochastically structured working sets is not

obvious. As will be shown later, random inuences

lead to an increase of cache conicts and thus to

reduced hit rates.

Cache and TLB performance is crucial for to-

day's systems and will become even more crucial

for tomorrow's processors. For illustration: on a

fast 3-issue processor, a primary cache miss (and

secondary cache hit) may lead to a 20 cycle delay

corresponding to a delay of 50 to 60 instructions,

even if a few subsequent instructions may be ex-

ecuted during miss handling. TLB misses induce

similar costs. In this situation, reducing both hit



rates by only 1%, from 99% to 98%, can make the

processor run 1.3 times slower.

2. Cache associativity

A general introduction into caches can be found

in [14]. Special architectures are described in [2,

18, 16, 1, 3, 10]. This section deals only with as-

pects related to associativity, since they determine

how a cache reacts to usage patterns. Cache ad-

dressing and tagging (virtual or physical), line size,

replacement algorithms, write strategies and coher-

ence protocols are not discussed here.

In the case of a direct-mapped cache, some bits

of the physical or virtual address a are used to form

a cache index. This index selects a single cache

entry which then is checked against the address a.

Direct-mapped caches are simple, fast and cheap.

For a given die size, the direct-mapped architecture

permits the fastest [17] and the largest [13] cache

(the cache with the most entries). On the other

hand, they tend to cache conicts or clashes, i.e.

cache misses caused by two or more addresses which

are mapped to the same index and thus cannot be

held in the cache simultaneously.

An n-way set-associative cache can contain up to

n memory entities with map-equivalent addresses

per set, because the index is used to select a set of

n entries instead of a single one. This n-fold as-

sociativity reduces the conict probability and ac-

cordingly improves the hit rate. On the other hand,

an n-way cache needs more die size than a direct-

mapped one and is not quite as fast.

In practice, direct-mapped (Mips R4000), 2-way

(Pentium), 4-way (486, PowerPC 604) and 8-way

caches (PowerPC 601) are used.

3. Probabilistic capacity

Numerous studies use the cache hit rate (the ra-

tio of accesses which hit in the cache to accesses

in total) as a measure of the cache's quality. Un-

fortunately, the hit rate not only depends on the

cache architecture but also heavily on the dynamic

program or system behaviour. We cannot predict

hit rates; we can only measure them for a given pro-

gram or a given set of programs and given data sets.

Large amounts of heuristic work has been invested

to �nd benchmarks which are in some respect \rep-

resentative". Some people hope that the results of

Page

Processor Size Ways Size Use

486 8 K 4 4 K I+D

Pentium 8 K 2 4 K I

8 K 2 4 K D

PowerPC 601 32 K 8 4 K I+D

PowerPC 604 16 K 4 4 K I

16 K 4 4 K D

Alpha 21064 8 K 1 8 K I

8 K 1 8 K D

Mips R4000 8-32 K 1 4 K I

8-32 K 1 4 K D

Table 1. First Level Processor Caches.

such benchmarks are valid also for \similar" pro-

grams and that many practically relevant programs

are \similar". This approach has at least two weak

points:

� It cannot be predicted how upcoming new

applications, new programming styles, even

new programming languages or code gener-

ators will e�ect the hit rate.

� It cannot be predicted how the combination

of two or more applications will e�ect the hit

rate.

Measuring hit rates is not su�cient to understand

caches. We need a measure which gives us more

insight into the cache properties and is not as pro-

gram dependent as the simple hit rate. There are

strong similarities between caches and paging. The

most important idea to understand paging was in-

troducing working sets [4]. This abstraction turned

out to be both su�ciently independent of concrete

program behaviour and su�ciently expressive for

performance evaluations.

Accordingly, we de�ne the cache working set of

a sequence of n memory accesses to be the set of

! (di�erent!) memory entities accessed by this se-

quence. (A memory entity is the memory unit

which can be held in one cache entry.) If the com-

plete cache working set �ts completely into the ca-

che, we can be sure that the instruction sequence

can be executed fast. Besides potentially loading



the cache working set, no cache miss at all will oc-

cur: the worst case miss rate is !=n. Otherwise, if

the complete cache working set does not �t simul-

taneously into the cache, we cannot make relevant

statements about cache hits and misses: the worst

case miss rate is n=n.

Now, we argue the other way around. Assume

an in�nite sequence of accesses. N! denotes the

maximum pre�x length of this sequence so that its

cache working set contains ! entities. The corre-

sponding cache working set is denoted by W!. The

cache capacity related to the given sequence of ac-

cesses is the value C such that the �rst C members

of the working set �t simultaneously into the cache

whereas the �rst C+1 do not, i.e.,WC �ts into the

cache and WC+1 does not.

This capacity seems to be an essential cache prop-

erty. Unfortunately, for most cache architectures, it

heavily depends on the working set structure: the

capacity of a direct-mapped cache can range from 1

(all accesses mapped to the same cache entry) up to

n (all mapped to di�erent entries). To get rid of this

dependency, we use expected capacity and probabilis-

tic capacity. These terms are de�ned more precisely

in [11]; here we describe them informally:

Expected Capacity is the \average" capacity
eC over the working sets of all possible access se-

quences. If you select such a working set at ran-

dom, eC is the expected value of the corresponding

capacity.

Probabilistic Capacity is the maximal capac-

ity Cp such that with probability p, a randomly se-

lected working set relates to a capacity of at least

Cp. Usually, p is chosen very close to 1.

Accordingly, we use the term systematic capacity

as a synonym for the cache size.

An important parameter for determining the ex-

pected and the probabilistic capacity is the method

for selecting the working set. Generally, any method

can be speci�ed by an according probability distri-

bution.

We concentrate on equally distributed working

sets, more precisely, we assume that any working

set with a prede�ned size has the same probabil-

ity of occuring. In the case of stochastically se-

lected working sets, the probabilistic capacity is also

called stochastic capacity and the expected capacity

is called expected stochastic capacity.

Why did we choose the stochastic model? There

are presumably no hard mathematical arguments

for this choice but some serious intuitive and prag-

matic arguments:

� In practice, stochastic selection is presumably

the worst case. A systematic selection is ei-

ther better than a stochastic one or can be

randomized, e.g. by a hash function or even

by simply xoring the address by a bit mask.

Therefore a cache architecture well-suited for

stochastic selection should perform well in

most cases.

� In practice, stochastic inuences become more

and more important. Among other rea-

sons, increasing cache and TLB size, increas-

ing concurrency and object-oriented program-

ming techniques are responsible for this e�ect.

Therefore, a stochastically bad-performing ca-

che architecture will presumably not be very

e�cient in practice.

In [11], we show how expected and probabilistic ca-

pacity of various cache types can be calculated an-

alytically.

Assume that for 8K cache, we �nd an expected

stochastic capacity eC = 50% and a stochastic ca-

pacity C99% = 25%. What does this mean? The

naive interpretation of the expected capacity is: we

expect that programs with cache working sets up to

4K perform fast. This interpretation is wrong!

We can be relatively sure (precisely 99%-sure)

that programs with cache working sets up to 2K, the

stochastic capacity, perform fast. For a stochastic

capacity Cp, we can expect a worst case miss rate

of

p
Cp

NCp

+ (1� p)
NCp

NCp

�

Cp

NCp

+ (1� p) :

We do not have a similar approximation based on

the expected capacity. In our example, a cache

working set of 3.5K may lead to a horrible miss rate,

although it is not larger than the expected capacity.

Pragmatic conclusion: Cum grano salis, we can

use probabilistic and expected capacity as

probable lower and upper bounds for e�-

ciently performing cache working sets. As

long as the working sets do not exceed the

probabilistic capacity (with p � 1), we can be

relatively sure that the program performs fast.

On the other hand, we should be surprised, if

a program heavily using cache working sets

beyond the expected capacity performs well.



4. Capacity analysis

For comparing some cache architectures, in this

section always 32-byte cache lines are assumed. Fig-

ure 1 shows the stochastic capacities with p = 99%

for conventional direct-mapped, 2-way, 4-way and

8-way associative caches from 4K up to 32K size.
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Figure 1. Stochastic Capacity, n-way

Caches

The capacity is given as relative capacity, where

100% denotes the complete cache, i.e. the size given

by the x-axis. Direct-mapped caches (�1) have

an extremely low stochastic capacity, mostly be-

low 1%; 2-way caches are slightly better with 4%.

Although 4-way and 8-way caches have a 15 re-

spectively 40 times higher stochastic capacity than

direct-mapped caches, their absolute values, 11%

and 25% respectively, are still not very high.

Figure 2 shows the e�ects of complementing a

4-way cache by various overow caches. (An over-

ow cache is similar to a victim cache [8].) Only 4

overow entries increase the stochastic capacity by

roughly 20%, i.e. more than doubles it. 50% can be

reached by 16 overow entries.

All the capacity evaluations discussed until now

assume purely stochastic cache or TLB working

sets. In practice, stochastic (e.g. on the heap) and

systematic (e.g. on the stack) inuences coexist.

Does this substantially increase the capacities? We

examine working sets built by two simultaneously

active mechanisms: the �rst is a pure stochastic

selection, the second a pure systematic selection

which chooses subsequent adjacent entries, i.e. a
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Figure 2. Stochastic Capacity, 4-way Cache
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Figure 3. Probabilistic Capacity of 8K-

Caches for Mixed Stochastical and Systematic

Selections



compact part of memory. Now we start with a

pure stochastically determined situation and then

increase the systematic contingent. A systematic

contingent of 0.6means that 60% of any cache work-

ing set is chosen systematically and the remaining

part is chosen stochastically. Figure 3 shows proba-

bilistic capacities (p = 99%) for direct-mapped and

4-way caches without and with a 4-overow cache.

Cp is measured for systematic contingents from 0.0

(purely stochastic) up to 1.0 (purely systematic).

In the latter case, cache capacity is of course al-

ways 100%; but even limited stochastic inuences,

like systematic contingents of 0.7 or 0.8, reduce the

capacity nearly to the purely stochastic case. From

this, we conclude that stochastic capacity is an ac-

ceptable measure for programs which are inuenced

by dynamic memory management and garbage col-

lection.

Counterarguments

Many existing processors have direct-mapped or 2-

way caches. Do these caches really perform as bad

as the above cacpacity analysis suggests? There are

two obvious counterarguments:

1. The mentioned processor vendors made

benchmark-based hit-rate measurements for

various cache architectures. Obviously, some

of them concluded that improved associativ-

ity does not pay in relation to the improved

hardware costs.

2. Measurements and simulations, especially Hill

and Smith [5], state that improving associa-

tivity beyond 2 ways has only very limited

e�ects.

Indeed, Hill and Smith show that the inuence

of associativity is limited in scenarios where capac-

ity misses (which here should better be called size

misses) dominate conict misses. They explicitly

say that \trace samples that exhibit unstable be-

haviour (e.g., a particular doubling of cache size or

associativity alters the miss ratio observed by many

factors of two) have been excluded from both groups

[of trace samples]" [5] (p. 1615). Not surprisingly,

under this premise size misses dominate and enlarg-

ing size or increasing associativity has only smooth-

ing e�ects; otherwise increasing size or associativity

would produce \unsteady" e�ects.

Due to instruction prefetching, speculative exe-

cution and non blocking caches, the delay e�ects

of instruction cache size misses may substantially

decrease. Larger register sets, new compiling tech-

niques and perhaps data prefetching may also de-

crease data cache size misses. Conict misses re-

main.

Furthermore, it should be mentioned that these

cache miss rate measurements always show rates av-

eraged over a variety of programs. They do not

predict the behaviour of a single program. From

a software architect's point of view, a 50% perfor-

mance di�erence in programs of his favoured type

is important, even if the hardware architect realizes

only a 2% e�ect in his (conservative) overall bench-

mark suite.

A further remark: a stochastic cache working set

is chosen out of an in�nitely large address interval.

In practice, twice the cache size is already \in�nite".

On the other hand, if you select variables within

a memory interval smaller than or equal the total

cache size, the capacity is always 100%. This means

that a 32K cache works perfectly as long as the hot

data variables lie within one 32K interval, no matter

what architecture the cache has.

5. Conclusions

Table 2 and �gure 4 show systematic, expected

and stochastic data cache capacity of various avail-

able processors. For the processors using a uni�ed

instruction and data cache (486 and PowerPC 601),

it is assumed that half of the cache is used for in-

structions.

Processor Cache Workingset

486 55{139 � 16 B = 0.88{2.22 K

Pentium 11{45 � 32 B = 0.35{1.44 K

PowerPC 601 61{112 � 64 B = 3.90{7.17 K

PowerPC 604 55{139 � 32 B = 1.76{4.44 K

Alpha 21064 2{20 � 32 B = 0.06{0.64 K

Mips R4000 5{40 � 32 B = 0.16{1.28 K

Table 2. Concrete Cache Capacities.

1. Analytically or heuristically derived values of

the cache working sets of concrete programs

may help the user to select the most appro-

priate hardware.
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2. The cache capacity characteristics of the pro-

cessors di�er largely. We should not ex-

pect to �nd processor independent optimiza-

tion strategies for memory management algo-

rithms.

3. For programs with a relatively small data set

(and processors with a fairly large cache), it

might be a good strategy to concentrate the

complete data set into a virtual memory re-

gion smaller than the cache size.

4. This strategy will presumably not work for

larger data sets, especially in the case of

object-oriented systems and databases or in

the case of single address space operating sys-

tems. All these applications will pro�t from

higher associativity and thus higher stochastic

capacity like on the PowerPC.

5. A strategy for PowerPCs: try to cluster re-

lated objects in one page. As long as the data

working set consists of only up to 4 pages,

you have 100% capacity, i.e. 16K (provided

that not more than 4 instruction pages are

required on the 601).

6. Intuitively, we doubt that e�ects comparable

to increased associativity can be obtained by

software, mainly due to the costs of dynamic

detection of working sets and the required re-

arrangement.

7. Increasing the stochastic capacity of caches

seems to be the most promising way. Fig-

ure 5 shows the hypothetical e�ect of adding

only an 8-entry overow cache to the primary

cache of the processors mentioned above.
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